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Sphalerons in two Higgs doublet theories

Jackie Grant* and Mark Hindmarsh†

Centre for Theoretical Physics, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom

~Received 12 January 2001; published 17 May 2001!

We undertake a comprehensive investigation of the properties of the sphaleron in electroweak theories with

two Higgs doublets. We do this in as model-independent a way as possible: by exploring the physical param-

eter space described by the masses and mixing angles of the Higgs particles. If there is a large split in the

masses of the neutral Higgs particles, there can be several sphaleron solutions, distinguished by their properties

under parity and the behavior of the Higgs field at the origin. In general, these solutions appear in parity

conjugate pairs and are not spherically symmetric, although the departure from spherical symmetry is small.

Including CP violation in the Higgs potential can change the energy of the sphaleron by up to 14% for a given

set of Higgs boson masses, with significant implications for the baryogenesis bound on the mass of the lightest

Higgs boson.

DOI: 10.1103/PhysRevD.64.016002 PACS number~s!: 11.27.1d, 11.30.Er, 12.15.2y, 14.80.Cp

I. INTRODUCTION

One of the major unsolved problems in particle cosmol-

ogy is to account for the baryon asymmetry of the Universe.

This asymmetry is usually expressed in terms of the param-

eter h , defined as the ratio between the baryon number den-

sity nB and the entropy density s: h5nB /s;10210. Sa-

kharov @1# laid down the framework for any explanation: the

theory of baryogenesis must contain baryon number (B) vio-

lation, charge conjugation (C) violation, combined charge

conjugation and parity (CP) violation, and a departure from

thermal equilibrium. The standard model is naturally C and

P violating, and violates CP through the couplings of fermi-

onic charged currents to the W6 @the Cabibbo-Kobayashi-

Maskawa ~CKM! matrix#. It was also known to violate the

combination B1L ~where L is lepton number! non-

perturbatively @2#, and the realization that this rate is large at
high temperature, and that the standard model could depart
from equilibrium at a first order phase transition @3#, led to
considerable optimism that the origin of the baryon asymme-
try could be found in known physics.

However, the standard model does not have a first order
phase transition for Higgs boson masses above about 75 GeV
@4,5#, and in any case is not thought to have enough CP

violation. Current attention is focused on the minimal super-
symmetric standard model ~MSSM!, where there are many
sources of CP violation over and above the CKM matrix
@6–8#, and the phase transition can be first order for Higgs
boson masses up to 120 GeV, provided the right-handed top
squark is very light and the left-handed top squark very mas-
sive @9–11#.

The currently accepted picture for the way these elements
fit together was developed by Cohen, Kaplan, and Nelson
@12# ~see also @13–15# for reviews!. A first order transition
proceeds by nucleation of bubbles of the new, stable, phase.
The bubbles grow and merge until the new phase has taken
over. The effect of CP violation in the theory is to make the

fermion reflection coefficients off the wall chirally asymmet-
ric, which results in a chiral asymmetry building up in front
of the advancing wall in the fermion species which couple
most strongly to the wall and have the largest CP violating
couplings. This chiral asymmetry is turned into a baryon
asymmetry by the action of symmetric-phase sphalerons.

As the wall sweeps by, the rate of baryon number viola-
tion by sphalerons drops as the sphaleron mass increases
sharply. The formation of a sphaleron is a thermal activation
process and the rate can be estimated to go as Gs

.exp(2Es(T)/T), where Es(T) is the energy of the sphaleron
at temperature T. This rate must not be so large that the
baryon asymmetry is removed behind the bubble wall by
sphaleron processes in thermal equilibrium, and this condi-
tion can be translated into a lower bound on the sphaleron
mass @16–18#

Es~Tc!/Tc*45. ~1!

Thus it is clear that any theory of baryogenesis requires a
careful calculation of the sphaleron mass. For example, it
turns out that condition ~1! is not satisfied for any value of
Higgs boson mass in the standard model @4#.

It has been known for a long time that spherically sym-
metric solutions exist in SU~2! gauge theory with a single
fundamental Higgs boson @19–21#, which is the bosonic sec-
tor of the standard model at zero Weinberg angle. However,
it was Klinkhamer and Manton @22# who realized that they
were unstable, with a single unstable mode, and that the
formation and decay of a sphaleron results in a simultaneous
change of both B and L number by N f ~the number of fer-
mion families!. They calculated numerically both the mass
and the Chern-Simons number, finding the mass to be 3.7
~4.2! M W /aW at a Higgs boson mass of 72 ~227! GeV,

where aW5gW
2 /4p and M W is the mass of the W6 particle;

and the Chern-Simons number to be exactly 1/2.
At M h*12M W new solutions appear @23,24#, which have

different boundary conditions at the origin: the Higgs field
does not vanish. These spontaneously violate parity and oc-
cur in P conjugate pairs with slightly lower energy than the
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original sphaleron, which correspondingly develops a second

negative eigenvalue. These are termed deformed sphalerons

or bisphalerons.

Several authors have considered models with two Higgs

doublets. Kastening, Peccei, and Zhang ~KPZ! @25# studied
models with CP violation, but did not use the most general
spherically symmetric ansatz, limiting themselves to a parity
conserving form. Bachas, Tinyakov, and Tomaras ~BTT!
@26#, on the other hand, considered a two-doublet theory with
no explicit CP violation, used a C conserving ansatz, chose
the masses of the pseudoscalar (M A) and the charged Higgs
boson (M H6) to be zero, and chose the mixing between the
two scalar Higgs bosons to be zero. They found new P vio-
lating solutions, specific to multi-doublet models, at M H

*5M W , where M H is the mass of the second CP even
Higgs boson. They did not calculate the Chern-Simons num-
ber, but we show that these solutions appear in P conjugate
pairs and are in fact sphalerons, in that they have Chern-
Simons number near 1/2, and one unstable mode. In view of
the difference in behavior of the two Higgs fields as the
origin is approached, we call them relative winding (RW)

sphalerons. More recently, Kleihaus @27# looked at the
bisphalerons in a restricted two-doublet Higgs model.

Sphalerons in the MSSM were studied by Moreno, Oak-
nin, and Quiros ~MOQ! @28#, who included one-loop correc-
tions, both quantum and thermal. However, they again did
not allow for P violating bisphalerons or RW sphalerons, and
did not consider the effect of CP violation either, which can
appear in the guise of complex values of the soft SUSY
breaking terms in the potential.

All of the above work was carried out at zero Weinberg
angle with a spherically symmetric ansatz: there have been
several studies of sphalerons in the standard model in the full
SU(2)3U(1) theory @29–31#, where one is forced to adopt
the more complicated axially symmetric ansatz: Ref. @29#
used the axially symmetric ansatz in a numerical computa-
tion, @30# expanded in powers of g8/g using a partial wave
decomposition, and @31# estimated the energy by construct-
ing a non-contractible loop in field configuration space
which was sensitive to uW . The upshot of this work is that
working at the physical value of the Weinberg angle changes
the energy of the sphaleron by about 1%. It is interesting to
note that the SU(2)3U(1) theory also contains charged
sphaleron solutions @32#.

Here we report on work on sphalerons in the two-doublet
Higgs model ~2DHM! in which we study the properties of
sphalerons in as general a set of realistic models as possible,
although we do use the zero Weinberg angle approximation
and a spherically symmetric ansatz. We try to express param-
eter space in terms of physical quantities: Higgs boson
masses and mixing angles, which helps us avoid regions of
parameter space which have already been ruled out by the
CERN e1e2 collider LEP, or where the vacuum is unstable.
It also means one can take into account ultraviolet radiative
corrections by using the 1-loop corrected values for the
masses and mixing angles.

We are interested in the energy, the Chern-Simons num-
ber, the symmetry properties, and the eigenvalues of the nor-
mal modes of the various sphaleron solutions in the theory,

as functions of the physical parameters. From the point of

view of the computation of the rate of baryon number viola-

tion, the mass is certainly the most important quantity, fol-

lowed by the number and magnitude of negative eigenvalues

of the fluctuation operator in the sphaleron background: the

largest contribution to the baryon number violation rate
comes from the sphaleron with lowest energy and hence only
one negative eigenvalue. The Chern-Simons number and the
symmetry properties under C, P, and spatial rotations, are
also interesting as they help classify the solutions.

We first check our results against the existing literature,
principally Yaffe @24# and BTT @26#, and then reexamine the
sphaleron in a more realistic part of parameter space, where
M A and M H6 are above their experimental bounds. We find
that in large regions of parameter space, particularly when
one of the neutral Higgs bosons is heavy ~above about 6
M W), the RW sphaleron is the lowest energy sphaleron.
When there is CP violation in the Higgs sector, the would-be
pseudoscalar Higgs boson can play the role of the heavy
Higgs boson, and the other two Higgs bosons can remain
relatively light. The fractional energy difference between the
RW and the ordinary ~Klinkhamer-Manton! sphaleron is
small, about 1% in the parameter ranges we explored.

We encounter a problem with P violating sphalerons
when either M A2M H6, or the amount of CP violation is
non-zero: there is a departure from spherical symmetry in the
energy density, signaling an inconsistency in the ansatz for
the field profiles. However, the energy density in the non-
spherically symmetric terms is small, at most about 0.2% of
the dominant spherically symmetric terms, so it is a good
approximation to ignore them.

We also looked at the sphaleron in the restricted param-
eter space afforded by the ~tree level! MSSM, confirming the
results of @28# that the sphaleron energy depends mainly on
the mass of the lightest Higgs boson and on tanb , and find-
ing no RW or bisphaleron solutions.

Finally, we amplify the point made in @33# that introduc-
ing CP violation makes a significant difference to the
sphaleron mass, and may significantly change bounds on the
Higgs mass from electroweak baryogenesis.

We do not explicitly compute quantum or thermal correc-
tions @18,34–39# as they are model-dependent. However, if
particle masses are expressed in units of M W , a reasonable
approximation to the 1-loop sphaleron mass ~in units of
M W /aW) can be obtained by interpreting the masses and
mixing angles as loop-corrected quantities evaluated at an
energy scale M W @39#. This approximation justifiably ignores
small corrections due to radiatively induced operators of di-
mension higher than 4, but does not take into account the
cubic term in the effective potential. This means our calcu-
lations are less accurate near the phase transition. However,
as the error is in the Higgs potential, which generally con-
tributes less than 10% to the energy, the resulting uncertainty
is not large.

The plan of the paper is as follows. In Sec. II we describe
the bosonic sector of the two Higgs doublet SU~2! elec-
troweak theory. We discuss the various parametrizations of
the scalar potential, and provide translation tables in Appen-
dix A. We show how we use physical masses and mixing
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angles as independent parameters of the theory. Although in
this approach the stability of the vacuum is automatic, as one
chooses the masses of the physical particles to be real, there
are still the problems of boundedness and global minimiza-
tion to be overcome. We solve the boundedness problem
straight forwardly, but with two Higgs doublets, finding the
global minimum of the potential is non-trivial, and we are
forced to use numerical methods.

