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Abstract

Memories are assumed to be formed by sets of synapses changing their structural or func-

tional performance. The efficacy of forming newmemories declines with advancing age,

but the synaptic changes underlying age-induced memory impairment remain poorly under-

stood. Recently, we found spermidine feeding to specifically suppress age-dependent

impairments in forming olfactory memories, providing a mean to search for synaptic

changes involved in age-dependent memory impairment. Here, we show that a specific

synaptic compartment, the presynaptic active zone (AZ), increases the size of its ultrastruc-

tural elaboration and releases significantly more synaptic vesicles with advancing age.

These age-induced AZ changes, however, were fully suppressed by spermidine feeding. A

genetically enforced enlargement of AZ scaffolds (four gene-copies of BRP) impaired mem-

ory formation in young animals. Thus, in the Drosophila nervous system, aging AZs seem

to steer towards the upper limit of their operational range, limiting synaptic plasticity and

contributing to impairment of memory formation. Spermidine feeding suppresses age-

dependent memory impairment by counteracting these age-dependent changes directly at

the synapse.

Author Summary

Neurons communicate by sending impulses, in the form of secretion of neurotransmitters,

across small spaces called synapses. It is these synapses that undergo structural and
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functional changes during formation and retrieval of memories. Though alterations in

synaptic performance are believed to accompany aging, the causal relationship between

age-dependentmemory impairment and synaptic changes remains largely unknown.

Using the flyDrosophila melanogaster as a model, we found that feeding them spermidine

—a polyamine compound—suppresses age-induced decline in olfactorymemory, provid-

ing us with a tool to further decipher mechanisms associated with age-dependentmemory

impairment. In this study, we investigated the relationship between synaptic changes and

age-dependentmemory impairment by studying the olfactory circuitry. We observed an

age-related increase in the levels of the synaptic proteins Bruchpilot and Rim-binding pro-

tein, which caused an enlargement of the presynaptic active zone—the complex of proteins

that mediate neurotransmitter release—and enhanced synaptic transmission. Interest-

ingly, feeding of spermidinewas sufficient to abolish these age-associated presynaptic

changes, further emphasizing the relationship between presynaptic performance and age-

dependent memory impairment. Furthermore, flies engineered to express an excess of the

core active zone protein Bruchpilot showed a premature impairment in memory forma-

tion in young flies. Based on our data, aging plausibly steers the synapses towards the

upper limit of their operational range, limiting synaptic plasticity and contributing to

impairment of memory formation.

Introduction

Age-dependent memory impairment (AMI), which is associated with both psychiatric and

neurodegenerative disorders, starts in midlife and worsens with advancing age, suggesting that

the greatest driving factor is age itself. The lack of effective treatments that prevent, halt, or

reverse the condition is contributing to a diminishing quality of life for many senior citizens.

Therefore, animal models that allow one to monitor physiological changes across their lifespan

and to test for a causal character of age-induced changes might be helpful in exploring the

mechanistic basis of AMI.D.melanogaster, with its short lifespan of around 60 d and advanced

molecular genetic tools, provides an efficient experimentalmodel to unravel mechanisms

underlying AMI. Additionally, the olfactory nervous systems of insects and mammals exhibit

many similarities, suggesting that the mechanisms for olfactory learningmay be shared [1].

Moreover, aversive short-, intermediate-, and long-term olfactorymemories have been found

to be subject to age-induced decline inDrosophila, with an onset at about 10 d of age and pla-

teaus at about 30 d of age [2–6]. Notably, we recently found a simple dietary supplementation

of spermidine, a polyamine that specifically protects from AMI inDrosophila.

External stimuli are believed to be represented in the brain as spatiotemporal patterns of

neural activity within a set of neuronal connections. Changes in synaptic communication

(“plasticity”) within certain neuron populations are meant to ultimately encode behavioral

adaptations such as learning and memory. Thus, dysfunctioning of synaptic plasticity might

well be relevant to age-dependent deterioration of learning and memory [7,8]. One of the fun-

damental problems of studying AMI, however, is the inability to differentiate causative changes

from adaptive or protective changes. Moreover, the brain undergoes changes at multiple levels

with advancing age, including alterations in circuits, individual neurons, and single synapses,

further complicating the situation [8]. Nonetheless, recent work has linked AMI to subtle syn-

aptic alterations in the hippocampus and other cortical brain areas, rather than to the loss of

neurons [7,9]. At the same time, the age-associatedmodulation of molecular entities underly-

ing learning and memory that define and change synapse function remain poorly understood.
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Therefore, we set out to determine the role of age-induced changes in the organization and

function of synapses in AMI, using dietary supplementation with spermidine as a tool to iden-

tify synaptic changes that can potentially contribute to AMI.

To accomplish this, we analyzed age-induced changes in the ultrastructural,molecular, and

functional organization of synapses within the olfactory system of flies by comparing aged flies

fed with normal food to aged flies fed with spermidine-supplemented food.We found that

aging is associated with an increase in the average size of active zone (AZ) scaffolds, structures

recently shown to scale with synaptic vesicle (SV) release. Consistent with this, optophysiologi-

cal analysis showed that more SVs are released in response to natural odor stimuli in aged flies.

Interestingly, these age-associated changes were suppressed by spermidine feeding, indicating

that these changes might be causally relevant to AMI. In fact, genetic manipulation provoking

an increase of T-bar size in young animals was sufficient to induce a premature decline in

memory performance.We suggest that a cumulative increase in the size and function of pre-

synaptic AZ scaffolds might reduce the operational range of synaptic plasticity processes, and

thus, hamper the formation of newmemories with age. Additionally, levels of postsynaptic

neurotransmitter receptors and postsynaptic Ca2+ signals remained largely unaffectedwith

age, suggesting that homeostatic adaptations might be involved in increasing the threshold for

memory formation with advancing age.

Results

It is known that the ability to acquire newmemories declines with advancing age. Based on pre-

vious study [10], one plausible explanation for this observationmight be the increase in the

threshold required for memory formation with age. In fact, when we analyzed olfactory condi-

tioning in aged flies (30-d-old flies or 30d) we found that greater number of exposures to the

unconditioned stimulus in order to attain saturated levels of memory scores, which, however,

never reached the same maximal learning scores found in young flies (3-d-old flies or 3d), indi-

cating that the dynamic range of memory formation is altered with advancing age (S1 Fig).

Multiple lines of evidence suggest that presynaptic plasticity processes are responsible for form-

ing olfactory associativememory inDrosophila [11–13]. Therefore, we set out to determine the

role of age-induced changes in the organization and function of synapses in AMI, using dietary

supplementation with spermidine as a tool to identify synaptic changes that can potentially

contribute to AMI.

Age-Induced Increase of Odor-Driven Vesicle Release Is Suppressed
by Spermidine Feeding

In order to identify synaptic mechanisms plausibly contributing to AMI, we used opto-physio-

logical assays to characterize overall neuronal responses in synaptic terminals of live intact

flies. For these experiments, we focused on projection neuron (PN) to kenyon cell (KC) synap-

ses within the mushroom body calyx of the olfactory system for two reasons: first, aversive

olfactory learning involves coincidence detection of a conditioned stimulus (odor) with an

unconditioned stimulus (electric shock), causing changes in the odor-specific synaptic activity

of second order PNs and third order mushroom body KCs [1,14]; second, the superficial posi-

tion of the calyx within the fly brain enabled us to perform efficient optical analysis [15], since

sensor signals could be retrieved from discrete synaptic bouton areas.

We started by expressing cytosolic GCamp3.0 in the PNs (using GH146-Gal4) and found

the basal expression of GCamp3.0 to remain largely unchanged with age (S2A Fig). Next, we

monitored the PN boutons for intracellular Ca2+ responses to two odors typically used for

olfactory conditioning, 3-Octanol (3-Oct) and 4-methylcyclehexanol (MCH), through two-
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photon microscopy. Similar to our previous observations [3], we found no significant difference

in the amplitude or time course of cytosolicGCamp3.0 signals of young (3d) and aged (30d) ani-

mals (S3 Fig). Thus, in the context of odor information processing, odor-evoked action potential

frequency or presynaptic Ca2+ influx remained rather unaffected by the age of the animal.

Next, we asked whether the release of SVs was altered with advancing age and analyzed the

odor-driven SVs release. To this end, we used SynaptopHluorin (SynpH), a pH-sensitive green

fluorescent protein (GFP) fused to the luminal side of the SVmembrane protein Synaptobrevin

(Syb) [16]. SynpH is nonfluorescent at the acidic pH inside SVs; however, when SVs are

released, SynpH is exposed to the neutral extracellular space, and the presynaptic terminal

becomes brightly fluorescent. Following endocytosis, SVs become reacidified, and the cycle can

start again [17]. SynpH was expressed within PNs, and the release of SVs in response to two

odors was monitored, again, at PN-to-KC synapses (Fig 1A–1H). We found a profound

increase in the amplitude of SynpH signals in aged (30d) animals when compared to young

(3d) flies (Fig 1A–1H). In contrast, spermidine administration to 30d flies prevented this age-

dependent increase of odor-induced SynpH signals (30dSpd; Fig 1A–1H). Alterations in the

endocytotic clearance of newly released SVs might, per se, explain the increase in SynpH sig-

nals observed; however, the decay constants of the poststimulus SynpH signal remained essen-

tially unchanged with aging (S4 Fig), indicating that the endocytic clearance cannot be

responsible for the difference in odor-driven SynpH signals observed in aged animals. In addi-

tion, neither the basal expression of SynpH before odor stimulation nor the maximal SynpH

signal determined by high-molar KCl treatment showed systematic differences between young

and aged cohorts (S2B and S5 Figs). These experiments, thus, indicate that the exocytosis of

SVs underlies the increase in SynpH response with advancing age.

In addition to measuring the SV release at the PN presynaptic terminals within calyx, we also

measured odor-evoked changes within the axonal projections of KCs within the mushroom body

horizontal lobes by expressing SynpH usingmb247-Gal4. Though relative signals were smaller

(when signal was normalized to the wholemushroom body horizontal lobe), likely reflecting the

well-documented sparse odor coding of KCs [18], we still observeda substantially higher ampli-

tude of SynpH signals in aged (30d) than in young (3d) flies, and, again, spermidine administra-

tion (30dSpd) protected from this age-dependent increase (S6 Fig). Thus, twomajor neuron

populations of the olfactory system—PNs and KCs, showed an increase in odor-evoked fluores-

cence changes in response to odor stimuli, indicating higher release of SVs in aged animals.

Spermidine Feeding Specifically Blocks Age-Induced Increases of Core
AZ Components

Since Ca2+ influx into presynaptic terminals was apparently not responsible for the profound

age-induced increase in SV release, presynaptic mechanisms downstream of Ca2+ signaling

might be involved. In order to address the molecular and cellular basis of this age-associated

increase in SV release, we started by analyzing proteins directly associated with SVs: Synapsin,

Syb, and Synaptotagmin-1. Synapsin is a SV-associated phosphoprotein important for control-

ling the number of SVs available for release [19], and Syb is a core component of SNARE com-

plex that drives the exocytosis of SVs [20,21]. We found the levels of Synapsin as well as Syb to

remain unchanged with advancing age (comparing aged flies: 30-days old or 30d with young

flies: 3d), regardless of spermidine feeding (30dSpd; Fig 2A–2D and S7 Fig). Synaptotagmin-1 is

a vesicular protein with a central role as a Ca2+ sensor for SNARE-dependent SV fusion [22].

