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Abstract. We describe a program to prove the Kepler conjecture on sphere packings. We 

then carry out the first step of this program. Each packing determines a decomposition of 

space into Delaunay simplices, which are grouped together into finite configurations called 

Delaunay stars. A score, which is related to the density of packings, is assigned to each 
Delaunay star. We conjecture that the score of every Delaunay star is at most the score of the 

stars in the face-centered cubic and hexagonal close packings. This conjecture implies the 
Kepler conjecture. To complete the first step of the program, we show that every Delaunay 
star that satisfies a certain regularity condition satisfies the conjecture. 

1. Introduction 

The Kepler conjecture asserts that no packing of spheres in three dimensions has density 

exceeding that of the face-centered cubic lattice packing. This density is zr /Vr~ 

0.74048. In an earlier paper [H2] we showed how to reduce the Kepler conjecture to 

a finite calculation. That paper also gave numerical evidence in support of the method 

and conjecture. This finite calculation is a series of optimization problems involving up 

to 53 spheres in an explicit compact region of Euclidean space. Computers have little 

difficulty in treating problems of this size numerically, but a naive attempt to make a 

thorough study of the possible arrangements of these spheres would quickly exhaust the 

word 's  computer resources. 

The first purpose of this paper is to describe a program designed to give a rigorous proof 

of the Kepler conjecture. A sketch of a related program appears in [H2]. Although the 

approach of [H2] is based on substantial numerical evidence, some of the constructions of 

that paper are needlessly complicated. This paper streamlines some of those constructions 

and replaces others with constructions that are more amenable to rigorous methods. For 

this program to succeed, the original optimization problem must be partitioned into a 

series of much smaller problems that may be treated by current computer technology or 

hand calculation. 
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The second purpose of this paper is to carry out the first step of the proposed program. 

A statement of the result is contained in Theorem 1 below. 

Background to another approach to this problem is found in [H3]. To add more detail 

to the proposed program, we recall some constructions from earlier papers [HI], [H2]. 

Begin with a packing of nonoverlapping spheres of radius I in Euclidean three-space. 

The density of a packing is defined in [HI]. It is defined as a limit of the ratio of the 

volume of the unit balls in a large region of space to the volume of the large region. The 

density of the packing may be improved by adding spheres until there is no further room 

to do so. The resulting packing is said to be saturated. It has the property that no point 

in space has distance greater than 2 from the center of some sphere. 

Every saturated packing givesrise to a decomposition of space into simplices called the 

Delaunay decomposition. The vertices of each Delaunay simplex are centers of spheres 

of the packing. None of the centers of the spheres of the packing lie in the interior of 

the circumscribing sphere of any Delaunay simplex. In fact, this property is enough to 

determine the Delaunay decomposition completely except for certain degenerate pack- 

ings. A degeneracy occurs, for instance, when two Delaunay simplices have the same 

circumscribing sphere. In practice, these degeneracies are important, because they occur 

in the face-centered cubic and hexagonal close packings. The paper [H2] shows how to 

resolve the degeneracies by taking a small perturbation of the packing. In general, the 

Delaunay decomposition will depend on this perturbation. We refer to the centers of the 

packing as vertices, since the structure of the simplicial decomposition of space is our 

primary concern. For a proof that the Delaunay decomposition is a dissection of space 

into simplices, we refer the reader to [R]. 

The Delaunay decomposition is dual to the well-known Voronoi decomposition. If the 

vertices of the Delaunay simplices are in nondegenerate position, two vertices are joined 

by an edge exactly when the two corresponding Voronoi cells share a face, three vertices 

form a face exactly when the three Voronoi cells share an edge, and four vertices form 

a simplex exactly when the four corresponding Voronoi cells share a vertex. In other 

words, two vertices are joined by an edge if they lie on a sphere that does not contain any 

other of the vertices, and so forth (again assuming the vertices to be in nondegenerate 

position). The collection of all simplices that share a given vertex is called a Delaunay 
star. (This is a provisional definition: it is refined below.) 

Every Delaunay simplex has edges between 2 and 4 in length and, because of the 

saturation of the packing, a circumradius of at most 2. We assume that every simplex S 

in this paper comes with a fixed order on its edges, 1 . . . . .  6. The order on the edges is 

to be arranged so that the first, second, and third edges meet at a vertex. We may also 

assume that the edges numbered i and i + 3 are opposite edges for i = 1, 2, 3. We define 

S(yl . . . . .  Yt) to be the (ordered) simplex whose i th edge has length yi. If S is a Delaunay 

simplex in a fixed Delaunay star, then it has a distinguished vertex, the vertex common 

to all simplices in the star. In this situation we assume that the edges are numbered so 

that the first, second, and third edges meet at the distinguished vertex. 

