SPHERE PACKINGS CONSTRUCTED FROM BCH AND JUSTESEN CODES

N. J. A. SLOANE

Abstract. Bose-Chaudhuri-Hocquenghem and Justesen codes are used to pack equa spheres in n-dimensional Euclidean space with density Δ satisfying

$$
\log _{2} \Delta>-6 n+o(n),
$$

for all sufficiently large n of the form $m 2^{m}$, where m is a power of 4 . These appear to be the densest packings yet constructed in high dimensional space.

1. Introduction. The sphere packing problem is to pack equal spheres in n dimensional Euclidean space E^{n} so as to maximize the density Δ, i.e., the fraction of space covered by the spheres. It is known [8, pp. 4, 13] that the densest packings satisfy

$$
-n<\log \Delta<-\frac{n}{2}+\log \frac{n+2}{2} .
$$

(All logarithms in this paper are to the base 2.) Packings have been constructed from error-correcting codes in [4-6]. In [5-6], Bose-Chaudhuri-Hocquenghem (BCH) codes (see [1, Ch. 7]) were used to obtain non-lattice packings with

$$
\log \Delta \sim-\frac{n}{2} \log \log n \text { as } n \rightarrow \infty
$$

when n is a power of 2 . In the present paper we use BCH and Justesen [2] codes to construct non-lattice packings with

$$
\log \Delta>-6 n+o(n)
$$

for all n of the form $n=m 2^{m}$, where $m \geqslant 256$ is a power of 4 .
2. Definitions. An (n, k, d) linear code over $G F(q)$ is a linear subspace of $G F(q)^{n}$ of dimension k, such that any two vectors (or codewords) in the subspace differ in at least d places. n is called the block length of the code, k the dimension, d the minimum distance, and $R=k / n$ the rate.

The coordinate array [3, §1.42] of a point in E^{n} having integer coordinates is formed by setting out in columns the values of the coordinates in the binary scale. The 1 's row of the array comprises the 1 's digits of the coordinates, and thus has 0 's for even coordinates and 1's for odd coordinates. The 2's, 4's, 8 's, \ldots rows similarly comprise the 2 's, 4 's, 8 's, ... digits of the coordinates. Complementary notation is used for negative integers.

Other definitions of sphere packing terms will be found in [8], and of coding theory terms in [1, 7].
3. The Construction. Let \mathscr{C}_{β} be an $\left(n=m 2^{m}=2^{2 a}, k_{\beta}, d_{\beta}=4^{\beta}\right)$ linear binary code, for $0 \leqslant \beta \leqslant a$. A sphere packing in E^{n} is obtained by taking as centres all
points x with integer coordinates such that the $2^{a-\beta}$ s row of the coordinate array of x is in \mathscr{C}_{β}, for $\beta=0, \ldots, a$. (This is Construction C of [6].)

If the first row in which two centres differ is the 2^{i} 's row, then (i) if $i>a$ their (Euclidean) distance apart is at least 2^{a+1}, and (ii) if $0 \leqslant i \leqslant a$ they differ by at least 2^{i} in at least d_{i} coordinates, and so are at least $\left(d_{i} .4^{i}\right)^{\frac{1}{2}}=2^{a}$ apart. Thus we may take the radius of the spheres to be 2^{a-1}.

It is then easy to show [$6, \S 6.3$] that this packing has density Δ given by

$$
\begin{equation*}
\log \Delta=\sum_{\beta=0}^{a} k_{\beta}-\frac{1}{2} n \log (8 n / e \pi)+O(\log n) \tag{1}
\end{equation*}
$$

In general a non-lattice packing is obtained.
4. The Codes. We now specify the codes \mathscr{C}_{β} to be used in the construction.