Synaptotagmin-1 decreased slightly with age, and feeding with spermidine had no discernable

influence on this age-dependent change (Fig 2E–2H), indicating that these moderate changes

are seemingly not associated with AMI.

Spermidine Protects from Age-Dependent Memory Decline by Suppressing Presynaptic Changes
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The release of neurotransmitters is a sophisticated process that requires SVs to be in close

vicinity to voltage-gated Ca2+ channels, and this precise spacing is orchestrated by interplay

Fig 1. Imaging of SynpH at PN-to-KC synapses to measure odor-evoked SV release. (a) SynpH expressed in PN boutons and imaged within the
calyx neuropil (GH146 > SynpH). Scale bar: 10 μm. (b–c) False color-coded image of the SynpH activity within the presynaptic terminals of PNs in
response to 3-Oct and MCH shown in (a). Warm colors indicate high levels, and cold colors indicate low levels or no SynpH activity. The color scale on the
right indicates changes in fluorescence (ΔF/F in %). (d) Odor-evoked release of SVs, measured by changes in fluorescence of SynpH of individual flies
over time shown as false colors in presynaptic terminals of PN in the calyx region. The left panel is in response to the odorant 3-Oct and the right panel is
in response to MCH (n = 6–7 flies). (e) Time course of SynpH activity induced by 3-Oct in the presynaptic terminals of PNs within the calyx neuropil of 3d,
30d, and 30dSpd animals (SynpH response averaged across three odor exposures from 6–7 flies). (f) Maximum change in SynpH fluorescence (ΔF/F in
%) in response to 3-Oct within the presynaptic terminals of PN boutons of 3d, 30d, and 30dSpd flies (SynpH response averaged across three odor
exposures from 6–7 flies; Kruskal-Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni correction). (g) Time course of
SynpH activity induced by MCH in the presynaptic terminals of PNs within the calyx region of 3d, 30d, and 30dSpd animals (SynpH response averaged
across three odor exposures from 6–7 flies) (h) Maximum change in SynpH fluorescence (ΔF/F in %) in response to MCHwithin the presynaptic terminals
of PN boutons of 3d, 30d, and 30dSpd flies (SynpH response averaged across three odor exposures from 6–7 flies; Kruskal-Wallis test with Dunn’s
multiple comparison test, p-values were subject to Bonferroni correction). * p < 0.05, ** p < 0.01, ns = not significant, p� 0.05. Underlying data is shown
in S1 Data.

doi:10.1371/journal.pbio.1002563.g001
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among several proteins that form the AZ scaffold [23,24]. In flies, the ELKS-family protein Bruch-

pilot (BRP) is an essential building block of the AZ scaffold and is needed to effectively cluster Ca2

+ channels as well as regulate the release of SVs [25–28].When whole-mount brains were stained

for BRP using two different antibodies (BRPNc82 and BRPN-term), we observeda substantial

increase in the levels of BRP with advancing age (Fig 2I, 2J, 2L and 2M). Similarly, Rim-binding

protein (RBP) [29], another structurally and functionally important component of the AZ scaffold,

was found to be significantly increased in brains of 30d flies compared to 3d animals (Fig 2I, 2J

and 2N). Furthermore, flies analyzed at shorter intervals throughout their lifetime exhibited a pro-

gressive increase in the levels of both BRP and RBP (S8 Fig). Notably, the age-dependent increase

in BRP and RBP signals was suppressed in aged flies fed with spermidine (30dSpd; Fig 2I–2N).

The staining efficacy could potentially be influenced by the sheer age of the tissue, e.g., due

to differences in antibody penetration. To rule this out, flies expressing a GFP-tagged genomic

BRP construct (rescuing the lethal brp null mutant [28]) were aged on normal food or food

supplemented with spermidine.We found the endogenous GFP signals to be significantly

increased in 30d flies in comparison to 3d flies, while feeding with spermidine again prevented

this age-related increase (S9 Fig).

Since the AZ scaffold has previously been reported to effectively cluster Ca2+ channels [26–

28], we asked whether the age-associated increase in levels of core AZ-proteins might influence

synaptic levels of Ca2+ channels. To address this, we expressed a GFP-labeled genomic con-

struct of α1 subunit Cacophony (Cac), which is the only representative of the mammalian
Cav2.1/2.2 family present inDrosophila [28], and stained the flies for GFP and BRP. We found

the levels of Cac (quantified using an antibody against GFP) to remain unchanged with aging

(S10 Fig). Besides its role in Ca2+ channel clustering, the AZ scaffold has been suggested to cre-

ate a stereotypic arrangement that defines SV release slots by clustering SV release machinery

[28]. In fact, the levels of Unc13, a protein essential for priming SVs by rendering them fusion-

competent [24], were also increased in brains of 30d flies compared to 3d flies (S11 Fig). Again,

spermidine administration suppressed this age-dependent increase (30dSpd; S11 Fig). Taken

together, our data suggest that synaptic levels of core AZ scaffold proteins, BRP and RBP, as

well as the levels of critical release factor Unc-13 increasedwith advancing age.

Age-Induced Enlargement of AZ Scaffolds Is Suppressed by
Spermidine Feeding

Next, we asked whether the increase of both BRP and RBP labeling in aged brains reflects an

increase in the number of AZs or just the increase in local amounts of these proteins at individ-

ual AZs. To resolve this, we performed ultrastructural analysis on PN-to-KC synapses within

the mushroom body calyx. In contrast to presynaptic terminals of KCs, presynaptic PN termi-

nals within the calyx exhibit a well-definedmorphology [30,31], by which synapse types can be

reliably identified in EMmicrographs. Moreover, the superficiality of the calyx enabled us to

perform stimulation emission depletionmicroscopy (STED) analysis (see below).

Fig 2. Spermidine feeding suppresses age-associated increase in BRP and rim-binding protein (RBP) levels. (a–c) Adult
brains 3d and 30dw1118 flies, together with 30dSpd w1118 flies immunostained for Synapsin. Scale bar: 50 μm. (d) Quantification of
Synapsin intensity within the central brain region normalized to 3d flies (n = 9–10 independent brains; Kruskal-Wallis test). (e–g)
Adult brains of 3d and 30dw1118 flies, together with 30dSpd w1118 flies immunostained for Synaptotagmin-1 (Syt-1). Scale bar:
50 μm. (h) Quantification of signal intensity of Syt-1 in the central brain region normalized to 3d flies (n = 8–9 independent brains;
Kruskal-Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni correction). (i–k) Adult brains of 3d,
30dw1118, and 30dSpd w1118 flies immunostained for BRP (using Nc82 and N-terminal antibodies) and RBP. Scale bar: 50 μm (l–n)
Quantification of BRP (using Nc82 and N-terminal antibodies) and RBP intensities within the central brain region normalized to 3d
flies (n = 14–18 independent brains; Kruskal-Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni
correction). ** p < 0.01, *** p < 0.001, ns = not significant, p� 0.05. Underlying data is shown in S1 Data.

doi:10.1371/journal.pbio.1002563.g002
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In order to allow for an unbiased quantification, we applied automated data collection to

acquire more than a thousand transmission electronmicroscopic images covering nearly a

whole calyx cross-section,which were then “stitched” together into a single high-magnification

image (seeMaterials and Methods). As describedpreviously [30], PN boutons could be easily

identified, and light-colored boutons containing clear-core SVs were used for analysis. We rec-

ognized that plasma membranes between cellular elements were less aligned, with an increase

in extracellular spacing between cellular elements, in aged (30d) flies when compared to young

(3d) flies (S12 Fig). Spermidine feeding appeared to substantially alleviate this age-related

change (S12 Fig). Driven by the finding that SV release is increasedwith age, we decided to

analyze the AZs within PN boutons. We found aged animals (30d) to display reduced numbers

of AZs per unit bouton-area in comparison to 3d flies, with no apparent influence of spermi-

dine feeding on this age-dependent decline (Fig 3A–3E). The density of SVs in proximity to the

AZ scaffold appeared unchanged in aged flies (30d as well as 30dSpd), when compared to young

flies (3d; Fig 3F). Additionally, the number of SVs docked at the AZ plasma membrane

appeared essentially unaltered with advancing age (Fig 3G).

The AZ scaffold exhibits an electron-dense structure in electronmicroscopy (EM), and due

to its T-shaped structure inDrosophila, this scaffold is often referred to as a T-bar [24,26,27].

We found the average size of the T-bars to be significantly increased in 30d animals in compar-

ison to 3d flies (Fig 4A–4D). Feeding flies with spermidine suppressed this age-induced

increase in T-bar size (30dSpd; Fig 4A–4D). We have previously introduced STED in the analy-

sis of AZ suborganization [26–28]. At peripheral neuromuscular synapses of Drosophila larvae,

STED allowed us to unmask the “nano-architecture” of AZs where BRP and RBP organize a

scaffold that provides slots for SV release and concentrates Ca2+ channels in the AZ center

[28,29]. When planar AZs were imaged using the BRP C-terminal epitopes at neuromuscular

synapses, they display a ring-shaped structure whose diameter correlated with the EM-derived

physical size of individual T-bar/AZ scaffold [32]. We applied STED to PN-to-KC synapses of

the calyx and found ring-like BRP structures at planar-oriented AZs (S13 Fig). Subsequently,

the analysis of these STED images revealed an increase in the ring diameter of BRP spots with

advancing age, while spermidine treatment was able to suppress this age-associated increase

(Fig 4E–4H). Finally, we performed coimmuno-EM labeling against BRP and RBP on calycal

slices. The number of gold particles positive for BRP as well as RBP was found to increase in

aged flies (30d) in comparison to both young (3d) flies and aged flies fed with spermidine

(30dSpd; Fig 4I–4N). Taken together, the morphological EM, immuno-EM, and STED analysis

consistently show that aged animals display larger AZ scaffolds, plausibly due to an increase in

local amounts of the critical scaffold components: BRP and RBP.

Recent in vivo analysis of larvalDrosophila neuromuscular junctions has shown that the

local amounts of BRP at a given AZ scale directly with the probability of evoked SV release

[33–37]. Consistent with these studies, we found SV release to increase and AZ scaffolds to

enlarge with age, while importantly both these age-related changes were suppressed by dietary

supplementation with spermidine. Therefore, we next wanted to determine the influence of

these synaptic changes on olfactorymemory formation.

“Early” Memory Impairment after Genetically Enforced Enlargement of
AZ Scaffolds

Presynaptic plasticity processes have been reported to be critical for forming olfactory associa-

tive memory inDrosophila [11–13]. Based on our findings, we suggest that the scale-up in the

size and function of AZ scaffolds is likely to change the “operational range” of synaptic plastic-

ity processes and thus change the threshold for memory formation. Thus, we wanted to test

Spermidine Protects from Age-Dependent Memory Decline by Suppressing Presynaptic Changes
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whether genetically provoking an artificial enlargement of AZ scaffolds, independent of the

aging process, might affect memory formation. Since BRP is a major essential building block of

the AZ scaffold inDrosophila [26–28,32], we decided to increase the gene copy number of BRP

from two to four copies by combining two additional genomic copies of brp [28] with two

endogenous copies. As a result, BRP signals increased substantially in 3d flies expressing four-

copy BRP (4xBRP) when compared to 3d flies expressing two-copy BRP (2xBRP; Fig 5A–5E).

