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ABSTRACT

SPH (Smoothed Particle Hydrodynamics) is a particle, purely
mesh-free Lagrangian method, proposed by different authors, well
suited to the computing of highly transitory free surface flows of
complex fluids in complex geometries. Different approaches have
been proposed in order to better simulate the mutual interaction
between particles and their interactions with boundaries.

Therefore, the main target of this article is to discuss and
explore the numerical performance of certain commonly utilized
SPH approaches, based essentially on mass and momentum bal-
ances, in the simulation of a 2D fast mudflow in fast motion, com-
posed of fluid and solid material, assumed to be just one equivalent
phase (fluid-solid). The “Herschel-Bulkley”, non Newtonian constitu-
tive equations, describing a viscoplastic material suitable to repro-
duce the rheological behaviour of mudflows, has been selected.
Hence, a laboratory experimental test, already proposed in literature
and, after properly scaling, representative of a real fast flow phe-
nomenon, was considered for comparison with numerical outcomes
carried out by a research code that has already been tested and dis-
cussed in previous papers. A simple but effective statistical approach
was developed and applied in order to identify and utilize a numeri-
cal index suitable for the quantitative measurement of the degree of
matching between numerical results and measurement data affected
by experimental errors. More than thirty numerical experiments
were performed, of which the most significant eleven simulations
are discussed. Satisfactory results were achieved. As outcomes, it
was verified that, in particular for the selected experimental test,
Rusanov flux addition within the continuity equation with the
proper choice of both the viscosity term of momentum and the SPH
boundary conditions, is suited to enhancing the performance of this
type of numerical simulation of a fast flow.

KEY WORDS: SPH, 2D numerical modeling, parametric
studies, landslide in fast motion, muddy debris flow.

INTRODUCTION

In recent years, the hazard of catastrophic landslides
due to the increase of hydro-geological risk has assumed
the importance of a remarkable emergency, provoking
many casualties and material damage. In the specific,
following intense torrential rainfall, if slopes are covered
by water saturated soils or fine grained sedimentary
deposits, such material may become liquefied resulting
in a fast movement of large quantities of material. There

are many proposed classifications of this kind of phenom-
ena: VARNES (1954), COUSSOT & MEUNIER (1996),
CRUDEN & VARNES (1996), HUNGR et alii (2001), TAKA-
HASHI (2001). Among the identified phenomena, earth-
flow, debris flow, muddy-debris-flow and muddy-flow are
proposed classification relating to rapid gravity-driven
unsteady flows of highly concentrated mixtures of water
and solid material with large grain size distribution and
with complex internal structures. The type of fast land-
slide flow discussed by the study that this article refers to,
is assumed to be similar to a muddy debris flow, charac-
terized by a mixture of water and poorly sorted granular
material flowing under the effect of gravity (COUSSOT

& MEUNIER, 1996; LAIGLE & COUSSOT, 1997; IVERSON,
1997; CROSTA et alii, 2001; IVERSON et alii, 2010). 

The most widely used approaches to model muddy
debris flow or debris flows in general are usually related
either to “continuum” or to “granular” mechanics. The
content of this paper belongs to the former type of
approach where the Navier-Stokes equations are consid-
ered as the master tool. Having stated this, in the “contin-
uum” framework, a fairly general mathematical model
that can be used to model a physical phenomenon similar
to the one discussed in this paper would consist of two
sets of equations: the first for the liquid phase and the
 second for the solid phase. Interaction terms can then be
added to the equations in order to model the forces
exchanged by the two phases. A model of this kind can be
derived from the mixture theory (ATKIN & CRAINE, 1976):
an implementation of such approach in the case of debris
flows can be found in IVERSON (1997), where the possibil-
ity of using different rheological models for each phase is
suggested. Grain size distribution plays an important role
in the physics of this type of phenomenon and develop-
ments in the study of water-solid mixtures have shown
that the clay fraction can also be of great importance, as it
influences the granular interactions. In particular, it is
reported by LAIGLE & COUSSOT (1997) that muddy debris
flow mixtures with a high clay fraction, despite retaining
their two-phase nature, behave as viscoplastic fluids and
that a single phase model of such kind can reproduce their
physics to a good degree of approximation. We thus
restrict our analysis to the specific case of debris flows
characterized by a high clay fraction (mudflows) and sim-
plify the problem by employing a single equivalent phase
model of a viscoplastic fluid. Moreover, as simplifying
approximation, concentration fluctuations, segregation,
sedimentation and transition from laminar to turbulence
regime were neglected. Additionally the complex phenom-
ena occurring at the front of the flow were not included. 
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The bibliography relating to numerical approaches is
very extensive and, for the sake of completeness, we men-
tion the fields of Computational Fluid Dynamics (CFD),
and of Computational Granular Dynamics (CGD). CFD
(CHUNG, 2006; among many others) and CGD (PÖSCHEL

& SCHWAGER, 2005) are considered, respectively, as
numerical tools relating to continuum mechanics and
Molecular Dynamics, used to simulate landslide flow.
Nevertheless, according to the scope of the present paper,
a CFD numerical method was selected from those suit-
able for solving the Navier-Stokes equations. Finite Ele-
ments (FEM), Finite Volumes (FVM), Finite Differences
(FDM) and Depth-Averaged Approach (Shallow Water
Model) are some of the most commonly used methods
(CHUNG, 2006). For all the afore-mentioned approaches,
grid generation is an important step to be performed.
Other important issues relating to the numerical solu-
tions of fluid flow problems modelled with the Navier-
Stokes equations involve incompressibility and non lin-
earity of convective terms. In order to avoid the latter, a
Lagrangian approach is commonly selected instead of an
Eulerian one. Furthermore, particular care should be
taken concerning the numerical issues relating to large
deformations. This is the main reason why a frequent
(CPU time consuming) update of the grid, aimed at low-
ering the excessive mesh distortion due to large deforma-
tions, is often necessary. From the above discussion, it is
clear that methods that avoid the numerical instability
due to convective terms, lower grid generation time and
that are capable of easily taking free surfaces and violent
mass fluxes into account, are highly desirable. “Meshless
Finite Element Methods” include many of the above nec-
essary discussed features (see IDELSOHN et alii, 2003 for
an overview). The “Smoothed Particle Hydrodynamics”
(SPH), briefly described in the following paragraphs and
selected in our approach, is one such method (LIU & LIU,
2010; CHAMBON et alii, 2011). There are many proposed
SPH approaches which differ from one another due to
important numerical calculation features, regarding
essentially pressure, mass flow, inter-particle viscosity
and boundary conditions. Thus, in order to provide a 2D
flexible tool, suited to the easy implementation and test-
ing of different numerical approaches proposed in litera-
ture, we developed and implemented a research computer
code (MINATTI & PASCULLI, 2010, 2011), written in 1995
Fortran language. Due to the lack of accurate field data
experimental results obtained from laboratory tests
(LAIGLE & COUSSOT, 1997) were selected. Such experi-
mental data was used for comparisons with numerical
results obtained with the different SPH approaches
implemented in our code. The comparisons essentially
regarded the arrival times of the debris front flow at spe-
cific locations in a laboratory flume. Several CPU time
consuming numerical simulations (more than thirty)
were carried out, but only the most significant eleven
simulations will be discussed in the following paragraphs.