We divide the range of β into 3 parts: range 1 ,

$$
0 \leqslant \beta<\beta_{0}=\frac{1}{2} \log n-\frac{5}{8} \log \log n
$$

range $2, \beta_{0} \leqslant \beta<\beta_{1}=\frac{1}{2} \log n-5$; range $3, \beta_{1} \leqslant \beta \leqslant \frac{1}{2} \log n$.
In range 1 we take \mathscr{C}_{β} to be the extended BCH code of length n and minimum distance 4^{β} which has the largest number $2^{k_{\beta}}$ of codewords. Then it follows immediately from [6, §6.7] that

$$
\begin{equation*}
\sum_{0 \leqslant \beta<\beta_{0}} k_{\beta}>\frac{1}{2} n \log n-\frac{5}{8} n \log \log n+o(n) . \tag{2}
\end{equation*}
$$

In range 3 we take \mathscr{C}_{β} to consist just of the zero codeword, so $k_{\beta}=0$.
5. Justesen Codes. In range 2 we take $\mathscr{C}_{\boldsymbol{\beta}}$ to be a shortened Justesen code. Since the original Justesen codes have block lengths which depend in a complicated way on the rate, and our codes \mathscr{C}_{β} must all have the same block length n, some care is needed in the construction.

In what follows $m \geqslant 256$ is a fixed power of 4 , and $n=m 2^{m}$.
For any integer $s, 0<s<m$, we construct a Justesen code \mathscr{I}_{s} as follows. Let $r=r(s)=m /(2 m-s), K=K(s)=\left[r 2^{m}\right]$.

First let α_{s} be an ($N=2^{m}, K, N-K$) extended Reed-Solomon code [1, p. 310] over $G F\left(2^{m}\right)$, in which the last coordinate of each codeword is an overall parity check. Let α be a primitive element of $G F\left(2^{m}\right)$.

We form the matrix

$$
\binom{a}{b}=\left(\begin{array}{llll}
a_{0} & \ldots & a_{N-1} \\
b_{0} & \ldots & b_{N-1}
\end{array}\right)
$$

over $G F\left(2^{m}\right)$, where $a \in \alpha_{s}$ and $b_{i}=\alpha^{i} a_{i}$. A fixed basis for $G F\left(2^{m}\right)$ over $G F(2)$ is chosen, and each element of the matrix is replaced by the corresponding binary column vector of length m. Then the last s rows of the new matrix are deleted.

The resulting binary ($2 m-s$) $\times 2^{m}$ matrices, for all $a \in \alpha_{s}$, considered now as vectors of length $n^{\prime}=n^{\prime}(s)=(2 m-s) 2^{m}$, form an ($n^{\prime}, k^{\prime}=m K, d$) linear binary Justesen [2] code which we denote by \mathscr{I}_{s}. The rate of this code is

$$
R=R(s)=k^{\prime} / n^{\prime}=r K 2^{-m}
$$

and the minimum distance d will be bounded in the next section.

Finally let the shortened Justesen code \mathscr{K}_{s} be obtained from \mathscr{I}_{s} as follows. k^{\prime} binary symbols in each codeword of \mathscr{I}_{s} can be chosen arbitrarily. If a fixed set of $n^{\prime}-n$ of them are set equal to zero, the ($n, k=k^{\prime}-n^{\prime}+n, d$) linear binary code \mathscr{K}_{s} is obtained.
6. The Minimum Distance of the Justesen Codes. The aim of this section is to establish a lower bound on the minimum distance d of the Justesen code \mathscr{I}_{s} (and so of \mathscr{K}_{s}) when s is a large fraction of m.

Notation. $H(x)=-x \log x-(1-x) \log (1-x)$ denotes the binary entropy function, and $x=H^{-1}(y)$ denotes the smaller of the two values of x for which $y=H(x)$.

Let $\delta=1-r=(m-s) /(2 m-s)$ and $\gamma=1-R / r$.
Theorem 1. If

$$
\begin{equation*}
0 \cdot 8 m<s<m\left(1-(\log \log n)^{\frac{1}{2}}(\log n)^{-t}\right) \tag{3}
\end{equation*}
$$

then the ratio of minimum distance to block length of the Justesen code \mathscr{I}_{s} satisfies

$$
\begin{equation*}
\frac{d}{n^{\prime}}>H^{-1}(\delta)\left(\delta-\varepsilon_{1}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
0<\varepsilon_{1}<5 \log \log n / \log n \tag{5}
\end{equation*}
$$

Theorem 1 is a refinement of Theorem 2 of [2]. The proof depends on two lemmas, the first of which is elementary.