Additionally, RBP levels also increased concomitantly with BRP (Fig 5A–5D and 5F), consis-

tent with the suggested role of BRP to operate as a “master molecule” in shaping the size (and

functional performance) of the AZ scaffold [28,29,36]. In order to confirm that the increase in

BRP levels resulted in an increase of the average size of AZ scaffolds, we took advantage of

STED imaging. Again, a considerable increase in the ring diameter of BRP spots was observed

in 2xBRP flies with advancing age (Fig 5G–5K). Meanwhile, we found young flies (3d) express-

ing 4xBRP to have increased BRP ring diameters when compared to age-matched control flies

(2xBRP), and the ring diameter of BRP spots in 4xBRP flies remained rather unchanged with

age (Fig 5G–5K).

Having created a genetic state wherein levels of AZ core scaffold proteins increased prema-

turely in young animals, we decided to investigate the influence of this manipulation on mem-

ory formation. Before doing so, however, we wanted to ascertainwhether the innate behavior

was affected in 4xBRP flies. Thus, we measured naïve odor response and shock reactivity and

found 4xBRP flies to show odor avoidance and shock reactivity scores that were indistinguish-

able from 2xBRP age-matched control flies (2xBRP; S1 Table). Subsequently, we started by

measuring short-termmemory (STM), and found 4xBRP flies to exhibit lower memory scores

“already” at a young age (3d), and their memory scores declined only negligibly with age (Fig

5L). In contrast, control flies (2xBRP) exhibited normal AMI (Fig 5L).

As mentioned earlier, intermediate-termmemory (ITM) has also been reported to decline

with age [2–4]. Consistently, we found that 30d 2xBRP flies show substantially reduced ITM

scores (measured 3-h post-training) when compared to 3-d 2xBRP flies (Fig 5M). By contrast,

the 4xBRP flies showed lower ITM scores at a young age (3 d) and, again, the ITM scores did

not decrease further in 30-d 4xBRP flies (Fig 5M). In fact, the learning performance of 3-d

4xBRP flies was comparable to that of 30-d 2xBRP flies. Based on distinct genetic mutants and

specific pharmacological sensitivities [2,4,38,39], the ITM can be dissected into anesthesia-sen-

sitive memory (ASM) and anesthesia-resistant memory (ARM) components. The ASM, unlike

the ARM, has been shown to be strongly impaired with aging [3,4]. The ASM can be calculated

by subtractingARM scores, measured after amnestic cooling, from ITM. Consistent with previ-

ous studies [2–4,40], we found ARM in 2xBRP and 4xBRP flies to remain relatively unaffected

with age (Fig 5M). In contrast, ASM was nearly absent in 30-d 2xBRP flies when compared to

3-d 2xBRP flies. Reaffirmingour idea, we found the young (3-d) 4xBRP flies to show lower

ASM scores in comparison to age-matched control (2xBRP) flies, while their ASM scores

Fig 3. Ultrastructural analysis of PN-to-KC synapses within the mushroom body calyx. (a) Overview of the calyx neuropil,
obtained by amalgamation of several images over a whole calyx cross-section of a 3dw1118 fly. Scale bar: 10 μm. (b–d) Higher
magnification of PN boutons and dendritic claws of KCs within the calyx of 3d, 30d, and 30dSpd w1118 flies. Scale bar: 2 μm. The
asterisk indicates the PN bouton, and the arrowhead indicates the dendritic claws of KCs. (e) Quantification of AZs normalized to
bouton area (1/pm2) (total of 95–103 boutons across three independent animals, with at least 25 boutons per animal; Kruskal-
Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni correction). (f) Quantification of total SVs
within a shell of 150 nm surrounding the AZ scaffold (total of 92–100 electron-micrographs across four independent animals, with
at least 20 electron-micrographs per animal; Kruskal-Wallis test with Dunn’s multiple comparison test, p-values were subject to
Bonferroni correction). (g) Quantification of SVs touching the presynaptic plasmamembrane (total of 92–100 electron-
micrographs across four independent animals, with at least 20 electron micrographs per animal; Kruskal-Wallis test with Dunn’s
multiple comparison test, p-values were subject to Bonferroni correction). * p < 0.05, ** p < 0.01, *** p < 0.001, ns = not
significant, p� 0.05. Underlying data is shown in S1 Data.

doi:10.1371/journal.pbio.1002563.g003
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Fig 4. High-resolution analysis of PN-to-KC synapses within the mushroom body calyx shows increase in T-bar size. (a–c) Electron micrographs
of calyx region of 3d, 30d, and 30dSpd w1118 animals showing presynaptic specializations in blue (T-bars) at the PN-to-KC synapses. Scale bar: 50 nm. (d)
Quantification representing the average T-bar size in 3d, 30d, and 30dSpd animals (n = 92–100 electromicrographs across four independent animals, with at
least 20 T-bars per animal; Kruskal-Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni correction). (e–g) STED images of
BRP spots reveal ring-shaped structures (arrowheads) within the calyx of 3d, 30d, and 30dSpd w1118 flies. Scale bar: 500 nm. (h) Comparison of BRP-spot
diameter between 3d, 30d, and 30dSpd flies (total of 94–112 BRP rings across 15 independent animals, with at least 5 BRP rings per animal; Kruskal-Wallis
test with Dunn’s multiple comparison test, p-values were subject to Bonferroni correction). (i) Electron micrographs of PN bouton within the calyx region of
3dw1118 flies. Scale bar: 200 nm. (j–l) Higher magnification of AZ within PN bouton immunostained for BRP (large gold particles) and RBP (small gold
particles) of 3d, 30d, and 30dSpd w1118 flies. Scale bar: 50 nm. (m) Quantification of BRP-positive gold particles per T-bar (total of 94–108 individual T-bars
across three independent animals, with at least 25 T-bars per animal; Kruskal-Wallis test with Dunn’s multiple comparison test, p-values were subject to
Bonferroni correction). (n) Quantification of RBP-positive gold particles per T-bar (total of 94–108 individual T-bars across three independent animals, with
at least 25 T-bars per animal; Kruskal-Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni correction). * p < 0.05, **

p < 0.01, *** p < 0.001, ns = not significant, p� 0.05. Underlying data is shown in S1 Data.

doi:10.1371/journal.pbio.1002563.g004
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Fig 5. Increase in levels of core AZ proteins BRP and RBP leads to early memory impairment. (a–d) Adult brains of 3d and 30d flies expressing
4xBRP together with age-matched controls brp (2xBRP), immunostained for BRP (using Nc82 and BRP N-terminal antibody) and RBP. Scale bar: 50 μm.
(e, f) Quantification of BRP (using N-terminal antibody) as well as RBP intensity within the central brain region normalized to 3d flies (n = 12–13
independent brains; Kruskal-Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni correction). (g–j) STED images of BRP
label within the calyx region of 3d and 30d flies expressing 4xBRP as well as 2xBRP. Ring-shaped structures are indicated (arrowheads). Scale bar: 500
nm. (k) Quantification of BRP ring diameter in 3d and 30d 4xBRP flies along with age-matched 2xBRP flies (total of 47–68 BRP rings across eight
independent animals, with at least six BRP rings per animal; Kruskal-Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni
correction). (l) Aversive associative memory performance 3 min after training (short-termmemory; STM) markedly reduced in 3d 4xBRP flies in
comparison to 3d wild-type 2xBRP flies (n = 10–16; Kruskal-Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni
correction). (m) Aversive associative memory performance at 3 h after training (intermediate-termmemory; ITM), anesthesia-resistant memory (ARM), and
anesthesia-sensitive memory (ASM) of 3d and 30d 4xBRP flies compared to age-matched control (2xBRP) flies (n = 7 independent experiments; Kruskal-
Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni correction). (n) Aversive olfactory memory performance 3 min after
training (STM) higher in appl-gal4 > histone deacetylase-6 (HDAC6) RNAi in comparison to age-matched controls (n = 13–21; Kruskal-Wallis test with
Dunn’s multiple comparison test, p-values were subject to Bonferroni correction). * p < 0.05, ** p < 0.01, *** p < 0.001, ns = not significant, p� 0.05.
Underlying data is shown in S1 Data.

doi:10.1371/journal.pbio.1002563.g005
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declined negligibly with age (Fig 5M). These experiments indicate that a genetically provoked

“up-scaling” of the average AZ scaffold size is sufficient to induce an “early” decline in mem-

ory, similar to AMI, which physiologically occurs over a time course of 20–30 d.

A reduction in BRP levels, per se, might be expected to slow down the onset of AMI. To

address this possibility, we removed a single gene copy of brp, and found BRP heterozygotes

(brp69/+ or 1xBRP) to exhibit a considerable reduction in the levels of both BRP and RBP

(S14A–S14F Fig), indicating that our antibody stainings can detect subtle changes and reaf-

firming that BRP levels can directly steer the local amounts of other AZ components in the

Drosophila brain. We found that 3d flies expressing only one BRP copy (brp69/+) displayed

memory scores comparable to 3d control flies (2xBRP); however, these brp69/+ flies still exhib-

ited a normally-occurringAMI (30d; S14G Fig). AZ scaffold-dependent control of neuronal

plasticity is undoubtedly a complex process [24,41], and other mechanisms, operating in paral-

lel to modulations in the amounts of scaffold proteins, might well contribute to the pace and

extent of AMI. Lysine-acetylation of BRP was recently identified as a major node to control the

SV release at larval AZs [42,43]. In particular, the loss of histone deacetylase-6 (HDAC6) was

found to cause hyperacetylation of BRP and provoke a reduction in evoked SV release at AZs

[43]. Interestingly, using immunoprecipitation followed by mass spectroscopic analysis, we

found at least 13 lysine sites within BRP to be target for (de)acetylation, (S15 Fig). Next, we

asked whether loss of HDAC6 might affect memory. While the odor avoidance and shock reac-

tivity were mainly unaffected by knockdown of hdac6 (S1 Table), memory scores of both

young and aged flies with pan-neuronal knockdown of hdac6 were higher than those of age-

matched driver controls (Fig 5N). These findings are consistent with the idea that driving

down the AZs towards the lower limit of their operational range might facilitate memory for-

mation in aged animals. Though any implications of acetylation of BRP or potentially other

AZ scaffold proteins with respect to aging process still require extensive analysis, this result

shows that BRP-directed modifications, reported to reduce SV release, can in fact increase the

efficacyof memory formation in aged animals.

