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Abstract A graph G is a k-sphere graph if there are k-dimensional real vectors

V1,..., Uy such that ij € E(G) if and only if the distance between v; and v; is at
most 1. A graph G is a k-dot product graph if there are k-dimensional real vectors
Vi, ..., Uy such thatij € E(G) if and only if the dot product of v; and v; is at least 1.

By relating these two geometric graph constructions to oriented k-hyperplane ar-
rangements, we prove that the problems of deciding, given a graph G, whether G is
a k-sphere or a k-dot product graph are NP-hard for all £ > 1. In the former case, this
proves a conjecture of Breu and Kirkpatrick (Comput. Geom. 9:3-24, 1998). In the
latter, this answers a question of Fiduccia et al. (Discrete Math. 181:113-138, 1998).

Furthermore, motivated by the question of whether these two recognition prob-
lems are in NP, as well as by the implicit graph conjecture, we demonstrate that, for
all k > 1, there exist k-sphere graphs and k-dot product graphs such that each repre-
sentation in k-dimensional real vectors needs at least an exponential number of bits
to be stored in the memory of a computer. On the other hand, we show that expo-
nentially many bits are always enough. This resolves a question of Spinrad (Efficient
Graph Representations, 2003).
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1 Introduction and Statement of Results

A graph G is a k-sphere graph if there are vectors vi,...,v, € R¥ such that
lvi —v;ll <1lifand onlyifij € E(G). Alternatively, a k-sphere graph can be seen as
the intersection graph of equal radius spheres in k-dimensional space; that is, we can
represent each vertex i by a sphere S; € R¥ of radius 1 in such a way that ij € E(G)
if and only if S; N S§; # @. The sphericity sph(G) of a graph G is the least k such
that G is a k-sphere graph. (Every graph has finite sphericity [10].) Sphericity was
first introduced by Havel [7] in his Ph.D. thesis to study the geometry of molecules.
Graphs of sphericity one are also called unit interval graphs, and graphs of sphericity
at most two are called unit disk graphs. Unit disk graphs have received considerable
attention over the last two decades, in part because of their relevance to applications
in wireless networks.

A k-dot product graph is a graph G that can be represented by vectors vy, ..., v, €
R¥ such that ij € E(G) if and only if viT v; > 1. The dot product dimension dpd(G)
of a graph G is the least k such that G is a k-dot product graph. (Every graph has
finite dot product dimension [6].) Dot product representations of graphs were first
introduced by Reiterman et al. [16—18] and (independently, it seems) by Fiduccia
et al. [6]. Here, it should be mentioned that Reiterman et al. used an arbitrary thresh-
old 7 € R in their definition (i.e. ij € E(G) if and only if viij > t). It is however
straightforward to adapt our proofs to this definition and we fix + = 1 for conve-
nience. Graphs of dot product one are precisely the class of graphs that have at most
two nontrivial connected components each of which is a threshold graph, cf. [6]. The
class of threshold graphs has been studied quite extensively, cf. [11].

In this paper, we will consider two related types of questions. First, we study
the algorithmic decision problems of recognizing k-sphere graphs and k-dot product
graphs. Second, we analyse the number of bits needed to store the coordinates of the
vectors vy, ..., v, € RFina k-sphere or a k-dot product representation.

By k-SPHERICITY, we mean the problem of deciding, given a graph G as in-
put, whether G has sphericity at most k. Put in different words, k-SPHERICITY is
the recognition problem for k-sphere graphs. It is known that the k = 1 version of
this problem can be solved in linear time [9]. On the other hand, Breu and Kirk-
patrick [4] proved that 2-SPHERICITY is NP-hard. Breu and Kirkpatrick used a
rather complicated reduction from SATISFIABILITY, which crucially relies on a
special embedding of instances of SATISFIABILITY on a 2-dimensional grid. They
briefly sketched how a similar embedding on a 3-dimensional grid can also be ob-
tained, showing NP-hardness of 3-sphericity, but were unable to extend this further
and they conjectured that k-SPHERICITY is NP-hard for all remaining k. We prove
their conjecture, by providing a simpler NP-hardness proof for 2-SPHERICITY that
also extends to all higher dimensions.

Theorem 1 k-SPHERICITY is NP-hard for all k > 1.
The proof of Theorem 1 builds upon techniques that appeared earlier in [13].
The decision problem k-DOT PRODUCT asks whether a given input graph has dot

product dimension at most k. For k = 1 it follows from a result of Fiduccia et al. (The-
orem 20 in [6]) and a result of Chvatal and Hammer that this is solvable in linear time.
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Fiduccia et al. [6] asked whether this recognition problem is NP-hard for other values
of k, and we affirm this.

Theorem 2 k-DOT PRODUCT is NP-hard for all k > 1.

Rather than a reduction from (some variant of) SATISFIABILITY, the proofs of
Theorems 1 and 2 follow a reduction from the so-called simple stretchability problem,
to be defined in the next section.

Having determined that the decision problems of recognizing k-sphere graphs and
k-dot product graphs are NP-hard, one might wonder whether these decision prob-
lems are members of the decision class NP. For this, we need a “polynomial certifi-
cate”. That is, for each graph that is a k-sphere (resp. k-dot product) graph, there is
a proof of this fact that can be checked by an algorithm in polynomial time. An ob-
vious candidate for such a certificate is the set of vectors vy, ..., v, of a k-sphere
(resp. k-dot product) representation. For this to be a good certificate, we would
however need to guarantee that vy, ..., v, can be stored using polynomially many
bits.