MATHEMATICAL MODELING

In light of the considerations reported in the intro-
duction, we are therefore interested in the equations of
motion of an incompressible viscous non-Newtonian
fluid. In order to develop a theoretical framework for a
numerical model we resorted to the basic balance equa-

tions governing the motion of a continuum, namely mass
conservation and momentum equations. They can be
written in Lagrangian form as:

(1)

(2)

Where: v₋ is the local velocity of the continuum; ρ is the
local density of the continuum; f₋ is the body force per unit
of mass exerted on the continuum; ∇ ⋅ is the ‘divergence’
symbol; s₌ is the total local stress tensor. The total stress
tensor is usually split into two parts: an isotropic and a
deviatory one: The stress tensor decomposition is indi-
cated as follows in the paper: s₌ = – pI₌ + t₌, where: p is the
isotropic pressure; I₌ is the unit tensor; t₌ is the deviatory
part of the total stress tensor. The constitutive equation of
the deviatory part of the total stress tensor, for a viscous
compressible fluid, can be written as the sum of two
terms: the first one depending on the shear viscosity and
the other one on the bulk viscosity. The latter acts only
when volume variations occur (∇ ⋅ v₋ ≠ 0), as in the case of
compressible fluid. However, as common practice, an
incompressible fluid can also be studied as a weak com-
pressible one, thus bulk viscosity may affect numerical
results. A wide class of fluid rheologies can be described in
terms of non-Newtonian viscosity. Non linear visco-plastic
fluid behaviour has been described in terms of non-New-
tonian viscosity for investigating mudflows by, among oth-
ers researchers, LAIGLE & COUSSOT (1997), LAIGLE et alii
(2007) and RODRIGUEZ-PAZ. & BONET (2003), the last two
papers also based on SPH approach. A non-Newtonian
rheology description has also been proposed by JOP et alii
(2006) for modeling dry dense granular flows.

The constitutive law used throughout the paper to
simulate the behaviour of a mudflow, assumed as incom-
pressible, is the Herschel-Bulkley law, modified by
PAPANASTASIOU (1987) in order to regularize the viscosity
that, otherwise, would diverge to infinity for strain rate
approaching zero:

(3)

Where hp is the local regularized dynamic viscosity of
the fluid; tc is the yield stress; K is called the ‘liquid con-
sistency’; n is called the ‘power law index’; e₌ is the strain
rate tensor.

In this paper e₌ and the vorticity tensor w₌ are com-
puted from the linear terms of Taylor expansion of veloc-
ity in space: 

(4)
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The physical meaning of the yield stress is immediate,
representing the stress threshold below which the fluid
starts to behave like a rigid body. The parameter B (equal
to 10 [s] for all the simulations discussed in this paper) is
related to the maximum viscosity returned by the regular-
ization when the strain rate is zero. In this case, the maxi-
mum viscosity value is given by: hmax = B ⋅ tc. It can be
seen from eq. (3) that the regularized and the real viscosi-
ties of the model differ significantly from one another
only at low values of deformation rates which, in the
selected test case, occur only during the first instants of
the flow, immediately after the sluice gate is released.
Therefore, the B parameter is expected to have a non neg-
ligible influence only during the very first instants of the
motion. Its value has however been chosen high enough
in order to not significantly affect the computed arrival
times of the front at the gauges, but small enough to
avoid prohibitively small time steps. Furthermore, to
quantify the irrotationality of the flow regime, the irrota-
tionality index Irr is introduced as the ratio between the
particles average of strain tensor modulus || e₌ || and the
particles average of the velocity gradient modulus || ∇v₋ ||.
It is easy to show, after straightforward calculations, that 

.

Thus:

(5)

From eq. (5), if the flow is purely irrotational, then: 
|| w₌ || = 0 and Irr = 1, while if the flow is purely rotational 
|| e₌ || = 0 and consequently Irr = 0. It is worth noticing that
this kind of index could also be indicative of the occur-
rence of turbulence phenomena, despite the fact that this
kind of phenomena have not yet been introduced in our
research code.

OVERVIEW OF THE SPH METHOD

The SPH method is a numerical technique that was
initially developed during the 1970s to solve astrophysical
problems (MONAGHAN, 2005). It is a fully meshless parti-
cle method that is easy to code. Its meshless and
Lagrangian nature makes it very attractive for solving
fluid flow problems where free surface boundary condi-
tions and large strain rates are involved. The computa-
tional domain is filled with particles carrying flow field
information (e.g. pressure, velocity, density) and capable
of moving in space. Particles are the computational frame
used in the method to solve the flow describing PDEs,
given that a grid or a mesh to calculate spatial derivatives
is not needed. We shall refer to 2D cases throughout the
rest of the paper, even though all the assumptions and
results can be extended to a 3D case with little effort. The
key idea on which the method is based is the well-known
use of a convolution integral with a Dirac delta function
to reproduce a generic function f (x):

(6)

In the SPH method, the Dirac function is replaced by
a “bell-shaped” kernel function W (it ‘mimics’ the Dirac

delta function), and the generic function f (x) is repro-
duced with a convolution integral that, in a discrete
framework, takes the form of a summation over particles:

(7)

Where: xi and xj represent the i-th and j-th particle posi-
tions in the given frame of reference; DAj represents the
tributary area (or volume in a 3D case) associated with
particle j-th; summation is extended to all the particles
located within the support domain of particle i-th. The
kernel function is chosen to be non negative, even and
with a support domain Ωx (usually circular) whose radius
is a multiple of a length h, named smoothing length. The
kernel function is zero outside the support domain and
the smoothing length serves as a scaling parameter for its
arguments. It also has the property of converging to the
Dirac function as the smoothing length approaches zero.

The kernel that has been used for the simulations in
the present work is the ‘C4’ (quartic) Wendland kernel
(WENDLAND, 1995). Such kernel has good smoothness
properties and has also been used previously by MONA -
GHAN & KAJTAR (2009). Its expression in a 2D case is as
follows:

(8)

R = |(x – x')| / h

where (|x – x'|) is the ratio between particle di stances and
smoothing length h. For simplicity, hereafter, the kernel
function will be expressed with W (x – x'). Smoothing
length in SPH, playing a similar role as grid spacing in
finite differences or finite volumes method, is the refer-
ence length upon which spatial derivatives are interpo-
lated. Different choices are available throughout the
related literature. For all the simulations performed and
then discussed in this paper, an evolving in time smooth-
ing length hi, related to each ‘i’ particle, was calculated by
the following ordinary differential equation (BENZ, 1988):

(9)

Where Nd = 2 for 2D simulations, e is a non dimen-
sional coefficient, typical ranging between 1.0 and 1.4, dp
is the initial fluid particles spacing (tab. 3). For the simu-
lations discussed in this paper, e = 1.3 was given. 

It is possible to obtain the expression for the SPH
approximation of a function gradient by writing the
 convolution integral of the function with the kernel and
by using the Gauss-Green formula:

(10)

Where: dS is the boundary surface (a line in 2D and a
surface in 3D); ∇' means the gradient respect to the
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variable x'. If the support domain boundary is fully con-
tained within the computational domain (internal parti-
cle), then the first integral of the right side of the 
eq. (10) vanishes as the kernel W (x – x') is zero on the
kernel support domain boundary (KSDB) and outside of
it. On the other hand if the KSDB intersects the boundary
of the computational domain (particles close to the
boundaries), the term does not vanish as the integral
must be evaluated on the computational support domain
boundary, where the kernel is not vanishing. However it
is common practice to neglect this term in any case. In
order to compensate for the consequent error, the use of
boundary or ghost particles has been proposed (MORRIS

et alii, 1997; MONAGHAN & KAJTAR, 2009). Another case
when the term can be zero is when the support domain is
truncated by the computational domain boundaries but
there exists a boundary condition forcing the function 
f (x) to vanish on boundaries (it may be the case when 
f (x) represents a velocity and a no-slip condition has to
be enforced on the computational domain boundaries). If
the first term of the RHS of eq. (10) is zero, then the SPH
approximation of f (xi) gradient, related to the i-th parti-
cle, takes the following form in a discrete framework:

(11)

There are consistency conditions that the kernel has
to satisfy in order to correctly reproduce continuous field
functions up to a certain order of accuracy. These are
related to the kernel moments and should be satisfied
both in the continuous and in the discrete frameworks. A
common drawback in SPH is that while such conditions
may be satisfied in the continuous by the kernel, they are
not satisfied in the discrete framework due to disorder in
particles positions. More details can be found in LIU &
LIU (2003) and in LIU & LIU (2006). In summary, numeri-
cal applications of SPH share these common features:

– the equations describing the continuum motion are
written in Lagrangian form, by using Lagrangian instead
of Eulerian time derivatives;

– the spatial gradients involved in the PDEs are dis-
cretized over the particles, by using a SPH approxima-
tion;

– time integration of variables is performed particle-
wise, usually by using an explicit time stepping method;

– particle positions are evolved in time, according to
the velocity of each particle.