In Sec. III we discuss the sphaleron solutions and their
symmetry properties. In Sec. IV we describe the numerical
method we use to find the solutions: although the Newton
method has been used before @24,26# there are some difficul-
ties associated with the boundary conditions that were not
highlighted by previous authors. In Sec. V we present our
results. Section VI contains discussions and conclusions.

Throughout this paper we use \5c5kB51, a metric
with signature (1 ,2 ,2 ,2), and M W580.4 GeV.

II. TWO HIGGS DOUBLET ELECTROWEAK THEORY

We shall be working with an SU~2! theory with two
Higgs doublets fa , with subscript a51,2. Although we
should strictly work with the full SU(2)3U(1) theory, ne-
glecting the U~1! coupling is a reasonable approximation to
make when studying the sphaleron.

The relevant Lagrangian is

L52

1

4
Fmn

a Famn
1~Dmfa!†~Dmfa!2V~f1 ,f2!. ~2!

Here, the covariant derivative Dmfa5]mfa1gWm
a tafa

with antihermitian generators ta
5sa/2i .

This Lagrangian may have discrete symmetries, including
parity, charge conjugation invariance, and CP @40#. These
transformations are realized on the Higgs fields by

P: fa~ t ,x j!→fa~ t ,2x j!, ~3!

C: fa~ t ,x j!→2is2e2i2uafa*~ t ,x j!, ~4!

CP: fa~ t ,x j!→2is2e2i2uafa*~ t ,2x j!, ~5!

where ua are phase factors that can only be determined by
reference to the complete theory. The transformations on the
gauge fields are

P: Wm~ t ,x j!→Wm~ t ,2x j!, ~6!

C: Wm~ t ,x j!→~2is2!Wm*~ t ,x j!~2is2!†, ~7!

CP: Wm~ t ,x j!→~2is2!Wm*~ t ,2x j!~2is2!†. ~8!

With these transformations the only place a departure from
C, P, or CP invariance can occur in Lagrangian ~2! is in the
Higgs potential term V(f1 ,f2).

A. The Higgs potential

The most general two Higgs doublets potential has 14 real
parameters, assuming that the energy density at the minimum
is zero. We shall consider one with a discrete symmetry im-
posed on dimension four terms, f1→f1 , f2→2f2, which
suppresses flavor changing neutral currents @41#, and results
in a potential with 10 real parameters. One of these param-
eters may be removed by a phase redefinition of the fields we
detail in Appendix A, and the potential may be written

V~f1 ,f2!5~l11l3!S f1
†f12

y1
2

2
D 2

1~l21l3!S f2
†f22

y2
2

2
D 2

12l3S f1
†f12

y1
2

2
D S f2

†f22

y2
2

2
D

1l4@f1
†f1f2

†f22Re2~f1
†f2!2Im2~f1

†f2!#1~l11x1!S Re~f1
†f2!2

y1y2

2
D 2

1~l12x1!Im2~f1
†f2!12x2S Re~f1

†f2!2

y1y2

2
D Im~f1

†f2!. ~9!

This form of the potential is convenient as the vacuum con-
figuration, which we take as the zero of the potential is en-
tirely real:

fa
vac

5

ya

A2
F0

1
G . ~10!

This form also makes clear what are the sources of CP vio-
lation in the theory. Ignoring couplings to other fields, it can
be seen that when x250 there is a discrete symmetry

fa→2is2fa* , ~11!

which sends Im(f1
†f2)→2Im(f1

†f2). This can be identi-
fied as charge conjugation invariance. Thus x2 is a C break-
ing parameter. In the presence of fermions, C and P are not
separately conserved, and we generally refer to the field
properties according to their behavior under CP , and to x2

as a CP violating parameter, giving rise to a mixing between
the CP odd and CP even neutral Higgs. When one includes
the other fields of the full theory one can find further sources
of CP violation, such as the phases in the CKM matrices of
the quarks and, if neutrinos are massive, leptons.

In Appendix A we write down how the nine parameters of
Eq. ~9! relate to the parameters of the two more usual forms
of this potential.
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It is useful to determine as many as possible of the nine
parameters in the potential from physical ones. The physical
parameters at hand are the four masses of the Higgs particles,
the three mixing angles of the neutral Higgs bosons, and the
vacuum expectation value (y) of the Higgs boson @which is
determined from M W , and the SU~2! gauge coupling g#.
This leaves one undetermined parameter which may be cho-
sen in various ways.

In the absence of CP violation, we automatically have
x250, and our input parameters are; y , M h and M H ~the
masses of the CP even scalars!, M A ~the mass of the CP odd
scalar!, M H6 ~the mass of the charged scalar!, f ~the mixing
angle between the CP even scalars!, tanb and l3, ~the only
parameter we choose by hand!. This gives non-zero values
for the other eight of our nine parameters.

In the presence of CP violation our input parameters
again include y , M h , M H , M A , M H6, f , and l3. However,
now we also have uCP ~the mixing angle between the CP

even and the CP odd neutral Higgs sector which is entirely
responsible for the x2 term!, and the third mixing angle c .
For a non-zero uCP , tanb is determined by the masses and
mixings, and although we still denote the three neutral Higgs
boson masses as M h , M H , and M A we stress that they are
not respectively CP even, CP even, and CP odd, but have
some combination of these properties depending on the val-
ues of uCP and f .

The conversion between the parameters of Eq. ~9! and
these masses and mixings is carried out in the charged sector
through

l45

2M
H6

2

y2
, ~12!

and in the neutral sector by writing

y2X[D21~c ,uCP ,f ! M P~M h ,M H ,M A! D~c ,uCP ,f !,
~13!

where M P is a diagonal mass matrix given by

M P[Diag@M H
2 ,M h

2 ,M A
2 # , ~14!

and D is the orthogonal matrix which diagonalises X. Defin-
ing rotation matrices in the usual way,

Rz~a !5F cos a sin a 0

2sin a cos a 0

0 0 1
G ,

Ry~a !5F cos a 0 2sin a

0 1 0

sin a 0 cos a
G , ~15!

we can arrange for the mixing angles c ,uCP ,f to be the
usual Euler angles, through

D~c ,uCP ,f ![Rz~c !Ry~u !Rz~f !. ~16!

The X(c ,uCP ,f ,M h ,M H ,M A) of Eq. ~13! can be obtained
as a function of the parameters of Eq. ~9!, by expanding
about the vacuum state Eq. ~10!, to give

X~1,1!5

1

2
@4~l11l3!cos2b1~l11x1!sin2b# , ~17!

X~1,2!5X~2,1!5

1

2
~4l31l11x1!cos b sin b ,

~18!

X~1,3!5X~3,1!5

1

2
x2 sin b , ~19!

X~2,2!5

1

2
@4~l21l3!sin2b1~l11x1!cos2b# , ~20!

X~2,3!5X~3,2!5

1

2
x2 cos b , ~21!

X~3,3!5

1

2
~l12x1!. ~22!

Inverting Eqs. ~17!–~22! gives1

x252AX~1,3!2
1X~2,3!2, ~23!

b5arctan@X~1,3!/X~2,3!# , ~24!

l15@X~1,1!cos b2X~1,2!sin b

22l3 cos 2b cos b#
1

2 cos3b
, ~25!

l25@X~2,2!sin b2X~1,2!cos b

12l3 cos 2b sin b#
1

2 sin3b
, ~26!

l1522l31X~1,2!
1

sin b cos b
1X~3,3!, ~27!

x1522l31X~1,2!
1

sin b cos b
2X~3,3!, ~28!

where the X above are the X(c ,uCP ,f ,M h ,M H ,M A) as
given by Eq. ~13!. And we have chosen 2p,2b,p from
which, depending on the sign of X(1,2) and X(1,3), we can
set the sign of x2. Although it is unconventional to allow b
to take negative values, it is a natural consequence of allow-
ing the mixing angles to vary over their full range.

1We have corrected two typographical errors from @33#: a

swapped cos and sin in Eq. ~25! and Eq. ~26!, and a sign error in

Eq. ~28!.
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B. Boundedness and stability of the Higgs potential

Before proceeding, we re-examine the conditions on our
potential which derive from its boundedness and the stability
of the vacuum state. For boundedness we need consider only
the quartic terms of Eq. ~9! to find the large field behavior of
the potential. We write our doublets as

fa5uAQa uF cos rae ika

sin rae iva G . ~29!

This will allow us to express the potential in terms of inde-
pendent quantities. The quartic terms of Eq. ~9! can then be
written as

V5aQ1
2
1bQ2

2
1c~h1 ,h2!Q1Q2 , ~30!

where

h15cos r1cos r2 cos~k22k1!1sin r1sin r2 cos~v22v1!,
~31!

h25cos r1 cos r2 sin~k22k1!1sin r1 sin r2 sin~v22v1!,
~32!

and

a5l11l3 , ~33!

b5l21l3 , ~34!

c~h1 ,h2!52l31l41~l12l41x1!h1
2

1~l12l42x1!h2
2
12x2h1h2 . ~35!

The variables Q1 , Q2 , h1, and h2 are then independent.
Furthermore, Q1 and Q2 are by definition non-negative, and
h1 and h2 are constrained to lie in the unit disk

0<h1
2
1h2

2<1. ~36!

The potential can now be viewed as a quadratic form in Q1 ,
Q2, in which case the form must be positive for all values of
h1 , h2 in the unit disk. If cmin(h1 ,h2) is the minimum
value of c(h1 ,h2) for all h1 and h2, the condition for the
form to be positive and the potential bounded are

a1b>0, ~37!

ab2

cmin
2

4
>0. ~38!

On substituting the values of a, b, and cmin into Eqs. ~37! and
~38! we obtain

l11l212l3>0, ~39!

4l1l214~l11l2!l32~4l31lC!lC>0, ~40!

where

lC5H l12uAx1
2
2x2

2u if l12uAx1
2
2x2

2u>l4 ,

l4 otherwise.
~41!

Equations ~39! and ~40! are the necessary and sufficient con-
ditions for a bounded quartic potential. In @33# we considered
only Eqs. ~39! and ~40! for the second case of Eq. ~41!.

The condition for the vacuum of Eq. ~10! to be a mini-
mum is simply

mh
2
.0, mH

2
.0, mA

2
.0, m

H6

2
.0. ~42!

On substituting masses and mixings from Eqs. ~12! and ~13!,
and Eqs. ~23!–~28! into the inequalities Eqs. ~39! and ~40!
we could derive six conditions directly on masses and mix-
ing angles. Vice versa, by substituting the expressions for the
masses in to the parameters of the potential, six conditions
could be obtained directly on the parameters of Eq. ~9!. In
practice, we picked masses and mixings, calculated the pa-
rameters of Eq. ~9!, and then verified that Eqs. ~39! and ~40!
held.

C. Global minimization

While the constraints of Eq. ~42! guarantee that Eq. ~10!
is a minimum of the potential, they do not guarantee that it is
a global minimum. We are dealing with a large number of
parameters, and before we proceed we need to be aware that
for some regions of this parameter space the minimum of Eq.
~10! is not a global minimum. We were unable to find all but
the simplest analytic conditions on the parameters of our
potential that constrained Eq. ~10! to be a global minimum.