Spinrad [22] also asked how many bits are needed to store the coordinates of a
k-dot product graph, motivated by the so-called implicit graph conjecture of Kannan
et al. [8]. This conjecture asserts that, for every hereditary graph class C (i.e. C is
closed under taking induced subgraphs) such that the number of graphs on n ver-
tices in C is 29" there exists a “labelling scheme” that encodes graphs in the
class by assigning bit strings of length O(Ilnn) to the vertices in such a way that
the adjacency of two vertices u, v can be tested by examining only the labels of u
and v. It is easily shown that the number of k-sphere graphs (resp. k-dot product
graphs) on 7 vertices is 2° "™ by Warren’s Theorem, cf. [22]. A natural candidate
for the labelling scheme would be to use the vectors vy, ..., v, of some k-sphere
(resp. k-dot product) representation as the labels. For this to work, we would how-
ever need to guarantee that each of vy,...,v, can be stored using only O(Inn)
bits.

The bit size of a natural number n € N is the number of symbols needed to write
it in binary notation. It satisfies

size(n) := [logy(n + 1) ]. 6

The bit size of an integer z € Z is size(z) = 1 + size(|z]), as we need an extra bit for
the sign. In this paper, we shall use the convention that a rational number is stored
as a pair of integers (the denominator and numerator) that are relatively prime and
these integers are stored in the binary number format. Following Basu et al. [2],
we define the size of a rational number ¢ = a/b € Q with a, b € Z relatively prime
as

size(q) := size(a) + size(b). 2)
For a vector v € QF, we set size(v) := Zle size(v;).

We should remark that several other notions of the size of a rational number exist
in the literature.
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We are interested in the following quantities for G a k-sphere graph (resp. a k-dot
product graph):

fi(G) = min Z size(v(1)),
v:V(G)—>QF,
v is a k-sphere 1€V(6)
representation of G
gk (G) = min . Z size(v(1)).
v:V(G)—QF, 1eV(G)

v is a k-dot product
representation of G

It may not be immediately clear to the reader that f;(G), gx(G) are well-defined,
since this requires that every k-sphere or k-dot product graph has a representation
with all coordinates of all vectors rational. That such a rational representation always
exists follows from (the proofs of) the upper bounds in Theorems 3 and 4 below. Let
us set

Si(n) = |V(Ig§l|x:n, fi(G),

G is a k-sphere graph

and

r(n) = max «(G).
§ [V(G)|=n, &

G is a k-dot product graph

We will show that there are k-sphere graphs that require exponentially many bits, but
exponentially many bits are always enough.

Theorem 3 For every k > 1, there exist c1, co > 0 such that
chn S fk(n) S 2C2n.

Here is should be mentioned that the special case when k = 2 of Theorem 3 was
previously proved by McDiarmid and the second author [12], and a slightly weaker
lower bound for the case k =2 of f>(n) > 2% ) was previously proved in [13], the
conference version of [12].

We also show that the analogous result holds for k-dot product graphs.

Theorem 4 For every k > 1, there exist c1, co > 0 such that
29" < gk (n) <27
Theorems 3 and 4 show that the vectors of a k-sphere representation or of a k-dot
product representation cannot be used as a labelling scheme to prove a special case

of the implicit graph conjecture. They also cannot serve as certificates to prove mem-
bership in NP of the recognition problems.
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Fig. 1 A non-simple and a simple line arrangement

2 Preliminaries

A line arrangement is a system L := ({1, ..., £,) of lines in the plane. If every two
lines intersect and no point lies on more than two lines, then we call £ a simple line
arrangement (or, also, a uniform line arrangement). See Fig. 1 for a depiction of a
non-simple and a simple line arrangement.

A line ¢ divides R? \ ¢ into two pieces. In an orientation of £, we distinguish be-
tween these two pieces by (arbitrarily) calling one of them, £~, the “negative side”
and the other, £, the “positive side”. An oriented line arrangement is a line arrange-
ment for which all the lines have been given an orientation.

For convenience, from now on we shall only work with oriented line arrange-
ments. The sign vector of a point p € R? with respect to an oriented line arrangement
L=(,...,L,) isavector o(p) € {—,0,+}" defined as follows:

— ifpet;,
(0(p), =10 ifpet,
+ ifpet.

The combinatorial description D(L) of L is the set of all sign vectors
DL) := {o(p) :pE Rz}.

The set D(L) is almost the same thing as the set of covectors of an oriented matroid
and in fact it determines the oriented matroid associated with £. (Consult the mono-
graph on oriented matroids by Bjorner et al. [3] for more details.) It should be men-
tioned that various alternative combinatorial descriptions of a line arrangement are
available, such as local sequences, allowable sequences and wiring diagrams (cf. [5]).

Each connected component of R2 \ (€1 U---U¥,) is called a cell or a region.
All points in the same cell have the same sign vector, which does not have 0 as a
coordinate. A sign vector with two or more zeroes corresponds to an intersection
point between two or more lines, and a sign vector with exactly one zero corresponds
to a line segment.

If D(L) = D(L'), then we say that £ and £’ are isomorphic. We will use a number
of relatively straightforward observations about (oriented) line arrangements in our
proofs below. For completeness, we include their proofs in the Appendix.
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Lemma 5 Let L be a line arrangement. Then there exists o € D(L) N {—, +}" such
that —o € D(L) N{—, +}".

n+1

5 ) cells, and it is simple

Lemma 6 A line arrangement on n lines has at most 1 + (
if and only if it has exactly 1 + ("42'1) cells.

Lemma 7 Let L be a simple oriented line arrangement, and let L' be an oriented
line arrangement with the same number of lines. Then L and L' are isomorphic if
and only if D(L) N {—, +}" =D(L) N {—, +}".