SPH DISCRETIZATION TECHNIQUE 

In this section, the SPH numerical approaches,
according to which our research code was developed, are
briefly introduced.

MAIN EQUATIONS (CONTINUITY AND MOMENTUM)

There are many references where it is possible to find
details on how fluid flow governing equations can be
effectively discretized into SPH equations. Of the many,
we indicate TAKEDA et alii (1994), LIU et alii (2003), MONA -
GHAN (2005) and LIU & LIU (2010). The SPH discretiza-

tion of the mass conservation equation, eq. (1), used in
the paper is based essentially on the following equation:

(12)

Where: mj represents the particle mass; vij = vi - vj is
the difference between the interacting particle velocity. A
widely used SPH discretization of the momentum equa-
tion eq. (2), in the case of Newtonian and non Newtonian
viscous fluids, is as follows: 

(13)

Where: rij = ri - rj represents the difference between
the interacting particle position; hij is a symmetrised
dynamic viscosity between interacting particles, such that
hij = hji. Usually, a symmetrised expression for the
smoothing lengths of each pair of interacting particles in
summations is used when calculating the kernel gradient:
hij = (hi + hj)/2. If this is the case, it can be shown that
particles exchange equal and opposite forces, making 
eq. (13) capable of conserving the linear momentum of
the particles system. In the paper, the following expres-
sion has been used for symmetrised viscosity:

(14)

The term on the right hand side of eq. (13) involving the
symmetrised viscosity represents the deviatory stress tensor
divergence. Such an expression has been proposed by
CLEARY (1998) and MONAGHAN (2005) and also accounts
for the presence of spatial gradients in viscosity. It is possi-
ble to prove that eq. (13) implicitly includes a bulk viscosity
coefficient x, which is equal to 5/3 times the dynamic shear
viscosity h, x = (5/3) h. Proof of this for a Newtonian viscous
fluid can be found in ESPANOL et alii (2003).

It is a common practice in SPH (MONAGHAN, 2005) to
approximate an incompressible flow with a weakly com-
pressible one (see next sub-section for more details). This
results in slight density variations and therefore in veloc-
ity fields with low but not zero values of divergence.
Therefore, the bulk viscosity introduced by eq. (13) acts
on the motion of particles through the velocity divergence
term by dampening volume variations: this has a low
influence on the simulations results but these issues will
be more deeply investigated in further papers.

A possible alternative to eq. (13) is the one of directly
calculating the total stress tensor from eq. (11) and to use
the following SPH approximation for its divergence:

(15)

Another possible formulation for the viscous term
was proposed by MORRIS et alii (1997) for the simulation
of incompressible viscous flows at low Reynolds num-
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bers. By using Morris viscous term, the SPH formulation
for the momentum equation is as follows:

(16)

The equation (16) exactly represents the viscous term
of the momentum equation up to the 2nd order. In this
paper the following small modification of the last term of
Morris momentum eq. (16) was implemented and the con-
sequent numerical results were compared and discussed:

(17)

From the above discussion it is clear how the
Lagrangian nature of the method makes it very easy to
reproduce free surface flows. The free surface boundary
condition is automatically incorporated into all the pro-
posed versions of momentum equation, eqs. (15) to (17).
When the i-th labeled particle in the equations is located
close to the free surface, summations are truncated as its
support domain is incomplete. A fairly natural way to rep-
resent a free surface boundary condition would be the one
of filling the empty parts of the support domain with parti-
cles having zero stresses and the same velocity as the parti-
cles on the free surface: if this procedure were to be fol-
lowed then the results would be the same as truncating the
summations in eqs. (15) to (17) as such particles would
provide no contributions (vij = vi – vj = 0). That is indeed
the main reason why the use of a Lagrangian approach
was investigated in the present work to reproduce mudflow
dam break problems. Another advantage of SPH is that it
can be easily adaptable to reproduce different rhelogical
behaviours: eqs. (15) to (17) can be used to simulate the
behaviour of every non-Newtonian fluid, provided the cor-
rect values of viscosity are employed in the equations.

ARTIFICIAL COMPRESSIBILITY

The simulation of an incompressible flow requires the
solution of a Poisson equation for the pressure, which
often leads to an increase of the computational time.
Therefore, it is more practical to approximate the incom-
pressible medium with a weakly compressible one, thus
allowing the calculation of the pressure from the density
with a stiff equation of state which introduces an artifi-
cial compressibility into the fluid. It can be shown that
density variation is proportional to the square of the
Mach number (MONAGHAN, 1994). If an artificial equa-
tion of state where the speed of sound is greater than the
bulk velocity of flow is used, then it is possible to keep
density variations as low as desired. Thus the selected
artificial equation of state used in this paper is as follows: 

(18)

where H is the maximum initial dam height and pi is the
pressure associated to the i-th particle; c is the artificial
speed of sound; M is the selected value (in input) of Mach
number; ρ0 is the reference density of the fluid at zero
pressure. The sound speed value is the same for all parti-
cles: this is due to the assumption that the equation of
state being a linear function of density. 

NUMERICAL SIMULATION OF A FAST FRONT FLOW

Another important numerical issue is encountered in
the computation of shocks waves, common phenomena
in hydrodynamic problems, especially when low dissipa-
tion occurs. This is strictly related to the hyperbolic
nature of the governing equations. A shock is very similar
to discontinuity propagating within the flow or already at
the boundary front of the flow, as it physically is a very
sharp variation occurring at a length scale much smaller
than usual numerical resolutions. Numerical methods,
including SPH, develop unphysical oscillations around
the fronts of shocks, like a front of a fast flow, unless
some special treatment is adopted. Good numerical treat-
ment of shocks is able to dampen oscillations and to
restore correct values ahead and beyond the shock front;
a correct simulation of front sharpness is still very diffi-
cult to achieve as it would require an excessive spatial
resolution. A common approach of numerical methods is
that of dissipating the kinetic energy of the shocked
region into heat by adding an artificial viscosity term to
the momentum equation. MONAGHAN & GINGOLD (1983)
and later MONAGHAN (1994) also adopted this approach,
adding an artificial viscous term to the momentum equa-
tion. They devised an expression capable of increasing
entropy, in order to provide dissipation to the system:

(19)

where: a and b are non dimensional coefficients, while
the over line sign represents the arithmetic average
between quantities. Its stabilising mechanism mainly
relies on the fact that it produces an attractive force when
two particles are receding from each other and vice-versa.
It is possible to use artificial viscosity for compression
shocks only and not for rarefaction shocks by turning it
off if vij ⋅ rij > 0 (receding particles). 