Our approach was perforce numerical: we ran the MAPLE

extremization routine EXTREMA which took as input param-
eters the masses and mixings mentioned above. However, we
found this extremization routine was not fully reliable and
did not find all the extrema. We instead adapted the code
written to find sphaleron solutions to find extrema with con-
stant fields, and looked for configurations with negative en-
ergy. In Appendix B we give more details of our numerical
method of finding global minima.

III. SPHALERON ANSATZ AND SPHERICAL SYMMETRY

A sphaleron is a static, unstable solution to the field equa-
tions representing the highest energy field configuration in a
path connecting one vacuum to another. It is easiest to look
for spherically symmetric solutions, and so we use the
spherically symmetric ansatz of @42#, extended to allow P, C

@25#, and CP violation @33#:

fa5

1

2

y

A2
~Fa1iGax̂asa!F0

1
G ~43!

W05

1

A2

1

g
A0x̂a

sa

2i
~44!
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W i5

1

A2

1

g
F ~A21b !

r
«ai jx̂ j1

a

r
~dai2 x̂ax̂ i!1A1x̂ax̂ iG sa

2i

~45!

where Fa5aa1iba and Ga5ca1ida , and Fa , Ga , a , b ,
A0, and A1 are functions of the radial coordinate r.

We work in the radial gauge where A1 is zero, and as we
are looking for static solutions we set A0 to zero. We have
scaled separately the Higgs boson and gauge parts of this
ansatz so that the kinetic contribution to the energy is of the

form 1
2 f A8

2, where f A generically denotes the fields

aa ,ba ,ca ,da ,a ,b .
Under the P, C, and CP transformations of Eqs. ~3!–~8!,

where we have set ua50, the fields f A , A0, and A1 trans-
form as shown in Table I.

On substituting ansatz Eqs. ~43!–~45! into the Lagrangian
~2! we find the static energy functional

E@ f A#5

M W

g2
E dr du df r2 sin u@K1VH# ~46!

where r is in units of M W
21 , and

K5K01K1x̂3 , ~47!

VH5V01V1x̂31V2x̂3x̂3 . ~48!

K0 , K1 , V0 , V1, and V2 are given in Appendix C, and x̂3

52f1
v†saf2

vxa/y1y2 is the third component of a unit radial

vector. Hence this ansatz is potentially inconsistent if K1 ,
V1, and V2 are non-zero.

If the field configuration conserves C: Fa5aa and Ga

5ca , and we have the usual ansatz of @42#. This gives K1

50 and V150, although V2 may be non-zero if M A

ÞM H6, and the field configuration has caÞ0. If the field
configuration conserves P: Ga50, and again all three of the
dangerous terms K1 , V1, and V2 vanish. In the presence of
two Higgs doublets Bachas, Tinyakov, and Tomaras @26#
~for RWS! and Kleihaus @27# ~for bisphalerons! used a C

conserving ansatz and worked with parameters for which
M A5M H650 and thereby conserved spherical symmetry.
On introducing C violating terms Kastening, Peccei, and
Zhang @25# used a P conserving ansatz to find the ordinary

sphaleron, while in extending to the MSSM Moreno, Oaknin,
and Quiros @28# used a C and P conserving ansatz for the
sphaleron, and so again neither @25# nor @28# would have
noticed any departure from spherical symmetry.

The functions K0 , V0, and V2 for the C conserving an-
satz, and the conditions on parameters and solutions which
conserve exact spherical symmetry are given in Appendix C.
If we allow an ansatz which does not conserve P, C, or CP

Fa5aa1iba and Ga5ca1ida , and K1 , V1, and V2 can all
be nonzero. K0 , K1 , V0 , V1, and V2 for this case are also
given in Appendix C.

Our strategy is to assume f A[ f A(r) and integrate over

x̂35cos u of Eqs. ~46!–~48! to give

E@ f A#5

M W

aW
E dr r2FK01V01

1

3
V2G . ~49!

If solutions, corresponding to extrema of Eq. ~49!, have field
profiles for which K150, V150, and V250, then the solu-
tions are exactly spherically symmetric, and the ansatz has
succeeded. Otherwise, the solutions are not exactly spheri-
cally symmetric, with K1 , V1, and V2 measuring the depar-
ture from spherical symmetry. We can then regard Eq. ~49!
as the first term in an expansion in spherical harmonics, and
our procedure finds a good approximation to the l50 modes
provided that K1 , V1, and V2 are all small in comparison to
K0 and V0.

In our previous paper @33# we assumed spherical symme-
try at the level of the static energy functional by imposing

Fa5l~r !Ga , ~50!

which is too restrictive when it comes to finding C and P

violating solutions in C violating theories.

A. Properties of solutions

We can classify solutions according to which of the sym-
metries C, P, and CP they preserve. The ordinary
~Klinkhamer-Manton @22#! SU~2! sphaleron preserves both
C, and P, and its extension to a C conserving two Higgs
doublet theory therefore has a50, ba50, ca50, and da

50. Kunz and Brihaye @23# and Yaffe @24# showed that,
with one Higgs doublet, there exist P violating solutions at
large Higgs boson mass with lower energy than the ordinary
sphaleron, this solution is named the bisphaleron as it occurs
in P conjugate pairs. The appearance of a bisphaleron solu-
tion is signaled by the ordinary sphaleron developing an ex-
tra negative eigenvalue as the Higgs boson mass increases. In
a C conserving theory these solutions are C invariant and
have ba50 and da50, and are distinguished from the ordi-
nary sphaleron by non-zero ca and a . To date they have
been investigated with only M h , M H , and tanb non zero,
which corresponds to M H65M A50 in a C conserving
theory, where they maintain spherical symmetry. However
with M H6ÞM A or a non-zero uCP ; V2, or K1 , V1, and V2

respectively can all be non-zero. Hence, departure from
spherical symmetry is generic, even in the pure SU~2! two
doublet model.

TABLE I. P , C, and CP transformations for the fields of ansatz

~43!–~45!.

P C CP

aa→1aa aa→1aa aa→1aa

ba→1ba ba→2ba ba→2ba

ca→2ca ca→1ca ca→2ca

da→2da da→2da da→1da

a→2a a→1a a→2a

b→1b b→1b b→1b

A0→2A0 A0→1A0 A0→2A0

A1→2A1 A1→1A1 A1→2A1
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Bachas, Tinyakov, and Tomaras @26# investigated two
Higgs doublets models and found more P violating solutions
at lower Higgs boson masses than the bisphaleron. Although
again occurring in P conjugate pairs, they are distinguished
from the bisphaleron in that their boundary conditions re-
quire more than one Higgs doublet: the two Higgs fields
have a relative winding around the 3-sphere of gauge-
inequivalent field values of constant uf1u and uf2u. Thus we
refer to them as relative winding or RW sphalerons or RWS.
If we refer just to a sphaleron, we shall henceforth generally
mean the ordinary P and C conserving sphaleron. Note that
RW sphalerons are spherically symmetric in C conserving
theories only when M A5M H6.

The defining characteristic of a sphaleron is that it repre-
sents the highest point of a minimum energy path starting
and ending in the vacuum, along which the Chern-Simons
number changes by 61. The Chern-Simons number is de-
fined as

nCS5

g2

16p2
« i jkE d3xFW i

a] jWk
a
1

1

3
g«abcW i

aW j
bWk

cG
~51!

5

g2

32p2
E d3xK0, ~52!

where ]mKm
5Fmn

a F̃amn. Under a gauge transformation, nCS

changes by an integer: hence, field configurations with inte-

ger nCS are gauge equivalent to the vacuum W i
a
50. One

should also note that nCS is odd under CP .
Ordinary sphalerons have half-integer Chern-Simons

number nCS , which by choice of a suitable gauge can be
taken to be precisely 1/2. However, Yaffe found that the
bisphalerons pairs had nCS51/26n , where n was typically
fairly small, and depended on the parameters in the Higgs
potential. Bachas, Tinyakov, and Tomaras did not calculate
the Chern-Simons number of their relative winding sphale-
rons pairs, but we also find them to come in pairs with nCS

51/26n . That solutions which spontaneously violate CP in
this way should come in such pairs is clear, as field configu-
rations with nCS51/22n can be obtained from one with
nCS51/21n by a combination of a CP and a gauge trans-
formation.

IV. FINDING SOLUTIONS

A. Method

We will be finding solutions to a static energy functional
of the form

E@ f A#5

M W

aW
E dr E~ f A!, ~53!

where

E~ f A!5

1

2
f G8

2
1

1

2
r2 f H8

2
1P~ f A!. ~54!

Here, P( f A) is a polynomial in the 10 fields f A , which we
divide into gauge fields f G5a ,b and Higgs fields f H

5aa ,ba ,ca ,da .
We use a Newton method, following @24#, which is an

efficient way of finding extrema ~and not just minima!. The
method can be briefly characterized as updating the fields f A

by an amount d f A , given by the solution of

d2
E

d f Bd f A

d f B52

dE

d f A

, ~55!

which we can abbreviate as

E 9d f 52E 8. ~56!

Provided E 9 has no zero eigenvalues, the equation has a
unique solution, subject to boundary conditions which we
detail below. We sometimes added a fraction of d f which,
although slower, occasionally produced a more stable con-
vergence. The procedure is started from an initial guess for
f A , and then repeated with each improved configuration, un-
til E 8 is small enough so that d f .0.

A particular advantage to using this method is that be-
cause we are calculating E 9, it is straight forward to get the
negative curvature eigenvalues, v2, from the diagonalization
of E 9 at each solution. To achieve this we use

1

2
E 9F d f G

rd f H
G5v2F d f G

rd f H
G , ~57!

from

d2E@ f A#5

M W

aW
E drF d f G

rd f H
GT

1

2
E 9F d f G

rd f H
G , ~58!

where it is understood that the E 9 of Eqs. ~57! and ~58! has
been differentiated with respect to f G and r f H , and not as in
the Newton method of Eq. ~55! with respect to f G and f H .

TABLE II. Boundary conditions for the ordinary C, and P conserving sphaleron.

r→0 a→0 b→A2 aa→0 ba→0 ca→0 da→0

r→` a→0 b→2A2 a1→2 cos b b1→0 c1→0 d1→0

a2→2 sin b b2→0 c2→0 d2→0
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B. Boundary conditions

Next we turn our attention to boundary conditions. Before
we look at specific conditions for different solutions, we con-
sider the terms of Eq. ~C8! of Appendix C ~up to numerical
factors!

K0
G}

1

r2
~a2

1b2
22 !2

1~aa
2
1ba

2
1ca

2
1da

2 !~a2
1b2

12 !

12A2b~aa
2
1ba

2
2ca

2
2da

2 !24A2a~aaca1bada!.

~59!