Similarly to a line arrangement in the plane, a k-hyperplane arrangement H =
(hi, ..., hy) is asystem of (affine) hyperplanes in R¥. We define a cell, an orientation,
a sign vector and the combinatorial description in precisely the same way as for lines.

Recall that an affine transformation T : R¥ — RF is a linear transformation fol-
lowed by a translation. Put differently, it is a map of the form x — Ax + b, where
A is a nonsingular k x k matrix, and b € R* is a (constant) vector. We will need the
following observation in the sequel. The straightforward proof can again be found in
the Appendix.

Lemma 8 Let H be an oriented k-hyperplane arrangement, and let T : R¥ — RK
be an affine transformation. Define another oriented k-hyperplane arrangement by
setting

h;:=TIlhil,  (h)" :=T[h],

1

)" = 1.
Then H and H' are isomorphic.

STRETCHABILITY is the problem of deciding, given a set S € {—, 0, +}",
whether S is the combinatorial description of some oriented line arrangement of
n lines. We can also define an orientation and a combinatorial description for an
arrangement C = (cy, ..., ¢,;) of continuous curves (that satisfy some regularity con-
ditions) in the same way. The name “stretchability” now comes from the idea that
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we may ask, for an oriented system of curves in the plane, whether there is a line
arrangement with the same combinatorial description. In this case, we may imagine
the curves “stretching” into lines.

Similarly, SIMPLE STRETCHABILITY is the problem of deciding, given a set
S C {—, 0, +}", whether S is the combinatorial description of some oriented simple
arrangement of n lines.

Theorem 9 (Shor [21]) SIMPLE STRETCHABILITY is NP-hard.

This theorem is also a straightforward corollary of a deep topological result by
Mnév [14]. Shor’s proof is more direct. It reduces a SAT-variant to stretchability
using Pappus’ and Desargues’ theorems, cf. Chap. 8 of [3].

3 The Proofs

For the NP-hardness proofs, it will be useful to define an intermediate decision prob-

lem. For k > 1 and S C {—, +}" with (—,..., =), (+,...,+) € S, we say that S is
k-realizable if there exists an oriented k-hyperplane arrangement H with § € D(H).
The condition that (—, ..., —), (+,...,+) € S is useful for technical reasons later

on in the proofs of Theorems 1 and 2. For k > 1, we let k-REALIZABILITY denote
the algorithmic problem of deciding, given a set S C {—, +}" as input, whether S is
k-realizable.

Theorem 10 k-REALIZABILITY is NP-hard for all k > 1.
The proof of Theorem 10 relies on the following observation:

Lemmall LetS C {—, +}" with(—, ..., =), (+,...,+) € Sand k > 1 be arbitrary
and set 8" :== S x {—, +}. Then S is k-realizable if and only if S" is (k + 1)-realizable.

Proof Let k, S, S’ be as in the statement of the lemma. Let us first suppose that
there exists an oriented hyperplane arrangement H = (h1, ..., h,) in R¥ such that
S € D(H). Define a new hyperplane arrangement ' by

Wo=hi xR, () =h7 xR, (b)) =h} xR,

1 4 1

fori=1,...,n,and
W =REx {0}, (W) =Rx{x:x <0}, o
(h:H])Jr =RF x {x :x > 0}.

For each s € S, there exists p € R¥ such that o9¢(p) = 5. If we set p; = (p, —1)
p2 = (p, 1), then clearly o74/(p1) = (s, —) and 074/ (p2) = (s, +). Thus, S' € D(H),
as required.

@ Springer



Discrete Comput Geom (2012) 47:548-568 555

Now, suppose that S C D(H') for some (k + 1)-hyperplane arrangement H'. By
Lemma 8, we can also assume without loss of generality that (3) holds. Let us define
a k-hyperplane arrangement H = (h1, ..., h,) by identifying R* with R* x {0} in the
obvious way and setting

hi =R, h7= ()" NRE, = ()T NRE @)
It is not immediately clear that each A; is a k-hyperplane, since we might have h; = 0,
in case &} and &, , happen to be parallel, or 7; = R¥, in case h; and h)_ | coincide.

n+1
However, if none of these two cases holds, then dimpe-+1 (h; N h;l +1) =k — 1 so that

h; is a well-defined hyperplane in R¥. We shall see soon that this is in fact the case
foralli=1,...,n.

Let s € S be arbitrary, and let us write s; = (s, —), s2 = (s, +). Pick p1, p2 € Rk+1
such that o3¢ (p;) = s;. Then py € (h), )~ and py € (h;H_l)JF, so that the segment
[p1, p2] must intersect h;H = R¥ x {0} at some point p’ = (p,0). It is clear that
o (p') = (s,0) and hence o (p) =ss.

It remains for us to show that the &; are well-defined hyperplanes in R¥. To this
end, recall that (—,...,—),(+,...,+) € S. Let p,q € R¥ be points with o/ (p) =
(—...;—),014(q) = (+,...,+) and let £ be the line between p, g. Then £ C Rk =
h;wl and ¢ hits all of /2", h;, h;r foreachi =1, ..., n. Hence, we cannot have h; = )
or hj = R¥ so that &; is a well-defined k-hyperplane. O

Proof of Theorem 10 We shall start by considering the case when k = 2. For k = 2,
we shall use a reduction from SIMPLE STRETCHABILITY. Let D C {—, 0, +}" be
some set of sign vectors. We need to construct, in polynomial time, a set S C {—, +}"
such that S is 2-realizable if and only if the answer to SIMPLE STRETCHABILITY
with input D is “yes”.