Lemma 1. For $0<y<\frac{1}{2}$,

$$
y /\left(\log \frac{1}{y}+\log \log \frac{1}{y}+4\right)<H^{-1}(y)<y /\left(\log \frac{1}{y}+\log \log \frac{1}{y}\right) .
$$

Lemma 2. The total number of 1 's, W, in $N_{0}=\left[\gamma 2^{m-s}\right]$ distinct nonzero binary $(2 m-s)$-tuples satisfies

$$
W>(2 m-s) H^{-1}(\delta) N_{0}\left(1-\varepsilon_{2} / \delta\right)
$$

where $0<\varepsilon_{2}<4 \cdot 2 \log \log n / \log n$.
This refines the lemma of [2].
Proof. The idea is to choose a fraction t in such a way that the total number, N_{1}, say, of binary ($2 m-s$)-tuples of weight $\leqslant[t(2 m-s)]$,

$$
N_{1}=\sum_{i=1}^{[t(2 m-s)]}\binom{2 m-s}{i},
$$

is less than N_{0}. Then the remaining $N_{0}-N_{1}(2 m-s)$-tuples have weight $>t(2 m-s)$, and so

$$
W>t(2 m-s)\left(N_{0}-N_{1}\right) .
$$

(The weight of a vector is the number of its nonzero components.) A good choice for t is

$$
t=H^{-1}(\delta)-\psi
$$

where

$$
\psi=\frac{\log m+\log \log (1 / \delta)}{(2 m-s) \log (1 / \delta)}
$$

Then

$$
\begin{aligned}
W & >(2 m-s)\left(H^{-1}(\delta)-\psi\right)\left(N_{0}-N_{1}\right) \\
& >(2 m-s) H^{-1}(\delta) N_{0}\left(1-\varepsilon_{3}\right)
\end{aligned}
$$

where

$$
\varepsilon_{3}=\frac{\psi}{H^{-1}(\delta)}+\frac{N_{1}}{N_{0}}
$$

In order to estimate ε_{3} we need some bounds. From $n=m 2^{m}$ follows, for $m \geqslant 16$, $\log n-\log \log n<m<\log n-\frac{1}{2} \log \log n$.
From (3) follow

$$
\begin{gather*}
\frac{1}{2}(\log \log n)^{\frac{1}{2}}(\log n)^{-\frac{5}{8}}<\delta<\frac{1}{6} \tag{6a}\\
2 \cdot 58<\log (1 / \delta)<\frac{5}{8} \log \log n \tag{6b}\\
1 \cdot 36<\log \log (1 / \delta)<\log \log \log n \tag{6c}
\end{gather*}
$$

For any fixed s satisfying (3), it follows from their definitions that

$$
\begin{gather*}
\delta \leqslant \gamma<\delta+2^{-m}, \tag{7a}\\
r\left(r-2^{-m}\right)<R \leqslant r^{2}, \tag{7b}
\end{gather*}
$$

and from Lemma 1 that

$$
\delta /\left(\log \frac{1}{\delta}+\log \log \frac{1}{\delta}+4\right)<H^{-1}(\delta)<\delta /\left(\log \frac{1}{\delta}+\log \log \frac{1}{\delta}\right)
$$

From the standard bounds [7] on binomial coefficients,

$$
N_{1}<\frac{1-t}{1-2 t}\binom{2 m-s}{[t(2 m-s)]}<\frac{1-t}{1-2 t} 2^{(2 m-s) H(t)} .
$$

From the mean value theorem, for some θ between 0 and 1 ,

$$
\begin{aligned}
H(t) & =H\left(t_{0}\right)-\psi H^{\prime}\left(t_{0}-\theta \psi\right), \text { where } t_{0}=H^{-1}(\delta) \\
& =\delta-\psi \log \frac{1-t_{0}+\theta \psi}{t_{0}-\theta \psi} \\
& <\delta-\psi \log \frac{1-t_{0}}{t_{0}}
\end{aligned}
$$

Also

$$
\frac{1}{N_{0}}<\frac{1}{\gamma 2^{\delta(2 m-s)}}\left(1+\frac{2}{N_{0}}\right) .
$$

Therefore, for the second term in ε_{3},
$\frac{N_{1}}{N_{0}}<\frac{1}{\gamma} \cdot \frac{1-t}{1-2 t} \cdot\left(1+\frac{2}{N_{0}}\right) \cdot 2^{-(2 m-s)(\delta-H(t))}<\frac{2}{\delta} 2^{-(2 m-s) \psi \log \left(\left(1-t_{0}\right) / t_{0}\right)}$.