We introduce new fields x , Ka , La , C , and Qa defined by

2b1ia5A2xexp~ iC !, ~60!

aa1ica52
ya

y
Kaexp~ iQa!, ~61!

ba1ida52
ya

y
Laexp~ iQa!, ~62!

and rewrite Eq. ~59! as

K0}
1

r2
~x2

21 !2
1~2x2

12 !@cos2b~K 1
2
1L 1

2!

1sin2b~K 2
2
1L 2

2!#24x cos2b~K 1
2
1L 1

2!

3Re@exp~2iC1i2Q1!#24x sin2b~K 2
2
1L 2

2!

3Re@exp~2iC1i2Q2!# . ~63!

We have a boundary condition from the finiteness of the
energy density, due to the first term in Eq. ~63! which can be
expressed as

x2
→1 as r→0. ~64!

From the finiteness of the gauge current density @which is
proportional to the second, third, and fourth terms in Eq.
~63!# and using Eq. ~64!, we also have

~K 1
2
1L 1

2!Re@exp~2iC1i2Q1!#→K 1
2
1L 1

2

~K 2
2
1L 2

2!Re@exp~2iC1i2Q2!#→K 2
2
1L 2

2J as r→0.

~65!

To satisfy Eq. ~65! we require

either
K 1

2
1L 1

2
→0

K 2
2
1L 2

2
→0

J or
Q1→C/21n1p

Q2→C/21n2p
J as r→0,

~66!

where n1 ,n2PZ. Equation ~66! can be rewritten as

either K a
2
1L a

2
→0

or Q12Q2→~n12n2!p
J as r→0. ~67!

Equations ~64! and ~67! are then our boundary conditions as
r→0. The boundary conditions as r→` can be obtained
from finiteness of K0 @Eq. ~C1!# and of V0 @Eq. ~C4!#.

The ordinary sphaleron satisfies Eq. ~67! by having

~K a
2
1L a

2 !ur5050. ~68!

The full set of boundary conditions for the sphaleron are
given in Table II.

Bisphaleron pairs have different boundary conditions. To
satisfy Eq. ~67!, where d is a small positive angle, they have

2Q1ur5052Q2ur505Cur50[2Q52p6d . ~69!

The boundary conditions on the f A of these solutions are
given in Table III.

Relative winding sphalerons pairs satisfy Eq. ~67! through

2~Q12p !ur5052Q2ur505Cur5052p6d . ~70!

From Eq. ~67! we see that since n15n2 for bisphalerons
while n15n211 for RWS, RWS unlike bisphalerons can
only occur in multi-doublet theories. The integers n1 and n2

represent the winding numbers of the Higgs fields around the
3-spheres of constant uf1u and uf2u, with only their differ-
ence having any gauge-invariant meaning. The RWS bound-
ary conditions are given in Table IV.

TABLE III. Boundary conditions at the origin for the (P violating! bisphaleron. The boundary conditions

at infinity are the same as for the sphaleron, Table II.

r→0 a→A2 sin 2Q a1→2K1 cos b cos Q a2→2K2 sin b cos Q

b→2A2cos 2Q b1→2L1 cos b cos Q b2→2L2 sin b cos Q

c1→2K1 cos b sin Q c2→2K2 sin b sin Q

d1→2L1 cos b sin Q d2→2L2 sin b sin Q

TABLE IV. Boundary conditions at the origin for the (P violating! RWS. The boundary conditions at

infinity are the same as for the sphaleron, Table II.

r→0 a→A2 sin C a1→2K1 cos b cos Q1 a2→2K2 sin b cos Q2

b→2A2cos C b1→2L1 cos b cos Q1 b2→2L2 sin b cos Q2

c1→2K1 cos b sin Q1 c2→2K2 sin b sin Q2

d1→2L1 cos b sin Q1 d2→2L2 sin b sin Q2
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C. Numerical performance

The details of the implementation of the algorithm and the

boundary conditions are relegated to Appendix D. We

checked the accuracy of our code by evaluating the energy,

negative curvature eigenvalues and Chern-Simons number

for some of the same parameters as Yaffe @24# and Bachas,

Tinyakov, and Tomaras @26#, and found good agreement.

These can be seen in Table V.

The numerical scheme worked excellently, with typical

convergence after five to fifteen iterations of 1310213 in the

sum of absolute change in all fields at all points. The few

problems we did encounter were ~1! sometimes the initial

configuration for a RW sphaleron was so close to the sphale-

ron that the Newton extremisation found the original sphale-

ron, particularly at points in parameter space near the bifur-

cation point, and ~2! the Newton extremisation sometimes

found the vacuum from the initial configuration for a RW

sphaleron . The first was solved by using a higher mass RW

sphaleron as initial conditions for minimization, and the sec-

ond problem by updating each minimization not with d f a

but with a fraction of it.

We ran simultaneously two codes. One with the C con-

serving ansatz, and the other with the C and P violating

ansatz. In the absence of C violation the two codes were

identical. With 101 points instead of 51, the difference in
energy, nCS , and eigenvalues was at most of order 0.5% of
the value with 51 points.

V. RESULTS

A. No CP violation, MAÄMHÁÄ0

In order to compare with previous work, we first examine
the unrealistic limit of M A5M H650, with no explicit CP

violation in the potential. We set the parameters l350 and
tanb56, and scanned through M h and M H between 0 and
800 GeV.

Figures 1–3 show contours in the M h and M H plane. The
contours are respectively of energy ~Fig. 1!, most negative
eigenvalue and second most negative eigenvalue ~Fig. 2!,
and nCS ~Fig. 3! of the sphaleron and relative winding
sphaleron. When we show equal contours of both solutions
the sphalerons are shown as dashes, and the RWS as solid.
Below the black horizontal dotted line, shown on all four
contour plots, only the sphaleron solution exists, above the
black dotted line both solutions exist. The sphaleron never
develops a third negative eigenvalue, nor the RWS a second
negative eigenvalue. The solutions maintained exact spheri-
cal symmetry: V2 was zero throughout; this was expected as
both uCP50, and M A5M H650. These contours are from
the same potential as used by BTT @26# and contain some of

TABLE V. Energy (M W /aW), negative eigenvalues (M W
2 ), and Chern-Simons number for m

5M H /M W5M h /M w and tanb51, for some of the same parameters as @24# and @26#. The solution with

energy Ebi was reached by perturbing the ordinary sphaleron in the direction of the eigenvector with eigen-

value 2v3
2, and the solution with energy ERWS was reached by a perturbation with eigenvalue 2v2

2. If we

refer to Fig. 2 of @26# we see that the bisphaleron branch itself bifurcates at the point where it no longer has

two negative eigenvalues, and we note as a point of interest that the eigenvector with eigenvalue 2v2
2 takes

us to the solution with lowest energy and not the S1 of @26#. The nCS of the RWS for equal CP even Higgs

bosons, and tanb51 with all other parameters zero is 1/2, this is not the case generally. The agreement with

@24# and @26# is excellent.

m Esph 2v1
2

2v2
2

2v3
2 Ebi 2v1

2
2v2

2 nCS ERWS 2v1
2

5 4.435 5.391 ••• ••• ••• ••• ••• ••• ••• •••

6 4.531 6.217 0.279 ••• ••• ••• ••• ••• 4.528 5.171

7 4.609 7.171 1.225 ••• ••• ••• ••• ••• 4.587 4.147

10 4.778 11.22 5.962 ••• ••• ••• ••• ••• 4.668 3.090

13 4.888 17.70 13.27 0.316 4.886 11.86 6.546 0.454 4.700 2.773

15 4.942 23.49 19.49 0.926 4.930 8.447 2.349 0.428 4.711 2.670

30 5.147 101.4 98.55 3.212 5.031 5.207 ••• 0.387 4.734 2.451

50 5.243 292.7 290.1 4.734 5.052 4.874 ••• 0.380 4.738 2.403

FIG. 1. Contours in M h , M H space of the energy of the sphale-

ron ~dashes!, and of the RWS ~solid!, in units of M W /aW . Below

the dotted line the sphaleron is the only solution. Above the dotted

line, both solutions exist. The input parameters are tanb56 with all

other parameters zero.
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the parameter space they scanned. Where we overlap we
agree with their results, and we confirm their observation
that the second negative eigenvalue appears when one of the
Higgs boson has a somewhat large mass, (M H;5M W). For
low values of this heavier mass the lighter Higgs boson
needs to be as light as possible; i.e. for the existence of
relative winding sphalerons it is preferable to have the two
Higgs boson masses, M h and M H , well separated.

Figure 1 shows both the energy of the sphaleron and the
energy of the RWS, there is almost no difference between
their energies, and the energy depends mainly on the mass of
the lighter Higgs boson. Figure 2 shows the most negative
eigenvalue of both the sphaleron and RWS, and we see that
there is a large difference between the values of negative

eigenvalues for the different solutions; the negative eigen-
value of the sphaleron can be double that for the relative
winding sphaleron for the same point in parameter space.
Figure 2 also shows the second negative eigenvalue of the
sphaleron. The second most negative eigenvalue belongs to
the perturbation which leads to the RW sphaleron in configu-
ration space.

Looking at Fig. 3 we see that the Chern-Simons number
of the RW sphaleron is generally not a half. There is a line in
the contour space where nCS51/2. This occurs, for tanb
51, along the line of M h5M H , and shifts in the contour

FIG. 2. Contours in M h , M H space of the eigenvalue in units of

M W
2 . The top figure shows the most negative eigenvalue of the

sphaleron ~dashes!, and of the RWS ~solid!. The bottom figure

shows the second most negative eigenvalue of the sphaleron. Below

the dotted line the sphaleron is the only solution. Above the dotted

line, both solutions exist. The input parameters are tanb56 with all

other parameters zero.

FIG. 3. Contours in M h , M H space of the Chern-Simons num-

ber of the RWS. Below the dotted line only the sphaleron solution

exists, with nCS51/2. The input parameters are tanb56 with all

other parameters zero.

FIG. 4. Contours in M h , M H space of the energy of the sphale-

ron ~dashes!, and of the RWS ~solid!, in units of M W /aW . Below

the dotted line the sphaleron is the only solution, while above, both

solutions exist. For the dotted area the potential is unbounded. The

input parameters are tanb56, M A5241 GeV, M H65161 GeV,

and l3520.05.
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plane for different values of tanb . We have only shown here
solutions with nCS<1/2. Each of these solutions with nCS

<1/2 has a P conjugate partner, with Chern-Simons nCS
con

>1/2, such that nCS1nCS
con

51.

B. No CP violation, MAÄ3MW , MHÁÄ2MW

Figures 4–6 show contours in M h , M H space of energy
~Fig. 4!, most negative eigenvalue of the sphaleron and RWS
~Fig. 5 top!, second most negative eigenvalue of the sphale-
ron ~Fig. 5 bottom!, and nCS ~Fig. 6! of the sphaleron and the
relative winding sphaleron. Again when both solutions are
shown the sphaleron is dashes, and the RWS solid.