We can assume that |[D N {—,+}*| =1+ (";1 ). This is because, if |D N
{— +}'1#1+ (” 42'1 ), then the answer to the SIMPLE STRETCHABILITY-instance

is “no” by Lemma 6. We can certainly determine if |D N {—, +}"| # 1 + (”erl) in
polynomial time, and if so we can simply output a set S C {—, +}" which we know
is not 2-realizable. Similarly, we can assume that there is some s € D N {—, +}"
such that —s € D. (We can check for the existence of such a pair in polynomial
time, and non-existence of such a pair would imply that the answer to the SIMPLE
STRETCHABILITY-instance is “no” by Lemma 5.)

Now, let us pick such a pair s,—s € D N {—,+}" and let f : {—,0,+}" —
{—,0,+}" denote the map that changes + to — and changes — to + in all co-
ordinates i where s; = + and leaves all other coordinates unchanged. Let us set
D' := {f(t) : t € D}. Note that f(s) = (—,...,—) and f(—s) = (+,...,+). If
D = D(L) for some line arrangement, then D’ corresponds to a “reorientation”
(i.e. switching the roles of A, and h,+ for some indices i). Thus, D = D(L) for
some simple oriented line arrangement £ if and only if D’ = D(L’) for some sim-
ple oriented line arrangement £'. (D’ is constructed from D to ensure the technical
promise that (—, ..., =), (+,...,+) € S given earlier.)

We now set § = D’ N {—, +}". We claim that S is 2-realizable if and only if
D ="D(L) for some simple oriented line arrangement L.
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To see this, first note that if D = D(L) for some simple L, then S is 2-realizable by
construction. Let us thus assume that S is 2-realizable. By Lemma 6, there is a simple
L such that S € D(L). Lemma 7 now implies that D(£) = D’. But then we also have
that D is the combinatorial description of some simple oriented line arrangement.
Thus, S is 2-realizable if and only if D is the combinatorial description of a simple
oriented line arrangement, as claimed. Since all the steps above to produce S from D
can clearly be implemented in polynomial time, this proves the theorem for k = 2.

Let us now consider the case k > 2, and suppose that we have already shown
that (k — 1)-REALIZABILITY is NP-hard. Since it is clear that we can construct
S’ =8 x {—, +} in polynomial time from S, it is a direct consequence of Lemma 11
that k-REALIZABILITY is also NP-hard. |

To prove Theorems 1 and 2, we will also need the following technical lemma.

Lemma 12 Let ¢ > 0, K > 0 be arbitrary, and let 'H be an oriented hyperplane

arrangement with (—, ..., =), (+, ..., +) € D(H). Then there exists H' with the fol-
lowing properties.

(i) D(H') = D(H).

(i1) The origin 0 belongs to the (—, ..., —)-cell of H'.

iii) For each oriented hyperplane h'. of H', we can write
yperp i 0
+ +
h={z:v]z=¢}, n={z:vz <, h={z:vlz> ¢},

with ||lv; —e1|| < & (where e; = (1,0, ...,0)).
(iv) Every cell of H' intersects the ball B((K,0, ..., 07, e).

Proof The proof is by means of repeated applications of Lemma 8. By using a
suitable scaling z > Az if needed, we can ensure that every cell of H intersects
the ball B(0, ¢/2) of radius /2 around the origin. In particular, there are points
p,q € B(0,e/2) suchthat o (q) = (—,...,—),0(p) = (+,...,+). Let £ denote the
line through p and g. Notice that all the hyperplanes A1, ..., h, must intersect £ in
the open segment (p, q).

Let r be the connected component of £ \ (p, g) that contains ¢g. Thus, r is a “ray”
emanating from ¢. All points of r must have sign vector (—, ..., —) (since none of
the hyperplanes k1, ..., h, hits r). By applying a suitable translation followed by a
rotation, we can map ¢ to the origin 0 and r to the nonnegative e;-axis {(x,0,...,0):
x < 0}. Notice that now, since we have translated over a distance of ||g|| < /2, every
cell intersects B(0, ). Also, notice that the positive ej-axis intersects each of the
hyperplanes k1, ..., hy.

Next, we will rescale only the e;-axis to make all hyperplanes have normals that

are close to the ej-vector. To see that this can be done, let vy, ..., v, be vectors and
c1,...,cy be constants such that

hiz{z:viTzzci}, hi_z{z:viTz<c'i}, hi+={z:viTz>c,~}.
Note that, since 0 € ;" , we have ¢; > 0 for all i. Similarly, since (x,0,...,0) € h;”

for all x <0, we must then also have (v;); > 0. Also, note that, since e is not parallel
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to h; (recall that A; intersects the positive ej-axis), we must have (v;); # 0 for all i.
Now, let T' denote the linear transformation T : (z1, ..., 2s) — (AZ1,22,...,2n), foOr
some A > 0. Then we obtain

h;={T(): ]z =ci}
={z: 27 Wiz + Wiaza + - + Wnza = ci}-
Let us write
wi =7 L o, @) w=wi/lwll, di=c/wl.

Clearly, h: ={z: ul.Tz =d;}. Now, note that u; — e; as A \( 0. Thus, if we take XA
sufficiently small, then we obtain ||u; — e;|| < € for all i. Notice that, since we have
merely “scaled down” the ej-coordinate of all points in R¥, it still holds that every
cell intersects B(0, €) and the nonpositive e1-axis belongs to the all-minus cell.
Finally, if we apply the translation z — z 4+ Kejp, then it is clear that the
normals of the hyperplanes do not change and the ball B(0, e) is mapped into
B((K,O0,...,0)7, ¢). Hence, every cell now hits B((K, 0, ..., 0)7, ). Moreover, the
origin still lies in the cell corresponding to (—, ..., —), since the nonpositive e;-axis
was mapped onto {(x,0,...,0):x < K}. O

Proof of Theorem 1 We will use a reduction from k-REALIZABILITY. Thus, given
aset S C {—,+} with (—,..., =), (+,...,+) € S, we will construct (in polynomial
time) a graph G such that G is a k-sphere graph if and only if S € D(H) for some
oriented k-hyperplane arrangement H.