A function, known as the compression I'(S), is defined on the space of all Delaunay 

simplices. Let 8oct = (-3Jr + 12arccos(1/vc3))/~/8 ~ 0.720903 be the density of a 

regular octahedron with edges of length 2. That is, place a unit ball at each vertex of the 

octahedron, and let/~oct be the ratio of the volume of the part of the balls in the octahedron 

to the volume of the octahedron. Let S be a Delaunay simplex. Let B be the union of 
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four unit balls placed at each of the vertices of S. Define the compression as 

F(S)  -~. -Soct vol(S) + vol(S ~ B). 

We extend the definition of compression to Delaunay stars D* by setting F(D*) = 

F(S), with the sum running over all the Delaunay simplices in the star. 

In this and subsequent work, we single out for special treatment the edges of length 

between 2 and 2.51. The constant 2.51 was determined experimentally to have a number 

of desirable properties. This constant appears throughout the paper. We call vertices that 

come within 2.51 of each other close neighbors. 

We say that the convex hull of four vertices is a quasi-regular tetrahedron (or simply a 

tetrahedron) if all four vertices are close neighbors of one another. Suppose that we have 

a configuration of six vertices in bijection with the vertices of an octahedron with the 

property that two vertices are close neighbors if and only if the corresponding vertices of 

the octahedron are adjacent. Suppose further that exactly one of the three diagonals has 

length at most 2~/2. In this case we call the convex hull of the six vertices a quasi-regular 

octahedron (or simply an octahedron). 

The compatibility of quasi-regular tetrahedra and octahedra with the Delaunay de- 

composition is established in Section 3. We think of Euclidean space as the union of 

quasi-regular tetrahedra, octahedra, and various less-interesting Delaunay simplices. 

From now on, a Delaunay star is to be the collection of all quasi-regular tetrahedra, 

octahedra, and Delaunay simplices that share a common vertex v. This collection of 

Delaunay simplices and quasi-regular solids is often, but not always, the same as the 

objects called Delaunay stars in [H2]. We warn the reader of this shift in terminology. 

It is convenient to measure the compression in multiples of the compression of the reg- 

ular simplex of edge length 2. We define a point (abbreviated pt) to be 1TM (S (2,2, 2, 2, 2, 2)). 

We have pt = 1 lzr/3 - 12 arccos(1/V~) ~ 0.0553736. 

One of the main purposes of this paper and its sequel is to replace the compression 

by a function (called the score) that has better properties than the compression. Further 

details on the definition of score appear in Section 2. We are now able to state the main 

theorem of this paper. 

Theorem 1. If  a Delaunay star is composed entirely of quasi-regular tetrahedra, then 

its score is less than 8 pt. 

The idea of the proof is the following. Consider the unit sphere whose center is the 

center of the Delaunay star D*. The intersection of a simplex in D* with this unit sphere 

is a spherical triangle. For example, a regular tetrahedron with edges of length 2 gives 

a triangle on the unit sphere of arc length zr/3. The star D* gives a triangulation of the 

unit sphere. The restriction on the lengths of the edges of a quasi-regular tetrahedron 

constrains the triangles in the triangulation. We classify all triangulations that potentially 

come from a star scoring more than 8 pt. Section 5 develops a long list of properties that 

must be satisfied by the triangulation of a high-scoring star. 

It is then necessary to classify all the triangulations that possess the properties on this 

list. The original classification was carded out by a computer program, which generated 

all potential triangulations and checked them against the list. D. J. Muder has made a 
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significant improvement in the argument by giving a direct, computer-free classification. 

His result appears in the Appendix. 

As it turns out, there is only one triangulation that satisfies all of the properties on 

the list. Section 7 proves that Delaunay stars with this triangulation score less than 8 pt. 

This will complete the main thread of the argument. 

There are a number of estimates in this paper that are established by computer. These 

estimates are used throughout the paper, even though their proofs are not discussed until 

Sections 8 and 9. These sections may be viewed as a series of technical appendices 

giving explicit formulas for the compression, dihedral angles, solid angles, volumes, and 

other quantities that must be estimated. The final section states the inequalities and gix/es 

details about the computerized verification. There is no vicious circle here: the results 

of Sections 8 and 9 do not rely on anything from Sections 2-7. 