For these figures we took M A5241 GeV, M H6

5161 GeV, again with no explicit CP violation. We set the

parameters l3520.05, and tanb56, and scanned through

M h and M H between 0 and 800 GeV, with 20 GeV incre-

ments. Again below the black dotted line, shown on all four

contour plots, only the sphaleron solution exits, while above

both solutions exist. We see that the RW sphaleron solutions

still persist for a large region of the parameter space. The

dotted region at low M H was unbounded according to Eqs.

~39! and ~40!. These solutions did not maintain exact spheri-

cal symmetry corresponding to V250, but the maximum

value of energy due to the V2 term was 0.6% of the energy

due to V0.

The solutions have the same general features as those at

zero M A and M H6: the RW sphaleron appears at widely

separated M H and M h . While the energies of the two solu-

tions in Fig. 4 are almost indistinguishable, the most negative

eigenvalue ~Fig. 5 top!, of the sphaleron can be double that

of the RW sphaleron. We show the value of the second most

negative eigenvalue of the sphaleron in Fig. 5 ~bottom!. The

sphaleron never developed a third negative eigenvalue, nor

the RW sphaleron a second negative eigenvalue. In Fig. 6 we

show the Chern-Simons number of the RW sphaleron, and
again for every solution shown with nCS51/22n there is a P

conjugate solution with nCS
con

51/21n .

C. CP violation, MAÄ8MW , MHÁÄ2MW

Figures 7–9 show contours in M h , M H space of energy
and second negative eigenvalue ~Fig. 7!, most negative ei-
genvalue ~Figs. 8! and Chern-Simons number ~Fig. 9! of the
sphaleron and relative winding sphaleron. Sphaleron con-
tours are shown as dashed lines and RW sphaleron contours
as solid when present on the same graph.

FIG. 5. Contours in M h , M H space of eigenvalues in units of

M W
2 . The top figure shows the most negative eigenvalue of the

sphaleron ~dashes!, and of the RW sphaleron ~solid!. The bottom

figure shows the second most negative eigenvalue of the sphaleron.

Below the dotted line the sphaleron is the only solution. Above the

dotted line, both solutions exist. For the dotted region the potential

is unbounded. The input parameters are tanb56, M A5241 GeV,

M H65161 GeV, and l3520.05.

FIG. 6. Contours in M h , M H space of the Chern-Simons num-

ber of the RW sphaleron. Below the dotted line only the sphaleron

solution exists, with nCS50.5. For the dotted region the potential is

unbounded. The input parameters are tanb56, M A5241 GeV,

M H65161 GeV, and l3520.05.
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For these figures we took M A5643 GeV, M H6

5161 GeV, this time with CP violation: uCP50.49p . The

remaining parameters were f50.1p , c50.0, and l353.0,

giving tanb53.1. We scanned through M h between 0 and

400 GeV, and M H between 0 and 800 GeV, with 20 GeV

increments. The dotted region at low M h was unbounded

according to Eqs. ~39! and ~40!, and for the white out area,
surrounded by the solid black line, the minimum of Eq. ~10!
was not the global minimum.

As with the previous contour plots, a large region of pa-
rameter space contained relative winding sphalerons. For
these input parameters, though, due to the large CP violating
mixing angle, the role of the large Higgs boson mass M H is
taken on by M A . Since, from previous contour plots, the
relative winding sphaleron solution prefers regions of param-
eter space where there is a large separation in values of the
heaviest ~in this case the M A) and the lightest ~in this case
M h , and M H) Higgs boson masses, the relative winding
sphaleron solutions exist for the lower part of the contour
plot, and not the upper part. Referring to Figs. 7–9: above
the black dotted line the sphaleron is the only solution, while

FIG. 7. Top: contours in M h , M H space of energy in units of

M W /aW of the sphaleron ~dashes!, and of the RW sphaleron ~solid!.

Bottom: contours in M h , M H space of second negative eigenvalue

(M W
2 ) of the sphaleron. Above the dotted line the sphaleron is the

only solution, while below both solutions exist. For the blank area

Eq. ~10! is not the global minimum. For the dotted area the potential

is unbounded. The input parameters are uCP50.49p , f50.1p , c
50.0, M A5643 GeV, M H65161 GeV, and l353.0. tanb
53.1.

FIG. 8. Contours in M h , M H space of the most negative eigen-

value (M W
2 ) of the sphaleron ~top! and of the relative winding

sphaleron ~bottom!. Above the dotted line the sphaleron is the only

solution, while below both solutions exist. For the blank area Eq.

~10! is not the global minimum. For the dotted area the potential is

unbounded. The input parameters are uCP50.49p , f50.1p , c
50.0, M A5643 GeV, M H65161 GeV, and l353.0. tanb
53.1.
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below the black dotted line both the sphaleron and the rela-
tive winding sphaleron exist, this is opposite to the behavior
in the absence of CP violation.

From Fig. 7 ~top! the energy of the two solutions is as
before almost the same. The second negative eigenvalue of
the sphaleron is shown in the lower half of Fig. 7. The
sphaleron does not develop a third negative eigenvalue, nor
the RW sphaleron a second negative eigenvalue. We show
the most negative eigenvalue of the sphaleron and the RW
sphaleron ~Fig. 8! on separate graphs, and again their respec-
tive negative eigenvalues can be very different at the same
point in the contour plane. We then show the Chern-Simons
numbers for the RW sphaleron in Fig. 9. Note that we only
show solutions with nCS<1/2: again, there are parity conju-
gate partners to each of these RW sphalerons, and the nCS of
the RW sphaleron and of its parity partner add up to one.

There is no breaking in the degeneracy of the relative
winding sphaleron pairs in energy, eigenvalues, or absolute
difference from 1/2 of Chern-Simons number, due to the
presence of CP violation. The solutions are not exactly
spherically symmetric, and have non zero values for all three
of K1 , V1, and V2. The values of K1 , V1, and V2 as a
percentage of the Higgs potential energy are each never more
than 0.5%.

D. MSSM parameter space

Next we scan through tree level MSSM parameter space.
Figure 10 shows the scan in M A , tanb space. Figure 11
shows the scan in M h , M H space. We plot contours of en-
ergy ~top! and negative eigenvalue ~bottom! for each of these
scans.

For the range of parameters we show the sphaleron did
not develop a second negative eigenvalue. There was no de-
parture from spherical symmetry, as only the aa field of the

Higgs ansatz and the b field of the gauge ansatz were ever
non-zero. From these four contours ~Figs. 10 and 11! we
agree with the general result of @28# that the energy of the
sphaleron is sensitive to mainly M h and tanb , although their
results should be more accurate as they included 1-loop ra-
diative corrections. There were no relative winding sphale-
rons for the range of parameters explored.

E. Sphaleron energy and CP violation

We recall that a CP violating mixing angle can have a
large effect on the properties of the sphaleron. Here ~Fig. 12!
we scan through M h , uCP space and show the energy of the
sphaleron and the negative eigenvalue of the sphaleron for
input parameters f50.125p , c50.0, M H5110 GeV, M A

5500 GeV, M H65500 GeV, and l350.0, these give
tanb52.4. For the dotted region at low M h the potential was
unbounded, and for the blank region, bordered by the solid
black line, the minimum of Eq. ~10! was not the global mini-

FIG. 10. Contours in M A , tanb space of the sphaleron for tree

level MSSM parameters. The top figure shows energy (M W /aW) of

the sphaleron. The bottom figure shows negative curvature eigen-

value (M W
2 ) of the sphaleron.

FIG. 9. Contours in M h , M H space of the Chern-Simons num-

ber of the RWS. Above the dotted line only the sphaleron solution

exists, with nCS51/2. For the blank area Eq. ~10! is not the global

minimum. For the dotted area the potential is unbounded. The input

parameters are uCP50.49p , f50.1p , c50.0, M A5643 GeV,

M H65161 GeV, and l353.0. tanb53.1.
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mum of the static energy functional. For this region of pa-
rameter space the sphaleron never developed a second nega-
tive curvature eigenvalue.

The energy of the sphaleron ~Fig. 12: top! is dependent
upon the value of the CP violating mixing angle, and
changes by about fourteen percent as the mixing angle varies
between its minimum and its maximum. The energy is, in the
presence of CP violation, still sensitive to the lightest Higgs
mass.

The negative eigenvalue ~Fig. 12: bottom! also has this
strong dependence on the CP violating mixing angle, with
an increase of over fifty percent as the mixing angle varies.
Also the dependence on M h , although not as dramatic as the
effect of CP violation, is still present.

F. Field profiles

1. Sphaleron and RW sphaleron

Next we show the field profiles for the sphaleron, relative
winding sphaleron, and conjugate relative winding sphaleron

for a point in the contour plot of Sec. V C corresponding to
a CP violating theory with M A58M W , M H652M W , M h

51.25M W , and M H51.5M W . We recall that the mixing
angles were uCP50.49p , f50.1p , c50.0, and the cou-
pling l353.0.

Before we proceed we check whether this point in param-
eter space is phenomenologically viable at zero temperature,
as M h51.25M W is ruled out if the hZZ coupling is too large.
We calculate the couplings ghZZ , gHZZ , and gAZZ according
to @43# using the values of input parameters used in Figs.
13–16, and compare them with the latest particle data @44#.

Using

ghZZ5D@1,1#cos b1D@2,1#sin b ~71!

FIG. 11. Contours in M h , M H space of the energy (M W /aW) of

the sphaleron for tree level MSSM parameters. The top figure

shows energy (M W /aW) of the sphaleron. The bottom figure shows

negative curvature eigenvalue (M W
2 ) of the sphaleron. FIG. 12. Top: contours in M h , uCP space of the energy

(M w /aw) of sphaleron; bottom: of the negative eigenvalue of the

sphaleron (M W
2 ). For this region of parameter space the sphaleron

is the only solution. For the blank region Eq. ~10! is not the global

minimum. For the dotted region the potential is unbounded. The

input parameters are f50.125p , c50.0, M H5110 GeV, M A

5500 GeV, M H65500 GeV, and l350.0. tanb52.4.
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gHZZ5D@1,2#cos b1D@2,2#sin b ~72!

gAZZ5D@1,3#cos b1D@2,3#sin b ~73!

where D is given by Eq. ~16!, we obtain, for the parameters
of Figs. 13–16

ghZZ
2

50.081 ~74!

gHZZ
2

50.824 ~75!

gAZZ
2

50.095 ~76!

which for masses M h5101 GeV, M H5121 GeV, and
M A5643 GeV are within experimental bounds. Although
we have labeled the Higgs bosons with subscripts h, H, and
A; because of the values of the mixings f50.1p , uCP

50.49p , c50.0, while the particle with subscript h is CP

even, those with subscript H, and A are a mix of CP even
and CP odd. We then plot the energy density of the two

types of solution, and the values of K1 , V1, and V2 as a
function of the rescaled radial co-ordinate for the sphaleron,
RW sphaleron, and conjugate RW sphaleron. We recall that
the departure of K1 , V1, and V2 from zero signals the break-
down of the spherically symmetric ansatz, and their size rela-
tive to the total energy density indicates the seriousness of
the breakdown.