RUSANOV FLUX

The equations discussed so far are usually referred to
as a ‘standard’ SPH scheme. This formulation, continuity
equation (12) in particular, is like a centered finite differ-
ence scheme, centered on the location of particle i-th. To
focus on the idea, let’s consider a 1D inviscid fluid flow
situation. The spatial gradients at particle i-th are eva -
luated from the values of the velocity of particles stand-
ing on the left and on the right of the particle itself
through the kernel gradient. It can be shown that this
scheme is non monotone and it is reasonable to infer that
this could be the reason why standard SPH simulations
produce unphysical high frequency density oscillations
(FERRARI et alii, 2009). On the other hand, the momen-
tum equation formulation of the standard scheme is not
very diffusive and works well in computing particle posi-

!*"

  

Dv i

Dt
= f i " m j #

pi

$i
2

+

p j

$ j
2

% 

& 

' 
' 

( 

) 

* 
* 

j=1

n

+ # ,iWij +

+

(-i + -j )(r ij • ,r ijWij )

 r
ij

2
$i$ j

m j v ij

j=1

n

+
"

"

!+"

  

Dv i

Dt
= f i " m j #

pi

$i
2

+

p j

$ j
2

% 

& 

' 
' 

( 

) 

* 
* 

j=1

n

+ # ,iWij +

+

2-i-j

(-i + -j )

(r ij • ,r ijWij)

r ij

2
$i$ j

m jv ij

j=1

n

+

"

"

!,"

  

pi = c2("i # "0 ) $
g % H

M

& 

' 
( ( 

) 

* 
+ + 

2

("i # "0 )"

"

!-"

  

" ij = #$
v ij • r ij

| r ij |2
; $ =

h ij 

% ij

& ' c # (
h ijv ij • r ij

| r ij |2

) 

* 

+ 
+ 

, 

- 

. 

. 
"

"

354 A. PASCULLI ET ALII



tions. FERRARI et alii (2009) suggest therefore a correc-
tion to the continuity equation that both creates a density
monotone scheme and leaves substantially unaffected 
the low diffusivity of the original SPH formulation, by
adding a flux term devised from the Rusanov flux (VILA,
1999; TORO, 2009):

(20)

A first result is certainly the improved density time
evolution, as it is highlighted by the trend of the Rusanov
flux line compared to the Standard scheme in fig. 1,
obtained performing a dam break flow simulation, as par-
tially discussed in MINATTI & PASCULLI (2010). Con-
versely a shortcoming of the Rusanov flux is that, analyti-
cally, the mass conservation constraint is no longer
satisfied since it results, eq. (20), in the addition of a mass
diffusion term in the density equation of continuity.

BOUNDARY TREATMENT

Since the gradient formulation given by eq. (11), with
symmetric shape function, is used even for fluid particles
close to the boundaries, special treatments are required in
order to offset the errors introduced by neglecting the
terms in the right hand side of eq. (10). In this paper, the
Ghost Particles (also Image or Wall particles) approach
proposed by MORRIS et alii (1997) (see also TAKEDA et alii
(1994), FERRARI et alii (2009) who use point symmetry)
was selected, while the Boundary Forces approach by
MONAGHAN & KAJTAR (2009) was already explored in the
previous paper MINATTI & PASCULLI (2011). In the Morris
approach, to enforce boundary conditions, particles also
named “image” or “wall particles” with the same visco -
sity, tensions and pressures of the free particles they
interact with, are employed. In MORRIS et alii (1997), in
order to set no-slip conditions, the following extrapolated
‘virtual’ boundary particles velocities were given:

(21)

where θmax = 1.5 and dw, df , are, respectively, the normal
distance of the involved wall particle and the selected free
particle from the boundary. Such velocity for wall parti-
cles was then used in the SPH equations. In the Mona -
ghan approach, boundaries have been treated by placing
a layer of particles on them. Boundary particles prevent
fluid particles from passing through the domain bound-
aries by exerting a normal force. They also interact with
the fluid particles via SPH summations through their vi -
scosity, thus enforcing the no-slip condition. The expres-
sion for the boundary forces proposed by Monaghan is:

(22)

where: k is a constant having the dimensions of a square
velocity (k = g ⋅ H[m]2[s]–2, where g = gravity acceleration,
H = height of material behind the gate) used to correctly

reproduce the bulk forces exerted by the boundaries on
the fluid; summation is extended to all the boundary par-
ticles located within the support domain of i-th fluid par-
ticle. It can be shown (MONAGHAN & KAJTAR, 2009), that
the above summation gives negligible contribution along
the direction parallel to the boundary, making boundary
forces being exerted only along the normal direction. It 
is also a symmetrical formulation, thus conserving the
linear momentum of the particles system. 

TIME INTEGRATION

Time integration has been performed by means of a
symplectic Verlet scheme, as in KAJTAR & MONAGHAN

(2008). The time stepping scheme is explicit and con-
serves the linear and angular momentum of the particles
system. The time step �Dt is controlled by a CFL (Courant-
Friedrichs, Lewy) condition depending on the artificial
speed of sound, the viscous interactions between particles
and on the interactions with boundary particles, accord-
ing to the following equation:

(23)

Where: the minimum time step value is sought over
each couple of interacting particle; ρij = (ρi + ρj)/2 is a
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Fig. 1 - Particles-averaged density fluctuations for an inviscid dam
break simulation based on both the standard SPH scheme and the
scheme with the Rusanov flux terms in the continuity equation.

TABLE 1

Rheological characteristics and experimental parameters
(after LAIGLE & COUSSOT, 1997); Material A; see eq. (3)
for the meanings of yield stress, power law and liquid

consistency within the Herschel Bulkley rheology.

density (!0)  1410 (kg/m
3
) 

yield stress ("c)  19 (Pa) 

power law index (n)  1/3 

liquid consistency (K)  3.5 (Pa·s
n
) 

Flume slope  21 (%) 

Initial height of material 

(measured at the gate)  

14 (cm) 

 



symmetrised density between the pair of interacting par-
ticles; dp is the initial fluid particles spacing; y is the
ratio between the boundary and the fluid particles spa -
cing; the CFL number has been set equal to 0.5; k is the
constant defined previously in eq. (22).

FINAL REMARKS

The previous sub sections sought to highlight both
the drawbacks and the advantages of using a SPH method
to simulate the dam break problem of a mudflow.

In our opinion, the correct tracking of free surface is
of crucial importance in order to correctly reproduce the
mudflow front advancement in time for the selected kind
of problem, and this is the main reason why SPH has been
selected. On the other hand, the use of a different method
such as finite volumes with volume of fluid approach to
track free surface would have probably provided very sim-
ilar results but at the cost of using a more complicated
approach. Another feature of the simulated test case
which contributed to the selection of SPH is that heavy
deformations in the continuum occur during the flow.
Such heavy distortion within a grid-based numerical
method framework would have required frequent mesh
updates making the simulations very complicated to be
handled properly. Finally we would like to point out that
while certain parameters need to be calibrated within the
method, all of them have a sound physical meaning and
their values can be readily set up. Going into detail, a list
of parameters pertaining to numerical aspects of SPH are
reported below accompanied by commentary:

– Mach number: this is set up in order to have a weak
artificial compressibility for the fluid as relative density
variations during the flow are proportional to its squared
value. It influences the multiplying coefficient in the equa-
tion of state and it is usually set up to be lower than 0.3.

– Artificial viscosity coefficients eq. (19): these con-
trol artificial energy dissipation at shocks; a is usually set
up to be lower than unity, while b, when not equal to
zero, is usually around twice a.

– Particle spacing: this is equivalent to grid spacing
in grid based methods.

The values used for the parameters indicated above
during the simulations are, however, listed in tab. 3,

included in the section in which results are discussed.
Finally, despite the fact that 3D effects have an influence
on the flow mostly through the wall shear, they were
excluded at this stage of the study.

SELECTED EXPERIMENTAL TEST

The ability of the selected SPH approaches to cor-
rectly reproduce a fast flow has been tested by simulating
the experiments performed by LAIGLE & COUSSOT (1997)
(L&C). Their experiments consisted of creating a mud-
flow dam break problem in a laboratory flume, by quickly
opening a gate. The experimental setup they used is
briefly shown in the fig. 2. After the opening of the gate,
the material stored behind it was released and the three
ultrasonic gauges, sketched in the picture, recorded the
mudflow front heights over time. L&C used water-clay
mixtures prepared in the laboratory with different con-
centrations in order to recreate mudflows. 