There are several functions of a Delaunay simplex that are used throughout this 

paper. The compression F(S) has been defined above. The dihedral angle dih(S) is 

defined to be the dihedral angle of the simplex S along the first edge (with respect to 

the fixed order on the edges of S). Set dihmin = dih(S(2, 2, 2.51, 2, 2, 2.51)) ~ 0.8639; 

dihmax = dih(S(2.51, 2, 2, 2.51,2, 2)) = arccos(-29003/96999) ~ 1.874A.n/.. We will 

see that dihmin and dihmax are lower and upper bounds on the dihedral angles of quasi- 

regular tetrahedra. The solid angle (measured in steradians) at the vertex joining the 

first, second, and third edges is denoted sol(S). The intersection of S with the ball of 

unit radius centered at this vertex has volume sol(S)/3 (see [HI, 2.1]). For example, 

sol(S(2, 2, 2, 2, 2, 2)) ~ 0.55. Let rad(S) be the circumradius of the simplex S. In 

Section 2 we define two other functions: vor(S), which is related to the volume of 

Voronoi cells, and the score a(S). Finally, let r/(a, b, c) denote the circumradius of a 

triangle with edges a, b, c. Explicit formulas for all these functions appear in Section 8. 

2. The Program 

By proving Theorem 1, the main purpose of this paper will be achieved. Nevertheless, 

it might be helpful to give a series of comments about how Theorem 1 may be viewed 

as the solution to the first of a handful of optimization problems that would collectively 

provide a solution to the Kepler conjecture. 

We begin with some notation and terminology. We fix a Delaunay star D* about a 

vertex v0, which we take to be the origin, and we consider the unit sphere at v0. Let vl 

and v2 be vertices of D* such that v0, vl, and Va are all close neighbors of one another. 

We take the radial projections Pi of vi to the unit sphere with center at the origin and 

connect the points Pl and Pa by a geodesic arc on the sphere. We mark all such arcs 

on the unit sphere. Lemma 3.10 shows that the arcs meet only at their endpoints. The 

closures of the connected components of the complement of these arcs are regions on the 

unit sphere, called the standard regions. We may remove the arcs that do not bound one 

of the regions. The resulting system of edges and regions is referred to as the standard 

decomposition of the unit sphere. 

Let C be the cone with vertex vo over one of the standard regions. The collection of 

the Delaunay simplices, quasi-regular tetrahedra, and quasi-regular octahedra of D* in 

C (together with the distinguished vertex v0) is called a standard cluster. Each Delau- 
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nay simplex in D* belongs to a unique standard cluster. Each triangle in the standard 

decomposition of the unit sphere is associated with a unique quasi-regular tetrahedron, 

and each tetrahedron determines a triangle in the standard decomposition (Lemma 3.7). 

We may identify quasi-regular tetrahedra with clusters over triangular regions. 

We assign a score to each standard cluster in [H4, 3]. In this section we define the 

score of a quasi-regular tetrahedron and describe the properties that the score should 

have in general. 

Let S be a quasi-regular tetrahedron. It is a standard cluster in a Delaunay star with 

center v0. If the circumradius of S is at most 1.41, then we define the score to be I'(S). 

If the circumradius is greater than 1.41, then embed the simplex S in Euclidean three- 

space. Partition Euclidean space into four infinite regions (infinite Voronoi cells) by 

associating with each vertex of S the points of space closest to that vertex. By intersecting 

S with each of the four regions, we partition S into four pieces So, $1, $2, and $3, 

corresponding to its four vertices v0, v~, v2, and v3. Let sol/be the solid angle at the vertex 

vi of the simplex. The expression -48o~t vol(S0) + 4 sol0/3 is an analytic function of the 

lengths of the edges for simplices S that contain their circumcenters. (Explicit formulas 

appear in Section 8.) This function may be analytically continued to a function of the 

lengths of the edges for simplices S that do not necessarily contain their circumcenters. 

Let vor(S) be defined as the analytic continuation of -4(~oa vol(S0) + 4 sol0/3. 

In this case define the score of S to be vor(S). Write (r(S) for the score of a quasi- 

regular tetrahedron. In summary, the score is 

Ir(s), 
a(S) = [vor(S) 

if the circumradius of S is at most 1.41, 

otherwise. 

