Theme Feature

Spert-ll: A Vector
Microprocessor

System

John Wawrzynek

Krste Asanovi¢

Brian Kingsbury
University of California,
Berkeley

David Johnson

James Beck

Nelson Morgan
International Computer
Science Institute

any algorithms used in human-machine interface applica-
M tions—such as speech, image, and handwriting recognition—

require extensive computation. The burgeoning area of
multimedia processing also requires high-performance computing.

Processing elements for use in these areas must provide high perfor-
mance at low cost, as they probably will appear in a variety of consumer
products. The processing elements should also be programmable, to sup-
port multiple standards and reduce new algorithms’ time-to-market. A
programmable device can also be used in multiple applications, which
makes it easier to recover silicon development costs.

Any programmable device brings associated software development
costs. Ideally, future processing-element implementations will be object-
code-compatible with earlier designs, so users can preserve their soft-
ware investments while taking advantage of fabrication technology
advances that make the code run faster.

We believe vector microprocessor architectures will make ideal pro-
cessing elements for these multimedia and human-machine interface
applications, which often contain algorithms that can be expressed in
data-parallel form. Also, moderate-precision fixed-point arithmetic is
often sufficient, which lets us integrate many parallel functional units on
one die. A vector instruction-set architecture (ISA) allows a natural expres-
sion of the applications’ data parallelism and simplifies implementations
that employ multiple parallel units and pipelined functional units.

We have packaged a prototype full-custom vector microprocessor, TO,
as the Spert-II (Synthetic Perceptron Testbed II) workstation accelerator
system (see the sidebar “Vector microprocessors”). We originally devel-

The Spert-Il fixed-point oped Spert-II to accelerate multiparameter neural network training for
speech recognition research.! Our speech research algorithms constantly
change. Also, neural nets are often integrated with other tasks to form
complete applications. We thus desired a general-purpose, easily pro-

system performs training and grammable accelerator that could speed up a range of tasks.

vector microprocessor

recall faster than commercial THE TORRENT VECTOR MICROPROCESSOR

The TO vector microprocessor’s development follows our earlier work
on the Spert VLIW/SIMD (very long instruction word/single-instruction
multiple-data) neuromicroprocessor.2 We have since moved to a vector
ISA that is based on the industry-standard MIPS RISC scalar ISA? extended
with vector coprocessor instructions. The resulting ISA, which we call
Torrent, offers important advantages over our previous design. We gain

workstations for neural
networks used in speech

recognition research.

0018-9162/96/$5.00 © 1996 IEEE March 1996

access to scalar MIPS architecture software tools, includ-
ing optimizing C and C+ + compilers, assemblers, linkers,
and debuggers. The vector ISA reduces instruction fetch
bandwidth and will enable object-code compatibility with
future designs.

The TO processor is a complete single-chip Torrent archi-
tecture implementation fabricated by Hewlett-Packard’s
CMOS26G process using 1.0-um scalable CMOS design
rules and two metal layers. The die measures 16.75 mm X
16.75 mm and contains 730,701 transistors. At a clock fre-
quency of 40 MHz, the device consumes about 12W of
power from a 5V supply. The first silicon, received in April
1995, is fully functional with no known bugs.

TO achieves high performance at low cost by integrating
multiple fixed-point data paths with a high-bandwidth
memory system. Fast digital arithmetic units, such as mul-
tipliers and shifters, require chip area proportional to the
square of the number of operand bits. In modern micro-
processors and digital signal processors, a floating-point

unit occupies much of the chip. Higher-precision arith-
metic units also need higher memory bandwidth to move
large operands. However, many problems do not require
full-precision floating-point or even high-precision fixed-
point arithmetic. Studies have shown that for error back-
propagation neural network training, 16-bit weights and
8-bit activation values perform as well as 32-bit single-
precision floating-point.*

However, fast fixed-point multiply-adds are not suffi-
cient to increase performance on many problems. Other
application components may dominate total computation
time if only the multiply-add operations are accelerated.
The vector unit includes general-purpose operations in its
instruction set and is tightly coupled to a fast general-
purpose RISC core to handle nonvectorizable operations.