Given S C {—, +}", let G = G(S) be a graph on 2n + | S| vertices which is defined
as follows. Let V(G) = AU BUC, where A ={ay,...,a,}, B=1{by,...,b,} and
C ={cs : 0 € S}. The edge set of G is as follows:

ajaj,bibj € E(G) forall 1 <i <j<n;
aibj ¢ E(G) forall 1 <i, j <n;

cocr €E(G) forallo A1 € S;

aicy € E(G) if and only if 0; = —;
bicy € E(G) if and only if 0; = +

It should be clear that G(S) can be constructed in polynomial time. It remains to show
that G is a k-sphere graph if and only if there exists a k-hyperplane arrangement
such that S € D(H).

First, suppose that G can be realized as a k-sphere graph. That is, there is a func-
tion v : V(G) — R¥ such that |Jv(s) — v(#)|| < 1 if and only if st € E(G). Let us
define a hyperplane arrangement H as follows:

hi = {z: |z —v@)| = |z — v}
hy = {z: ||z —v@@)| < |z —v®)|}. ®)
hi={z: |z —v@)| > |z — v |}
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Notice that, for each o € §, if 0; = —, then v(cs) € B(v(a;), 1) \ B(v(b;), 1). So
v(cy) is closer to v(a;) than to v(b;) and hence it lies in /; . Completely analogously,
v(ce) €} if o; = +. This shows that S € D(H).

Next, suppose that there exists H with § € D(H). We can assume that H satisfies

the conclusions of Lemma 12 with K := 1000 and ¢ := 1/1000. Let vy, ..., v, and
c1,...,Cn be as provided by part (iii) of Lemma 12. For notational convenience, let
us write B := B((K,0,...,007,¢) and u; := vi/|lvi||. It follows from |jv; —eq|| <&
that

lu;i —eq|l <3¢ foralli. (6)

For each o € §, let w(c,) be a point of B with sign vector o with respect to H. For
eachi=1,...,n,let p; be apoint of #; N B. (To see that such a point exists, note that
B contains a point of #;” and a point of hl+ The segment between these two points
must hit 4;.) For r > 0, let us set

- + .
wi,}" '_pi_rui’ wi,r _pl+rula
and
- . — + . +
Bi,r - B(wi,r’ r)’ Bi,r - B(wi,r’ r)

Notice that B;, C h; and Bit C hf Moreover, if v’ > r, then
L,r —

- - + +
B: CBl.!r, and Bi,rgB[,r"

Also, note that

Us,=n. UBL=n

r>0 r>0
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Hence, for all large enough r, it must hold that w(cy) € B; , for all i and all o
with 0; = —, and w(cy) € B:‘r for all i and all o with o; = +. Let us choose such
an r, and set w(a;) := w;r, w(b;) = wfr foralli=1,...,n.

If wenow setv(r) = w(t)/r forallt € V(G), then we see that ||v(a;) —v(cy)| <1
if and only if 0; = —, and ||v(b;) — v(cy)|| < 1 if and only if o; = +. Moreover, since
w(cq), wicr) € B,

[v(ce) —vico) | = [|wleo) — wico)||/r <2¢/r <1,

for all o, T € S. Similarly, we find

3

[v@a) —viap|. v —v@)| < llui —ujll+lIlpi — pjll/r
<6e+2¢/r

<1

)

where we have used (6), and

|v@) —v@))| = |r +up)+pi —pi|/r
>2—6ec—2¢/r

> 1.

Thus, v(-) defines a good representation of G as a k-sphere graph and we are done. [J

Proof of Theorem 2 'We again use a reduction from k-REALIZABILITY. Given S C
{—, +}* with (—, ..., =), (+,...,+) € S, let G = G(S) be a graph on n + |S| ver-
tices which is defined as follows. Let us write V(G) = AU B, where A = {ay, ..., a,}
and B = {b, : 0 € §}. The edge set of G is as follows:

o giaj € E(G)forall 1 <i < j<n;
e bbb, ¢ E(G)forallo #1 € S;
e bya; € E(G) if and only if 0; = +.
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It should be clear that G can be constructed from § in polynomial time. It remains
to show that G is a k-dot product graph if and only if there exists a k-hyperplane
arrangement H with § € D(H).

First, let us assume that G is a k-dot product graph. Thus, there is a function v :
V(G) — R¥ such that v(s)T v(¢) > 1 if and only if st € E(G).Foreachi=1,...,n,
let ¢; be a number with

max{v(ai)Tv(ba):aeS,ai=—}<ci < 1. @)

This choice of ¢; ensures that v(a;)Tv(by) < ¢; if 0; = —, and v(a;)Tv(by) > ¢; if
o; = +. Now, let the oriented hyperplane arrangement H be defined by

hi = {z:v(ai)Tz:c,-}, hi” = {z:v(ai)Tz<c,~},
hiti=lz:v@) z> ¢}

Under this definition, it is clear that, for each o € S, the sign vector of v(b,) with
respect to H is exactly o.

