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Abstract. Bose-Chaudhuri-Hocquenghem and Justesen codes are used to pack equa

spheres in M-dimensional Euclidean space with density A satisfying

log2 A > — 6n + o(ri),

for all sufficiently large n of the form m2m, where m is a power of 4. These appear to

be the densest packings yet constructed in high dimensional space.

1. Introduction. The sphere packing problem is to pack equal spheres in n-

dimensional Euclidean space E" so as to maximize the density A, i.e., the fraction of

space covered by the spheres. It is known [8, pp. 4, 13] that the densest packings

satisfy

, . n , n + 2
-n < log A < - — + l o g - y - .

(All logarithms in this paper are to the base 2.) Packings have been constructed

from error-correcting codes in [4-6]. In [5—6], Bose-Chaudhuri-Hocquenghem (BCH)

codes (see [1, Ch. 7]) were used to obtain non-lattice packings with

log A ~ — — log log n as n -» oo

when n is a power of 2. In the present paper we use BCH and Justesen [2] codes to

construct non-lattice packings with

log A > — 6n + o(n)

for all n of the form n — m2m, where m ^ 256 is a power of 4.

2. Definitions. An («, k, d) linear code over GF(q) is a linear subspace of GF(q)n
 of

dimension k, such that any two vectors (or codewords) in the subspace differ in at

least d places, n is called the block length of the code, k the dimension, d the minimum

distance, and R = kin the rate.

The coordinate array [3, §1.42] of a point in E" having integer coordinates is

formed by setting out in columns the values of the coordinates in the binary scale.

The l's row of the array comprises the l's digits of the coordinates, and thus has O's

for even coordinates and l's for odd coordinates. The 2's, 4's, 8's,... rows similarly

comprise the 2's, 4's, 8's, ... digits of the coordinates. Complementary notation is

used for negative integers.

Other definitions of sphere packing terms will be found in [8], and of coding

theory terms in [1,7].

3. The Construction. Let ^ be an (n = mlm = 22a, kfi, d0 = 4") linear binary

code, for 0 < f$ a% a. A sphere packing in E" is obtained by taking as centres all
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points x with integer coordinates such that the 2""^'s row of the coordinate array of

x is in Vp, for p = 0,. . . , a. (This is Construction C of [6].)

If the first row in which two centres differ is the 2"s row, then (i) if i > a their

(Euclidean) distance apart is at least 2"
+1

, and (ii) if 0 < i «S a they differ by at least

2' in at least dt coordinates, and so are at least (dt. 4')* = 2" apart. Thus we may take

the radius of the spheres to be 2""
1
.

It is then easy to show [6, §6.3] that this packing has density A given by

log A = £ kg - \n log (Sn/en) + O(logn). (1)
p — o

In general a non-lattice packing is obtained.

4. The Codes. We now specify the codes <gg to be used in the construction.

We divide the range of P into 3 parts: range 1,

0 < P < p0 = ilogn - f loglogn;

range 2, Po < P < Pi = i logn - 5; range 3, P1 ^ p < \ logn.

In range 1 we take <6g to be the extended BCH code of length n and minimum

distance ¥ which has the largest number 2** of codewords. Then it follows im-

mediately from [6, §6.7] that

k, > i« logn - fw log log n + o(n). (2)

In range 3 we take ^ to consist just of the zero codeword, so kg = 0.

5. Justesen Codes. In range 2 we take ^ to be a shortened Justesen code. Since

the original Justesen codes have block lengths which depend in a complicated way

on the rate, and our codes ^ must all have the same block length n, some care is

needed in the construction.

In what follows m > 256 is a fixed power of 4, and n = mlm.

For any integer s, 0 < s < m, we construct a Justesen code Js as follows. Let

r = r(s) = m/(2m - s), K = K{s) = [r2m].

First let <xs be an (JV = 2
m

, K, N - K) extended Reed-Solomon code [l,p. 310]

over G.F(2m), in which the last coordinate of each codeword is an overall parity check.

Let a be a primitive element of GF(2m).

We form the matrix

( a \ = ( a0 . . . fliv-i \

\b) \bo...bN-J

over GF(2m), where a e i , and bt = a 'a t . A fixed basis for GF(2m) over GF(2) is

chosen, and each element of the matrix is replaced by the corresponding binary

column vector of length m. Then the last s rows of the new matrix are deleted.