AsFigure 1 shows, TO’s main components are the MIPS-II-
compatible RISC CPU with a 1-Kbyte on-chip instruction
cache, a vector unit coprocessor, an external memory inter-
face, and an 8-bit-wide serial host interface (TSIP) and con-
trol unit. The external memory interface
supports up to 4 Gbytes of memory over a

128-bit-wide data bus. The system copro-

Address 1 Kbyt Ve cessor provides a 32-bit counter/timer and

bus = 0 I-Cac)%: Conditional move registers for host synchronization and
Clip exception handling.

A Scalar Shift right The vector unit contains a vector register

Y bus Add file and the VPO, VP1, and VMP vector

» MIPS-II L Multiply functional units. The vector register file

- CPU ™ ShL'ft left contains 16 vector registers, each holding

ogtc 32 32-bit elements. VPO and VP1 are vector

28 AA

arithmetic functional units that can per-

G I RV Y E———— [o

form 32-bit integer arithmetic and logic

Vector L Vector operations and support fixed-point scaling,

> memory — registers rounding, and saturation. Multiplication

pipeline | is supported only in VPO, with 16-bit x 16-

X 128 | A bit multiplies producing 32-bit results. The
VP1 software performs vector division by long

- ISP ~=—Scan L_ogic division, using an estimate of the divisor’s
- — chains Shift left reciprocal to obtain 12 quotient bits per

iteration. VMP, the vector memory unit,

handles all vector load/store operations,

Add
Shift right
Data 8 18 Clipg
bus Conditional move |[}"

scalar load/store operations, and vector
insert/extract operations.

Figure 1. Block diagram of TO microarchitecture.

Vectors are addressed in external mem-
orywith three types of load/store options—

Vector arithmetic pipeline
Y]]

8-Mbyte SRAM

R -
Vector registers :
[
T 1 T 1 -
Vector arithmetic pipeline 8 | 512K x 8

Spert-II
board TO chip
MIPS
core
Xilinx -
FPGA | 8 TSIP
'8
L Inst.
Host workstation cache

[i I
L UL Address
Vector memory pipeline

| IR]] e

Figure 2. Spert-1l system organization.

Computer

unit stride, nonunit stride, and indexed access. In unit-
stride, vector elements occupy consecutive memory loca-
tions. In nonunit stride, elements are separated by a
constant distance. With indexed access, a vector register
provides pointers to the operand vector’s elements. This
option efficiently implements parallel table-lookup func-
tions for function approximation. It also supports sparse
matrix-vector operations.

Each vector functional unit is composed of eight paral-
lel pipelines and produces up to eight results per cycle. The
TO memory interface has one memory address port, which
limits nonunit stride and indexed memory operations to
one element transfer per cycle.

A vector register’s elements are striped across all eight
pipelines. With a maximum vector length of 32, a vector
functional unit accepts a new instruction every four cycles.
TO can saturate all three vector functional units by issuing
one instruction per cycle to each, leaving the scalar unit
an issue slot every four cycles. TO can thus sustain up
to 24 operations per cycle, a level achieved by several
important library routines, such as matrix-vector and
matrix-matrix multiplies. All vector pipeline hazards are
interlocked in hardware, so instruction scheduling is not
required for correctness but may improve performance.

THE SPERT-Il WORKSTATION
ACCELERATOR

Spert-II is a double-slot Sbus card for Sun-compatible
workstations. As Figure 2 shows, the board contains a TO
vector microprocessor, SRAM, a Xilinx FPGA device for
interfacing with the host, and various system support
devices.