Homeostasis of Odor-Driven Neuronal Ca2+ Signals in Aged Flies

Finally, we asked how the postsynaptic compartment might respond to these age-associated pre-

synaptic structural and functional changes. To address this question, we usedGCaMP3.0 fused

to the postsynaptic protein Homer [15] and found the basal expression of Homer-GCamp3.0 to

be largely unaffectedwith age (S2C Fig). Moreover, the sensor was found to be effectively targeted

to the postsynaptic density of the PN::KC synapses, as manifested by its specific enrichment

within the postsynaptic specializations formed by claw-like dendritic endings of multiple KCs

surrounding a single PN bouton (Fig 6A). However, postsynaptic Ca2+ signals did not increase

with age. Rather, a slight tendency towards a decrease of postsynaptic Ca2+ signals was observed

in normally aged animals when compared to young controls (Fig 6A–6H). At the same time,

aged flies treated with spermidine (30dSpd) produced signals more similar to untreated 3d-

Homer-GCaMP3.0 flies than to untreated aged animals (Fig 6A–6H). In order to be certain that

Homer-GCamp3.0 signals were not saturated, we used high-molar KCl treatment to determine

the maximal postsynaptic Ca2+ response. Unlike the odor-evokedmaximum change in Homer-

GCamp3.0 fluorescence of about 55%, KCl stimulation resulted in a substantially higherΔF/F0
value of more than 300% (S16 Fig), suggesting that sensor sensitivity was not a limiting factor for

the postsynaptic Ca2+ signals.Meanwhile, when the cumulative postsynaptic Ca2+ activity was

critically analyzed during the odor stimulation, we found that the Ca2+ responses reduced signifi-

cantly in aged (30d) flies relative to young flies, while the Ca2+ signals were comparable between

young flies and spermidine-fed aged animals (30dSpd; S17 Fig).
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Fig 6. Imaging of Homer-GCamp3.0 within the dendritic claws of KCs to measure odor-evoked Ca2+ activity. (a) Expression of Homer-GCamp3.0 in
the dendritic claws of KCs and imaged within the calyx region (mb247 > Homer-GCamp3.0). Scale bar: 10 μm. (b–c) False color-coded image of Homer-
GCamp3.0 activity within the postsynaptic terminals of KCs in response to 3-Oct and MCH shown in (a). Warm colors indicate high activity and cold colors
indicate low or no Ca2+ activity. The numbers indicate changes in fluorescence (ΔF/F in %). (d) Odor-evoked postsynaptic Ca2+ activity, measured by
changes in fluorescence of Homer-Gamp3.0, of an individual fly over time, shown as false colors in dendritic claws of KCs in the calyx region. The left panel
is in response to the odorant 3-Oct, and the right panel is in response to MCH (n = 10 flies). (e) Time course of Ca2+ activity induced by 3-Oct in the dendritic
terminals of KCs within the calyx region of 3d, 30d, and 30dSpd animals (GCamp3.0 response averaged across three odor exposures from ten flies). (f)
Maximum change in GCamp3.0 fluorescence (ΔF/F in %) in response to 3-Oct within dendritic claws of KCs of 3d, 30d, and 30dSpd flies (GCamp3.0
response averaged across three odor exposures from ten flies; Kruskal-Wallis test with Dunn’s multiple comparison test, p-values were subject to
Bonferroni correction). (g) Time course of Ca2+ activity induced by MCH in the dendritic terminals of KCs of 3d, 30d, and 30dSpd animals (GCamp3.0
response averaged across three odor exposures from ten flies). (h) Maximum change in GCamp3.0 fluorescence (ΔF/F in %) in response to MCH within
dendritic claws of KCs of 3d, 30d, and 30dSpd flies (GCamp3.0 response averaged across three odor exposures from ten flies; Kruskal-Wallis test with
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PNs provide cholinergic input to the KCs within the calyx [44]. We used a fusion of mush-

room body-specific enhancer mb247 to the Dα7 subunit of the acetylcholine receptor (mb247::
Dα7GFP) to explicitly visualize postsynaptic acetylcholine receptors. We showed previously
that expression of Dα7-GFP from KCs localized specifically to the KC postsynaptic densities,
where it closely matched the AZs of the PNs [45]. While we observed an age-related increase in

BRP in 30d mb247::Dα7GFP flies in comparison to 3d mb247::Dα7GFP flies, the levels of Dα7
subunit (quantified using an antibody against GFP fused to the α7 subunit of acetylcholine
receptors) did not change with age, and spermidine feeding had no effect on the level of the α7
subunit of acetylcholine receptors (Fig 7A–7E). Similarly, when we stained for endogenous

Drep2, a postsynaptic scaffold protein that is known to express strongly within the postsynap-

tic densities of PN::KC synapses [46], we also found Drep2 to remain unchanged with age

(S18 Fig).

At first glance, the increase in release of SVs might be expected to translate into increased

postsynaptic responses; however, ample evidence from various studies in different model

organisms, includingDrosophila, support the existence of homeostatic controls, allowing neu-

rons to remain within a certain range of excitation [47,48] in order to avoid epileptic states and

Ca2+-induced degeneration. In an attempt to directly examine the existence of such homeo-

static controls, we wanted to determine whether an increase in the amount of depolarization

required to trigger an action potential might influence the architecture of the apposed AZ scaf-

fold. To achieve this, we used dORK1ΔC, a constitutively open K+ selective pore that causes
hyperpolarization of neurons and subsequent inactivation of neuronal function [45,49].

dORK1ΔCwas specifically expressed in the KCs, and presynaptic terminals of PNs within the
calyx were analyzed for BRP levels (Fig 7F–7I). Indeed, we found a substantial increase in the

levels of BRP in the calyces of both 3d as well as 10d mb247>dORK1ΔC flies, when compared
to age-matched controls (Fig 7J). Thus, a drop in postsynaptic excitability can drive a homeo-

static increase in presynaptic AZ scaffolds, leading to a potential increase in SV release at olfac-

tory synapses—a finding similar to the one we found at aging synapses. Though the exact

mechanisms allowing for homeostatic compensation of the elevated presynaptic release remain

to be further worked out, it is tempting to speculate that homeostatic mechanisms coupling

postsynaptic excitability to presynaptic release functionmight drive aging synapses towards

the upper limit of their operational range and be critically involved in AMI (see model in

Fig 7K)

Discussion

The aging process, causing progressive deterioration of an organism, is subject to a complex

interplay of regulatorymechanisms. One of the primary aims of aging research is to use the

understanding of this process to delay or prevent age-related pathologies, including AMI.We

previously showed that restoration of polyamine levels by dietary supplementation with sper-

midine suppressed AMI in fruit flies [3], providing us with a protective paradigm to identify

candidate processes that might be functionally associated with AMI. As an insight towards the

synaptic basis of AMI, we describe an age-induced increase in the levels of core AZ proteins,

BRP, and RBP and of the functionally critical release factor Unc13, together with a shift

towards an enlargement of AZ scaffolds within the olfactory system. In addition, based on

SynpH experiments, we observed a substantial increase in the release of SVs at aged synapses

(PN-to-KC and KC-to-mushroom body output neuron [MBON] synapses) in response to

Dunn’s multiple comparison test, p-values were subject to Bonferroni correction). The grey bars indicate the duration of the odor stimuli. * p < 0.05, **

p < 0.01, ns = not significant, p� 0.05. Underlying data is shown in S1 Data.

doi:10.1371/journal.pbio.1002563.g006
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odors used for learning experiments. Importantly, spermidine feeding was able to “protect”

from both the functional and structural changes at aged AZs, arguing in favor of specific synap-

tic changes to be causally relevant for AMI. Indeed, installing 4xBRP not only increased the

size of BRP rings in young flies, similar to those found in aged animals, but also provoked

memory impairment in young flies.

Notably, a reduction of BRP levels has previously been reported to affect ARM but not ASM

[50]. Here, we report that an increase in BRP levels (by changing the gene copy number of BRP

from two to four copies) severely affected ASM. These findings suggest that the two

Fig 7. Homeostasis at PN::KC synapses of aged flies. (a–c) Mushroom body calyx of 3d and 30d mb247::Dα7GFP flies and 30dSpd mb247:: Dα7GFP flies
immunostained for GFP-labeled Dα7 as well as BRP (corresponding single z-planes are shown). Scale bar: 10 μm. Arrows indicate the recurrent
presynapses of KCs that remain unopposed to acetylcholine-receptor rings within calycal neuropil; these KCs presynapses are spatially separated from the
sites of cholinergic input onto KCs. (d, e) Quantification of signal intensity of Dα7 (using anti-GFP) and BRP (using Nc82) in the calyx region normalized to
3d flies (n = 8–10 independent calyces; Kruskal-Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni correction). *

p < 0.05, ** p < 0.01, ns = not significant, p� 0.05. (f–i) BRP immunostained within mushroom body calyx from adult brains of 3d and 10d flies expressing
UAS-dORK1 ΔC in the KCs compared to age-matched controls. (j) Quantification of signal intensity of BRP (using Nc82) in the calyx region normalized to
3d flies (n = 10–12 independent calyces; Kruskal-Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni correction). (k)
Model showing the age-induced synaptic changes (in red). In the aged brain, the lowering of postsynaptic response with age, due to decrease in
membrane excitability or Ca2+ homeostasis, might steer retrograde changes in the architecture of AZs. As a result, the AZ characterized by T-bar in flies
enlarges in size, leading to higher release of SVs and causing aged synapses to function near the top of their presynaptic plasticity range, leaving little
room for additional synaptic strengthening, and possibly impeding further learning. Underlying data is shown in S1 Data.

doi:10.1371/journal.pbio.1002563.g007
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complementary forms of memory (ARM and ASM) might rely on the recruitment of distinct

presynaptic “functional modules.” The loss of brp has been shown to severely reduce release

function in response to single low frequency, but not in response to high-frequency stimulation

[27], indicating that SV release at low-frequency stimulation might be particularly relevant for

forming ARM, a memory component that develops gradually after training. On the other

hand, mobilization of the SVs during high frequency stimulation has been suggested to be criti-

cal for formation of ASM [50], a memory component that predominates early memory and

decays with age. Thus, the increase in the size of the AZ scaffolds might potentially contribute

directly to AMI by interfering with mechanisms facilitating SV availability in the course of

forming ASM.

Though the exact mechanisms underlying age-induced synaptic changes remain to be fully

worked out, a reduction in autophagy-mediated protein degradationmight well be involved

[51–53]. Autophagy is a cellular digestion pathway that involves the sequestration of cyto-

plasmic components within a double-membrane vesicle called autophagosome, which fuses

with lysosomes (autolysosomes) to degrade autophagic cargo by acidic hydrolases [52]. Inter-

estingly, spermidinewas shown to induce autophagy in several model systems, including

rodent tissues and cultured human cells [51,54,55]. Moreover, amelioration of a-synuclein neu-

rotoxicity due to spermidine administration was accompanied by autophagy induction [56]. Of

note, we also found that spermidine feeding prevented accumulation of poly-ubiquitinated

proteins by plausibly halting normally occurring age-induced decline of autophagic clearance

[3,57]. The gene atg7 encodes an E1-like enzyme required for activation of both Atg8 and

Atg12, a step critical for the completion of the autophagic pathway [53]. We found that atg7-

mutant flies (atg7-/-) exhibit reducedmemory scores at a young age (3d), which declined fur-

ther with age (20-d of age or 20d) [3]. Concurrently, spermidine-mediatedprotection from

memory impairment was eliminated in atg7−/− flies (for both 3d- and 20d-flies) [3,57]. There-

fore, we wondered whether the decrease in the autophagic pathway might, per se, provoke

increase of AZ scaffold components. When staining for BRP in atg7-mutant brains (atg7-/-), we

found a brain-wide increase in levels of BRP (for both BRPNc82 and BRPN-term antibodies), and

spermidine feeding was unable to prevent this age-related increase (S19 Fig). The finding that

spermidine feeding in atg7−/− flies neither blocked the increase in BRP levels (S19 Fig) nor sup-

pressed memory impairment [3] suggests that the integrity of the autophagic system is crucial

for the spermidine-mediatedprotection from age-associated increase in AZ scaffold compo-

nents. Spermidine effects were recently shown to involve widespread changes of both nuclear

and cytosolic protein acetylation [58,59].