It is convenient to plot the field values rescaled according
to

f G5

f G

A2
, f H5

y

ya

f H

2
, ~77!

as then the asymptotic values are either 0 or 61.
The ordinary sphaleron field profiles are plotted in Fig. 13

as a function of the rescaled radial points. The solution has
nonzero values of aa , ba , and b as expected for a field
configuration that preserves P but violates C, due to the pres-
ence of a C violating parameter in the potential. The sphale-

FIG. 13. The sphaleron field profiles ~top!, and the profiles for

b1 and b2 in more detail ~bottom!. ca5da5a50. This configura-

tion has energy54.053 M W /aW , nCS51/2, and two negative cur-

vature eigenvalues 28.696M W
2 , and 21.754M W

2 . Input parameters

are uCP50.49p , f50.1p , c50.0, M h5101 GeV, M H

5121 GeV, M A5643 GeV, M H65161 GeV, and l353.0.

These give tanb53.1, l1526.29, l2522.59, l150.91, l4

50.85, x150.42, and x250.41.

FIG. 14. The RW sphaleron field profiles ~top! and the profiles

for b1 , b2 , c2 , d1 , d2, and a in more detail ~bottom!. This con-

figuration has energy54.047 M W /aW , nCS50.478, and one nega-

tive curvature eigenvalue 23.637M W
2 . Input parameters are uCP

50.49p , f50.1p , c50.0, M h5101 GeV, M H5121 GeV, M A

5643 GeV, M H65161 GeV, and l353.0. These give tanb
53.1, l1526.29, l2522.59, l150.91, l450.85, x150.42, and

x250.41.
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ron has Chern-Simons number 1/2, two negative eigenvalues

(28.696M W
2 , and 21.754M W

2 ), and has energy

4.053M W /aW .
The relative winding sphaleron field configurations,

shown in Fig. 14, have non zero values for all fields. The
solution violates P spontaneously and C explicitly, and vio-
lates the combination CP . It has one negative eigenvalue

~-3.637 M W
2 ), energy less than its ordinary sphaleron

(4.047M W/aW), and Chern-Simons number 0.478. Its parity
conjugate partner, shown in Fig. 15, has field profiles iden-
tical to a P transformation of the RWS: that is ca→2ca ,
da→2da , and a→2a , with all other fields remaining un-
changed. The solution has identical energy, and eigenvalue
to its P conjugate solution, and its Chern-Simons number is
0.522.

Next we show ~Fig. 16: top! the energy density of the
sphaleron, and the RW sphaleron, and in detail ~Fig. 16:
bottom! the values of K1 , V1, and V2 for the RWS in units
of energy density. K1 and V1 are equal in value, but opposite

in sign for the conjugate pair, V2 is equal in value and equal
in sign. These deviations from spherical symmetry are of
order one part in 103 for these values of parameters.

2. Bisphaleron

For completeness we detail the bisphaleron fields profiles
for non zero M A and M H6, and show their departure from
spherical symmetry. Figures 17 and 18 concern this bisphale-
ron. We have chosen masses which are perhaps unrealisti-
cally large, in order to reach the part of parameter space
where the bisphaleron exists: tanb56.0, M h515.0M W ,
M H517.0M W , M A52.0M W , M H653.0M W and l3

520.1, with no CP violation. For these input parameters
l15567.6, l2512.4, l150.627, l451.923, x15

20.227, and x250.0.

FIG. 15. The conjugate RW sphaleron field profiles ~top!, and

the profiles for b1 , b2 , c2 , d1 , d2, and a in more detail ~bottom!.

This configuration has energy54.047 M W /aW , nCS50.522, and

one negative curvature eigenvalue 23.637M W
2 . Input parameters

are uCP50.49p , f50.1p , c50.0, M h5101 GeV, M H

5121 GeV, M A5643 GeV, M H65161 GeV, and l353.0.

These give tanb53.1, l1526.29, l2522.59, l150.91, l4

50.85, x150.42, and x250.41.

FIG. 16. The top of the figure shows the total and the Higgs

potential contribution to energy density in units of M W
4 /aW for the

sphaleron ~solid! and the RWS ~dashes!. The bottom figure shows

K1 , V1, and V2 for the RWS ~solid! and its conjugate ~dashes! in

the same units. Both K1 and V1 are equal to their values for conju-

gate solutions, but have opposite sign. V2 is equal to its value for

the conjugate solution. Input parameters are uCP50.49p , f
50.1p , c50.0, M h5101 GeV, M H5121 GeV, M A

5643 GeV, M H65161 GeV, and l353.0. These give tanb
53.1, l1526.29, l2522.59, l150.91, l450.85, x150.42, and

x250.41.
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The energy density and departure from spherical symme-
try are shown in Fig. 17. The CP invariance means that ba

5da50, and hence K1 and V1 vanish. The departure from
spherical symmetry is entirely in the V2 term shown in units

of energy density (M W
4 /aW) in the lower half of Fig. 17. The

departure from spherical symmetry is of order 1 part in 104.
The configuration in Fig. 18 has energy54.932 M W/aW ,

nCS50.569, it has two negative curvature eigenvalues

211.915 M W
2 , and -6.788 M W

2 . Its associated sphaleron has

energy54.943 M W /aW with nCS51/2, and three negative

curvature eigenvalues 223.823M W
2 , 213.249M W

2 , and

20.933M W
2 . Its conjugate bisphaleron has identical energy,

and negative curvature eigenvalues, but nCS50.431; so
again the nCS of the bisphaleron and its conjugate add to one.

VI. CONCLUSIONS

In this paper we have made a thorough study of the prop-
erties of sphalerons in two Higgs doublet SU~2! gauge theo-
ries. Using a spherically symmetric approximation, we have

performed scans in the physical parameter space defined by
the masses and mixing angles of the Higgs particles, record-
ing the energy, lowest eigenvalues, and the Chern-Simons
number, with results recorded in Figs. 1–12. We have also
shown the profiles of the fields of our ansatz for selected
solutions in Figs. 13–18.

We can draw a number of broad conclusions from these
results. First, for a wide range of parameters, the minimum
energy sphaleron is not the natural generalizations of the
Klinkhamer-Manton sphaleron @22# with vanishing Higgs
fields at the origin, but a parity violating pair of relative
winding ~RW! sphalerons, first identified by Bachas, Tinya-
kov, and Tomaras @26#. These are related to the bisphalerons
or deformed sphalerons found in one doublet models by
Yaffe @24# and Kunz and Brihaye @23#, but are specific to
two Higgs doublet models. This pair was always degenerate
in energy, as is to be expected from a parity conserving
Lagarangian. This degeneracy is lifted when standard model
fermions are included @45#.

The favored regions of parameter space for RW sphale-
rons to exist are those where there is a large difference in the
masses of the neutral Higgs bosons. The mass of the heavier
Higgs boson can be as low as 5M W . Bisphalerons appear at
yet higher heavy Higgs boson masses, but were always more
massive than the RW sphalerons in the parameter space we
explored.

The appearance of extra sphaleron solutions is signaled by
the ordinary sphaleron developing another negative eigen-
value: thus where the RW sphaleron exists the ordinary
sphaleron has two negative eigenvalues, and three where the
bisphaleron exists also. The lowest energy sphaleron must
have exactly one negative eigenvalue. The numerically cal-
culated eigenvalues of a solution not only aid its identifica-
tion, but are important for accurate calculation of the baryon

FIG. 17. The top figure shows total and Higgs potential contri-

bution to energy density (M W
4 /aW) for the sphaleron ~solid! and the

bisphaleron ~dashes!. The bottom figure shows V2 for the bisphale-

ron solution and its conjugate. V2 for both the bisphaleron and

conjugate solution are equal. Input parameters are tanb56.0, uCP

50.0, f50.0, c50.0, M h515.0M W , M H517.0M W , M A

52.0M W , M H653.0M W , and l3520.1.

FIG. 18. The bisphaleron field profiles for tanb56.0, M h

515.0M W , M H517.0M W , M A52.0M W , M H653.0M W and l3

520.1. It has energy54.932 M W/aW , nCS50.569, two negative

curvature eigenvalues 211.915M W
2 , and 26.788M W

2 . Its conjugate

partner is the identical solution under P conjugation (a→2a), and

has nCS50.431.
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number violation rate: if the negative eigenvalue of the low-

est energy sphaleron solution is v
2

2 , then the rate is propor-

tional to uv2u @34#. The difference between the most nega-
tive eigenvalue of the sphaleron and the negative eigenvalue
of the RW sphaleron could be well over a factor of two.

The most important quantity for the calculation of the B

violation rate is normally the sphaleron energy. There is
however very little difference in the energies of the ordinary
and RW sphaleron: typically less than 1% in the range of
parameters we surveyed. Thus the main contribution to the
error in the rate from using the ordinary sphaleron comes
from the negative eigenvalue. One must not only use the
correct eigenvalue but also include a factor of two in the RW
sphaleron rate, one for each of the two degenerate parity
conjugate solutions. However, this leads only to logarithmic
corrections to the sphaleron energy bound ~1!.

The most important parameter for the sphaleron energy
was found to be the mass of the lightest Higgs boson, in
accordance with previous studies. However, we were able to
extend our work on the dependence of the energy on the CP

violating mixing angle uCP @33# to show that there was a
strong dependence on this quantity as well, with the sphale-
ron energy varying by ;15% as uCP was adjusted through
its allowed range. We note as well that we were unable to
find a region of parameter space for which RW sphalerons
existed over a wide range of uCP , for which the potential
was bounded, and for which Eq. ~10! was the global mini-
mum.

Although we used a spherically symmetric ansatz, we
found that two Higgs doublet sphalerons are generically not
spherically symmetric. This means that our results are ap-
proximate: however, the departure from spherical symmetry,
as measured by the relative size of the symmetry violating
terms in the static energy functional, was less than 0.2%, and
so this is not a serious problem for the accuracy of our re-
sults. A larger correction is to be expected when one consid-
ers the full SU(2)3U(1) theory at non-zero uW , for which
one also has to abandon the spherically symmetric ansatz and
resort to an axially symmetric one instead @46#.

Another source of error is the neglect of radiative and
thermal corrections. Ideally one should work out the deter-
minants of fluctuation matrices @35–38#. One can also find
solutions using the 1-loop finite temperature effective poten-
tial @28#. This is an implicit gradient expansion, neglecting
finite temperature corrections to gradient terms, which turn
out to be small @39#. Such computations are model-
dependent: one first computes radiatively corrected cou-

plings in the static energy functional, and then the sphaleron
energy. Our approach decouples the computation of the ra-
diative corrections, for we can take masses and angles to be
their 1-loop corrected values. Although this neglects cubic
terms and terms of dimension higher than 4 in the potential,
it is an easy way of improving on the tree-level calculation,
without sacrificing too much accuracy, as the contribution to
the energy from the Higgs potential can be seen from Figs.
16 and 17 to be small.