Herschel-Bulkley rheological parameters, for the mix-
tures used, were fitted to measurements carried out with
a rheometer. The rheological characteristics of one of the
experimental mixture utilized by the authors of the tests
and also selected for all the simulations discussed in the
following paragraphs are summarized in tab. 1.

Furthermore, the authors of the experimental tests
modelled the mudflow as a wide channel flow initially at
rest: the resulting flow conditions were therefore com-
pletely determined by the height of the material stored
behind the gate, the flume slope and the material charac-
teristics. They indicated two non dimensional scaling
parameters controlling the resulting flow conditions. The
values of the scaling parameters in the tests they per-
formed can represent a wide range of real situations 
at smaller scales (COUSSOT, 1994). In particular, the
material we selected, along with the experimental condi-
tions of tab. 1, represent a realistic natural material (with
ρ0 = 2200 Kg/m3, tc = 900 Pa, K = 290 Pa s1/3) in a 120 m
long slope (LAIGLE & COUSSOT, 1997). A field determina-
tion of the Herschel-Bulkley rheological parameters of a
natural debris flow can be found in COUSSOT et alii
(1998), even though the values provided for the parame-
ters in that paper are in a slightly different range than
those indicated in tab. 1. 
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Fig. 2 - 3D sketch of the selected experimental device (freely adapted
from LAIGLE & COUSSOT, 1997).

TABLE 2

Basic simulations features.
 

 

 

 

 

 

Simul. n. Particles number 

total  (bound.+free)          free                          

Number of time steps 

0             9628                          5486 600000 
1             9701                         5555  500000 

2             9701                         5555  500000 

3             9701                         5555  433000 

4           17654                       11644  1000000 

5             9701                         5555  500000 

6             9701                         5555  466000 

7             9701                         5555  500000 

8           17654                       11644  1000000 

9             9701                         5555  371000 

10             9701                         5555  371000 



CONSIDERATION CONCERNING EXPERIMENTAL DATA

Data on arrival times for the selected test are affected
by experimental errors, ranging from ±5 to ±15% and up
to ±20% (LAIGLE & COUSSOT, 1997). As a consequence,
experimental uncertainties could be large enough to hide
possible inaccuracies of the selected numerical models, as
indeed is discussed in the cited article. Nevertheless, we
tried to devise probabilistic considerations in order to
make a comparison between the numerical results and
the available data which are affected by experimental
errors. Hence, we assume that the real experimental value
of debris front arrival time (‘at’) at the k-th gauge is a ran-
dom variable Xat,k [s], affected by only random errors (as
simplified hypothesis), whose probability density func-
tion (pdf) is the Gaussian distribution with a mean mk

equal to the value assessed from experiments by an addi-
tional graphical inspection. For Gaussian probability den-
sity function (pdf) (JAMES, 2006), the probability Pr (⋅) for
an experimental (random) variable Xat,k to be within the
numerical range: mk – l ⋅ sk ≤ Xat,k ≤ mk + l ⋅ sk around the
mean mk with a standard deviation sk is:

(24)

From a statistical point of view, the request of includ-
ing, for comparison purposes, a range of variability of
Xat,k as wide as possible is obviously desirable. Therefore,
from the theory (JAMES, 2006), it is required that l = 3.29
at least, in order to satisfy Pr ≥ 99.9%. Then, since the
value of the experimental arrival time is realistically
affected (from the previous discussion) by an error equal
to ±20%, to which here ±5% error is added, reasonably
due to the graphics inspection, the value of the standard
deviation follows: 3.29 ⋅ sk = 0.25 ⋅ mk and hence sk =
0.076 ⋅ mk. It is important to note that we consider 3 deci-
mal digits for both numerical results and experimental
values estimated by the inspections of plots, merely for
numerical comparisons purposes. Moreover it is impor-
tant to discuss certain underlying hypothesis. In fact, the
total estimated value of the relative error with respect to
the measured arrival time 25% is assumed to be constant.
It follows that the assumed absolute spreading concern-
ing measured data, sk = 0.076 ⋅ mk, grows over time since
mk obviously increases. This consequence may be unreal-
istic, and therefore for the purposes of comparison we
explored the assumption that the absolute error assumes
the minimum constant value of 0.25 ⋅ m1, where m1 =
0.431 (arrival time at the first gauge). At this point the
value Xnum,k of the arrival time, provided by each numeri-
cal SPH simulation, is assimilated to a possible value that
the random variable Xat,k, actually measured for the k-th
gauge, may assume. Then, to evaluate how probable
Xnum,k is regarding the assumed distribution values (mk,
sk) associated to the actual measured arrival time Xat,k, a
variable which saves the features of the given distribution
and whose deviation from the most probable arrival time
value mk is weighted with respect to the statistical disper-
sion sk, is given: zk = (Xnum,k – mk)/sk. Of course, the
higher is the numerical value of zk the less probable the
value Xnum,k will be. Thus, in order to acquire indications

concerning the performances of different selected SPH
approaches through their reciprocal comparison, ‘Perfor-
mance Index’ IN,k is considered. IN,k is the ratio between
the value of the Normal probability density distribution 
N (mk, sk, zk), that is calculated for zk ≠ 0, and N (mk, sk, 0),
calculated for zk = 0 (Xnum,k ≡ Xat,k = mk). Such index aims
at normalization with respect to the maximum pdf possi-
ble value and is introduced for each gauge arrival time
and for each simulation. Its expression, also considering
the previous assumptions, is as follows:

(25)

Besides the uncertainty on arrival times, significant
experimental errors also affect the values of the Herschel-
Bulkley rheological parameters characterizing the fluid
used. Preliminary calculations, not reported in this paper,
show that the selection of the numerical values of parame-
ters such as tc and K in some way affect the prevision of
arrival time, in particular at gage 3. Subsequent papers will
also focus on acquiring more quantitative insights on how
experimental uncertainties, related to the principal parame-
ters of the selected laws, may affect the selection of the most
appropriate SPH modelling to study this type of debris flow.

NUMERICAL SIMULATIONS

In our SPH simulations, particles were stored behind
the gate and a layer of boundary particles was placed to
simulate the closed gate at the initial time step. Particles
were initially stored in a uniform lattice according to their
spacing and were given an initial density value (see tab. 1).
More than 30 numerical simulations were carried out, 
but only 11 of them are discussed in this paper. In tab. 2
some of the basic characteristics of the simulations are
reported, regarding the total number of particles (bound-
ary or virtual particles and free particles) and the number
of time-steps. Before releasing the sluice gate and initiat-
ing the motion, a hydrostatic pressure distribution was
built up into the particles: this was achieved by letting par-
ticles rearrange their positions under the combined effect
of pressure gradients and gravity. In this phase,  viscous
terms were taken out of the momentum equation and
replaced by a damping term (see also MONAGHAN, 1994),
proportional to particle velocity. After hydrostatic pres-
sure distribution was reached the gate was released and
the usual terms in the momentum equation were restored.
The number of damped time steps necessary to reach the
hydrostatic pressure distributions ranged from 3000 (low-
res simulations) to 20000 (high-res simulations). Subse-
quently, the gate opening was simulated by removing the
layer of boundary (or wall) particles placed on it, thus
releasing the mudflow. The artificial Mach number was
set to a value ranging from 0.03 up to 0.2 (tab. 3). Another
important parameter is the initial par ticle spacing dp (tab. 3),
which plays the same role as the grid spacing in finite dif-
ferences schemes. Generally, a decrease in the spacing
(increasing the number of particles) improves accuracy
and reduces numerical dissipation but, as will be dis-
cussed in the following paragraphs, it is not always
enough. As the physics of the flow is dominated by visco -
sity, the choice of the SPH  discretization for the momen-
tum equation plays an important role.
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MAIN FEATURES OF THE DIFFERENT SELECTED SPH
 FORMULATIONS

An important distinctive feature of an SPH model is
related to how the selected approach simulates the visco -
sity interaction between particles. For this reason the
 performances of three different approaches, that can in

principle correctly simulate a viscous non-Newtonian
Herschel-Bulkley fluid, were explored. The main features
of the proposed models, whose proof and discussions will
form the content of other papers to be submitted, are
briefly summarized below.