In primary neurons, autophagosomes have previously been observed to form at the distal

end of the axon, indicating compartmentalization and spatial regulation of autophagosome

biogenesis [60,61]. More recently, autophagosomes were demonstrated to form directly near

synapses and were found to be required for presynaptic assembly at developing synaptic termi-

nals of Caenorhabditis elegans [62]. Moreover, the crucial release factor Unc13 was found to

accumulate under conditions of defective endosomalmicroautophagy (a specialized form of

autophagy) at developing neuromuscular synapses of Drosophila, suggestingUnc13 to be a

substrate of this form of autophagy [63]. Interestingly, we have shown recently that the synap-

tic levels of Unc13-A isoform scale tightly with the levels of the BRP/RBP scaffold [64]. Thus, it

is conceivable that some of the AZ proteins, whose levels increase with age (BRP/RBP/Unc13),

might be direct substrates of “pre-synaptic autophagy,” and that spermidine feedingmight aug-

ment effective autophagic degradation of these proteins at aging synapses.

We also observed a moderate decrease in synapse numbers in agingDrosophila brains, a

phenotype that was unaffected by spermidine feeding.Our data compare favorably with studies

in mammals. For example, loss of synapses in aged rodents has been reported in the dentate
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gyrus as well as the CA1 area of the brain [8,65,66]. Additionally, the “unitary” intracellular-

evoked amplitude elicited by minimal stimulation protocols has been found to be greater in old

than in young rodents [67], suggesting that the “surviving synapses” are stronger [68]. It is of

note that the induction threshold for long-term potentiation, considered to be a synaptic corre-

late of learning, has been reported to increase in aged rodents [10]. Similarly, an age-related

increase in the amplitude of endplate potentials evoked has been reported at mouse neuromus-

cular synapses [69,70]. By contrast, a study at neuromuscular junctions of C. elegans revealed

that aged motor neurons undergo a progressive reduction in synaptic transmission [71]. In

flies, however, an age-related increase in the amplitude of the excitatory postsynaptic potential

at adult neuromuscular junctions has been reported recently; this increase was suggested to

tune the response of the homeostatic signaling system and establish a new homeostatic set

point [72]. Collectively, these findings suggest that the dynamic range of synaptic plasticity

may change with advancing age and, thus, contribute to AMI.

Why would an increase in the odor-evoked SV release and ultrastructural size of AZ scaf-

folds impair the efficacy of forming newmemories? Synapses appear to display a “finite ceil-

ing and floor” that define a synaptic operating range [73]. In rodents, the formation of new

memories seems to drive synaptic strength to the upper limit of a fixed operating range,

thereby creating an imbalance [73]. As a result, if the synapses are not returned to the mid-

point of the synaptic modification range, then additional strengthening required for new

memory formation might be blocked, and the system is driven to employ homeostatic com-

pensatory mechanisms to balance the change [74]. In our experiments, we found dendritic

Ca2+ signals and postsynaptic receptor levels to remain largely unchanged with age, suggest-

ing the existence of homeostatic mechanisms that might allow the up-scaling of presynaptic

release to be compensated by lowering the postsynaptic response to a given amount of neuro-

transmitter released. On the other hand, this upscaling of presynaptic structure and function

might also be a homeostatic response to a reduction in postsynaptic excitability or Ca2+

homeostasis, steering retrograde enlargement of AZ scaffold and higher release of SVs (Fig

7K). In fact, the influx of postsynaptic Ca2+ through glutamate receptors at the peripheral

glutamatergic synapses of Drosophila has been reported to control presynaptic assembly by

retrograde signalling [47,48,75]. While the exact nature of homeostatic controls connecting

pre- with postsynaptic neurons in the olfactory system remains to be resolved, changes in

plasma membrane excitability, a change in postsynaptic neurotransmitter sensitivity, or an

increase in inhibitory GABAergic drive are obvious candidate processes. Taken together, we

propose these synaptic changes steer the presynaptic AZs to function towards the upper limit

of their operational range, making these synapses unable to react adequately to conditioning

stimuli and provoke potentiation or depression of synapses in order to encodememory for-

mation [11,12,76].

Sleep is widely believed to be critical for formation and consolidation of memories [77]. In

sleep-deprived animals, neuronal circuits would exceed available space and/or saturate, thereby

affecting an individual’s ability to learn [77]. Importantly, sleep deprivation has also been asso-

ciated with widespread increases of BRP levels in theDrosophila brain [78]. Notably, we also

observed a brain-wide increase in BRP levels in aged brains. It is tempting to speculate that

both sleep deprivation and aging change the operational range over several synaptic relays and

thereby affect memory formation—a topic that deserves further investigation in future.

Taken together, our data show that upscaling of presynaptic structure and function contrib-

ute to an AMI inDrosophila. Furthermore, and restoration of polyamine levels prevents these

age-associated alterations as well as AMI. Thus, spermidine feeding provides a unique opportu-

nity to further the molecular and functional dissection of the mechanisms underlying AMI

with the ultimate goal of restoring memory function in older humans.
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Materials and Methods

Animal Rearing and Fly Strains

All fly strains were reared under standard laboratory conditions [79] at 25°C and�70%

humidity, with constant 12:12 h light/dark cycle. Flies from an isogenizedw1118 strain were

used as the wild-type control for all experiments. Flies carryingP(acman) cacGFP, P(acman)

brp83GFP and P(acman) brp83 [28] and mb247::Dα7GFP [45] were describedpreviously. The
generation of UAS-homer-GCaMP3.0 flies are described elsewhere [15]. Briefly, cDNA of dho-

mer was amplified from w 1118 flies and insertedwith a C-terminal linked GCaMP336 into

pUAST. Both UAS-GCamp3.0 (on the 3rd chromosome) [80] and UAS-SynpH [81] were

kindly provided by GeroMiesenböck.Atg7d14 and Atg7d77 flies were kind gifts from Thomas

Neufeld [53]. In addition, mb247-Gal4 [82] and gh146-Gal4 [83] were used.

As previously described [3], the fly food was prepared according to Bloomingtonmedia rec-

ipe (www.flystocks.bio.indiana.edu/Fly_Work/media-recipes/media-recipes.htm) with minor

modification,which was called Spd−or normal food. Spermidine (Sigma Aldrich) was prepared

as a 2 M stock solution in sterile distilledwater, aliquoted in single-use portions and stored at

−20°C. After food had cooled down to 40°C, Spermidine was added to normal food to a final

concentration of 1 mM or 5 mM Spd, and called Spd1mM+ or Spd5mM+, respectively. Parental

flies mated on either Spd−or Spd5mM+ food for all experiments, and their progeny were allowed

to develop on the respective food. Flies used in all experiments were F1 progeny. The flies were

collected once a day for aging, as a results-specific age indicated is day ± 24 h.

Behavioral Assays

Behavioral experimentswere performed in dim red light at 25°C and 80% relative humidity with

3-Oct (1:150 dilution inmineral oil presented in a 14 mm cup) andMCH (1:100 dilution inmin-

eral oil presented in a 14 mm cup) servingas olfactory cues, and 120V AC current servingas a

behavioral reinforcer. Standard single-cycle olfactory associativememorywas performedas previ-

ously described[3,4,46,84,85], withminormodifications.Briefly, about 60–80 flies received one

training session, during which they were exposed sequentially to one odor (conditioned stimulus,

CS+; 3-Oct or MCH) paired with electric shock (unconditioned stimulus, US) and then to a second

odor (CS−; MCH or 3-Oct) without US for 60 s with 30 s rest interval between each odor presenta-

tion. During testing, the flies were exposed simultaneously to the CS+ and CS− in a T-maze for 30 s.

The conditioned odor avoidance was tested immediately after training for STM (memory

tested immediately after odor conditioning). Subsequently, flies were trapped in either T-maze

arm, anesthetized, and counted. From this distribution, a performance index was calculated as

the number of flies avoiding the shocked odorminus the number avoiding the nonshocked odor

divided by the total number of flies and, finally, timed by 100. A 50:50 distribution (no learning)

yielded a PI of zero, and a 0:100 distribution away from the CS+ yielded a PI of 100. A final per-

formance index was calculated by the average of both reciprocal indices for the two odors.

For ITM, flies were trained as described above, but tested 3 h after training. As a component

of ITM, ARMwas separated from ASM by cold-amnestic treatment, during which the trained

flies were anesthetized 90 s on ice at 30 min before testing. In the end, ASM was calculated by

subtracting the performance index of ARM from that of ITM for each training session on the

same day, respectively.

Staining Protocol

Whole-mount adult brains. Adult brains were dissected in HL3 (which contains 70 mM

NaCl, 5 mMKCl, 20 mMMgCl2, 10 mMNaHCO3, 5 mM Trehalose, 115 mM Sucrose, 5 mM
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Hepes, added to 500 ml H2O; pH adjusted to 7.2) on ice and immediately fixed in cold 4%

Paraformaldehyde (v/v) for 20 min at 20–30°C. After fixation, the brains were incubated in 1%

PBT (phosphate-buffered saline (PBS) containing 1% Triton X-100; v/v) for 20 min and then

preincubated in 0.3% PBT (PBS containing 0.3% Triton X-100) with 10% normal goat serum

(NGS; v/v) at 20–30°C. For primary antibody treatment, samples were incubated in 0.3% PBT

containing 5% NGS and the primary antibodies for 48 h at 20–30°C. After primary antibody

incubation, brains were washed in 0.3% PBT, four times for 30 min at 20–30°C, and then over-

night at 4°C. All samples were then incubated in 0.3% PBT with 5% NGS containing the sec-

ondary antibodies for 24 h at 20–30°C. Brains were washed again four times for 30 min at 20–

30°C, then overnight at 4°C. Brains were finally mounted in Vectashield overnight before con-

focal scanning (Vector Laboratories).

Image acquisition, processing, and analysis. The images were acquired, processed, and

analyzed as previously described [46,85], with minor modifications. Briefly, conventional con-

focal images were acquired at room temperature with a LeicaMicrosystems TCS SP8 confocal

microscope using a 63x 1.4 NA oil objective for detailed scans and a 20x 0.7 NA oil objective

for overview scans. All images were acquired using Leica LCS AF software. Lateral pixel size

was approximately 300 nm for overview scans, approximately 100 nm for detailed scans. Typi-

cally, 1,024 x 1,024 images were scanned at 400 Hz using 4x line averaging. Images of calyces

for cryostat sections were acquired at room temperature with a LeicaMicrosystems TCS SP5

CW STEDmicroscope in confocal mode using a 100x 1.4 NA oil objective. STED images were

acquired on a Leica TCS STED CW. Images were deconvolved using the built-in deconvolution

algorithms of the Leica LAS-AF software. The PSF was generated by using a 2-D Lorentz func-

tion with the full-width half-maximum set to 60 nm (as calculated on the image using theWie-

ner filter algorithm; regulation parameter: 0.05).

