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Sphere-Constrained ML Detection for Frequency-Selective Channels
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Abstract—The maximum-likelihood (ML) sequence detection
problem for channels with memory is investigated. The Viterbi
algorithm (VA) provides an exact solution. Its computational
complexity is linear in the length of the transmitted sequence,
but exponential in the channel memory length. On the other
hand, the sphere decoding (SD) algorithm also solves the ML
detection problem exactly, and has expected complexity which
is a low-degree polynomial (often cubic) in the length of the
transmitted sequence over a wide range of signal-to-noise ratios.
We combine the sphere-constrained search strategy of SD with
the dynamic programming principles of the VA. The resulting
algorithm has the worst-case complexity determined by the VA,
but often significantly lower expected complexity.

Index Terms—Expected complexity, frequency-selective chan-
nels, maximum-likelihood (ML) sequence detection, sphere
decoding, Viterbi algorithm (VA).

I. INTRODUCTION

WE consider the frequency-selective channel model, with
input/output relation given by

(1)

where are the coefficients of the channel im-
pulse response, denotes the channel length, is the th symbol
in the transmitted sequence chosen from an -pulse amplitude
modulation (PAM) constellation

, and denotes a Gaussian noise sample . Over
a horizon of length , the maximum-likelihood (ML) sequence
detector minimizes the cost function

(2)

to find the most likely transmitted symbol sequence
. The Viterbi algorithm (VA) [1] exploits the

Markovian property of the channel, and finds the sequence
which minimizes by using dynamic programming ideas.
Typically, the VA is employed as a breadth-first search on
a trellis, a directed graph describing systems with memory,
illustrated in Fig. 1. The key observation is that can be
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Fig. 1. Trellis with four states. The “empty” nodes indicate states which violate
the sphere constraint and are thus pruned by the combined VA/SD. For instance,
as indicated above, C (S ) > r .

recursively computed as

(3)

Clearly, the second term on the right-hand side (RHS) of (3)
does not depend on , but only on the current symbol

and the current memory of the channel .
The possible states of the channel memory comprise the
state set (see Fig. 1). To find the th segment of the op-
timal path, it is sufficient, for every state (

), to keep only the branch emanating from a state in
and terminating in the state that has the smallest tran-

sition cost. This procedure can be done recursively. The trellis
path of length that has the smallest cost is the optimal path.
The signal sequence that corresponds to the branch transitions
along the optimal trellis path is the solution to the ML detec-
tion problem. The complexity of the VA is proportional to the
number of states, and thus grows exponentially with the length
of the channel. On the other hand, it is linear in the length of the
data sequence.

The sphere decoding (SD) algorithm [2] can also be used for
detection on channels with memory [3], [4]. Permitting a guard
interval, the SD algorithm provides ML performance. To em-
ploy SD, we first need to write (1) as

where the vectors and , the
matrix , and the vector are given by

...
...

...
. . .

. . .

... (4)

0090-6778/$20.00 © 2006 IEEE



1180 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 7, JULY 2006

The ML detection can now be expressed as an integer least-
squares problem

(5)

This problem has a geometric interpretation: given a point ,
find the closest lattice point in a skewed lattice . The SD al-
gorithm solves (5) by performing a search over only those points

that belong to a sphere around . The radius of the sphere
is chosen so that we find a point inside the sphere with a high
probability. We assume that the noise samples
are independent and identically distributed (i.i.d.); hence

is a chi-square random variable
with degrees of freedom. Thus, the radius can be
chosen probabilistically so that

(6)

where . The condition that a point belongs to the
sphere of radius is given by

(7)

The summation on the RHS of (7) can be expanded to yield a
set of conditions on the components of

etc.

where , ,
, etc. Note that this gives conditions on the

components of which are necessary, but still not sufficient.
Only if the additional constraint

where is satis-
fied, does the point indeed belong to the sphere, i.e., satisfies
condition (7). The SD algorithm performs a depth-first search on
a tree, as illustrated in Fig. 2. A trace leading to a surviving node
on the th level of the tree corresponds to a vector
inside the -dimensional sphere. With the probabilistic choice
of , the computational complexity of the SD algorithm is a
random variable [5], with the mean often significantly below
the complexity of the VA [4].