Model-0 

Only one simulation (Simulation 0) belongs to Model-0
since it was already discussed in MINATTI & PASCULLI (2011)
and is reported in this paper for the sake of completeness.
The main related characteristics are: dp = 3. mm, eq. (15)
as momentum equation, no Rusanov Flux terms in conti-
nuity equation, Mach number equal to 0.2, Monaghan
boundary force, eq. (22) and, finally, no artificial viscosity
terms eq. (19) (tab. 3). Moreover:

– it is a direct calculation of the stress tensor and its
divergence for the momentum equation; 

– it conserves linear momentum of the SPH particles
system;

– it theoretically describes the behavior of an incom-
pressible fluid, as no velocity divergence related terms
appear in the momentum equation;

– k coefficient for boundary particles calculation,
related to eq. (22) (already discussed), was set up and
then decreased during the flow by using an average value
for the front height instead of H.

Model-1

– it is a direct calculation of the stress tensor and its
divergence for the momentum equation, eq. (15);

– it conserves linear momentum of the SPH particles
system;

– it theoretically describes the behavior of an incom-
pressible fluid, as no velocity divergence related terms
appear in the momentum equation;

– artificial viscosity terms, from eq. (19), are added to
the momentum equation, eq. (15).

– Morris wall particles are used.

Model-2, Monaghan and Cleary approach

– it envisages eq. (13) for linear momentum;
– it conserves both linear and angular momentum of

the SPH particles system;
– it has C0 consistency in the calculation of shear

rates (exact calculation of the gradient in the case of a
constant velocity field);

– it is transparent to rigid rotations (provides zero
viscous forces between particle that are rigidly rotating
one with respect to another);

– it is an analytically exact representation up to the
 second order of the viscous terms in the momentum equa-
tion, for a compressible non-Newtonian viscous fluid whose
bulk viscosity x is 5/3 of its shear viscosity h. Up to the 
2nd order, errors are therefore only due to particle disorder. 

– Morris wall particles are used.
Model-3, Morris approach

– it envisages eq. (17) for linear momentum;
– it conserves linear momentum of the SPH particles

system;
– it has C0 consistency in the calculation of shear

rates (exact calculation of the gradient in the case of a
constant velocity field);
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Fig. 3 - Trend of the numerical models performances compared to
the experimental data.



– it is an analytically correct representation up to the
second order of the viscous terms in the momentum
equation for a compressible non-Newtonian viscous
fluid, whose bulk viscosity x is 2/3 of its shear viscosity h,
provided that the flow field is irrotational (proof to be
provided in future papers). An initial consideration is
that the main drawback of Model-2 and 3 is the one of
introducing a bulk viscosity, which is not present in the
original Herschel-Bulkley rheology. However, if the simu -
lated fluid has a low compressibility, it could be assumed
that the effect of this artificially induced viscosity is
 negligible.

– Morris wall particles are used.

RESULTS DISCUSSION

Results related to each model are discussed. Tab. 3
summarizes the main features of the simulations and
makes comparisons between the arrival times of the
front, obtained numerically, and the data measured at
three different points (gauges), placed at the positions
indicated in fig. 2. For each one of the three SPH models,
fig. 3 shows the graph of the index IN,k which is indica-
tive, according to the previous discussion, of how high
the probability is that the numerical result is close to the
real value of the arrival time measured from experiments.
Fig. 4 shows the direct comparison between numerical
arrival times and experimental data, estimated within the
range indicated by constant vertical bars and variable
error bars. The rationale of fig. 3 is related to statistical
considerations, while fig. 4 is more connected to the
physical features of the phenomena, as, for example, the
acceleration of debris front. The extrapolated front

heights below the locations of the ultrasonic gauges used
in the experiments of LAIGLE & COUSSOT (1997) and the
numerical results of some of the simulations belonging to
Models 2 and 3, have been compared. Numerical front
heights have been calculated by measuring the thickness
of the layer of particles passing below the gauges loca-
tions. A brief discussion related to each implemented
models follows.

Model-0 

In fig. 5 the time plot of the simulated front heights at
the locations of the three gauges, named Simulation 0
(MINATTI & PASCULLI, 2011), is reported. Even though
heights are well captured, this kind of SPH simulation is
still affected by a degree of numerical diffusion, as the
calculated front’s velocity is lower than the experimental
data as it is clear from the numerical results related to the
first two gauges in fig. 3a and fig. 4.

Moreover, from the numerical arrival time at the third
gauge, displayed in fig. 4, it is clear that the numerical
front experiences unphysical accelerations on the last part
of the transitory. For this reason, the good result related to
the final part of the transitory, reported in fig. 3a for IN,k

relating to Simulation 0 is obviously misleading. The high
diffusivity of the model is probably due to the lack of con-
sistency (neither 0th order) of the formulation employed
for the momentum equation: unphysical viscosities are
probably added to those provided by the model due to
truncation errors in particle approximations of stress ten-
sor divergence. Another drawback of the problem is rep-
resented by the use of Monaghan boundary particles to
model the flume bottom: they seem to exert excessively
high forces on fluid particles with the outcome that the
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Fig. 4 - Comparison between numerical arrival times and experimental data.



latter are too detached to the bottom of the flume for
 viscous interactions to be properly modelled.

Model-1

Model-1 differs from Model-0 in the use of artificial
viscosity, eq. (19) and in the use of Morris wall particles
instead of Monaghan boundary particles. Simulation 1
differs from Simulation 2 (both using SPH Model-1) in
the value of parameter a in eq. (19) (tab. 3). The out-

comes of both Simulation 1 and Simulation 2, displayed
in fig. 3a and fig. 4, show an excessively diffusive beha -
vior of the flow. The reasons for the still too high diffusi -
vity of the model are the same as for model 0.

The conclusion is that Model-1 is not suitable for the
case under study.

Model-2

Good performances have been observed applying this
model. Nevertheless, numerical viscosity, related to the
spatial resolution (spacing of particles) and a bulk viscos-
ity due to the analytical structure of the model are intro-
duced by the numerical approach. The statement that the
errors introduced by the Model-2 are due to numerical
viscosity, is confirmed by comparison (tab. 3 and fig. 3b)
between the results of Simulation 3 and Simulation 4: in
the latter a lower initial spacing of particles ‘dp’ was
adopted (tab. 3) with a consequent increase of the perfor-
mance index IN,k (fig. 3b). The increase in resolution
reduces the effects of numerical viscosity that is intro-
duced by the truncation error in the discretization of gra-
dients, anticipating the arrival times of the front of the
debris flow at the gauges. Another possibility for the
improvement of Model-2 is represented by the reduction
of the effects of bulk viscosity introduced by the model.
This can be done by simulating a less compressible fluid,
that is, lowering the Mach number. 
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Fig. 5 - Time plot of the simulated front heights at the locations of
gauge 1 (G 1), gauge 2 (G 2) and gauge 3 (G 3). Experimental measu-
rements at the three gauges are represented by dots, while numerical
results are shown with solid lines.

TABLE 3

Main simulations and numerical results features.

 

 

 

GAUGE 1 GAUGE 2 GAUGE 3  

Main simulations characteristics 
arriv. 

[s] 

IN,k 

(%) 

arriv. 

[s] 

IN,k 

(%) 

arriv. 