In order to analyze the brain scans, the signal intensity within a neuropil of interest (whole

central brain, or CB; antennal lobes, or AL; and calyx) was determined using Amira software

(Amira 5.3.3, FEI Visualization SciencesGroup, Oregon, US). The region of interest within the

3-D image stack was masked using the tool Segmentation Editor by interpolatingmanual selec-

tions between slices. Average intensity values were calculated for all pixels within each mask

for each channel separately.

For STED analysis, deconvolved BRP spots (stained with monoclonal Nc82 antiboby) were

processed in ImageJ. The diameters of planar oriented BRP rings were measured using the line

tool of ImageJ. The distance from intensity maximum to intensity maximumwas acquired in

the plot window of individual hand-drawn lines and transferred to Microsoft Excel.

EM

Conventional EM. Brains were dissected in HL3 solution and fixed for 20 min at room

temperature with 4% paraformaldehyde and 0.5% glutaraldehyde in a PBS. Subsequently, the

brains were incubated overnight at 4°C with 2% glutaraldehyde in buffer containing 0.1 M

sodium cacodylate at pH 7.2. Brains were then washed three times in cacodylate buffer for 10

min at 20–30°C. Afterwards, the brains were incubated with 1% Osmium tetroxide and 0.8%

KFeCn (in 0.1 M cacodylate buffer) for 90 min on ice. Brains were then washed with cacodylate

buffer for 10 min on ice and then three quick washes with distilledwater. The brain were

stained with 1% Uranylacetate (w/v) for 90 min on ice and dehydrated through a series of

increasing alcohol concentrations. Samples were embedded in EPON resin by incubation

sequentially in ethanol/EPON 1:1 solution for 45 min and 90 min at 20–30°C, then in pure

EPON overnight at 15–20°C. Thereafter, the resin was changed once and brains were embed-

ded in a single block at 60°C to allow for polymerization of the resin.
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Following embedding, sections of 60 nm, each, were cut using a Leica Ultracut E ultramicro-

tome equipped with a 2 mm diamond knife. Sectionswere collected on 100 mesh copper grids

(Plano GmbH, Germany) coated with 0.1% Pioloform resin. Contrast was enhanced by placing

the grids in 2% uranyl acetate for 30 min, followed by washing with water three times and,

then, incubation in lead citrate for 2 min. The grids were washed three times with water and

dried. Images were acquired fully automatically on a FEI Tecnai Spirit transmission electron

microscope operated at 120 kV equipped with a FEI 2K Eagle CCD camera using Leginon [86].

Regions of interest were first selected at 560x nominal magnification and then successively

imaged at 4,400x and 26,000x nominal magnification, respectively. Series of more than 1,000

TEM images were then stitched to a single montage covering nearly the full calyx region using

the TrakEM2 software [87] implemented in Fiji [88].

Immuno-EM

Brains were dissected in HL3 solution and fixed for 20 min at room temperature with 4%

paraformaldehyde and 0.2% Glutaraldehyde in a buffer containing 50 mM SodiumCacody-

late and 50 mMNaCl at pH 7.5. Afterwards, brains were washed twice in the buffer and

dehydrated through a series of increasing alcohol concentrations. Samples were embedded in

London-Resin (LR)-Gold resin by incubating them in Ethanol/LR-Gold 1:1 solution over-

night at 4°C, followed by Ethanol/LR-Gold 1:5 solution for 4 h at room temperature. Thereaf-

ter, the samples were washed first with LR-Gold/0.2% Benzil overnight, a second time for 4

h, and then again overnight. Finally, the brains were placed in BEEM capsules covered with

LR-Gold/0.2% Benzil resin and placed under a UV lamp at 4°C for 5 d to allow for polymeri-

zation of the resin.

Following embedding, sections 70–80 nm, each, were cut using a Leica Ultracut E ultrami-

crotome equipped with a 2 mm diamond knife. Sectionswere collected on 100 mesh nickel

grids (Plano GmbH, Germany) coated with 0.1% Pioloform resin and transferred to a buffer

solution (20 mM Tris-HCl, 0.9% NaCl, pH 8.0). Prior to staining, sections were blocked for 10

min with 0.04% BSA in buffer. Sectionswere incubated with the primary antibody (guinea pig-

anti RBPSH3II+III and rabbit-anti BRPlast200, 1:500 dilution) in blocking solution overnight at

4°C. After washing four times in buffer, the sections were incubated in buffer containing the

secondary antibody (goat anti-guinea pig 10 nm colloidal gold, goat anti-rabbit 5 nm colloidal

gold British Biocell, 1:100) for 2–3 h at room temperature. Finally, the sections were washed

four times in buffer and three times in distilledwater. Contrast was enhanced by placing the

grids in 2% uranyl acetate for 30 min, followed by washing three times with water and, after-

wards, incubation in lead citrate for 2 min. Afterwards, the grids were washed three times with

water and dried. Images were acquired on a FEI Tecnai Spirit, 120 kV transmission electron

microscope equipped with a FEI 2K Eagle CCD camera.

Antibodies Used

The following primary antibodies were used:MαBRPNc82 (ref. 9, 10; 1:100), GPαBRPN-term

(1:800) [25,27], RbαRBPC-term (1:800) [29], MαSynapsin (1:20) [89], RatαSyb (1:100) [90],
RbαSynaptotagmin-1C-term (1:500) [91], RbαGFP (Molecular Probes; 1:500), RbαDrep2C-term

(1:500) [46], RbαUnc13C-term (1:500) [63], RbαBRPlast200 (1:500), and GPαRBPSH3II+III (1:500).
The following secondary antibodies were used: GαMAlexa 488 (Molecular Probes; 1:400),

GαR Alexa 488 (Molecular Probes; 1:500), GαGP Alexa 555 (Invitrogen; 1:800), GαMCy3
(Dianova; 1:500), and GαR Cy5 (Invitrogen; 1:400).
For Immunoprecipitation, BRPlast200 and IgG were used at final amount of 50 ug per 500 ul.

For western blots, secondary antibody was used at a dilution 1:1,000.
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Optophysiological Imaging of GCaMP3.0, Homer-GCamp3.0 and
SynaptopHlourin (SynpH)

Female 3d or 30d flies were briefly anesthetized on ice and immobilized in a small chamber

under thin sticky tape. A small window was cut through the sticky tape and the cuticle of the

head capsule using a splint of a razor blade. Trachea were carefully removed and the brain was

covered with Ringer’s solution (5 mMHEPES, 130 mMNaCl, 5 mMKCl, 2 mMMgCl2, 2 mM

CaCl2, pH = 7.3). Imaging was performed using an LSM 7 MP two-photon microscope (Carl

Zeiss) equipped with a mode-lockedTi-sapphire Chameleon Vision II laser (Coherent), a 500–

550 nm bandpass filter, and a Plan-Apochromat 20×1.0 NA water-immersion objective (Carl

Zeiss). A custom-built device to supply odorous air with a constant flow rate of 1 ml/s directly

to the fly’s antennae was attached to the microscope. Odor stimulation (MCH or 3-Oct, diluted

1:100 or 1:150, respectively, in mineral oil or pure mineral oil) was controlled using a custom-

written LABVIEW program (National instruments). GCamp3.0, homer-GCaMP, and SynpH

were excited at 920 nm and fluorescencemonitored at an image acquisition rate of 5 Hz. The

odorants were presented with a 20 s break between stimulation, and each fly was exposed to

five to six repetitive experiments.

The images were aligned to reduce small shifts in the X–Y direction using a custom written

ImageJ plugin. The mean intensity within the region of interest of five images before stimulus

onset was used as baseline fluorescence (F0). The difference in intensity (ΔF) was calculated by
subtracting F0 from the fluorescence intensity value within the ROI of each image (Fi) and, sub-

sequently, divided by the baseline fluorescence.ΔF/F0 values of three or more repetitions were
averaged for each fly.

Odor-induced fluorescence changes of SynpH were considered in calycal PN boutons show-

ing ΔF/F0 values more than twice the standard deviation of the baseline fluorescence. The bou-
tons with the five highest odor-inducedΔF/F0 amplitudes were considered for further analysis.
We found SynpH to exhibit rapid photo-bleaching, therefore, bleaching correctionwas per-

formed on its ΔF/F0 values. For this, first, ΔF/F0 values from the onset of the stimulus until the
decay of the signal were removed and then the best least square fit was obtained using the

remaining ΔF/F0 values (second order polynomial decay function). Subsequently, this decay
functionwas subtracted from the entire originalΔF/F0 curve, and the newmodified data are
the bleaching corrected data.

Fluorescence emission of cytosolic GCamp was determinedwithin specific boutons in the

calyx that respond to the odor stimulus, and only the boutons showing ΔF/F0 values of more
than 100% in four to five stimulations were averaged for each fly and considered for final anal-

ysis. Fluorescence changes of mb247-Gal4; UAS-homer-GCamp flies were averaged over the

five most responsive microglomerular structures, as anatomically defined by basal

fluorescence.

False color-coded images were obtained by subtracting the image just before stimulus onset

from the image at the maximum of the intensity difference (i.e., at 2 s after odor onset) and

divided by the baseline fluorescence.

The KCl experiments were performed using a fluorescencemicroscope (Zeiss) equipped

with a xenon lamp (LambdaDG-4, Sutter Instrument), a 14-bit CCD camera (CoolsnapHQ,

Photometrics) and a 20 × NA = 1 water-immersion objective. Images were acquired at 5 Hz

usingMetafluor (Visitron Systems). After recording some initial frames, KCl was added to the

Ringer’s solution covering the fly brain (final concentration 0.05 M). Fluorescence changes

were determined in a circular region covering the calyx (d = 20 μm), and background fluores-

cence determined outside the calyx was subtracted.
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D.Melanogaster Head Extract and Immunoprecipitation

For the identification of (de)acetylated residues of BRP, we did “conventional” protein extrac-

tions fromDrosophila heads combined with BRP immunoprecipitations. The protocol could

be divided into four main sections. 1) Precoupling of antibodies to matrix (50 ug antibody per

reaction): 3 LoBind cups (2 ml; Eppendorf) containing Affiprep Protein A matrix were pre-

pared: 1 X 30ul for specific antibody, 1 X 30ul for IgG control, 1 X 60 ul for head extract pre-

clearing. The cups were washed 3 X with 500 ul H-buffer (25 mMHEPES pH 8.3 (NaOH), 150

mMNaCl, 1 mMMgCl2, 1 mM EGTA, 10% Glycerol) by inverting several times, followed by

centrifugation 1,000 gmax (3,000 rpm) for 1 min. 500 ul H-buffer (+ BRP
last200 or IgG) per cou-

pling was prepared. 500 ul antibody solution (= 50 ug IgG) was added per 30 ul washed Protein

A-beads. Beads were incubated with antibody solution for 2 h on the wheel at 4°C. The Affi-

prep beads-antibodywere collected by centrifugation for 3 min at 1,000 gmax. Affiprep beads-

Antibody were washed 3 X by inverting tubes and 3 X for 10 min on wheel with IP buffer. 2)

Homogenizing fly heads from stored fly heads [–80°C]. Fly heads were transferred with a clean

spatula into 1 ml glass homogenizer. For 300 ul frozen fly heads, 300 ul Homogenization buffer

(without detergent) was added, and heads were sheared at 900 rpm using an electronic over-

head stirrer. Samples were collected in LoBind cups (2 ml; Eppendorf).2 X 300 ul was added to

rinse pestle and homogenizer (Total volume in cups ~1,100–1,200 ul). Sodium-deoxycholic

Acid (DOC)was added to a final concentration of 0.4% (28 ul of 10% stock spiked into homog-

enate (1:25 v/v)). Triton X-100 was added to a final concentration of 1% (35 ul of 20% stock

spiked into homogenate (1:20 v/v)). The samples (Homogenate) were incubated for 60 min at

4°C at level 8 (slow) on wheel. 20 ul of homogenate was stored for SDS-PAGE analysis for

monitoring antigen during extraction/pull-downprocedure. Homogenate (H) was centrifuged

for 15 min at 17,000 gmax. Supernatant (yellow in color) was transferred to a fresh LoBind cup.