II. COMBINING SD AND VA

The complexity of the VA is linear in the length of the data
sequence, but is exponential in the channel memory size, where
the base of the exponent is the symbol alphabet size. Thus,
for long channels and/or large symbol alphabets, the VA is
often inefficient and occasionally nonfeasible. On the other
hand, over a wide range of signal-to-noise ratios (SNRs), the
expected complexity of SD is a low-degree polynomial in the
data block length, and the degree of the polynomial does not

Fig. 2. Tree-search interpretation of the SD algorithm. The “empty” node in-
dicates a lattice point which is inside a 4-D sphere, but violates corresponding
state constraint (i.e., C (�) corresponding to this point is not the smallest one),
and is thus pruned by the combined SD/VA.

vary significantly with the channel memory size. However, the
worst-case complexity of SD is exponential in the data block
length. Furthermore, the SD algorithm does not at all exploit the
Markovian property of the channel, which is precisely what the
VA does. Therefore, a hybrid receiver structure that combines
the constrained search strategy of SD with the trellis-based
decoding of the VA is desired. This can be obtained by either
modifying the SD algorithm to include the channel memory
state constraints or by adding the sphere constraints to the trellis
search of the VA. The two approaches, essentially equivalent,
although one is depth-first and the other is breadth-first, are
briefly presented here.

Algorithm 1 [SD Modified with VA]: Consider the SD al-
gorithm and the tree search illustrated in Fig. 1. The SD algo-
rithm does not take into account the Markovian property of the
channel. We propose the following modification. Assume that
the algorithm is currently examining a node on the th level of
the tree. Based on the current, and on up to tree nodes
on levels , along which the algo-
rithm descended to the current node, we identify the current state

. The meaning of the state is the same
as on the trellis, i.e., it is the current state of the channel memory
and we assign a cost to it. By writing out the recursion
for , it is easy to see that

Now, in addition to the standard steps that the SD algorithm un-
dertakes, we enforce that it also compares this with
the previously stored minimum cost . If the cur-
rent is greater than , the algorithm prunes
the tree, i.e., it discards the current tree node. If the current

is smaller than the previously stored (or
there are no previously stored ’s), the algorithm as-
signs and proceeds with the other SD
steps. Note that the algorithm is still depth-first. Clearly, its com-
plexity will be lower than the complexity of the original SD, at
the expense of additional storage requirements.

Algorithm 2 [VA Modified with SD]: Consider the trellis rep-
resentation of a frequency-selective channel and a finite data
block transmission. We impose the constraint (7) that the trans-
mitted signal belongs to a sphere of radius defined by (6). As
we have shown in the previous section, an obvious necessary
condition that the transmitted signal needs to satisfy is given by
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. However, from (2), this condition is equiv-
alent to the constraint for all . Similarly, condi-
tion is equivalent to the constraint

for all . In general

(8)

On the trellis, condition (8) means that the cost should,
for every state index and every time index , be smaller than
the radius of the sphere. The states that violate condition
(8) can be neglected, i.e., no branches emanating from such
states need to be considered when searching for the optimal
trellis path. Therefore, the search on trellis can, on average, be
performed faster than the VA. The worst-case complexity, on
the other hand, coincides with the complexity of the VA. The
sphere-constrained trellis search is illustrated in Fig. 1.

The following points are worthy of mention. Algorithm 2 is
employed on the trellis, and essentially reduces the complexity
of the VA by discarding the states which violate certain (sphere)
constraints. Hence, Algorithm 2 is, in fact, a reduced-state detec-
tion algorithm; in particular, it is closely related to the T-algo-
rithm [6], which discards states whose cost is greater than some
threshold. In this letter, the lattice structure of the modulation
scheme is used to relate the aforementioned threshold to the ra-
dius of the sphere centered at the received vector, where this
radius is chosen according to the noise variance, so it guaran-
tees finding the solution with high probability. Such a choice of
the radius/threshold enables us to analytically find the expected
complexity of Algorithm 2, which we derive in the next sec-
tion. A probabilistic choice of the threshold was also recently
proposed in [7], where it was chosen based on the probability
of discarding an optimal state. However, unlike the majority of
state-reduced algorithms, Algorithm 2 does not sacrifice the ML
performance, but (permitting a guard interval) solves the detec-
tion problem exactly. Note that obtaining the exact solution may
actually require increasing the sphere radius, if no point is found
inside, and repeating the search.

Also, recall that the VA is often employed for sequence de-
tection by forcing the detector to make decisions once suffi-
ciently deep inside the trellis (common heuristic suggests that
five times the channel length is sufficiently deep). Algorithm 2
can be slightly modified to employ the same heuristic. In this
case, one can think of a sliding window (or a “sliding sphere”)
of length (dimension) that imposes a sphere constraint of the
form (7) on the states of the trellis.