[s] 

IN,k 

(%) 

Experimental test 0.431  1.183  1.738  

simul. 

n. 

artificial 

viscosity 

density momentum 

equation 

dp 

(mm) 

Mach 

 

      

0 = = eq. 15 3. 0.2 0 510 5.46 1.655 <10
-1

 1.863 63.9 

1 

model-1 

!=0.1; 

"=0. eq.19 

= eq. 15 

 

2.9 0.2 0.662 <10
-1 

1.679 <10
-1

 3.610 0.0 

2 

model-1 

!=0.05;  

"=0. eq.19 

= eq. 15 2.9 0.2 0.553 <10
-1

 1.449 1.3 2.571 0.0 

3 

model-2 

= = eq. 13; 14 2.9 0.2 0.515 3.7 1.298 44.1 2.064 4.8 

4 

model-2 

= = eq. 13; 14 2.0 0.2 0.505 7.8 1.263 67.0 2.050 6.1 

5 

model-2 

= Rusanov 

eq. 20 

eq. 13; 14 2.9 0.2 0.494 15.7 1.238 82.9 2.019 10.4 

6 

model-2 

= Rusanov  

eq. 20 

eq. 13; 14 2.9 0.06 0.493 16.7 1.254 73.2 2.000 14.0 

7 

model-2 

= Rusanov 

eq. 20 

eq. 13; 14 2.9 0.03 0.495 14.8 1.245 78.8 1.979 18.9 

8 

model-2 

= Rusanov 

eq. 20 

eq. 13; 14 2.0 0.03 0.490 19.7 1.238 82.9 1.921 38.3 

9 

model-3 

= Rusanov 

eq. 20 

Morris 

eq. 17 Vb=0. 

2.9 0.2 0.458 71.2 1.103 67.3 1.586 51.6 

10 

model-3 

= Rusanov 

eq. 20 

Morris 

eq. 17 

Vb= - #Vfree 

2.9 0.2 0.460 67.6 1.14 89.2 1.70 95.4 

 



This reduces the value of the divergence of the veloc-
ity field, as well as its spatial variations that are associa -
ted with dissipative effects of bulk viscosity. Besides the
reduction of the Mach number, the addition of the
Rusanov flux to the continuity equation is mandatory,
since it stabilizes the algorithm that tends to be unstable
at low Mach numbers due to the amplifying effect on the
values of pressure given by eq. (18) (for low Mach num-
ber, inter-particle pressure grows). This is a “penalty
term” in the equation of state, that penalizes variations of
density in fact promoting the incompressibility condition
of the simulated flow. As already observed above, a short-
coming of the Rusanov flux approach is that, analytically,
the mass conservation constraint is no longer satisfied.
Fig. 6 is the time-plot of the averaged values of the velo -
city divergence div (v₋), indicative of incompressibility of
the fluid, relating to different simulations belonging to
Model-2. Moreover, as it can be inferred from tab. 3, the
performances of Model-2 seem to improve slightly fur-
ther, if, besides lowering of the velocity divergence (low-
ering Mach number) and adding of the stabilizing
Rusanov flux, the resolution is also increased by lowering
the spacing of particles (dp). This is evident from the
comparison between Simulations 7 and 8 as is inferred
from tab. 3 and from fig. 3b. 

The general performances of simulations belonging
to Model-2 are, to a different degree, within the assumed
experimental error, if a variable dispersion is considered
(fig. 4). Otherwise, if a constant dispersion is assumed,
only Simulation 8 is roughly within the experimental
error, while the other approaches seem to be still too di -
spersive. Moreover, by a simple inspection of fig. 7, the
best fit of the computed crest to the experimental data is
achieved by Simulation 8. The model shows a lower dif-
fusivity than models 0 and 1 due to the different viscous
terms formulation used in the momentum equation. The
formulation has a 0-th order consistency and conserves
angular particle momentum as well, which is a desirable
feature but which probably is not extremely important
for the simulated test case. It automatically adds a bulk
viscosity which is not present in reality as the flow is
supposed to be uncompressible: it has however been pos-
sible to verify that the effects of bulk viscosity are weak-
ened by reducing the unphysical compressibility of the
fluid with the Rusanov flux correction to the continuity
equation.

Model-3 

This model, in light of the theoretical analysis of its
features, introduces a lower bulk viscosity than Model-2,
but it is only applicable when the motion is irrotational in
the case of a non Newtonian fluid (proof provided in a
next paper). In fig. 8 the trend of Irr (irrotational coeffi-
cient, already introduced in previous section) over time,
regarding Simulation 9 belonging to Model-3, is dis-
played. Simulation 9 shows a marked irrotational feature
of the fluid (high values of Irr) during the first phase of
the transient and a more rotational motion in the second
phase when the debris is flowing down the inclined plane.
Simulations 9 and 10 appear to be more satisfactory than
the simulations belonging to Model-2, at least by consid-
ering both the indexes discussed in the previous para-
graphs (figs. 3c, 4) and the arrival time at each of the
gauges (tab. 3). 
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Fig. 6 - Numerical incompressibility trends of some simulations belon-
ging to Model-2.

Fig. 7 - Comparison between the time plot of the simulated front
heights obtained by Simulations 6, 7, 8 belonging to Model-2, and
the corresponding experimental data (extrapolated from LAIGLE &
COUSSOT, 1997) at three gauge locations.



However, in theory, it should be applicable only dur-
ing the first phase of the motion. It is worth noting that
the arrival also of the front at the first gauge (in a flow
range within which the Model-3 is theoretically applica-
ble) is simulated in a better way than Model-2 even with
relatively high Mach numbers and low resolution (tab. 3
and figs. 3c, 4). This suggests that Model-3 is less nume -

rically diffusive than Model-2. Trends of Simulations 9
and 10 (tab. 3 and fig. 4) may also suggest that the
Model-3 is slightly less viscous than the real phenome-
non, since the numerical fronts anticipate the arrival time
at the last two gauges, within the limits of experimental
data accuracy, as previously discussed. Simulation 9 dif-
fers from Simulation 10 in a different way as to calculate
the Morris wall particle velocity in the former case, a null
velocity was assigned, while in the latter case a velocity
opposite to the that of the free particles was assumed, as
previously discussed (Morris v₋bound = – θ ⋅ v₋free). Fig. 9
shows that not only the arrival times, but also the crest
profiles, provided by Simulation 10, fitted the data mea-
sured well. It is worth noting, from tab. 2 (comparing
Simulations 8, 9 and 10) and from the discussion above,
that an increase in the number of particles, does not nec-
essarily result in an improvement of performances. When
modeling problems characterized by advancing fronts,
where it is important to estimate the viscous effects on
the boundaries, which in turn influence the speed of the
front itself, we found that the approach of Monaghan
causes an excessive detachment of free particles (or ‘real’
as opposed to the definition of Ghost Particles) from the
boundaries (due to excessive repulsion forces).

This detachment creates problems in estimating the
viscous interactions. On the other hand, Morris particles
allow free particles to maintain a distance from the
boundaries close to the initial values throughout the
entire simulation. 

NUMERICAL DEBRIS FLOW PROFILE PLOTS

In this paragraph plots relating to calculated debris
flow profiles are reported. For all the simulations per-
formed, the first step was the computation of the initial
hydrostatic pressure distribution. This target was achieved
after a certain number of damped time steps, performed
as in MONAGHAN (1994). Fig. 10 shows the initial parti-
cle disposition, common to all simulations, immediately
before opening of the gate. The resulting pressure distri -
bution, after the appropriate different number of time
steps (tab. 2), is shown.

It is possible to see in the figure that a number of
boundary effects are still present, causing small oscilla-
tions in pressure values close to the bottom of the flume.
It was not however possible to completely remove them
by increasing for example the number of time steps. It is
however important to notice that the same plots with
smoothed values for pressure would provide the exact
hydrostatic distribution everywhere, regardless of bound-
aries. In fig. 11 velocity and pressure profiles, provided by
Simulation 8 belonging to Model 2, at three different
times after opening of the gate, are shown. It is interest-
ing to note that pressure distributions are particularly
reasonable according to particle position with respect to
the free surface crests. We decided to show the Simula-
tion 8, instead of Simulation 9 or 10, as the former was
carried out with a higher resolution than that used for 
the latter simulations. In fig. 11d, concerning the first
instants of the simulations it is possible to see an inner
core in the fluid where the pressure values are still very
close to the hydrostatic values highlighting the areas
where the material has not moved yet. This is coherent
with the velocity distribution plot of fig. 11a. In the subse-
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Fig. 8 - Trend of the flow regime obtained by Simulation 9 belonging
to Model-3.