Centrifugation of S1 was repeated 4X to get rid of fat and remaining head debris. After final

centrifugation step, remaining supernatant was diluted 1:1 with H-buffer (without detergent).

Total volume of Input was ~1,400 ul and of following composition: 25 mMHepes pH 8.05

(NaOH), 150 mMNaCl, 0.5 mMMgCl2, 0.5 mM EGTA, 5% Glycerol, 0.2% DOC, 0,55% Tri-

ton X-100. 3) Preclearing of fly head extract on Protein A-IgG beads: Diluted fly head extract

was applied to preclearing beads and incubated for 60 min at 4°C while rotating on wheel. Pre-

cleared extract was separated by centrifugation for 3 min at 1,000 gmax. Supernatant (IP input)

was recovered. 4) Precipitation: Precleared extract (IP input) was applied to antibody-bead

matrix (600 ul to specific Antibody-beads, 600 ul to control IgGs) and antibody–antigen bind-

ing was performed overnight at 4°C. Immunoprecipitates were collected by centrifugation at

1,000 gmax for 4 min at 4°C. Affiprep Beads-Antibody-Antigen were washed 3 X with a quick

rinse followed by 2 X 20 min with 1 mL IP Buffer (H-buffer + 0.5% Triton-X 100 + 0.2% Na-

DOC).Affiprep Beads-Antibody-Antigenwere resuspended in 1,000 ul IP buffer and trans-

ferred to a clean LoBind cup (2 ml; Eppendorf).Affiprep Beads-Antibody-Antigenwere centri-

fuged, and most of the supernatant was removed (without removing beads). 4.) Elution: For

elution, 100 ul of 2X Laemmeli Buffer was added to Affiprep Beads-Antibody-Antigenand

heated for 10 min at 95°C, 600 rpm, followed by centrifugation for 5 min at 1,000 gmax. Super-

natant (IP eluate) was transferred into a fresh LoBind Cup (2 ml; Eppendorf). Immunoprecipi-

tation was verifiedwith western blot.

Sample Preparation and Mass Spectrometry

For identification of (de)acetylated lysine residues in BRP, IP eluate was heated in SDS-PAGE

loading buffer, reduced with 1 mMDTT (Sigma-Aldrich) for 5 min at 95°C and alkylated

using 5.5 mM iodoacetamide (Sigma-Aldrich) for 30 min at 20°C. The protein mixtures were
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separated on 4%–12% gradient SDS-PAGE (NuPAGE, Invitrogen). The gel lanes were cut into

ten equal slices, the proteins were in-gel digested with trypsin (Promega) [92], and the resulting

peptidemixtures were processed on STAGE tips [93] and analyzed by LC-MS/MS.

Mass spectrometric (MS) measurements were performed on an LTQ Orbitrap XLmass

spectrometer (Thermo Fisher Scientific) coupled to an Agilent 1200 nanoflow–HPLC (Agilent

Technologies GmbH,Waldbronn, Germany) [94]. HPLC–column tips (fused silica) with

75 μm inner diameter (New Objective,Woburn, MA, USA) were self-packed with Reprosil–

Pur 120 ODS–3 (Dr. Maisch, Ammerbuch, Germany) to a length of 20 cm. Samples were

applied directly onto the column without a precolumn. A gradient of A (0.5% acetic acid (high

purity, LGC Promochem,Wesel, Germany) in water and B (0.5% acetic acid in 80% acetonitrile

(LC–MS grade,Wako, Germany) in water) with increasing organic proportion was used for

peptide separation (loading of sample with 2% B; separation ramp: from 10%–30% B within 80

min). The flow rate was 250 nl/min and for sample application 500 nl/min. The mass spec-

trometer was operated in the data-dependent mode and switched automatically betweenMS

(maximum of 1 x 106 ions) and MS/MS. EachMS scan was followed by a maximum of five

MS/MS scans in the linear ion trap using normalized collision energy of 35% and a target value

of 5,000. Parent ions with a charge state from z = 1 and unassigned charge states were excluded

for fragmentation. The mass range for MS was m/z = 370–2,000. The resolution was set to

60,000. MS parameters were as follows: spray voltage 2.3 kV; no sheath and auxiliary gas flow;

ion transfer tube temperature 125°C.

Identification of proteins and protein ratio assignment using MaxQuant. The MS raw

data files were uploaded into the MaxQuant software version 1.4.1.2 [95] for peak detection,

generation of peak lists of mass error corrected peptides, and for database searches. A full-

length UniProt D.melanogaster database additionally containing common contaminants such

as keratins and enzymes used for in-gel digestion (based on UniProt Drosophila FASTA ver-

sion December 2013) was used as reference. Carbamidomethylcysteinewas set as fixedmodifi-

cation, methionine oxidation, protein amino-terminal acetylation, and lysine acetylation were

set as variable modifications, and label-free was chosen as quantitation mode. Three missed

cleavages were allowed, enzyme specificitywas trypsin/P, and the MS/MS tolerance was set to

0.5 Da. The average mass precision of identified peptides was in general less than 1 ppm after

recalibration. Peptide lists were further used by MaxQuant to identify and relatively quantify

proteins using the following parameters: peptide and protein false discovery rates, based on a

forward-reverse database, were set to 0.01, minimum peptide length was set to seven, mini-

mum number of peptides for identification and quantitation of proteins was set to two, of

which one must be unique, minimum ratio count was set to two, and identified proteins were

requantified. The “match-between-run” option (2 min) was used.

To analyze acetylation status of BRP, the data was processed using the freely available Per-

seus software (Cox et al, 2011). For each IP, average acetylation intensity was calculated out of

intensities of all sites identified in each replicate normalized to the respective protein intensity

of BRP.

Statistics

Data were analyzed in R v3.1.2 using the additional CRAN package dunn.test v1.2.2. Asterisks

are used in the figures to denote significance: � p< 0.05, �� p< 0.01, ��� p< 0.001, ns = not sig-

nificant. Nonparametric methods were used because of the small sample sizes and because of

failure of tests for normality for parts of the data (Shapiro-Wilk test). Unless indicated other-

wise, the different groups in each figure were first compared using the Kruskal-Wallis test, fol-

lowed by Dunn’s test for posthocmultiple comparisons. Nonparametric tests were used in
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order to avoid being biased by outliers, which are represented by solid circles. All p-values that

are reported have been subject to Bonferroni correction for the number of comparisons. Addi-

tional relevant information is indicated in the figure legends. The data for the behavioral stud-

ies were collectedwith the investigator blind to the genotypes, treatment, and age of genotypes.

There was no blinding in the other experiments. The data were collected and processed side by

side in randomized order for all experiments. In order to analyze the difference in Homer-

GCaMP3.0 responses (Fig 6 and S17 Fig), two-sidedKolmogorov-Smirnov tests were con-

ducted in R, and the GCaMP3 responses only during odor stimulation and were compared.

Supporting Information

S1 Data. Excel spreadsheet containing, in separate sheets, numerical data underlying panels

1e–1h, 2d, 2h, 2l–2n, 3e–3g, 4d, 4h, 4m–4n, 5e–5f, 5k, 5m–5n, 6e–6h, 7d–7e, 7j, S1, S2a–

S2c, S3e–S3h, S4a–S4f, S5b–S5c, S6a–S6d, S7d, S8e–S8g, S9d, S10d–S10e, S11d–S11f,

S14e–S14g, S16b–S16c, S17, S18d–S18f, S19e–S19f, S1 Table.

(XLSX)

S1 Fig. Aversive olfactorymemory as a function of stimulation intensity in aged flies.

STM index plotted against shock number as experiencedduring training sessions with 120 V

DC in 3d (light blue bars) and 30d (dark blue bars) wild-typew1118 flies (n = 6–8; Kruskal-Wal-

lis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni correction).
� p< 0.05, �� p< 0.01, ��� p< 0.001, ns = not significant, p� 0.05. Underlying data is shown

in S1 Data.

(TIF)

S2 Fig. Basal fluorescenceof different sensors (within the calyx neuropil) used for optoge-

netic analysis. (a) Quantification of levels of GCamp3.0 in the PN terminals within the calyx

region normalized to 3d flies (n = 6–7 independent calyces; Kruskal-Wallis test). (b) Quantifi-

cation of levels of SynaptopHlourin (SynpH) in the PN terminals within the calyx region nor-

malized to 3d flies (n = 7–12 independent calyces; Kruskal-Wallis test). (c) Quantification of

levels of Homer-GCamp3.0 in the dendritic claws of KCs within the calyx region normalized to

3d flies (n = 10–12 independent calyces; Kruskal-Wallis test). ns = not significant, p� 0.05.

Underlying data is shown in S1 Data.

(TIF)

S3 Fig. Ca2+-imaging in the PNs within the calyx region in response to odors in aged flies.

(a) Expression of GCaMP3.0 in the PNs and imaged within the calyx neuropil. (b, c) False

color-coded image of Ca2+ activity within the presynaptic terminals of PNs in response to

3-Oct and MCH shown in (a). Warm colors indicate high levels, while cold colors low levels or

no Ca2+ activity. The numbers indicate changes in fluorescence (ΔF/F in %). Scale bar: 10 μm.
(d) Odor-evoked Ca2+ activity, measured by changes in fluorescence of Gamp3.0, of an individ-

ual fly over time, shown as false colors in the presynaptic terminal of PNs in calyx region, in

response to the odorants 3-Oct and MCH. (GCamp3.0 response averaged across three odor

exposures from 6–7 animals). (e) Time course of Ca2+ activity induced by 3-Oct (averaged

across three odor exposure) in the presynaptic terminals of PNs within calyx neuropil of 3d

and 30d, together with 30dSpd flies (GCamp3.0 response averaged across three odor exposures

from 6–7 animals). (f)Maximum change in GCamp3.0 fluorescence (ΔF/F in %) in response to
3-Oct in PN boutons of 3d and 30d as well as 30dSpd flies (GCamp3.0 response averaged across

three odor exposures from 6–7 animals; Kruskal-Wallis test). (g) Time course of Ca2+ activity

induced by MCH (averaged across three odor exposure) in the presynaptic terminals of PNs

within calyx neuropil of 3d and 30d flies, together with 30dSpd flies (GCamp3.0 response

Spermidine Protects from Age-Dependent Memory Decline by Suppressing Presynaptic Changes

PLOS Biology | DOI:10.1371/journal.pbio.1002563 September 29, 2016 25 / 34

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.1002563.s001
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.1002563.s002
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.1002563.s003
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.1002563.s004


averaged across three odor exposures from 6–7 animals). (h) Maximum change in GCamp3.0

fluorescence (ΔF/F in %) in response to MCH in PN boutons of 3d, 30d, and 30dSpd flies
(GCamp3.0 response averaged across three odor exposures from 6–7 animals; Kruskal-Wallis

test). The grey bars indicate the duration of the odor stimuli. ns = not significant, p� 0.05.