The quasi-regular tetrahedron S appears in four Delaunay stars. In the other three 

Delaunay stars, the distinguished vertices will be vl, v2, and v3, so that S, viewed as a 

standard cluster in the other Delaunay stars, will have scores -8o~t vol(Si) + soli/3 (or 

their analytic continuations), for i = 1, 2, 3. By definition, 

3 

r (s )  =  (-8oc, vol(L) + soli/3). 
i=0 

The sum of the scores of S, for each of the four vertices of S, is 4F(S). This is the same 

total that is obtained by summing the compression of S at each of its vertices. This is the 

property we need to relate the score to the density of the packing. It means that although 

the score reapportions the compression among neighboring Delaunay stars, the average 

of the compression over a large region of space equals the average of the score over the 

same region, up to a negligible boundary term. 

The analytic continuation in the definition of vor(S) has the following geometric 

interpretation. If the circumcenter of a quasi-regular tetrahedron S is not contained in S, 

a small tip of the infinite Voronoi cell at v0 (or some other vertex) will protrude through 

the opposite face of the Delaunay simplex. The volume of this small protruding tip is 

not counted in -48o~t vol(S0) + 4 sol0/3, but it is counted in the analytic continuation. 

The analytic continuations of the scores of S for each of the other three vertices acquire 

a term representing the negative volume of a part of the tip. The three parts together 
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constitute the entire tip, so that the negative volumes exactly offset the volume of the tip, 

and the sum of the four scores of S is 4F(S). Details appear in [H4]. 

The general definition of the score will have similar properties. To each standard 

cluster of a Delaunay star D* a score will be assigned. The rough idea is to let the score 

of a simplex in a cluster be the compression F(S) is the circumradius of every face of 

S is small, and otherwise to let the score be defined by Voronoi cells (in a way that 

generalizes the definition for quasi-regular tetrahedra). 

The score cr (D*) of a Delaunay star is defined as the sum of the scores of its standard 

clusters. The score has the following properties [H4, 3.1 and 3.5]: 

1. The score of a standard cluster depends only on the cluster, and not on the way it 

sits in a Delaunay star or in the Delaunay decomposition of space. 

2. The Delaunay stars of the face-centered cubic and hexagonal close packings score 

exactly 8 pt. 

3. The score is asymptotic to the compression over large regions of space. We make 

this more precise. Let A denote the vertices of a saturated packing. Let A s  denote 

the vertices inside the ball of radius N. (Fix a center.) Let D*(v) denote the 

Delaunay star at v ~ A. Then the score satisfies (in Landau's notation) 

= r(D*(v)) + O(Nb.  

AN AN 

Lemma 2.1. If the score of every Delaunay star in a saturated packing is at most 

s < 16zr/3, then the density ofthepacking is at most 16ZrSoct/(16~r - 3s). If  the score 

of every Delaunay star in a packing is at most 8 pt, then the density of the packing is at 

most / 

Proof The second claim is the special case s = 8 pt. The proof relies on property 3. 

The number of vertices such that D* (v) meets the boundary of the ball Bs of radius N 

has order O (N2). Since the Delaunay stars give a fourfold cover of R3, we have 

( ~ )  4 sol(D*(v)) 
4 -8oct vol(Bs) + IANI = Z(-8oc tvo l (D*(v) )  + + O(N 2) 

^N 3 

= Z C(D*(v)) + O(N a) 
AN 

= Z a ( D * ( v ) )  + O(N 2) 

AN 

< slAsl  + O(N2). 

Rearranging, we get 

4re [A N [ 8oc, 0 (N 2) 
< + ~  

3 vol(Bs) - (1 - 3s/16zr) vol(BN) 

In the limit the left-hand side is the density and the right-hand side is the bound. Similar 

arguments can be found in [HI] and [H2]. [] 
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The following conjecture is fundamental. By the lemma, this conjecture implies the 

Kepler conjecture. The lemma also shows that weaker bounds than 8 pt on the score 

might be used to give new upper bounds on the density of sphere packings. 

Conjecture 2.2. The score of every Delaunay star is at most 8 pt. 

The basic philosophy behind the approach of this paper is that quasi-regular tetrahedra 

are the only clusters that give a positive score, standard clusters over quadrilateral regions 

should be the only other clusters that may give a score of zero, and every other standard 

cluster should give a negative score. Moreover, we will prove that no quasi-regular 

tetrahedron gives more than 1 pt. 