Despite these sources of error, we can conclude the cal-
culations of the sphaleron energy in CP conserving models
cannot safely be applied to CP violating electroweak theo-
ries, and that the sphaleron bound on the mass of the lightest
Higgs boson in CP violating theories requires further inves-
tigation.
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APPENDIX A: PARAMETRIZATION OF

TWO-DOUBLET POTENTIALS

In Sec. II A we wrote the two Higgs doublet potential as
Eq. ~9!. Here we write two common forms of the most gen-
eral two Higgs doublet potential. First we write

V~f1 ,f2!5m1
2f1

†f11m2
2f2

†f21m12
2 f1

†f21m12
2*f2

†f1

1l1~f1
†f1!2

1l2~f2
†f2!2

1l3f1
†f1f2

†f2

1l4f1
†f2f2

†f11l5f1
†f2f1

†f21l5
*f2

†f1f2
†f1

1l6f1
†f1f1

†f21l6
*f1

†f1f2
†f11l7f2

†f2f1
†f2

1l7
*f2

†f2f2
†f1 , ~A1!

where the only complex parameters are the m12
2 , l5 , l6, and

l7. This potential has 14 independent parameters. Imposing
the discrete symmetry f1→f1 , f2→2f2 on dimension
four terms will force l65l750, and we have a potential with
ten independent parameters.

Writing the same potential as

V~f1 ,f2!5~l11l3!S f1
†f12

y1
2

2
D 2

1~l21l3!S f2
†f22

y2
2

2
D 2

12l3S f1
†f12

y1
2

2
D S f2

†f22

y2
2

2
D

1l4@f1
†f1f2

†f22Re2~f1
†f2!2Im2~f1

†f2!#1l5S Re~f1
†f2!2

y1y2

2
cos j D 2

1l6S Im~f1
†f2!2

y1y2

2
sin j D 2

1l7S Re~f1
†f2!2

y1y2

2
cos j D S Im~f1

†f2!2

y1y2

2
sin j D1m1S f1

†f12

y1
2

2
D S Re~f1

†f2!2

y1y2

2
cos j D
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1m2S f1
†f12

y1
2

2
D S Im~f1

†f2!2

y1y2

2
sin j D1m3S f2

†f22

y2
2

2
D S Re~f1

†f2!2

y1y2

2
cos j D

1m4S f2
†f22

y2
2

2
D S Im~f1

†f2!2

y1y2

2
sin j D , ~A2!

where all the parameters are real, we again have a potential with 14 independent parameters. Imposing f1→f1 , f2→

2f2 on dimension four terms we force four of these parameters m15m25m35m450, and we have a ten parameter potential.
The advantage of writing the potential as Eq. ~A2! is that the three of the parameters of the potential are j , y1, and y2, and

that the zero of the potential is

fa5

ya

A2
F 0

e iwa
G , ~A3!

where w150, and w25j .
The relations between the parameters of Eq. ~A1! and those of Eq. ~A2! are

m1
2
52~l11l3!y1

2
2l3y2

2
2

m1

2
y1y2 cos j2

m2

2
y1y2 sin j , ~A4!

m2
2
52~l21l3!y2

2
2l3y1

2
2

m3

2
y1y2 cos j2

m4

2
y1y2 sin j , ~A5!

Re~m12
2 !52

l5

2
y1y2 cos j2

l7

4
y1y2 sin j2

m1

2
y1

2
2

m3

2
y2

2 , ~A6!

Im~m12
2 !52

l5

2
y1y2 sin j2

l7

4
y1y2 cos j2

m2

2
y1

2
2

m4

2
y2

2 , ~A7!

l15l11l3 , ~A8!

l25l21l3 , ~A9!

l352l31l4 , ~A10!

l45

l51l6

2
2l4 , ~A11!

l55

1

4
~l52l62il7!, ~A12!

l65

1

2
~m12im2!, ~A13!

l75

1

2
~m32im4!. ~A14!

We are free to redefine the fields fa of Eqs. ~A1! and ~A2!. Rewriting Eq. ~A2! with fa→fae iwa gives

V~f1 ,f2!5~l11l3!S f1
†f12

y1
2

2
D 2

1~l21l3!S f2
†f22

y2
2

2
D 2

12l3S f1
†f12

y1
2

2
D S f2

†f22

y2
2

2
D

1l4@f1
†f1f2

†f22Re2~f1
†f2!2Im2~f1

†f2!#1~l11x1!S Re~f1
†f2!2

y1y2

2
D 2

1~l12x1!Im~f1
†f2!2

1x2S Re~f1
†f2!2

y1y2

2
D Im~f1

†f2!1m 1̃ S f1
†f12

y1
2

2
D S Re~f1

†f2!2

y1y2

2
D1m 2̃ S f1

†f12

y1
2

2
D Im~f1

†f2!

1m 3̃ S f2
†f22

y2
2

2
D S Re~f1

†f2!2

y1y2

2
D1m 4̃ S f2

†f22

y2
2

2
D Im~f1

†f2!, ~A15!
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and we now have a potential which is a function of 13 pa-
rameters, one less than both Eqs. ~A1! and ~A2!. Where these
new parameters are in terms of those of Eq. ~A2!

l15

1

2
~l51l6!, ~A16!

l25

1

2
~l52l6!, ~A17!

x15

l7

2
sin 2j1l2cos 2j , ~A18!

x25

l7

2
cos 2j2l2sin 2j , ~A19!

m 1̃5m1cos j1m2sin j , ~A20!

m 2̃52m1sin j1m2cos j , ~A21!

m 3̃5m3cos j1m4sin j , ~A22!

m 4̃52m3sin j1m4cos j . ~A23!

On imposing the discrete symmetry f1→f1 , f2→2f2

on dimension four terms m 1̃5m 1̃5m 1̃5m 1̃50, and we have
a potential which is a function of nine parameters, again one
less than the potentials of Eqs. ~A1! and ~A2! with the same
symmetry imposed. This nine parameter potential is Eq. ~9!
of Sec. II A and is the potential we use throughout.

APPENDIX B: EXTREMA OF THE POTENTIAL

Extrema of the potential given in Eq. ~9! occur at solu-
tions to the four independent equations

dV~X i!

dX i

50, ~B1!

where i51,2,3,4, and X i are the x1 , x2 , y2, and z2 of

f15

y1

A2
F 0

x1
G , f25

y2

A2
F z2

x21iy2
G . ~B2!

A general bounded function of four variables with quartic
and quadratic terms only can have up to 24 minima.

The trivially found solutions to Eq. ~B1! are x1561,
x2561, y25z250 @i.e. Eq. ~10!#, and x15x25y25z2

50. The only other solution we were able to find analyti-
cally was

x150,

x2
2
1y2

2
1z2

2
215

l3

~l21l3!tan2b
,

x25

2x2

~l11x1!
y2 , ~B3!

these describe a circle with one zero eigenvalue, and poten-
tial energy

V5

y1
2y2

2

4 Fl1l21~l11l2!l3

~l21l3!tan2b
1l11x1G , ~B4!

which may be less than zero for a potential obeying Eqs.
~39!, ~40!, and ~42!, and is a zero of the other terms of the
static energy functional ~46!.

To find numerically the global minimum, we imple-
mented two methods. First, using the MAPLE extremization
routine EXTREMA, we looked for an extremum of V(X i) with
negative energy somewhere in the chosen region of param-
eter space. As the vacuum in our parametrization has zero
energy, this meant it was not the global minimum. We used
this solution as an initial configuration for a simple relax-
ation algorithm, which is equivalent to setting E 9 of the
Newton method @Eq. ~55!# to unity. We then scanned though
parameter space relaxing to the global minimum at every
point.

Our second method was to use an initial configuration of
X i50, find the eigenvalues of the configuration, and add a
perturbation in the direction of the eigenfunction with the
most negative eigenvalue. We then used the relaxation rou-
tine on this configuration. We did this for each point in pa-
rameter space, reinitializing to X i50 at each point.

APPENDIX C: STATIC ENERGY FUNCTIONAL

On substituting the ansatz of Eqs. ~43!–~45! into the La-
grangian ~2! we obtain the static energy functional of Eq.
~46!. Here we give the form of K0 , K1 , V0 , V1, and V2 for
the C conserving ansatz and for the C and P violating ansatz.

In the absence of C violation Fa5aa and Ga5ca , and
we have the usual ansatz of Ratra and Yaffee @42# where
K15V150 and K0 , V0, and V2 are

K05K0
D

1K0
G , ~C1!

K0
D

5

1

2r2
@aa8

2r2
1ca8

2r2
1a8

2
1b8

2# , ~C2!
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K0
G

5

1

2r2 F 1

4r2
~a2

1b2
22 !2

1

1

4
~aa

2
1ca

2 !~a2
1b2

12 !1

A2b

2
~aa

2
2ca

2 !2A2aaacaG , ~C3!

V05

y2

16M W
2

@~l11l3!~a1
2
1c1

2
24 cos2b !2

1~l21l3!~a2
2
1c2

2
24 sin2b !2

12l3~a1
2
1c1

2
24 cos2b !~a2

2
1c2

2
24 sin2b !

1l4~a1c22a2c1!2
1~l11x1!~a1a21c1c224 cos b sin b !2# , ~C4!

V25

y2

16M W
2

@~2l41l12x1!~a1c22a2c1!2# . ~C5!

This ansatz will maintain spherical symmetry if V250. The condition V250 is met if l45l12x1, or equivalently if
M H65M A . In cases where M H6ÞM A , the spherical symmetry of a field configuration will still be maintained if a1c2

5a2c1, as the V2 terms vanish from the energy density. The ordinary sphaleron comes into this class of configurations since
c15c250. However, it is still important to include this term as it affects the form of E 9 used in Eq. ~56! to calculate the
curvature eigenvalues.

In the presence of C violation ba and da are no longer zero and K0 , K1 , V0 , V1, and V2 are

K05K0
D

1K0
G , ~C6!

K0
D

5

1

2r2
@aa8

2r2
1ba8

2r2
1ca8

2r2
1da8

2r2
1a8

2
1b8

2 # , ~C7!

K0
G

5

1

2r2 F 1

4r2
~a2

1b2
22 !2

1

1

4
~aa

2
1ba

2
1ca

2
1da

2 !~a2
1b2

12 !1

A2b

2
~aa

2
1ba

2
2ca

2
2da

2 !2A2a~aaca1bada!G , ~C8!

K15

1

2r2 F ~aa8da82ba8ca8 !r2
1

1

4
~aada1baca!~a2

1b2
22 !G , ~C9!

V05

y2

16M W
2

@~l11l3!~a1
2
1b1

2
1c1

2
1d1

2
24 cos2b !2

1~l21l3!~a2
2
1b2

2
1c2

2
1d2

2
24 sin2b !2

12l3~a1
2
1b1

2
1c1

2
1d1

2
24 cos2b !~a2

2
1b2

2
1c2

2
1d2

2
24 sin2b !1l4„~a1c22a2c11b1d22b2d1!2

1~a1d21a2d12b1c22b2c1!2
24~a1d12b1c1!~a2d22b2c2!…1~l11x1!~a1a21b1b21c1c21d1d224 cos b sin b !2

1~l12x1!~a1b22a2b11c1d22c2d1!2
12x2~a1a21b1b21c1c21d1d224 cos b sin b !~a1b22a2b11c1d22c2d1!# ,

~C10!