We use chip-on-board (COB) technology to mount the
TO die because COB provides lower cost and better elec-

Figure 3. A TO processor die that is mounted on a
Spert-ll board.

trical performance than conventional chip packaging. We
fabricate the board using a conventional printed circuit
board (PCB) process and glue the die into a cavity with
thermally conductive epoxy. Thermal vias under the bond
site conduct heat to the board’s rear, where a heat sink and
afan are attached. Signal and power connections are made
through conventional wire bonds. The PCB bond pads are
interleaved on two board levels to match the board trace
pitch of 300 wm to the die pad pitch of 150 wm. Figure 3
shows a TO processor die that has been mounted on a
Spert-1I board.

Figure 4 shows a complete Spert-II board. On the top is
a TO processor, under a metal cover, surrounded by sur-
face-mounted address drivers and SRAM parts. On the
bottom is the board’s opposite side, which has more mem-
ory parts, the Xilinx FPGA, clock control support devices,
and space for the TO heat sink. Spert-II boards have a 40-
MHz processor clock frequency and use 16 20-ns, 4-Mbit
SRAM parts to provide 8 Mbytes of main memory.

Figure 4. A complete Spert-1l board. Top: On one
side, a TO processor, under a metal cover, is
surrounded by address drivers and SRAM parts.
Bottom: On the other side are memory parts, the
Xilinx FPGA, clock control support devices,the TO
heat sink, and the fan.

March 1996

Workstation

Server
< | Debug | [
gdb server
debugger
lfe}
server

Spert-Il system

Spert-Il user process

Application-
specific code

Standard
C library

v

fltvec || fltvec

Unix O/S

Spert-1l kernel

Figure 5. The Spert-ll software environment.

SPERT-Il SOFTWARE ENVIRONMENT

We wanted the Spert-II software environment, shown
in Figure 5, to look like a conventional workstation soft-
ware environment to ease the porting of existing work-
station applications and to provide a comfortable code
development environment.

We add the Torrent vector instructions as coprocessor
instructions to the base MIPS-II instruction set. These
operations use an opcode space section reserved in the
MIPS architecture for such added functionality. This com-
patibility lets us base our software environment on the
popular GNU tool set, which already supports MIPS-based
machines.

We use an unmodified version of the gcc C/C++ com-
piler and modify the gdb symbolic debugger to debug TO
programs remotely from the host. We extend the gas
assembler to support the new vector instructions and add
an optimizing code scheduler that reorders instructions
to reduce the number of hardware interlocks. We also
employ the GNU linker and other binary utility programs,
such as library archivers.

Vector unit access is either through library routines or
by way of the scheduling assembler. We developed an
extensive optimized vector library routine set, including
fixed-point matrix and vector operations, function approx-
imation through linear interpolation, and IEEE single-
precision floating-point emulation. We wrote a parallel set
of functions in ANSI C to permit Spert-II program devel-
opment on workstations. Finally, a standard Clibrary con-
tains the usual utility, I/0, and scalar math routines.

The Spert-1I board’s operating system has two compo-
nents—a small kernel that runs on TO and a user-level
server that runs on the host. To run a program on Spert-II,
a user invokes the server, passing the Spert executable’s
name as an argument. The server resets TO, downloads
the kernel and Spert executable, and waits to handle Spert
program I/0 requests.

TO does not include a hardware floating-point unit, but
it fully supports floating-point code. The MIPS-II floating-
point instructions are trapped and emulated by the ker-
nel, simplifying software porting. We can achieve greater

Computer

throughput for vectorizable floating-point code by using
the single-precision vector floating-point library.

MAPPING BACK PROPAGATION

We have implemented an artificial neural network
(ANN) training task taken from a speaker-independent
continuous speech recognition system. The ANN is a sim-
ple three-layer, feed-forward perceptron. Multilayer per-
ceptrons for this task typically have 100 to 400 input units.
The input layer is fully connected to a hidden layer of 100
to 4,000 units. The hidden layer is fully connected to an
output layer containing between 56 and 61 units repre-
senting phonemes. The hidden units incorporate a stan-
dard sigmoid nonlinearity, typically f(x) = 1/(1 + e*). The
output units compute a soft-max

eX

fo)=

> e’

or a sigmoid activation function.