Thus, heuristically, we try to obtain a high score by including as many triangular 

regions as possible. If we allow any other shape, preference should be given to quadri- 

laterals. Any other shape of region should be avoided if possible. If these other regions 

occur, they should be accompanied by additional triangular regions to compensate for the 

negative score of the region. We will see later in this paper that even triangular regions 

tend to give a low score unless they are arranged to give five triangles around each vertex. 

The main steps in a proof of the Kepler conjecture are 

1. A proof that even if all regions are triangular the total score is less than 8 pt. 

2. A proof that standard clusters in regions of more than three sides score at most 

Opt. 

3. A proof that if aU of the standard regions are triangles or quadrilaterals, then the 

total score is less than 8 pt (excluding the case of pentagonal prisms). 

4. A proof that if some standard region has more than four sides, then the star scores 

less than 8 pt. 

5. A proof that pentagonal prisms score less than 8 pt. 

The division of the problem into these steps is quite arbitrary. They were originally 

intended to be steps of roughly equal magnitude, although is has turned out that a con- 

struction in [H4] has made the second step substantially easier than the long calculations 

of the third step. 

This paper carries out the first step. The second step of the program is also complete 

[H4]. Partial results are known for the third step [H5]. In the fourth step it will be 

necessary to argue that these regions take up too much space, give too little in return, and 

have such strongly incompatible shapes that they cannot be part of a winning strategy. 

To make step 5 precise, we definepentagonalprisms to be Delaunay stars whose stan- 

dard decomposition has ten triangles and five quadrilaterals, with the five quadrilaterals 

in a band around the equator, capped on both ends by five triangles (Diagram 2.3). The 

conjecture in this section asserts, in particular, that pentagonal prisms, which created 

such difficulties in [H2], score less than 8 pt. The final step has been separated from the 

third step, because the estimates are expected to be more delicate for pentagonal prisms 

than for a general Delaunay star in the third step. 

One of the main shortcomings of the compression is that pentagonal prisms have 

compression greater than 8 pt (see [H2]). Numerical evidence suggests that the upper 

bound on the compression is attained by a pentagonal prism, denoted Dppap in [H2], at 
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Diagram 2.3 

) 

about 8.156 pt, and this means that the link between the compression and the Kepler 

conjecture is indirect. The score appears to correct this shortcoming. 

What evidence is there for the conjecture and program? They come as the result of 

extensive computer experimentation. I have checked the conjecture against much of the 

data obtained in the numerical studies of [H2, 9.3]. The data suggest that the score tends 

to give a dramatic improvement over the compression, often improving the bound by 

more than a point. The score of the particularly troublesome pentagonal prism Dppdp 

drops safely under 8 pt. I have checked a broad assortment of other pentagonal prisms 

and have found them all to score less than 8 pt. 

The second step shows that no serious pathologies can arise. The only way to form a 

Delaunay star with a positive score is by arranging a number of quasi-regular tetrahedra 

around a vertex (together with other standard clusters than can only lower the score). 

There must be at least eight tetrahedra to score 8 pt, and if there are any distortions in 

these tetrahedra, there must be at least nine. However, as this paper shows, too many 

quasi-regular tetrahedra in any star are also harmful. Future papers will impose additional 

limits on the structure of the optimal Delaunay star. 

3. Quas i -Regular  Tetrahedra 

This section studies the compatibility of the Delaunay simplices and the quasi-regular 

solids. Fix three vertices Vl, v2, and v3 that are close rieighbors to one another. Let T be 

the triangle with vertices vi. It does not follow that T is the face of a Delaunay simplex. 

However, as we will see, when T is not the face of a simplex, the arrangement of the 

surrounding simplices is almost completely determined. 

If T is not the face of a Delaunay simplex, then we will show that there are two 

' ' are close neighbors to vl,/)2, and v3. This additional vertices Vo and Vo, where vo and v 0 

means that there are two quasi-regular tetrahedra Sl and $2 with vertices (vo, vl, v2, v3) 

and (v~,/)1, v2, v3), respectively, that have the common face T (see Diagram 3.1 (a)). We 

see that $1 tO $2 is the union Of three Delaunay simplices with vertices (/)0, v~,/)l, v2), 

(/)0,/)~, v2, v3), and (Vo, v~, v3, vl) in Diagram 3.1(b). This section establishes that this 
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is the only situation in which quasi-regular tetrahedra are not Delaunay simplices: they 

must come in pairs and their union must be three Delaunay simplices joined along a 

common edge. The decomposition of this paper is obtained by taking each such triple of 

Delaunay simplices (3.1 (b)) and replacing the triple by a pair of quasi-regular tetrahedra 

(3.1(a)). 