Now, suppose that there exists some H such that § € D(H). We may assume that
‘H satisfies the conditions of Lemma 12 with K := 1000, & := 1/k. Let vy, ..., v,
and cy, ..., c, be as provided by part (iii) of Lemma 12. For notational convenience,
let us write B := B((K,0,...,0), ¢).

For each o € S, let us pick a vector v(bys) € B such that v(b,) has sign vector o
with respect to H. Foreachi =1, ..., n, letus set v(a;) := v; /c;. It is clear that

v(bo) T v(by) > (K —)? — (k— 1e? > 1,

for all o, T and that v(a;)T v(b,) > 1 if and only if o; = +.

We now claim that ||v(a;)|| < 1 for all i. To see this, recall that by part (iv) of
Lemma 12 there is some p € B such that (o(p)); = — and hence ¢; > vl.Tp. Since
lvi —e1|| <&, we have

ci>vlp>1—e)(K—e)— (k-1
As ||vi|| < 1+ &, we indeed obtain
lv@@ | = lhvill/ci
<(1+&)/((1—e)K — (k— 1)e?)
<1.

(Here we used that, since the origin lies in the all-minus cell, we have ¢; > 0 for all
i =1,...,n.) This proves the claim that ||v(a;)|| < 1 for all i, which in turn gives that
v(a)Tv(a;) < 1foralli, .

Thus, we have constructed a valid k-dot product representation of G, which con-
cludes the proof. O

We now turn our attention towards the proofs of Theorems 3 and 4. For the upper

bound on the bit sizes, we will use a result by Basu, Pollack and Roy. The following
is a reformulation of Theorem 1.3.5 of [1]:
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Theorem 13 [1] For each d, t € N, there exists a constant C = C(d, K) such that
the following holds. Suppose that F is a set of polynomials in n variables, each with
degree at most d and with integer coefficients of bit size at most t. If there exists a
solution (xy,...,x,) € R" of the system { f(x) > 0: f € F}, then there also exists
one with each x; a rational x; = a; /b; with size(a;), size(b;) <1 -der,

Proof of the upper bound in Theorem 3 The vectors vy, .. ., v, € R¥ form a k-sphere
representation of G if and only if they satisfy the following set of inequalities:

=~

S (Wi —wj))* <1 forallij € E(G),
t=1

k
S (e = j))* > 1 forallij ¢ E(G).

t=1

®)

Suppose they do. Now, notice that, if we “shrink” the vectors very slightly (i.e. if we
put v} := Av; for some A < I but A very close to 1), then we obtain a representation
in which all inequalities of (8) are strict. Observe that all degrees of the polynomials
in (8) are two, and all coefficients are at most two in absolute value.

Since the inequalities can be taken strict, we can apply Theorem 13 and find a
solution vy, ..., v, of (8) such that each coordinate of each v; is a rational number
a/b with size(a), size(b) < 29 Hence, the sum of the bit sizes of the coordinates
is no more than 2kn29 =20 This concludes the proof. g

Proof of the upper bound in Theorem 4 The vectors vy, ..., v, € RF form a k-dot
product representation of G if and only if

v/vi>1 forallij e E(G), ©)
Tv, <1 forallij ¢ E(G).

v

Suppose they do. By “expanding” very slightly (i.e. by multiplying all vectors by
the same scalar A > 1 with A very close to 1), we get a solution of (9) for which
all inequalities are strict. We now proceed completely analogously to the proof of
Theorem 3. O

An intersection point of a k-hyperplane arrangement 7 is a point that is the unique
point common to a subset of the hyperplanes of . That is, there are hyperplanes
hiys ..., hi, € H such that

{p}=hiy,0---Nhy,.

Let us observe that we can always take such a subset to consist of precisely m = k
hyperplanes. Let i (H) denote the set of intersection points of H.

The span span(’H) of a hyperplane arrangement H denotes the ratio of the largest
distance between two distinct intersection points to the smallest non-zero distance
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between two intersection points. That is,

span(H) := max — min —q]|.
pan(H) p‘qei(wllp ‘”'/p,qe,m) lp—qll

p#q

The proof of the lower bound makes use of the following recent result of McDiarmid
and the second author [12] (the result stated is an immediate corollary of Theorem 3.2
in [12]):

Theorem 14 [12] There exist universal constants «, B such that the following holds.
For every r € N, there exists n < ar and a set S C {—, +}" with |S| < Br such that

(i) there exists a line arrangement L with S C D(L), and
(i) span(L) > 2% for every line arrangement with S € D(L).

This result has the following corollary.

Corollary 15 For every k > 1, there exist « = a(k), B = B(k) > O such that the
Jollowing holds. For every r € N, there exists n < ar and a set S C {—, +}"* such that
|S| < Br and

(1) (_9"’7_)7(+5"'5+)€S’
(ii) there exists a k-hyperplane arrangement L with S C D(L), and
(iii) span(L’) > 2% for every k-hyperplane arrangement L' with S € D(L').

Proof We start with the case k = 2. Let «, 8 be as in Theorem 14. Let » € N be
arbitrary, and let n = n(r), S = S(r) as provided by Theorem 14. Let £ be an oriented
line arrangement with S € D(L). By Lemma 5, we can find a pair s, —s € D(L). It
is clear that, if we set S’ := S U {s, —s}, then §’ still has properties (i) and (ii) of
Theorem 14.

Recall that in a reorientation of £ we switch the roles of £;" and Ef for some
indices i. Thus, a reorientation certainly preserves span(L). Let f : {—, 0, +}" —
{—,0,+}" be the “reorientation” map from the proof of Theorem 10 with s
(=, ...,—)and —s > (+,...,+),and set S’ := f[SU{s, —s}]. Then |S'| < Br+2 <
2Br. Moreover, any oriented line arrangement £ with §” € D(L’) can be reoriented
(via the same map f, in fact) to an oriented line arrangement £ with S U {s, —s} C
D(L). Hence, any such oriented line arrangement has span(£’) > 2% . This proves
the case k = 2 of Corollary 15 with «(2) := «, B(2) :=28.