Some researchers have experienced slow convergence
when using back propagation to train small networks with
limited data sets. However, we experience relatively fast
convergence using on-line back propagation to train large
networks with large real-world data sets for our speech
recognition tasks. A randomly initialized net containing
from 40,000 to over 1 million weights typically converges
with three to 10 passes over the training database, which
may contain several million pattern presentations. In some
cases, a previously initialized network that is being
adapted converges with only one pass.

We use on-line training with weight matrices updated
after each pattern presentation. Other neurocomputers’
benchmarks often use a batch update procedure, where
training patterns are grouped together and weight matri-
ces are updated only after processing an entire group. This
is typically easier to parallelize than an on-line or per-
pattern weight update, which requires communication for
every pattern presentation. We have found that one pass of
on-line training accomplishes more than one pass of

Vector microprocessors

Commercial microprocessor performance has Al lere]
increased dramatically, driven largely by CMOS fab- — —
rication technology improvements. Superscalar Al8]| (B8]
microprocessors currently execute up to 4 scalar Al e
instructions per cycle, with clock cycle times drop- — —
ping as low as 3.3 ns.! Issuing more instructions in Al6]| |BI6]
paral_lel brings dimiqishing returns, becau_se the logic Al [8rs]
required to dynamically detect instruction stream — —
parallelism and then communicate data values Al4]| [BI4]
bgtween concurrent ir!structio_ns grows quadratically NOIBEE
with the number of instructions issued per cycle. — —
Current superscalar microprocessors already dedi- Al2| B[] BIS] @
cate considerable die area to superscalar instruction NREE @ B[7]
issue management. T T
Very long instruction word (VLIW) processors have
been proposed to reduce the control complexity of + + + + +
executing multiple operations per cycle.? On every
cycle, the hard_ware |n_1plement§t|_on fetch_es and exe-
cutes a VLIW instruction containing multiple opera-
tions. The VLIW compiler finds independent operations
and packs them into VLIW instruction to satisfy intra- @ @

instruction and interinstruction dependencies. The
VLIW hardware configuration is made visible at the
instruction set level, so code compiled for one mem-
ber of a VLIW machine family must be recompiled to
run on another. This is a disadvantage, as are the large
instruction cache space and instruction fetch band-
width required by the long instruction words.

Vector processors, unlike conventional scalar
processors, can specify multiple independent oper-
ations on linear operand arrays in one instruction.®
For example, one vector addition instruction can read two
vectors of equal length and add corresponding elements
to produce a third results vector.

Many applications contain abundant data parallelism
that can be readily mapped to vector instructions. A low-
cost implementation may execute a vector addition’s inde-
pendent operations with one pipelined adder producing
one result per cycle, as Figure Al shows. A high-performance
implementation may employ an array of N parallel pipe-
lined adders producing N results per cycle, as Figure A2
shows. There is little control logic increase between these ELI-512,” Proc. 10th Int’l. Symp. Computer Architecture, IEEE
two implementations, and vector machines can be easily CS Press, Los Alamitos, Calif., Order No. PR473, 1983, pp. 140-
scaled to higher degrees of parallelism as fabrication tech- 150.
nology allows. 3. J. Hennessy and D. Patterson, Computer Architecture—A

Vector architectures have traditionally been employed in Quantitative Approach, Morgan Kaufmann, Palo Alto, Calif.,
large supercomputers used for scientific and engineering 1990, pp. 350-396.

Figure A. A vector instruction-set-architecture can have a low-
cost implementation that executes one operation per cycle or
a high-performance implementation that executes multiple
operations per cycle. The figures show a low-cost implementa-
tion (1) and a high-performance implementation (2) executing
the addition of 10 elements of two vectors, A and B, to give a
result vector, C. The high-performance version completes four
results per cycle.

tasks. We are investigating the use of inexpensive vector
microprocessors on new computationally intensive tasks
within commodity applications, such as multimedia pro-
cessing and human-machine interfacing.