Diagram 3.1 

From the dual perspective of Voronoi cells, the Voronoi cell at v0 (or v~) would have 

a small tip protruding from Sl through T, if the vertex v~ were not present. The vertex 

v~ slices off this protruding tip so that the Voronoi ceils at o0 and v~ have a small face in 

common. 

Lemma 3.2. Suppose that the circumradius of  the triangle T is less that .v/2. Then T 

is the face of  a Delaunay simplex. 

Proof. Let r < ~/2 be the radius of the circle that circumscribes T, and let c be the 

center of the circle. The sphere of radius r at c does not contain any vertices of D* other 

than vl, v2, and v3. By the definition of the Delaunay decomposition (as described in the 

Introduction), this implies that T is the face of a simplex. [] 

Remark 3.3. We have several constraints on the edge lengths, if T is not a face of a 

Delaunay simplex. Consider the circumradius 17 (a, b, c ) o f  a triangle whose edges have 

lengths a, b, c between 2 and 2.51. Since 2.512 < 22 + 22, we see that the triangle is acute, 

so that r/(a, b, c, ) is monotonically increasing in a, b, and c. This gives simple estimates 

relating the circumradius to a, b, and c. The circumradius is at most r/(2.5 I, 2.51, 2.51 ) = 

2.51/~/~ ~ 1.449. If the circumradius is at least ~/2 ~ 1.41421, then a, b, and c are 

greater than 2.3(I/(2.3, 2.51,2.51) ~ 1.41191 < ~/'2). Under the same hypothesis, two 

of a, b, and c are greater than 2.41 (r/(2.41, 2.41, 2.51) < Vr2). Finally, at least one edge 

has length greater than 2.44(r/(2.44, 2.44, 2.44) < V~). 

Lemma 3.4. Let T be the triangle with vertices 13 i . Assume that the vertices vi are close 

neighbors of  one another. Suppose there is a vertex vo that lies closer to the circumcenter 
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o f T  than the vertices o f T  do. Then the vertex 1)o satisfies 2 < I1)0 - vii < 2.15,for 

i = 1, 2, 3. In particular, the convex hull ofvo . . . . .  1)3 is a quasi-regular tetrahedron S 

with face T. 

Another way of stating the hypothesis on the circumcenter is to say that the plane 

of T separates 1)0 from the circumcenter of S. Because of the constraints on the edge 

lengths in Remark 3.3, the three other faces of S are faces of Delaunay simplices. 

Proof. We defer the proof to Section 8.2.5. [] 

Lemma 3.5. Let 1), 1)1, 1J2, 1)3, and 1)4 be distinct vertices with pairwise distances at 

least 2. Suppose that the pairs (vi, vj) are close neighbors for {i, j} ~ {1, 4}. Then v 

does not lie in the convex hull of (vl, v2, v3, v4). 

Proof. For a contradiction, suppose v lies in the convex hull. Since Iv - vi I > 2 and 

for {i, j} r {1, 4}, vi and vj are close neighbors, the angle formed by vi and vj at 

the vertex v is at most 00 = arccos(1 - 2.512/8) -~ 1.357. Each such pair of vertices 

gives a geodesic arc of length at most 00 radians on the unit sphere centered at v. We 

obtain in this way a triangulation of the unit sphere by four triangles, two with edges of 

length at most 00 = 2 arcsin(2.51/4) radians, and two others that fit together to form a 

quadrilateral with edges of at most 00 radians. By the spherical law of cosines, the area 

formula for a spherical triangle, and [H2, 6.1], each of the first two triangles has area at 

most 3 arccos(cos 00/(1 + cos00)) - rr ~ 1.04. By the same lemma, the quadrilateral 

has area at most the area of a regular quadrilateral of side 00, or about 2.8. Since the 

combined area of the two triangles and quadrilateral is less than 4~r, they cannot give 

the desired triangulation. To see that v cannot lie on the boundary, it is enough to check 

that a triangle having two edges of lengths between 2 and 2.51 cannot contain a point 

that has distance 2 or more from each vertex. We leave this as an exercise. [] 

Corollary 3.5.1, No vertex of the packing is ever an interior point of a quasi-regular 

tetrahedron or octahedron. 