Now $\left(1-t_{0}\right) / t_{0}>\frac{1}{\delta} \log \frac{1}{\delta}$, so

$$
\begin{aligned}
\frac{N_{1}}{N_{0}} & <\frac{2}{\delta} 2^{-\{\log m+\log \log (1 / \delta)\}(1+\log \log (1 / \delta) / \log (1 / \delta)\}} \\
& =\frac{2}{\delta}\left(m \log \frac{1}{\delta}\right)-\{1+\log \log (1 / \delta) / \log (1 / \delta)\}
\end{aligned}
$$

For the first term in ε_{2},

$$
\begin{aligned}
\frac{\psi}{H^{-1}(\delta)} & <\frac{\{\log m+\log \log (1 / \delta)\}\{\log (1 / \delta)+\log \log (1 / \delta)+4\}}{m \delta \log (1 / \delta)} \\
& <\frac{4}{m \delta}\left(\log m+\log \log \frac{1}{\delta}\right)
\end{aligned}
$$

which is much larger than the bound on N_{1} / N_{0}. Therefore

$$
\varepsilon_{3}<\frac{4 \cdot 1}{m \delta}\left(\log m+\log \log \frac{1}{\delta}\right)<\frac{(4 \cdot 2) \log \log n}{\delta \log n}
$$

which establishes the lemma.
Proof of Theorem 1. The minimum distance d of the Justesen code \mathscr{I}_{s} is estimated as follows. From the definition of α_{s}, at least $N-K$ out of the first $N-1$ components of each nonzero codeword of α_{s} are nonzero. For these nonzero components a_{i}, the binary columns of length $2 m$ corresponding to $\binom{a_{i}}{\alpha_{i} a_{i}}$ are obviously all distinct. However, after s rows of the matrix have been deleted, each nonzero ($2 m-s$)tuple may be repeated up to 2^{s} times. The worst case occurs when the Justesen codeword contains 2^{s} repetitions of each of the $\left[2^{-s}(N-K)\right]$ distinct lowest weight nonzero ($2 m-\mathrm{s}$)-tuples.

Now $2^{-s}(N-K)=\left(1-\frac{R}{r}\right) 2^{m-s}=\gamma 2^{m-s}$, so Lemma 2 may be applied directly to give, with the help of (7a),

$$
\begin{aligned}
\frac{d}{n^{\prime}} \geqslant \frac{2^{s} W}{n^{\prime}} & >H^{-1}(\delta) \delta\left(1-\frac{\varepsilon_{2}}{\delta}\right)\left(1-\frac{1}{\gamma 2^{m-s}}\right) \\
& >H^{-1}(\delta)\left(\delta-\varepsilon_{2}-\frac{1}{\gamma 2^{m-s}}\right) \\
& >H^{-1}(\delta)\left(\delta-\varepsilon_{1}\right)
\end{aligned}
$$

where ε_{1} satisfies (5). This completes the proof of Theorem 1.
7. The rate of the Justesen codes.

Theorem 2. For any β in range 2, there is an $s=s_{\beta}$ satisfying (3) such that the corresponding $\left(n_{\beta}{ }^{\prime}=\left(2 m-s_{\beta}\right) 2^{m}, k_{\beta}{ }^{\prime}, d_{\beta}\right)$ Justesen code $\mathscr{I}_{s_{\beta}}$ has minimum distance
$d_{\beta}>4^{\beta}$. Furthermore the rate of this code satisfies

$$
\frac{k_{\beta}^{\prime}}{n_{\beta}^{\prime}}>1-Q\left(4^{\beta} / n\right)-2 \varepsilon_{1}
$$

where ε_{1} satisfies (5), and

$$
Q(y)=\left\{2 y\left(\log \frac{1}{y}+4 \log \log \frac{1}{y}\right)\right\}^{\frac{1}{2}}
$$

Proof. Provided s satisfies (3), it follows from Theorem 1 and Lemma 1 that for the $\left(n^{\prime}=(2 m-s) 2^{m}, k^{\prime}, d\right)$ Justesen code \mathscr{I}_{s},

$$
\begin{equation*}
\frac{d}{n}>\frac{d}{n^{\prime}}>\frac{\delta\left(\delta-\varepsilon_{1}\right)}{\log (1 / \delta)+\log \log (1 / \delta)+4} \tag{8}
\end{equation*}
$$

We first note that as s runs through the values specified by (3), δ runs through (6a), and the right hand side of (8) runs from

$$
\frac{2}{5}(\log n)^{-\frac{5}{4}} \text { to } \frac{1}{288}
$$

Now as β runs through range $2, d / n=4^{\beta} / n$ runs from

$$
(\log n)^{-\frac{3}{4}} \text { to } \frac{1}{1024}
$$

which is included in the above range. Therefore we can find codes with the desired minimum distance with s_{β} satisfying (3).