References
1. B.J. Benschneider et al., “A 300-MHz 64-b, Quad-Issue CMOS
RISC Microprocessor,” IEEE J. Solid-State Circuits, Vol. 30, No.
11, Nov. 1995, pp. 1,203-1,214.
2. J. Fisher, “Very Long Instruction Word Architectures and the

batched training for large realistic problems, such as speech
or image recognition, where data sets tend to be redundant.

We have named the programs that perform forward
pass and training gnforward and gntrain, respectively.
These programs are written in C+ +, using library rou-
tines to perform matrix and vector operations. The Spert-II
system runs the network training program on the TO
processor. This contrasts with other neural network accel-
erators, in which users must partition user code to place
general computations on the host and to place only the

computationally intensive operations on the custom hard-
ware. This partitioning adds coding effort, and the result-
ing communication increases costs.

We use the same source code for workstation and Spert-1I
training, except that the Spert-II MLP class calls fixed-point
matrix-vector libraries, while the workstation MLP class
calls floating-point matrix-vector libraries. The fixed-point
and floating-point MLP classes have the same interface
and use single-precision floating-point values to pass input
and output values.

March 1996

Forward pass

300

250

200

150

Speed (M CPS)

100

IBM RS/6000

50

Sparc-20/61
I T

| ml
0 200 400 600 800 1,000
Layer size

Training

o
o
D
O
>
°
3]
[}
o
(2]
20 IBM RS/6000
Sparc-20/61
| 1 I T —1
0 200 400 600 800 1,000

Layer size

Figure 6. Performance comparison of the Spert-1l and two commercial RISC workstations for a set of three-
layer networks on forward-propagation and back-propagation training.

In addition to forward- and back-propagation functions,
gnforward and gntrain perform such operations as train-
ing and cross-validation database management, database
format conversion, control of learning schedules, check-
pointing, and status reporting. We employ the same source
code we use for these ancillary functions on the worksta-
tions and Spert-II. The gntrain and gnforward source code
for workstations and Spert-II has about 8,000 lines, of
which about 1,000 support the fixed-point version. These
totals do not include the source code for the floating-point
and fixed-point matrix-vector libraries.

The fixed-point matrix-vector library contains hundreds
of functions, although we use only a limited subset for back-
propagation training. The core computationally intensive
operations in back-propagation training are forward prop-
agation, error back propagation, and weight update. These
map to vector-matrix multiply, matrix-vector multiply, and
scaled outer-product accumulation, respectively. We highly
optimize these routines and rearrange the loops to use unit-
stride memory accesses. We reduce memory bandwidth
requirements by tiling matrix accesses and reusing vector
register operands when possible.

The library also contains many simpler vector opera-
tions. We use some to handle input and output vectors and
activation values in back-propagation training. While
these operations require only O(n) computation, as
opposed to matrix operations’ O(n?) requirements, they
increase costs significantly on small networks if not vec-
torized.

For example, we implement the sigmoid activation func-
tion by using a piecewise-linear function-approximation
routine that uses vector-indexed load operations to per-
form table lookups. TO can execute vector-indexed oper-
ations at only one element transfer per cycle. However,
the table lookup routine can simultaneously perform all
arithmetic operations for index calculation and linear
interpolation in the vector arithmetic units at a rate of one
16-bit sigmoid result every 1.5 cycles. Similarly, we use a
table-based vector logadd routine to implement the soft-
max function at a rate of one result every 2.25 cycles.

Computer

TO also uses vector library routines to convert single-
precision IEEE format to the internal 16-bit fixed-point
representation at the rate of 2.4 cycles per element con-
verted.

PERFORMANCE EVALUATION

We compared the Spert-II system with two commercial
RISC workstations. One was a Sparcstation-20/61 con-
taining one 60-MHz SuperSparc+ processor with a peak
performance of 60 million floating-point operations per
second (Mflops), 1 Mbyte of second-level cache, and 128
Mbytes of DRAM main memory. The other was an IBM
RS/6000-590 computer containing the RIOS-2 chip set
running at 71.5 MHz with a 266-Mflop peak performance,
256 Kbytes of primary cache, and 768 Mbytes of DRAM
main memory. The Spert-II system contains the TO proces-
sor running at 40 MHz with a peak performance of 640
million fixed-point operations per second and 8 Mbytes of
SRAM main memory, mounted in a Sparcstation-5/70.