Proof. The corollary is immediate for a tetrahedron. For an octahedron, draw the dis- 

tinguished diagonal and apply the lemma to each of the four resulting simplices. [] 

Let T be a triangle of circumradius between ~ and 2.51/~/3, with edges of length 

between 2 and 2.51. Consider the line through the circumcenter of T, perpendicular to the 

plane of T. Let s be the finite segment in this line whose endpoints are the circumcenters 

of the two simplices with face T formed by placing an additional vertex at distance 2 

from the three vertices of T on either side of the plane through T. 

Lemma 3.6. Let S be a simplex formed by the vertices of T and a fourth vertex v~. 

Suppose that the circumcenter of S lies on the segment s. Assume that v' o has distance 

at least 2from each of the vertices ofT.  Then v' o has distance less than 2.3from each of 

the vertices of T. 
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Proof. Let 1)1, 1)2, 1)3 be the vertices of T. For a contradiction, assume that 1)~ has 

distance at least 2.3 from a vertex 1)1 of T. Lemma 3.4 shows that the plane through 

T does not separate v~ from the circumcenter of S. If the circumcenter lies in s (and 

is not separated from 1)~ by the plane through T), then by moving 1)~ to decrease the 

circumradius, the circumcenter remains in s. 

Let S be the simplex with vertices 1)~, 1)1, 1)2, and v3. The circumcenter of S lies in 

the interior of S. We omit the proof, because it is established by methods similar to (but 

longer than) the proof of Lemma 3.4. Thus, the circumradius is increasing in the lengths 

of I1)~ - vi I, for i = l, 2, 3 (see paragraph 8.2.4). 

Let R be the circumradius of a simplex with face T and center an endpoint ofs.  We will 

prove that the circumradius of S is greater than R, contrary to our hypothesis. Moving v~ 

to decrease the circumradius, we may take the distances to vi to be precisely 2.3, 2, and 2. 

We may move 1)i, v2, and 1) 3 along their fixed circumscribing circle until lyE - 1)31 = 2.51 

and I1)1 - 1)21 = I1)1 - 1)31 in a way that does not decrease any of the distances from v~ 

to 1)i. Repeating the previous step, we may retain our assumption that 1)~ has distances 

exactly 2.3, 2, and 2 from the vertices 1)i as before. We have reduced the problem to a 

one-dimensional family of tetrahedra parametrized by the radius r of the circumscribing 

circle of T. Set x(r) = I1)1 - 1)31 = 11)2 - 1)31. To obtain our desired contradiction, 

we must show that the circumradius R'(r) of the simplex S(2.3, 2, 2, 2.51, x(r), x(r)) 

satisfies R'(r) > R(r). Since both R' and R are increasing in r, for r ~ [V"2, 2.51/x/3], 

the desired inequality follows if we evaluate the 200 constants 

g ' ( r i )  - g ( r i + l )  for ri = ~/2 (2 .51 _ Vr~) i 
\ ,,/'] 200' 

for i = 0 . . . . .  199, and check that they are all positive. (The smallest is about 0.00005799, 

which occurs for i = 199.) [] 

Let T be a triangle made up of three close neighbors. Suppose that T is not the face 

of a Delaunay simplex. There exists a vertex v0 whose distance to the circumcenter of T 

is less than the circumradius of T. Let S be the quasi-regular tetrahedron formed by v0 

and the vertices of T. It is not a Delaunay simplex, so there exists a vertex v6 that is less 

than the circumradius of S from the circumcenter of S. Let S' be the simplex formed by 

v6 and the vertices of T. It is not a Delaunay simplex either. The circumcenter of S lies 

in the segment s of Lemma 3.4, so the circumcenter of S' does too. The lengths of the 

edges of S and S' other than T are constrained by Lemmas 3.4 and 3.6. In particular, in 

light of Remark 3.3, the faces other than T of S and S' are faces of Delaunay simplices. 

If vo and v o' lie on the same side of the plane through T, then either v o' lies in S, v0 

lies in S', or the faces of S and S' intersect nonsimplicially. None of these situations 

can occur because a nondegenerate Delaunay decomposition is a Euclidean simplicial 

complex and because of Lemma 3.5. We conclude that v0 and v6 lie on opposite sides 

of the plane through T. 