Next we calculate s_{β}. For $y>0$ let $\delta=\delta_{a}(y)$ be the unique solution of

$$
\begin{equation*}
y=\frac{\delta\left(\delta-\varepsilon_{1}\right)}{\log (1 / \delta)+\log \log (1 / \delta)+4} . \tag{9}
\end{equation*}
$$

From (8), (9), if the code \mathscr{I}_{s} is such that $\delta \geqslant \delta_{a}\left(4^{\beta} / n\right)$, then $d>4^{\beta}$. If it were not for the fact that s_{β} must be an integer, we would take $s_{\beta}=m\left(1-2 \delta_{\beta}\right) /\left(1-\delta_{\beta}\right)$ where $\delta_{\beta}=\delta_{a}\left(4^{\beta} / n\right)$.

But s_{β} must be an integer, and since $\delta=(m-s) /(2 m-s)$, an increase in s by 1 corresponds to a decrease in δ by $m(2 m-s)^{-2}<m^{-1}$. Therefore let

$$
\begin{gather*}
\delta_{\mathrm{b}}(y)=\delta_{a}(y)+m^{-1} \tag{10}\\
s_{\beta}=\left[m \cdot \frac{1-2 \delta_{b}\left(4^{\beta} / n\right)}{1-2 \delta_{b}\left(4^{\beta} / n\right)}\right]+1
\end{gather*}
$$

The corresponding value of δ is

$$
\delta_{\beta}=\frac{m-s_{\beta}}{2 m-s_{\beta}}
$$

(10) implies that $\delta_{b}\left(4^{\beta} / n\right) \geqslant \delta_{\beta} \geqslant \delta_{a}\left(4^{\beta} / n\right)$, and so $d>4^{\beta}$.

An upper bound on $\delta_{a}(y)$ is obtained as follows. From (9) and (6) we find that

$$
\begin{gather*}
\log \frac{1}{y}>2 \log \frac{1}{\delta_{a}}+\log \log \frac{1}{\delta_{a}} \tag{11a}\\
\log \log \frac{1}{y}>\log \log \frac{1}{\delta_{a}} \tag{11b}
\end{gather*}
$$

Also (9) implies

$$
\delta_{a}^{2}-\varepsilon_{1} \delta_{a}-y\left(\log \frac{1}{\delta_{a}}+\log \log \frac{1}{\delta_{a}}+4\right)=0
$$

and so from (11),

$$
\begin{align*}
\delta_{a} & <\frac{1}{2} \varepsilon_{1}+\left\{\frac{1}{4} \varepsilon_{1}{ }^{2}+\frac{1}{2} y\left(\log \frac{1}{y}+\log \log \frac{1}{y}+8\right)\right\}^{\frac{1}{2}} \\
& <\frac{1}{2} \varepsilon_{1}+\frac{1}{2} Q(y) \tag{12}
\end{align*}
$$

Finally we calculate the rate of $\mathscr{I}_{s_{\beta}}$. From (7b) and (12),

$$
\begin{aligned}
R & >r\left(r-2^{-m}\right)=\left(1-\delta_{\beta}\right)\left(1-\delta_{\beta}-2^{-m}\right) \\
& >\left(1-\delta_{a}-m^{-1}\right)\left(1-\delta_{a}-m^{-1}-2^{-m}\right) \\
& >1-\varepsilon_{1}-Q\left(4^{\beta} / n\right)-2 m^{-1}-2^{-m} \\
& >1-2 \varepsilon_{1}-Q\left(4^{\beta} / n\right),
\end{aligned}
$$

which completes the proof of the theorem.
8. The Density of the Sphere Packing. We can now complete the construction of the sphere packing, taking $\mathscr{C}_{\beta}=\mathscr{K}_{s \beta}$ for β in range 2 , where $\mathscr{K}_{s_{\beta}}$ is obtained by shortening the Justesen code $\mathscr{I}_{s \beta}$ as described at the end of $\S 5$.