Figure 6 shows the three systems’ performance for a set
of three-layer networks on forward-propagation and back-
propagation training. Table 1 presents performance results
for two speech-network architectures. We used three-layer
neural networks with total connectivity between adjacent
layers. In Figure 6, for ease of presentation, we used net-
works with the same number of units per layer, beginning
at 32 and increasing by powers of two. The networks
presented in Table 1, however, had a different number of
units per layer. The sigmoid function was the hidden-layer
activation function, and the soft-max function was the
output-layer activation function.

The workstation version performs all input, output, and
computation using IEEE single-precision floating-point arith-
metic. We extensively hand-optimize the matrix and vector
operations within the back-propagation algorithm using
manual loop unrolling with register and cache blocking. The
Spert-II timings include the time spent converting between
floating-point and fixed-point for input and output.

The workstation code uses calls to library exponential
routines to evaluate the activation functions, while the

Table 1. Performance of three microprocessor systems for two speech-network architectures.

Net size
Net type (in x hidden x out) Spert-I1 Sparc20 IBM RS/6000-590
Forward pass (M CPS)
Small speech net 153 x 200 x 56 181.0 17.60 43.0
Large speech net 342 x 4,000 x 61 276.0 11.30 45.1
Training (M CUPS)
Small speech net 153 x 200 x 56 57.1 7.00 16.7
Large speech net 342 x 4,000 x 61 78.7 4.18 17.2

Spert-Il version uses linear interpolation from lookup-table
values. The Sparcstation-20/61 system’s workstation code
spent slightly less than 6 percent of its time in the small
speech network’s activation function code and just over
1 percent in the large speech network’s code. For large net-
works, the Spert-II system performed 30 times better than
the Sparcstation-20/61 and about six times better than the
IBM RS/6000-590. The Spert-1I system clearly performed
better even for small networks, such as those with only 32
units per layer.

We used a phoneme classification problem to compare
how well the fixed-point and floating-point nets learn.
Each net is trained to classify a string of acoustic feature
vectors into phoneme categories. From a subset of
the Bellcore spoken digits database, we use 1,720 sen-
tences for back-propagation training and 230 for cross
validation. We repeated training runs a number of times
and used different random seeds to initialize the weights.
The results, in Table 2, show that there is little difference
in error rates and that the fixed-point net trains in an aver-
age of one fewer pass over the training database.

RELATED WORK
Previous programmable digital neurocomputers
include systems based on the Adaptive Solutions CNAPS-
1064 chip®; the Synapse-1, based on the Siemens MA-16
chip;® and our RAP (Ring Array Processor) system.”

The CNAPS-1064 is a SIMD device with 64 16-bit fixed-
point processing nodes (PNs) on a single die. It requires an
external control sequencer chip, possibly controlling mul-
tiple chained parts, to form a complete system. The chips
run at 25 MHz and have a peak performance of 1,600M CPS
and 250M CUPS. Each PN contains 4 Kbytes
oflocal memory. The CNAPS system obtains

training. The system has multiple control flow levels, and
data must be carefully distributed across several disjoint
memory spaces.

The RAP machine was built from off-the-shelf TMS320C30
digital signal processors (DSPs) arranged in a ring through
an FPGA-based interconnect. We measured a 40-node sys-
tem at up to 100M CUPS for an on-line back-propagation
learning task. Current floating-point DSPs perform about
three times better than DSPs used in the RAP, but the Spert-II
board would still be considerably less expensive than an
updated RAP design with equivalent performance.