On another note, Algorithm 1 is the more preferable one
when the ratio is relatively large; the reason is its depth-first
strategy, which allows one to, when the algorithm finds a point
inside the sphere, compute a new radius based on that point and
restart, thus making the search for the optimal solution more
efficient. It also allows for implementation of computationally
more efficient versions of sphere constrained search, such as
the Schnorr–Euchner (see [4], [5], and the references therein).

III. THE EXPECTED COMPLEXITY OF THE COMBINED VA/SD

In this section, we find an analytic expression for the ex-
pected complexity of the combined VA/SD proposed above. The

derivation takes the approach originally proposed in [4] and [5],
where it was used to find the expected complexity of the orig-
inal SD algorithm of Fincke and Pohst [2]. Clearly, the expected
complexity of the combined VA/SD is proportional to the ex-
pected number of the states that survive the pruning process

# of states that survive in the state set

# of flops per state (9)

Since all states are equally likely, the expected number of sur-
viving states in the state set is given by, say

survives survives

(10)

where is the state which corresponds to
, and

where the number of states is given by
(so, when and the channel memory “fills,” the number
of states is a constant, ). In what follows, we
determine for .1 We start by finding the probability
that, for a given transmitted sequence, state survives the
pruning. Consider the following thought experiment. Assume
that the sequence of length was transmitted and that

is observed. We wish to determine the probability
that for an arbitrary sequence of length , it holds that

(11)

where the matrix and the -dimensional vector are
given by

...
. . .

. . .
. . .

...

Furthermore, the structure of the sequence vectors and is
of the form

1For the other case (d < l), E (d) can be either found similarly, or simply
approximated by the total number of states. This will be a good approximation,
since this early in the trellis/tree there is not much pruning, and most of the states
survive.
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while the dimensional matrices and are given by

...
. . .

...
...

...
. . .

. . .
...

where the region in has all entries equal to
. The vector in (11) is Gaussian, and hence,

we can find the characteristic function of
(see [4])

where are the eigenvalues of the matrix
. Thus, for a given , the probability

that the state corresponding to
survives is given by

(12)

To find the probability , we need to average
(12) over all

(13)

The outer summation in (13) is performed over states in
which the transmitted sequence may terminate. The inner
summation is performed over possible pairs

. An efficient enumeration of the symbol
sequences that might ease the computation (13) by counting
pairs with the same
and lead to a more explicit closed-form expression for

, so far appears hard to obtain. Thus,
we leave (13) in its current form to be used numerically in
evaluating (9) and (10).

IV. SIMULATION RESULTS AND SUMMARY

We consider a channel of length , transmitting -phase-
shift keying (PSK)-modulated data in blocks of length

, and employ the combined VA/SD for ML detection
at the receiver. Let us define the complexity exponent as

Fig. 3. Expected complexity exponents as a function of SNR for the VA, the
SD, and the combined VA/SD, l = 6, T = 20, L = 4.

Fig. 4. Probability density function (empirical) of the complexity exponent of
the combined VA/SD algorithm, l = 6, T = 20, L = 4, SNR = 18 dB. The
dashed line denotes complexity exponent of the VA.

, where denotes the total number of operations (flop
count) performed when detecting . Fig. 3 shows the (empiri-
cally obtained) expected complexity exponent as a function of
SNR. In the considered SNR range, the combined algorithm has
lower expected complexity than both the SD and the VA. Fur-
thermore, the expected complexity is roughly cubic in the con-
sidered range of SNR. If we further decrease SNR, the expected
complexity of the combined algorithm increases; however, it is
bounded above by the complexity of the VA.

Fig. 4 shows empirical distribution of the complexity expo-
nent at SNR dB. The complexity is for the scheme that
finds the optimal solution. In particular, we set the sphere ra-
dius so that a point is found with probability .9; if no point is
found, we increase this probability to .99, and so on. As evident
from Fig. 4, the complexity exponent of the VA/SD algorithm
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is often significantly smaller than the complexity exponent cor-
responding to the VA (denoted by the vertical dashed line).

In summary, we proposed combining the sphere-constrained
search of the SD and the dynamic programming principles of
the VA for ML detection for channels with memory. The hy-
brid algorithm is either the SD modified to speed up the search
for the closest point in the lattice, or the VA with the imposed
sphere constraints resulting in state reduction on the trellis. We
found the analytic expression for the expected complexity of
the algorithm and illustrated it via simulations. The algorithm
has expected complexity which is polynomial in the data block
length over a wide range of SNRs.
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