The resulting binary (2m - s ) x 2 " matrices, for all a e as, considered now as

vectors of length ri = n'(s) = (2m — s)2m, form an («', k' = mK, d) linear binary

Justesen [2] code which we denote by Js. The rate of this code is

R = R(s) = k'lri = rK2~m,

and the minimum distance d will be bounded in the next section.
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Finally let the shortened Justesen code Jf5 be obtained from Js as follows, k'

binary symbols in each codeword of Js can be chosen arbitrarily. If a fixed set of

n' — n of them are set equal to zero, the (n, k = k' — n' + n, d) linear binary code

Jfs is obtained.

6. The Minimum Distance of the Justesen Codes. The aim of this section is to

establish a lower bound on the minimum distance d of the Justesen code J', (and so

of Jfs) when s is a large fraction of m.

Notation. H(x) = — x log x — (1 — x) log (1 — x) denotes the binary entropy

function, and x = H~* (y) denotes the smaller of the two values of x for which

y = H(x).
Let 5 = 1 - r = (m - s)j(2m - s) and y = 1 - R/r.

THEOREM 1. If

0-8m < s < w(l - (log log n)* (log «)"*), (3)

then the ratio of minimum distance to block length of the Justesen code Js satisfies

H - «i) (4)
n

where
0 < ex < 51oglogn/log«. (5)

Theorem 1 is a refinement of Theorem 2 of [2]. The proof depends on two lemmas,

the first of which is elementary.

LEMMA 1. For 0 < y < \ ,

>>/(log— + loglog 1- 4J < H~1(y) < y/llog— + log log — J .

LEMMA 2. The total number of Vs, W, in No - [72m~s] distinct nonzero binary

(2m — s)-tuples satisfies

W > (2m-s)H-1(S)N0(l-e2ld)

where 0 < e2 < 4-2 log log n/log n.

This refines the lemma of [2].

Proof. The idea is to choose a fraction t in such a way that the total number,

Nu say, of binary (2m - s)-tuples of weight < [t(2m - s)],

2m-

is less than JV0. Then the remaining No — Nx(2m — s)-tuples have weight

> t(2m — s), and so

W > t(2m - s)(N0 - Nt).

(The weight of a vector is the number of its nonzero components.) A good choice for

t is
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where

_ log"? + log log (1/^)

^ ~ (2m - s) log (1/6) '

Then

W > (2m- s)(H~HS) - t)(N0 -

> (2m- s)H-1(6)N0(l - e3)
where

p

In order to estimate e3 we need some bounds. From n = m2m
 follows, for m > 16,

log n — log log n < m < log n — \ log log n.
From (3) follow

MloglogH)*(lognr* < 8 < i, (6a)

2-58 < log (1/8) < I log log n, (6b)

1-36 < log log (1/5) < log log log n. (6c)

For any fixed s satisfying (3), it follows from their definitions that

5 < y < 5 + 2~
m

, (7a)

r(r - 2~m) < R < r2, (7b)

and from Lemma 1 that

g y + lOg lOg y + 4\ < H-\5) < 5 / ( l O g y +

From the standard bounds [7] on binomial coefficients,

N < J L ^ _ / 2m-s \ JLTLL2(
1 1 -2t \ [t(2m-s)]J 1 ~2t

From the mean value theorem, for some 6 between 0 and 1,

H(t) = H(t0) - il/H'(t0 - Oil/), where t0 = j

x / i 1 - *o + #
= o — w log

to-9\{/

< 8 — \j/ log .

Also

Therefore,

N t 1

No < y

for the

1 -

' 1 -

second

t /

it ' V

term in

2

+
 ^o

• y 2 w

) >-<

•n-s) No
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Now (1 - t0)/t0 > — log — , so
0 O

N

= T (
W J 1 O 8

T )
-{1+log log (l/«/log (lit))

For the first term in e2,

ip {logm + log log (l/b)}{log (1/5) + log log (1/5) + 4}

H
- 1

(5) K mb log (1/b)

4
llogw + log log— I ,

mb

which is much larger than the bound on NJN0. Therefore

4-1 / , „ . _ , . _ 1\ <(4-2)loglog^
e3 < —T (logm + log log — i

mo \ of

which establishes the lemma.

Proof of Theorem 1. The minimum distance d of the Justesen code J s is estimated

as follows. From the definition of <xs, at least N — K out of the first JV — 1 com-

ponents of each nonzero codeword of <xs are nonzero. For these nonzero components

ah the binary columns of length 2m corresponding to ( ' I are obviously all

distinct. However, after s rows of the matrix have been deleted, each nonzero (2m — s)-

tuple may be repeated up to 2s times. The worst case occurs when the Justesen code-

word contains 2s repetitions of each of the [2~S(N — K)] distinct lowest weight

nonzero (2m — s)-tuples.