Let us now assume that Corollary 15 has been proved for k > 2. Let r € N be
arbitrary, and let a(k), B(k), n =n(k,r), S = S(k,r) be as provided by the case k of
Corollary 15. Let us set

atk+ 1) :=2ak),  Bk+1):=28(k), ntk+1,r)=nlk,r) +1,
S'=8k+1,r):=8x{—,+}.

These choices clearly satisfy n(k + 1,7) <a(k+ D)r, |S(k+ 1,r)| < B(k + 1)r and
(—eees =)y (+,...,+) € S(k+ 1,r). By Lemma 11, there is at least one oriented
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(k + 1)-hyperplane arrangement ' such that S’ € D(H'). This shows part (ii) of
Corollary 15 also holds. It remains to show part (iii).

Now, let H’ be an arbitrary oriented (k + 1)-hyperplane arrangement H’ with S’ C
D(H’). Let us apply an isometry T : R — R* that maps h;z+1 to R*~1 x {0}. Since T
is an isometry, this does not affect span(7’). If the oriented k-hyperplane arrangement
‘H is defined as in (4), then the proof of Lemma 11 shows that S € D(H) and hence
span(H) > 22". Now, let p € i(H) be arbitrary. Then p is the unique intersection
point of some k-hyperplanes 4;,, ..., h; of H. Thus, we can write

{PY=hiy N0 ---Nhy=h; O---Nh, Nhy. .

Hence, we also have p € i (H'). Since p was arbitrary, we have i (H) € i(H'), which
immediately implies

span(H’') > span(H) > 2%,

Because H’ was an arbitrary (k + 1)-hyperplane arrangement with § € D(H’), this
proves part (iii) of Corollary 15. O

Before we continue with the proofs of the lower bounds in Theorems 3 and 4,
it is convenient to state one more auxiliary result. We have already defined the bit
size of an integer, a rational and a rational vector. For A a rational matrix, we defined
size(A) := Zi, j size(A;;). The following is a reformulation of Corollary 3.2b in [20]:

Lemma 16 [20] There exists a universal constant K > 0 such that the following
holds. If the system Ax = b of rational linear equations has a solution, then there is
also a solution with size(x) < (size(A) + size(h))X.

Here it should be noted that Schrijver actually uses a notion of the bit size of a
vector or matrix that is slightly different from ours. Schrijver’s bit size is however
never more than a factor two larger than our bit size and never smaller than half our
bit size, so that Lemma 16 is a straightforward corollary of Corollary 3.2b in [20].

With Lemma 16 and Corollary 15 in hand, we are now able to prove the lower
bounds in Theorems 3 and 4.

Proof of the lower bound in Theorem 3 Let us fix an arbitrary » € N and let n = n(r),
S = S(r) be as provided by Corollary 15. Let G = G(S) be as in the proof of Theo-
rem 1. Now, let v : V(G) — R be an arbitrary k-sphere representation of G, and let
‘H = (hy, ..., h,) be as defined in (5). As shown in the proof of Theorem 1, we have
S € D(H). Observe that we can also express h; as

hi={zeR": (v(a;) — v(bi))Tz = (v(a) - v(bi))T(v(ai) +u(b)/2}. (10)

Now, let p be an intersection point of . Then there are h;,, ..., h; € H such that
{p}=hi N---Nh;. Using (10), we can write p as the unique solution of
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where the rows of A are (v(a;;) —v(b;, nr,..., (v(a;,) — v(bik))T and the entries of b
are (v(a;,) — v(bi)) T (@) +v(bi)))/2. ..., (wai,) —vbi)T (v(ai) + v(by))/2.
Let 0 € N be such that Ztev(c) size(v(t)) < o. It is easily seen that size(A) +

size(b) = 0(c©) for some C = C (k) > 0, so that by Theorem 16 every intersection
point p also satisfies size(p) < o X for some constant K = K (k) > 0.

Now, let p, g be two distinct intersection points. Observe that by definition of bit
size,

pj—ai1 =27,
foreach j =1,..., k. Similarly,
if pj #qj then |p; — g1 > 1/2%"
Thus, we have that
k
Ip—ql <> Ipj—q;l <k2*"
j=1

and
2 K
Ip—qll =max|p; —q;| > 1/2%
J
for any pair of distinct intersection points. We see that

k24" > span(H) > 2%,

This amounts to

1/K
o> (Qr _iogz k) _ p(r=2logy(1-log, k/2)/K 5 per (1

for some ¢ > 0, provided r is sufficiently large. Since v : V(G) — R¥ was an arbitrary
k-sphere representation,

fi(G) =27,

for r sufficiently large.
We now claim that this implies

fi(n) = 2" (12)

for all n, with ¢’ > 0 a suitably chosen universal constant. To see this, pick an arbitrary
n € Nand set r := [n/(2a + B)]. For n sufficiently large, our proof gives a graph G
on at most n vertices with f;(G) > 2 > on¢/(4a+28) We can add additional isolated
vertices to get a graph with exactly n vertices. This shows fj(n) > 2¢/(4@+28) for
all n > ng, where ng is some constant. Now, note that trivially fi(n) > 2kn for all n
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(since we need at least one bit for each denominator and numerator). Hence, if we set