The new TMS320C80 MVP processor’s® DSP has
roughly the same die size and clock rate as the TO but is
fabricated in a newer 0.55-um process with three metal
layers. The MVP contains four independent VLIW DSPs
and a proprietary RISC processor. Peak throughput is four
16-bit, fixed-point multiply-adds per cycle with a 64-bit
data bus for MVP, as opposed to eight 16-bit fixed-point
multiply-adds per cycle with a 128-bit data bus for TO.

We believe these other systems are more difficult to pro-
gram than TO. The CNAPS system has small local memo-
ries on each processing element and limited off-chip
bandwidth to a separate large DRAM on the control
sequencer. The Synapse-1 has several disjoint memory
spaces for matrix operands and several different types of
control flow. The RAP has multiple independent control
threads, usually used in single-program multiple-data
fashion. The RAP’s DSPs can communicate only by way of
the ring, and each DSP has multiple on-chip memory
banks, off-chip SRAM, and off-chip DRAM. For peak per-
formance, we must carefully distribute operands among
these memory spaces. The TMS320C80 has five control

high performance only with algorithms that

can map data structures into each PN’s local
memory. The bandwidth to external mem-
ory is limited to 8 bits of input and 8 bits of
output per cycle for each system chip.

The Synapse-1 system is formed by cas-
cading the MA-16 into a large systolic array
and adding considerable support logic.
Each MA-16 contains 16 multiply-add units
and peripheral logic, and each connects to
off-chip DRAM for weight storage. Synapse-1
is a special-purpose system designed pri-
marily to execute large matrix-multiplies
and thus performs best with batch-mode

Table 2. Fixed-point and floating-point network training quality and rate for
phoneme classification. An epoch is one pass over the training database.

Floating-point Fixed-point
Training runs 28 82
Minimum percentage of frames correct ~ 82.52 82.56
Mean percentage of frames correct 83.62 83.48
Maximum percentage of frames correct 84.70 84.37
Standard deviation 0.55 0.44
Minimum epochs training 6 5
Mean epochs training 7.68 6.85
Maximum epochs training 10 9

March 1996

threads. We must explicitly move data between on-chip
and off-chip memories using a separate DMA engine to
attain peak memory bandwidth. In contrast, TO has a sin-
gle control thread and a single memory space.

WE HAVE PRESENTED A WORKSTATION ACCELERATOR based
on a unique custom vector microprocessor and have
described how we applied the system to neural network
training for a speech recognition task. We have shown that
many of neural network training’s computationally inten-
sive matrix operations, as well as many other operations,
can be readily vectorized. We have also demonstrated that
fixed-point representation is adequate for learning a
phoneme recognition task.

Vector processors are perhaps the simplest and most
efficient architectures for exploiting fabrication technol-
ogy advances. Meanwhile, it appears likely that many new
applications, such as those in multimedia and other
human- machine interfaces, will be readily vectorizable.
We thus believe vector microprocessors will prove to be
increasingly important. 0

Acknowledgments

Thanks to Jerry Feldman for his contributions, Bertrand
Irissou for his work on the TO chip, John Hauser for Torrent
libraries, John Lazzaro for his advice on chip and system
building, and the anonymous reviewers for their comments
on earlier drafts of this article. Primary support for our work
came from ONR URI Grant N00014-92-J-1617, ARPA
Contract N0001493-C0249, NSF Grant MIP-9311980, and
NSF PYI Award MIP-8958568NSF. Additional support was
provided by ICSI. IBM donated the RS/6000.

References
1. N. Morgan and H. Bourlard, “An Introduction to Connec-
tionist Speech Recognition,” Signal Processing Magazine, Vol.

12, No. 3, May 1995, pp. 25-42.

2. J.Wawrzynek, K. Asanovi¢, and N. Morgan, “The Design of a
Neuromicroprocessor,” IEEE Trans. Neural Networks, Vol. 4,
No. 3, 1993, pp. 394-399.