S
(N - K) = ( 1 - y ) 2

m
~

s
 =Now 2~S(N - K) = ( 1 - y ) 2

m
~

s
 = y2m~s, so Lemma 2 may be applied

directly to give, with the help of (7a),

d 2s W

n n

where et satisfies (5). This completes the proof of Theorem 1.

7. The rate of the Justesen codes.

THEOREM 2. For any p in range 2, there is an s = sp satisfying (3) such that the

corresponding ( « / = (2m — sf) 2
m, k/, dfi) Justesen code JSf has minimum distance
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dp > ¥. Furthermore the rate of this code satisfies

-^V > 1 - G(4>/«) - 2eu

where ex satisfies (5), and

Q(y) = ify (log — + 4 log log ~\ j *.

Proof. Provided s satisfies (3), it follows from Theorem 1 and Lemma 1 that for

the («' = {2m - s) 2m, k', d) Justesen code Js,

n ri log (118) + log log (1/8) + 4 ' W

We first note that as s runs through the values specified by (3), 8 runs through

(6a), and the right hand side of (8) runs from

* to

Now as p runs through range 2, d/n = 4f/n runs from

( * to

which is included in the above range. Therefore we can find codes with the desired

minimum distance with sfi satisfying (3).

Next we calculate ŝ . For y > 0 let 5 = Sa(y) be the unique solution of

y = ^ = J O (9)
y log(l/<5) + loglog(l/<5) + 4 K)

From (8), (9), if the code J, is such that 5 ^ Sa(4^jn), then d > 4". If it were not

for the fact that s^ must be an integer, we would take sfi = m(\ - 2bf)j(\-bp)

where 8fi = Sa(4
fi/n).

But Sp must be an integer, and since 5 = (m — s)j(2m—s), an increase in s by 1

corresponds to a decrease in 8 by m(2m — s)~2 < m~l. Therefore let

s« =
• l-2Sb(V/t»

The corresponding value of <5 is

*"- 2m-s'

3-1

(10) implies that 56(4^/n) > ^ > ^(4"/«), and so d > 4".

An upper bound on 8a(y) is obtained as follows. From (9) and (6) we find that

l o g — > 2 log-—+ log log-—, (lla)

log log— > log log — . (lib)
y oa
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Also (9) implies

gy- + loglog -j-+ 4j = 0,

and so from (11),

<5« < y £ i + {4-ei2 + y.»(log—+ loglog — +

<\ ei + yCCy). 02)

Finally we calculate the rate of SSf. From (7b) and (12),

R> r(r- 2~m) = (1 - 5,)(1 - 5, - 2—)

>(l-Sa- m"
1
)(l - a, - m" 1 - 2~m)

> 1 - 8 l - Q(4tyi) - 2m"1 - 2 - m

> 1 - 2£ l - e(4"/«),

which completes the proof of the theorem.

8. The Density of the Sphere Packing. We can now complete the construction of the

sphere packing, taking ^ = X~if for /? in range 2, where Jf S/1 is obtained by shorten-

ing the Justesen code JSfl as described at the end of §5.

THEOREM 3. Let m ^ 256 be a power of 4, and n = m2m. The sphere packing

in E" obtained by using BCH codes in range 1, shortened Justesen codes in range 2,

and the zero code in range 3, has density A satisfying

log A > — 6n + o(n).

Proof. The contribution to (1) from the BCH codes is given by (2). The con-

tribution from the Justesen codes is, from Theorem 2,

kf = Z(V - V +

2s,)}

> «(f log log n - 5) - 2« £ + o(n), (13)
2

where

Let Tp be the jS-th term in the latter sum. A straightforward calculation shows

that Tp[Tp+l is an increasing function of j8 in range 2. Therefore

Tf/Tf+l < Tf^JTf, < 0-6;

XTp < (0-6) TfJQ. - 0-6) < iV«; and £2 < 2~*. The theorem then follows from

(1), (2) and (13).
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9. A Remark. The coefficient 6 in the statement of Theorem 3 could be reduced by

a more careful analysis. However, the Hamming or sphere-packing bound for error-

correcting codes [7, p. 52] implies that the density A of any packing in E" obtained

from Construction C of [6] is bounded by

/ ne °° / 1 \ \

log A < nU l o g — - ^0
H[-4T)\ + o{n)

= - 0-7702... n + o(n).
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