= min(%, m), then (12) indeed holds for all n. O

Proof of the lower bound in Theorem 4 Let us fix an arbitrary r € N and let n = n(r),
S = S(r) be as provided by Corollary 15. Let G = G(S) be as in the proof of Theo-
rem 2, and let v : V(G) — R be an arbitrary k-dot product representation of G. For
i=1,...,n,letus set

ci = %(1 +max{v(a,~)TU(bg) o€l o= —})

Then the ¢; clearly satisfy (7). (By the construction of G (S), we have v(a;)" v(b,) <
1 for all i and o € S with o; = —.) Now, let H be defined by

hi = {z:v(ai)Tz=ci}, hi” = {z:v(ai)TZ<ci},
hiT = {z : v(ai)Tz > ¢ },
as in the proof of Theorem 2. Thus, we have § € D(H).
Let p € i(H) be an intersection point. Then there are hyperplanes 4;,, ..., h;, of

‘H such that {p} = h;; N---N h;,. In other words, p is the unique solution of the
matrix equation

Ap =0b,
where A is a (k x k)-matrix with rows v(a;,)7, ..., v(a;)T and b € R* has coordi-
nates ¢;,, ..., ¢j,. Observe that, writing o := Z,eV(G) size(v(t)), we have size(A) +

size(b) = O (o X) for some constant K = K (k). We can thus proceed as in the proof
of the lower bound in Theorem 3 to show that

fi(n) =2,

for some universal constant ¢ = c(k), as required. Il

4 Discussion and Further Work

Mnév’s work [14, 15] (see also [3, 21]) actually proves that SIMPLE STRETCH-
ABILITY is polynomially equivalent to the decision problem for the “existential the-
ory of the reals” (ERT). ERT is the problem of deciding, given as input a set of
polynomial equalities, inequalities and strict inequalities with integer coefficients,
whether there exists a simultaneous real solution. While membership in NP for
k-SPHERICITY and k-DOT PRODUCT remains open, our proofs in fact imply that
both are polynomially equivalent to ERT. So our results imply in particular that if one
were to give a polynomial certificate for either k-SPHERICITY or k-DOT PROD-
UCT then this would prove that ERT is in NP. As ERT is a pretty central notion
in complexity theory (many other decision problems can for instance be written as
special cases of ERT), proving that either k-SPHERICITY or k-DOT PRODUCT is
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in NP would thus constitute a minor breakthrough in complexity theory. For more
discussion of the complexity class characterized by ERT as well as its connection
to other geometric and topological graph representations, see the recent survey by
Schaefer [19].

We have seen that the vectors of a k-sphere (resp. k-dot product) representation
may require exponentially many bits to be stored in the memory of a computer, which
means that they cannot serve as a polynomial certificate for the recognition problem
and certainly not as a labelling scheme to prove a special case of the implicit graph
conjecture. However, this is only if we use the obvious way of encoding the vectors
as bit strings using the binary number format. Perhaps there is a more economical
way to “encode the geometry” of the vectors.
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Appendix: The Missing Proofs

Proof of Lemma 5 Let L= (£1,...,4{,) be an arbitrary line arrangement. Let £ be a
line whose slope is different from the slopes of £1, ..., £,,. Then each line ¢; intersects
£ in a point p;. Let p, g € £ be points such that the open segment (p, g) < £ contains
all these intersection points. Hence, p and g lie on opposite sides of ¢; for every i.
This implies that (o(p)); = —(o(q)); for all i. O

Proof of Lemma 6 Let us first observe that every non-simple line arrangement has
strictly fewer cells than a simple line arrangement on the same number of lines. This
is because, if three or more lines go through a common point p, then we can shift one
of the lines very slightly so that it no longer goes through p and at least one extra cell
is created.
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It remains to show that a simple line arrangement £ = (€1, ..., £,) has exactly
1+ (1142-1) lines. We shall use induction on n. When n = 1, it is clear that there
are exactly two regions. Now, suppose that every simple line arrangement on n — 1
lines has exactly 1+ (g) cells. The line arrangement £ = (€1, ..., £,_1) is certainly
simple, and therefore has exactly 1+ (;) cells. Since L is simple, ¢, intersects every
line of £’ exactly once. Thus, the intersection points with the n — 1 lines of £ divide
¢, into exactly n segments. Each of these segments divides a cell of the old line
arrangement £’ into two cells of the new line arrangement £. Hence, the number of

cells 0f£ispreciselyn~|—(1—I—(g)):l—{—(";l). O

Proof of Lemma 7 1t suffices to show that D(L£) N {—, +}" determines all the other
sign vectors of D(L). To see this, notice that two cells have a common edge if and
only if their sign vectors differ in precisely one coordinate. Hence, we can reconstruct
the sign vectors with exactly one zero, by finding all pairs of sign vectors in D(L£) N
{—, +]}" that differ in exactly one coordinate, and substituting O in this coordinate.

Similarly, two edges belonging to the same line (which is true if and only if the
unique zeroes of their sign vectors occur in the same position) meet in an intersection
point if and only if their sign vectors differ in exactly one coordinate. Hence, we can
reconstruct sign vectors with exactly two zeroes by finding all pairs of sign vectors
with exactly one zero that agree on the position of the zero and in all other positions
but one, and then substituting O in the position where they disagree.

Since there are no sign vectors with more than two zeroes in a simple line arrange-
ment, this procedure will indeed produce D(L). 0

Proof of Lemma 8 Let z € RFand1<i<nbe arbitrary. Observe that 7 € h; if and
only if T'(z) € (h})~, and similarly for h;“, h;. This shows that 07/(z) = o1/ (T (2))
for all z € R¥. Since T is a bijection, we must have D(H) = D(H’), as required. [
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