V15

y2

16M W
2

†4~l11l3!~a1
2
1b1

2
1c1

2
1d1

2
24 cos2b !~a1d12b1c1!14~l21l3!~a2

2
1b2

2
1c2

2
1d2

2
24 sin2b !~a2d22b2c2!

14l3„~a1
2
1b1

2
1c1

2
1d1

2
24 cos2b !~a2d22b2c2!1~a2

2
1b2

2
1c2

2
1d2

2
24 sin2b !~a1d12b1c1!…12~l11x1!

3~a1a21b1b21c1c21d1d224 cos b sin b !~a1d21a2d12b1c22b2c1!22~l12x1!~a1b22a2b11c1d22c2d1!

3~a1c22a2c11b1d22b2d1!12x2@~a1a21b1b21c1c21d1d224 cos b sin b !~a1c22a2c11b1d22b2d1!

2~a1b22a2b11c1d22c2d1!~a1d21a2d12b1c22b2c1!#‡, ~C11!

V25

y2

16M W
2

@4~l11l3!~a1d12b1c1!2
14~l21l3!~a2d22b2c2!2

18l3~a1d12b1c1!~a2d22b2c2!

2l4„~a1c22a2c11b1d22b2d1!2
1~a1d21a2d12b1c22b2c1!2

24~a1d12b1c1!~a2d22b2c2!…1~l11x1!
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3~a1d21a2d12b1c22b2c1!2
1~l12x1!~a1c22a2c11b1d22b2d1!2

22x2~a1d21a2d12b1c22b2c1!~a1c22a2c11b1d22b2d1!]. ~C12!

APPENDIX D: NUMERICAL SCHEME

To implement the scheme numerically, we discretize the n

fields into N values f Ai in the range 0<r<R . The values at
the boundaries f A0 and f A(N21) are determined by the bound-
ary conditions in a way which we specify below. Hence E 9 is
a n(N22)3n(N22) matrix, and d f and E 8 are n(N22)
column vectors.

To increase the accuracy of the solution while minimizing
the number of points N we use a rescaled coordinate s, where

s5

1

lnuCu
lnF11mr

11r
G , m5

M max

M w

, C5

11mR

11R
.

~D1!

Here, M max is the maximum of @M h , M H , M A , M H6#, and
for M max5M w we used M max51.013M w . We took R

520M w
21 and used N551 points throughout. It is also con-

venient to define two new functions X(s), Y (s) through

X~s ![
ds

dr
5

1

lnuCu

1

~m21 !

~Cs
2m !2

Cs
, ~D2!

Y ~s ![
dX

ds
5

1

m21

~Cs
2m !~Cs

1m !

Cs
. ~D3!

The first derivative of the energy E 8 may be split into Higgs
boson and gauge parts

E 8H52~Yr2
12r !

d f H

ds
2Xr2

d2 f H

ds2

1

1

X

d

d f H
FK0

G
1V01

1

3
V2G , ~D4!

E 8G52Y
d f G

ds
2X

d2 f G

ds2
1

1

X

d

d f G
FK0

G
1V01

1

3
V2G .

~D5!

We use symmetric second-order accurate differencing for the
derivatives, and so

EHi8 52~Y ir i
2
12r i!

~ f Hi112 f Hi21!

2hs

2X ir i
2
~ f Hi1122 f Hi1 f Hi21!

hs
2

,

1

1

X i

d

d f Hi
FK0i

G
1V0i1

1

3
V2iG ~D6!

EGi8 52Y i

~ f Gi112 f Gi21!

hs

2X i

~ f Gi1122 f Gi211 f Gi21!

hs
2

1

1

X i

d

d f Gi
FK0i

G
1V0i1

1

3
V2iG , ~D7!

where the index i51, . . . ,(N22), runs over the rescaled co-
ordinate s, excluding the first and last points, and hs5(N

21)21, is the separation between each adjacent rescaled co-
ordinate. We did not use ( f Hi1222 f Hi1 f Hi22)/(2hs)

2 for
the second order derivative, as this would have produced two
systems independent in derivative terms, one seeing the even
points and one seeing the odd points.

The matrix E 9 is a block tridiagonal n(N22)3n(N

22) matrix of the form
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where each of these boxes are n3n matrices, and there are
(N22)3(N22) such boxes. The only nonzero terms are

the D i ,i21
2 , D i ,i

0 , and D i ,i11
1 . Note that D i ,i21

2 and D i ,i11
1 are

themselves diagonal, with entries

D i ,i21
2

5

1

2hs

Y i2

1

hs
2

X i , ~D8!

D i ,i11
1

52

1

2hs

Y i2

1

hs
2

X i , ~D9!

for the two gauge fields, and

D i ,i21
2

5

1

2hs

~2r i1r i
2Y i!2

1

hs
2

r i
2X i , ~D10!

D i ,i11
1

52

1

2hs

~2r i1r i
2Y i!2

1

hs
2

r i
2X i ,

~D11!

for the remaining Higgs fields. If we write

DAi ,Bi
0 [DAi ,Bi

0der
1DAi ,Bi

0mat , ~D12!

then D i ,i
0der are diagonal in A, B with

D i ,i
0der

5

2

hs
2

X i ~gauge fields!, ~D13!

D i ,i
0der

5

2

hs
2

r i
2X i ~Higgs fields!.

~D14!

The non-diagonal elements are symmetric in A, B with

DAi ,Bi
0mat

5

d2

d f Aid f Bi
FK0i

G
1V0i1

1

3
V2iG . ~D15!

We have to be careful about the form of E 9 at the top left
corner of the matrix, corresponding to the i51 point, affect-

ing the D1,1
0 , and the D1,2

1 terms. Also the bottom right cor-

ner, corresponding to the i5(N22) point, affecting the

DN22,N23
2 , and the DN22,N22

0 since these must implement

the boundary conditions

Because for the sphaleron the boundary conditions at the

origin are never updated, D1,1
0 , and D1,2

1 for the sphaleron are

as Eq. ~D12!. For the RWS, and bisphalerons at the origin
we use for the gauge fields

f G8 ur5050→ f Gu i505 f Gu i51 , ~D16!

and from this we are able to calculate

Cu i505arctan~2a/b !u i50 . ~D17!

For the Higgs fields we use Tables III and IV to give

cau i505aau i50tanQau i50 , ~D18!

dau i505bau i50tanQau i50 , ~D19!

where the Qau i50 are calculated from Cu i50 of Eq. ~D17!,
and using Tables III and IV according to whether we are
looking for the bisphalerons or RW sphalerons. Further im-

posing smoothness of fa
† fb at the origin gives boundary

conditions

aau i505aau i51cos2Qau i501cau i51 sin Qau i50cos Qau i50 ,

~D20!
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bau i505bau i51cos2Qau i501dau i51 sin Qau i50cos Qau i50 ,
~D21!

cau i505cau i51 sin2Qau i501aau i51cos Qau i50 sin Qau i50 ,
~D22!

dau i505dau i51 sin2Qau i501bau i51cos Qau i50 sin Qau i50 .
~D23!

To update the origin after each Newton Raphson iteration
we use Eqs. ~D16!, ~D20!–~D23!. We also use these to give

us the form of D1,1
0 and D1,2

1 when looking for the bisphale-

rons or RW sphalerons. We did this by first writing, for aa ,

2~Yr2
12r !

daa

ds
U

1

2Xr2
d2aa

ds2 U
1

52~Y 1r1
2
12r1!

1

2hs
~aau22aau1cos2Qau1

2cau1cos Qau1 sin Qau1!2X1r1
2

1

hs2
~aau222aau1

1aau1cos2Qau11cau1cos Qau1sin Qau1!, ~D24!

with the equivalent expression for the other Higgs fields; and
using Eq. ~D16!, for the gauge fields, we write

2Y
d f G

ds
U

1

2Xr2
d2 f G

ds2 U
1

52Y 1

1

2hs
~ f Gu22 f Gu1!

2X1

1

hs2
~ f Gu22 f Gu1!.

~D25!

We then, after functional differentiation of Eqs. ~D24! and

~D25!, get a form of D1,1
0 and D1,2

1 that sees the boundary

conditions.
The Qa throughout are zero if we are looking for sphale-

ron solutions, and are determined from either Tables III or
IV with Eq. ~D17! according to whether we are looking for
bisphalerons or RWS.

We now turn to the boundary conditions at infinity. The
last point is never updated since this boundary does not

evolve, and DN22,N22
0 is as Eqs. ~D12!–~D15!. We did not

use f G8 ur→`5( f GuN212 f GuN22)/hs50 as the boundary con-

dition since rescaling the radial coordinate to allow greater

accuracy at the origin reduces the number of points at large

distances. This meant that the form of the first and second

derivative were not very accurate at the last few points.

The form of E 8 of Eqs. ~D6! and ~D7! was not affected by

the boundary conditions. Because E 8 is only defined for i

51, . . . ,(N22) and first and second derivatives at i51, and

i5N22 are obtained from the already updated fields f Au0

and f AuN21.

Also recalling that E 9 of Eqs. ~56! and ~57! used in the

evaluation of the curvature eigenvalues is functionally differ-

entiated with respect to f G and r f H , and not f G and f H . The

form of D1,1
0 and D1,2

1 for evaluating the curvature eigenval-

ues is for the Higgs fields components as Eqs. ~D12! and

~D15! since d(r f H)u050. We again use Eq. ~D16! for the

gauge fields.

To find solutions other than the original sphaleron we first

find the sphaleron and determine the curvature eigenvalues

and eigenfunctions of the configuration. If there is more than

one negative curvature eigenvalue, we successively add a

fraction of the eigenfunction of the second ~or third! negative

eigenvalue to the sphaleron field configuration, measuring

the energy at each step. If we chose this fraction small

enough ~typically between 0.01 and 0.1) the energy at each

step will decreases until it reaches a minimum. When the

energy after a step is larger than the energy measured after

the previous step, we multiply the fraction by 20.1 and con-

tinue until the fraction is 21029 times its original value.

This configuration is then used as the initial configuration

for the Newton Raphson minimization routine to find the

RW sphalerons ~or bisphalerons!.
Sliding down the most negative eigenfunction of a sphale-

ron configuration reaches the vacuum. Sliding down the sec-
ond most negative eigenfunction reaches the lowest energy
branch of sphaleron like solutions, a third negative eigen-
function will reach the second lowest energy branch and so
on. In this way we were able to find bisphalerons and RW
sphalerons of the theory.

We use BLAS FORTRAN subroutines DGBCO and DGBSL to
solve for d f a of Eq. ~56! and subroutine DGEEV to evaluate
the curvature eigenvalues and eigenfunctions.
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