3. G. Kane and J. Heinrich, MIPS RISC Architecture, Prentice
Hall, Englewood Cliffs, N.J., 1992.

4. K. Asanovi¢and N. Morgan, “Experimental Determination of
Precision Requirements for Back-Propagation Training of
Artificial Neural Networks,” Proc. Second Int’l. Conf. Micro-
electronics for Neural Networks, Kyrill and Method Verlag,
Munich, Germany, 1991, pp. 9-16.

5. D. Hammerstrom, “A VLSI Architecture for High-Perfor-
mance, Low-Cost, On-Chip Learning,” Proc. Int’l. Joint Conf.
Neural Networks, IEEE Neural Networks Council, Ann Arbor,
Mich., 1990, pp. II-537-1I-543.

6. U.Ramacher et al., “Design of a First Generation Neurocom-
puter,” in VLSI Design of Neural Networks, U. Ramacher and U.
Ruckert, eds., Kluwer Academic, London, 1991, pp. 271-310.

7. N.Morgan et al., “The Ring Array Processor (RAP): A Multi-
processing Peripheral for Connectionist Applications,” J. Par-
allel and Distributed Computing, Vol. 14, No. 3, Mar. 1992, pp.
248-259.

8. “TMS320C80 Multimedia Video Processor,” tech. brief, Texas
Instruments, Dallas, 1994.

Computer

John Wawrzynek is an associate professor of electrical
engineering and computer sciences at the University of Cal-
ifornia, Berkeley, where he teaches courses in computer archi-
tecture and VLSI system design. His research involves custom
VLSI for signal processing and parallel computation. He holds
a PhD in computer science from the California Institute of
Technology and an MS in electrical engineering from the Uni-
versity of Illinois, Urbana-Champaign.

Krste Asanoviéis working toward a PhD in computer sci-
ences at the University of California, Berkeley. From 1983
through 1989, he worked at the GEC Hirst Research Center,
London, UK. His research interests include computer archi-
tecture, vector processing, VLSI design, and high-performance
computing. He received a BA in electrical and information
sciences in 1987 from Cambridge University, UK. He is a stu-
dent member of IEEE and ACM.

Brian Kingsbury is working toward a PhD in computer
sciences at the University of California, Berkeley. His research
interests include VLSI design, digital-signal processing, and
robust speech recognition. In 1989, he received a BS in elec-
trical engineering from Michigan State University and a
National Science Foundation Graduate Fellowship. Kings-
bury is a member of Tau Beta Pi.

David Johnson is a senior staff software engineer at the
International Computer Science Institute (ICSI), Berkeley,
California. He has worked on embedded-communication
and -control projects in industrial and academic environ-
ments. His primary research field is high-performance systems
for signal-processing applications. He has an MA in computer
science from the University of Cambridge, UK.

James Beck has been an ICSI staff engineer since 1989 and
has built fast hardware for artificial neural net computation.
In 1990, he designed a DSP-based machine, the RAP, which
has been used at ICSI and other research sites. Beck is respon-
sible for system and board design, as well as manufacturing
and test design, on the Spert-II project. He earned a BS in
1971 from the California Institute of Technology.

Nelson Morgan is an adjunct professor in electrical engi-
neering and computer sciences at the University of Califor-
nia, Berkeley, and an ICSI research scientist and Realization
Group leader. He joined ICSI in 1988 and the University of
California, Berkeley, in 1991. His interests include the design
of algorithms, architectures, and systems for parallel signal
processing and pattern recognition systems, particularly
using connectionist and perceptually-based paradigms. Mor-
ganreceived a BSin 1977, an MS in 1979, and a PhD in 1980
in electrical engineering and computer sciences from the Uni-
versity of California, Berkeley. He is a senior IEEE member
and has five patents relating to different aspects of signal pro-
cessing and pattern recognition. He has written two books
and about 120 technical papers.

Readers can contact Wawrgynek, Asanovit, and Kingsbury
at the University of California, Berkeley, e-mail {johnw, krste,
bedk} @cs.berkeley.edu. Readers can contact Johnson, Beck,
and Morgan at ICSI, e-mail {davidj,beck, morgan} @icsi.
berkeley.edu.