Fig. 10 - Initial particles disposition (lengths are in meters and parti-
cles are colour coded according to their pressure in Pa).

Fig. 9 - Comparison between the time plot of the simulated front
heights obtained by Simulation 10 belonging to Model-3, and the
corresponding experimental data (extrapolated from LAIGLE &
COUSSOT, 1997) at the three gauges locations.



quent figures, all the material is moving (figs. 11b and
11c) and the pressure distribution seems to be more
 uniform. The higher uniformity of pressure distribution
(figs. 11e and 11f) is also due to the reduced effect of
weight caused by the front thinning. The corresponding
profiles (not reported) related to Simulations 9 and 10,
show structure of the pressure that is more complex, but
consistent not only with the hydrostatic pressure, but also
with the dynamic pressure. Further details will be pro-
vided in subsequent articles.

CONCLUSION

Different SPH approaches, incorporating the Herschel-
Bulkley non Newtonian rheology, were developed to sim-
ulate a fast flow. In order to compare their performances,
both reciprocally and with respect to the mudflow dam
break experiment proposed by LAIGLE & COUSSOT (1997),
numerical tests were performed. In particular, attention
was focused on the calculated front arrival times at three
successive gauges. Crest profile distributions have been
discussed through plot inspections. Due to the inevitable
difficulties in performing measurements on this kind of

phenomena, even when carried out in laboratory, a rea-
sonably adequate discussion of experimental errors has
been developed. For these reasons, an index based on
simple probabilistic considerations has been introduced
in addition to direct comparison between the estimated
experimental data and the numerical arrival times, with
the purpose of assessing numerical performances of the
simulations within a reasonable margin of experimental
errors. The implemented SPH models, within a research
code, are fully 2D and are therefore capable of providing
more information than other more simplified approaches
such as the 1D model, in particular as far as turbulence
phenomena and rotational flows are concerned. The pre-
liminary model discussed by the authors in previous
papers (MINATTI & PASCULLI, 2011) provided numerically
diffusive results, still being able to produce a good
enough agreement with experimental results. Then three
further different kinds of SPH models, proposed by differ-
ent authors and, when necessary, adapted to be imple-
mented for the test case discussed, were used. The imple-
mented models employed different formulations for
continuity and momentum equations, particle viscosity
and boundary treatment. The first explored model, char-
acterized in particular by the addition of the artificial vis-
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Fig. 11 - Velocity and pressure profiles of particles, Simulation 8 belonging to Model 2, at three different time after gate opening (particles
are colour coded according to the module of their velocity in m/s at left, according to their pressure in Pa at right).



cosity proposed by MONAGHAN & GINGOLD (1983), does
not provide acceptable results, while the results obtained
through the other two models seem to match, to a varying
degree, the experimental data. Nevertheless, the best
results were achieved by the addition of the Rusanov flux
terms within the equation of continuity (preserving the
usual approach for the momentum equation), providing a
more accurate calculation of the weakly compressible
flow (FERRARI et alii, 2009). This improved performance
enhances, in particular, the computational accuracy of
pressure through the equation of state. As reported by
FERRARI et alii (2009), the introduction of such flux terms
makes the model particularly suitable for simulating fast
flow and dam break type problems without adding artifi-
cial viscosity terms in momentum equation, as performed
by MONAGHAN (1994), but using only the terms due to
pressure gradients and physical viscosity in the momen-
tum equation. Another influencing feature, that further
improves the results obtained through the Rusanov flux,
regards the viscosity term of the momentum equation,
proposed by MORRIS et alii (1997) and the value for the
wall particle velocity proposed in the same article, aimed
at correctly enforcing no slip conditions. Although the
SPH approach shows certain drawbacks in simulating
boundaries and so far no definitive and unique solution
to the problem exists, its particular features for the repro-
duction of the free surface and for the simulations of very
complex fluid-dynamics phenomena are encouraging for
the further exploration of this type of approach in the
field of debris flow.
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APPENDIX. NOTATION

The following symbols are used in this paper:

B = constant parameter: 10 (s);
c = artificial speed of sound (m⋅s–1);
CFL = Courant-Friedrichs, Lewy’s condition;
df = normal distance of the selected free particle from the

boundary (m);
dw = normal distance of the involved boundary (wall) particle (m);
dp = initial fluid particles spacing (m);
f₋ = body force per unit of mass (m) (s)–2;
g = acceleration due to gravity = 9.8 (m) (s)–2;
h = smoothing length (m);
hi = smoothing length of the i-th particle (m);
hij = (hi + hj)/2; symmetrised smoothing length (m); 
H = maximum initial dam height (m);

I₌ = unit tensor = (dimensionless);

k = g ⋅ H (m2⋅s–2);
K = liquid consistency (Pa⋅sn);
mi = i-th particle mass (kg);
M = Mach number (dimensionless);
n = power law index (dimensionless);
N (⋅) = normal probability density distribution;
p = isotropic pressure (Pa);
pi = i-th particle pressure(Pa);
Pr (⋅) = probability;
ri = i-th particle position (m);
rij = distance between two interacting particle: ri – rj (m);
R = (|x – x'|)/h ratio between particle distances and smoothing

length (dimensionless);

vi = i-th component of the velocity vector (m⋅s–1);
vij = relative velocity between two interacting particles: vi – vj

(m⋅s–1);
v₋ = velocity vector (m⋅s–1);
v₋bound = boundary particle velocity vector (m⋅s–1);
v₋free = free particle velocity vector (m⋅s–1);
W (⋅) = kernel function;
xi = i-th particle positions in the given frame of reference (m);
x = position vector of the selected particle (m);
x' = position vector of a particle enclosed within the tributary

area of the selected particle (m);
Xat,k = debris front arrival time at the k-th gauge (s);
Xnum,k = calculated debris front arrival time at the k-th gauge (s);
zk = normalized statistical variable (dimensionless);
a, b = coefficients related to artificial viscous term (dimension-

less);
d = Dirac function;
DAj = tributary area associated with the particle j-th (m)2;
Dt = time step (s); 
e₌ = strain rate tensor (s–1);
|| e₌ || = strain tensor (square) Norm (s–1); 
h = dynamic shear viscosity (Pa⋅s);
hij = symmetrised dynamic viscosity between interacting parti-

cles, such that hij = hji (Pa⋅s);
hmax = maximum viscosity value related to the regularization of

the rheological law (Pa⋅s);
hp = local regularized dynamic viscosity of the fluid (Pa⋅s);
l = multiplicative statistical constant (dimensionles);
mk = statistical mean equal to the value assessed from experi-

ments (arrival time) (s);
Pij = artificial viscous term (Pa⋅s);
θ, θmax = constant coefficients related to Morris boundary particles

velocity (dimensionless);
ρ = local density of the continuum (kg⋅m–3);
ρ0 = reference density of the fluid at zero pressure (kg⋅m–3);
tc = yield stress (Pa);
s₌ = total stress tensor (Pa);
w₌ = vorticity tensor (s)–1;
Ωx = support domain (m)2 

x = bulk viscosity coefficient (Pa⋅s);
y = ratio between the boundary and the fluid particles spacing

(dimensionless).

Mathematical symbols

|v₋| = modulus of the vector v₋;
⋅ = symbol of the scalar product;

|| (⋅) || = Norm of (⋅);

= Material derivative of (⋅);

∇ = Nabla operator;
∇ (⋅) = Gradient of (⋅);
∇ ⋅ (⋅) = Divergence of (⋅).
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