Theorem 3. Let $m \geqslant 256$ be a power of 4 , and $n=m 2^{m}$. The sphere packing in E^{n} obtained by using BCH codes in range 1, shortened Justesen codes in range 2, and the zero code in range 3 , has density Δ satisfying

$$
\log \Delta>-6 n+o(n)
$$

Proof. The contribution to (1) from the $\mathbf{B C H}$ codes is given by (2). The contribution from the Justesen codes is, from Theorem 2,

$$
\begin{align*}
\sum_{\beta_{0} \leqslant \beta<\beta_{1}} k_{\beta} & =\sum\left(k_{\beta}^{\prime}-n_{\beta}^{\prime}+n\right) \\
& >\sum\left\{n-n^{\prime}\left(Q\left(4^{\beta} / n\right)+2 \varepsilon_{1}\right)\right\} \\
& >n\left(\frac{5}{8} \log \log n-5\right)-2 n \sum_{2}+o(n), \tag{13}
\end{align*}
$$

where

$$
\begin{aligned}
\sum_{2} & =\sum_{\beta 0 \leqslant \beta<\beta_{1}}\left\{2 \cdot \frac{4^{\beta}}{n}\left(\log \frac{n}{4^{\beta}}+4 \log \log \frac{n}{4^{\beta}}\right)\right\}^{\frac{1}{2}} \\
& =\sqrt{\left(\frac{2}{n}\right)} \sum_{\beta_{0} \leqslant \beta<\beta_{1}} 2^{\beta}\left(\log \frac{n}{4^{\beta}}+4 \log \log \frac{n}{4^{\beta}}\right)^{\frac{1}{2}}
\end{aligned}
$$

Let T_{β} be the β-th term in the latter sum. A straightforward calculation shows that $T_{\beta} / T_{\beta+1}$ is an increasing function of β in range 2. Therefore

$$
T_{\beta} / T_{\beta+1}<T_{\beta_{1}-1} / T_{\beta_{1}}<0 \cdot 6
$$

$\Sigma T_{\beta}<(0 \cdot 6) T_{\beta_{1}} /(1-0.6)<\frac{1}{4} \sqrt{ } n$; and $\Sigma_{2}<2^{-\frac{3}{2}}$. The theorem then follows from (1), (2) and (13).
9. A Remark. The coefficient 6 in the statement of Theorem 3 could be reduced by a more careful analysis. However, the Hamming or sphere-packing bound for errorcorrecting codes [7, p. 52] implies that the density Δ of any packing in E^{n} obtained from Construction C of [6] is bounded by

$$
\begin{aligned}
\log \Delta & <n\left(\frac{1}{2} \log \frac{\pi e}{4}-\sum_{i=0}^{\infty} H\left(\frac{1}{4^{i}}\right)\right)+o(n) \\
& =-0.7702 \ldots n+o(n) .
\end{aligned}
$$

References

1. E. R. Berlekamp, Algebraic Coding Theory (McGraw-Hill, New York, 1968).
2. J. Justesen, " A class of constructive asymptotically good algebraic codes ", IEEE Trans. Information Theory, 18 (1972), 652-656.
3. J. Leech, " Notes on Sphere Packings ", Canadian J. Math., 19 (1967), 251-267.
4. ——, and N. J. A. Sloane, " New Sphere Packings in Dimensions 9-15", Bull. Amer. Math. Soc., 76 (1970), 1006-1010.
5. ——, and ——, New Sphere Packings in More than Thirty-Two Dimensions", Proc. 2nd Chapel Hill Conf. on a Combinatorial Mathematics and Its Applications (University of North Carolina at Chapel Hill, 1970), pp. 345-355.
6. -_-_, and __-_Sphere Packings and Error-Correcting Codes ", Canadian J. Math., 23 (1971), 718-745.
7. W. W. Peterson, Error-Correcting Codes (M.I.T. Press, Cambridge, Mass., 1961), pp. 245-247.
8. C. A. Rogers, Packings and Coverings (Cambridge University Press, Cambridge, 1964).

10E30: Number Theory; Geometry of Numbers; Lattice packing.
94A10: Information and Communication; Coding theory.

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey, U.S.A.
(Received on the 14th of April, 1972.)