Underlying data is shown in S1 Data.

(TIF)

S4 Fig. Decay time constant (τ) of odor-evoked SynpH response. (a) Overall decay time con-

stant (τ) of SynpH signal in response to 3-Oct (3-Octonal). (b) Fast component of decay time

constant (τ) of SynpH signal in response to 3-Oct. (c) Slow component of decay time constant

(τ) of SynpH signal in response to 3-Oct. (d) Overall decay time constant (τ) of SynpH signal

in response to MCH. (e) Fast component of decay time constant (τ) of SynpH signal in

response to MCH. (f) Slow component of decay time constant (τ) of SynpH signal in response

to MCH. (n = 6–7 flies; Kruskal-Wallis test). ns = not significant, p� 0.05. Underlying data is

shown in S1 Data.

(TIF)

S5 Fig. KCl-induced changes in fluorescenceof SynpH within the calyx neuropil. (a) SynpH

expressed in the PNs and imaged within the calyx region. The two rings indicate the region of

interest (calyx neuropil) and background region used for analysis. Scale bar: 50 μm. (b) KCl-

induced release of SVs, measured by changes in fluorescence (ΔF/F in %) of SynpH of a single
fly over time. (c) Maximum change in fluorescence (ΔF/F in %) of SynpH response to KCl in
3d, 30d, and 30dSpd flies (n = 5–6 flies; Kruskal-Wallis test). ns = not significant, p� 0.05.

Underlying data is shown in S1 Data.

(TIF)

S6 Fig. Imaging of SynpH at KC-to-MBON synapses to measure odor-evoked SV release.

(a) Time course of SynpH activity induced by 3-Oct in the presynaptic terminals of KCs within

the horizontal lobe of mushroom body of 3d, 30d, and 30dSpd animals (SynpH response aver-

aged across three odor exposures from 6–7 flies). (b) Maximum change in SynpH fluorescence

(ΔF/F in %) in response to 3-Oct within the presynaptic terminals of KCs of 3d, 30d, and
30dSpd flies (SynpH response averaged across three odor exposures from 6–7 flies; Kruskal-

Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni correc-

tion). (c) Time course of SynpH activity induced by MCH in the presynaptic terminals KCs

within the horizontal lobe of mushroom body of 3d, 30d, and 30dSpd animals (SynpH response

averaged across three odor exposures from 6–7 flies) (d) Maximum change in SynpH fluores-

cence (ΔF/F in %) in response to MCHwithin the presynaptic terminals of KCs of 3d, 30d, and
30dSpd flies (SynpH response averaged across three odor exposures from 6–7 flies; Kruskal-

Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni correc-

tion). � p< 0.05, �� p< 0.01, ns = not significant, p� 0.05. Underlying data is shown in S1

Data.

(TIF)

S7 Fig. Analysis of Syb in wild-typebrains. (a–c) Adult brains of 3d, 30d and 30dSpd w1118

flies immunostained for Syb. Scale bar: 50 μm. (d) Quantification of Syb intensity within the

central brain region normalized to 3d flies (n = 6–9 independent brains; Kruskal-Wallis test).

ns = not significant, p� 0.05. Underlying data is shown in S1 Data.

(TIF)

S8 Fig. BRP and RBP increase progressively with age. (a–d) Adult brains of 3d, 10d, 20d, and

30d w1118 flies immunostained for BRP (using Nc82 and N-terminal antibodies) and RBP.
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Scale bar: 50 μm (e–g) Quantification of BRP (using Nc82 and N-terminal antibodies) and

RBP intensities within the central brain region normalized to 3d flies (n = 10–12 independent

brains; Kruskal-Wallis test with Dunn’s multiple comparison test, p-values were subject to

Bonferroni correction). �� p< 0.01, ��� p< 0.001, ns = not significant, p� 0.05. Underlying

data is shown in S1 Data.

(TIF)

S9 Fig. Analysis of the endogenous expression of BRPGFP in adult brains. (a–c) Adult brains

of 3d- and 30d-BRP(83-ex13)GFP flies, and 30dSpd- BRP(83-ex13)GFP flies (BRPGFP). Brains

were fixed in 5% PFA and scanned for GFP signal. Scale bar: 50 μm. (d) Quantification of GFP

signal within the central brain region normalized to 3d flies (n = 9–18 independent brains;

Kruskal-Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni

correction). � p< 0.05, �� p< 0.01, ��� p< 0.001. Underlying data is shown in S1 Data.

(TIF)

S10 Fig. Analysis of Ca2+ channel and BRP in wild-typebrains. (a–c) Mushroom body calyx

of 3d, 30d, and 30dSpd flies expressing GFP-labeled genomic construct of α1 subunit Cacoph-
ony (CacGFP) and immunostained for GFP as well as BRP (corresponding single z-planes are

shown). Scale bar: 10 μm. (d,e) Quantification of signal intensity of CacGFP (using anti-GFP)

and BRP (using Nc82) in the calyx region normalized to 3d flies (n = 7–9 independent calyces;

Kruskal-Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni

correction). �� p< 0.01, ns = not significant, p� 0.05. Underlying data is shown in S1 Data.

(TIF)

S11 Fig. Analysis of for Unc13 and BRP in wild-typebrains. (a–c) Adult brains of 3d and

30d w1118 flies, together with 30dSpd w1118 flies, immunostained for BRP (using Nc82 and N-

terminal antibody) and Unc13. Scale bar: 50 μm. (d–f)Quantification of signal intensity of the

proteins in the central brain region normalized to 3d flies (n = 10–15 independent brains;

Kruskal-Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni

correction). � p< 0.05, �� p< 0.01, ��� p< 0.001. Underlying data is shown in S1 Data.

(TIF)

S12 Fig. EM of PN-to-KC synapses.Electronmicrographs revealed that the alignment of the

plasma membrane, with evident increase in extracellular spacing between cellular elements, to

be affected in 30d w1118 flies, when compared to 3d or 30dSpd w1118 flies. Scale bar: 500 nm. The

arrowheads point to the alignment of the plasma membrane between subcellular entities.

(TIF)

S13 Fig. STED analysis of BRP ring diameter at PN-to-KC synapses.Examples of confocal

and STED images of BRP spots within the calyx region of 3d and 30d w1118 flies, together with

30dSpd w1118 flies. Scale bar: 500 nm. These calyces were also stained for Drep2, a protein found

highly enriched in dendritic claws of KCs, allowing the quantification of the diameter of BRP

spots that mark the synapse between PNs and KCs.

(TIF)

S14 Fig. Effect of removing one-copy of BRP on memory formation. (a–d) Adult brains of

3d and 30d brp69/+ (1xBRP) flies together with age-matched controls (2xBRP), immunos-

tained for BRP (using Nc82 and N-terminal antibody), and RBP. Scale bar: 50 μm. (e, f)Quan-

tification of BRP (using N-terminal antibody) and RBP intensity within the central brain

region normalized to 3d flies (9–10 independent brains; Kruskal-Wallis test with Dunn’s multi-

ple comparison test, p-values were subject to Bonferroni correction). (g) Aversive associative

memory performance 3 min after training (STM) of brp69/+ (1xBRP) flies compared to wild-
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type (2xBRP) flies (n = 7–12; Kruskal-Wallis test with Dunn’s multiple comparison test, p-val-

ues were subject to Bonferroni correction). � p< 0.05, �� p< 0.01, ns = not significant,

p� 0.05. Underlying data is shown in S1 Data.

(TIF)

S15 Fig. Acetylation and mass spectroscopy. (a) BRP sequence with acetylated peptide frag-

ments (yellow) and lysine sites positive for acetylation (red) identified throughmass spectros-

copy. (b) Position of possible lysine residues that undergo (de)acetylation within BRP.

(TIF)

S16 Fig. KCl-induced changes in fluorescenceof Homer GCamp3.0within the calyxneuropil.

(a) Homer GCamp3.0 expressed in the dendritic claws of KCs and imagedwithin the calyx region.

The two rings indicate the region of interest (calyx neuropil) and background region used for analy-

sis. Scale bar: 50 μm. (b) KCl-induced influx of postsynaptic Ca2+ ion,measured by changes in fluo-

rescence (ΔF/F in %) of Homer GCamp3.0 of a single fly over time. (c)Maximum change in
fluorescence (ΔF/F in %) of Homer GCamp3.0 response to KCl in 3d, 30d, and 30dSpd flies (n = 8–9
flies; Kruskal-Wallis test). ns = not significant, p� 0.05. Underlying data is shown in S1 Data.

(TIF)

S17 Fig. Empirical cumulative distribution functions for postsynapticHomer-GCaMP3.0

response during odor stimulation. Empirical cumulative distribution functions for 3-Oct and

MCH, as used in the Kolmogorov-Smirnov test. Only the GCaMP3 response during odor pre-

sentation (seconds 1–3, grey bars in Fig 3K and 3M) was used. Two-sided Kolmogorov-Smir-

nov tests were conducted for the analysis of difference. The differences for 3-Oct were not

significant. The differences for MCH between 3d and 30d (��), as well as between 30d and

30dSpd (�) were significant after Bonferroni correction for three groups. � p< 0.05, �� p< 0.01.

Underlying data is shown in S1 Data.

(TIF)

S18 Fig. Calyx neuropil from wild-typebrains immunostained for Drep2 and BRP. (a–c)

Mushroom body calyx from adult brains of 3d and 30d w1118 flies, together with 30dSpd w1118

flies immunostained for Drep2 and BRP (using Nc82 as well as N-terminal antibodies) (corre-

sponding single z-planes are shown). Scale bar: 10 μm. (d–f)Quantification of signal intensity

of these proteins in the calyx region normalized to 3d flies (n = 10 independent brains; Krus-

kal-Wallis test with Dunn’s multiple comparison test, p-values were subject to Bonferroni cor-

rection). �� p< 0.01, ��� p< 0.001, ns = not significant, p� 0.05. Underlying data is shown in

S1 Data.

(TIF)

S19 Fig. Autophagy required for spermidine-mediatedsuppression of age-associated

increase in BRP levels. (a–d) Comparison of BRP signal intensity (using Nc82 and N-terminal

antibodies) in brains of 3d w1118 control animals, 3d and 20-d old (20d) atg7-/- flies, raised

either on normal or spermidine-supplemented food. Scale bar: 50 μm. (e–f)Quantification of

BRP within the central brain region of young (3d) and old (20d) atg7-/-mutants normalized to

3d w1118 flies (n = 9–12 independent brains; Kruskal-Wallis test with Dunn’s multiple compari-

son test, p-values were subject to Bonferroni correction). �� p< 0.01, ns = not significant,

p� 0.05. Underlying data is shown in S1 Data.

(TIF)

S1 Table. Aversive odor avoidance and shock reactivity in different genotypes.Underlying

data is shown in S1 Data.

(TIF)
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