S U S' is bounded by Delaunay faces, so S U S' is a union of Delaunay simplices. The 

fourth vertex of the Delaunay simplex in S U S' with face (v0, v l, v2) cannot be v3 (S is not 
/ / ! 

a Delaunay simplex), so it must be v 0. Similarly, (vo, v o, v2, v3) and (v0, v o, v3, vl) are 

Delaunay simplices. These three Delaunay simplices cannot be quasi-regular tetrahedra 

by Lemma 8.3.2. 
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The assumption that T is not a face has completely determined the surrounding 

geometry: there are two quasi-regular tetrahedra S and S' along T such that S U S' is a 

union of three Delaunay simplices. 

Lemma 3.7. Let L be a union of standard regions. Suppose that the boundary of L 

consists of three edges. Then either L or its complement is a single triangle. 

For example, the interior of L cannot have the form of Diagram 3.8. Lemma 3.5 

(proof) shows that if all regions are triangles, then there are at least 12 triangles, so that 

the exterior of L cannot have the form of Diagram 3.8 either. 

Diagram 3.8 

Proof. Replacing L by its complement if necessary, we may assume that the area of 

L is less than its complement. The triangular boundary corresponds to four vertices vo 

(the origin), vl, v2, and v3. The close-neighbor constraints on the lengths show that the 

convex hull of v0 . . . . .  v3 is a quasi-regular tetrahedron. By construction each quasi- 

regular tetrahedron is a single cluster. [] 

We say that a point v ~ ]]~3 is enclosed by a region on the unit sphere is the interior 

of the cone (with vertex v0) over that region contains v. For example, in Diagram 3.9, 

the point v is enclosed by the given spherical triangle. 

vo 

Diagram 3.9 

The following lemma was used in Section 2 to define the standard decomposition. 
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Lemma 3.10. Fix a Delaunay star D* with center vo. Draw geodesic arcs on the unit 

sphere at vofor every triple of close neighbors vo, vl, v2 (as in Section 2). The resulting 

system of arcs do not meet except at endpoints. 

Proof. Our proof is based on the fact that a nondegenerate Delaunay decomposition is a 

Euclidean simplicial complex. Let Tl and/'2 be two triangles made from two such triples 

of close neighbors. We have T/ C Si U S~, where Si and Si are the Delaunay simplices 

with face T/if T,. is the face of a Delaunay simplex, and they are the two quasi-regular 

tetrahedra with face T/constructed above, otherwise. Since a nondegenerate Delaunay 

decomposition is a Euclidean simplicial complex, $1 U S' l meets $2 t_J S~ simplicially. 

By the restrictions on the lengths of the edges in Lemmas 3.4 and 3.6, this forces/'1 to 

intersect T2 simplicially. The result follows. [] 

4. Quadrilaterals 

Fix a Delaunay star composed entirely of quasi-regular tetrahedra and consider the 

associated triangulation of the unit sphere. Let L be a region of the sphere bounded by 

four edges of the triangulation. L will be the union of two or more triangles. Replacing 

L by its complement in the unit sphere if necessary, we assume that the area of L is less 

than that of its complement. 

We claim that, in this context, L is the union of either two or four triangles, as 

illustrated in Diagram 4.1. In particular, L encloses at most one vertex. If a diagonal to 

the quadrilateral L is an edge of the triangulation, the region L is divided into two triangles 

each associated with a quasi-regular tetrahedron. In particular, there is no enclosed vertex. 

(Lemma 3.7 precludes any subtriangulation of a triangular region.) If, however, there is 

a single enclosed vertex and neither diagonal is an edge of the triangulation, then the 

only possible triangulation of L is the one of the diagram. Proposition 4.2 completes the 

proof of the claim. 

Diagram 4.1 

Proposition 4.2. A union of regions (of area less than 2~r) bounded by exactly four 

edges cannot enclose two vertices of distance at most 2.51 from the origin. 

This argument is somewhat delicate: if our parameter 2.51 had been set at 2.541, for 

instance, such an arrangement would exist. First we prove a useful reduction. 
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L e m m a  4.3. 

constraints 

2 <_ [vii < 2.51, 

2 <_ Ivi - vi+ll < ki, 

2 < I v i -  Vi+2[, 

2 < IV-- V'I, 

hi < I w - v i i ,  

2 < Iwl _< e f o r  

Assume a figure exists with vectors vl . . . . .  1)4, v, and v' subject to the 

w = v , v '  and i =  1 . . . . .  4 (mod4) ,  

where s hi, and ki are f ixed constants that satisfy s ~ [2.51, 2~/2], hi E [2, 2~r 

ki E [2, 2.51]. Let L be the quadrilateral on the unit sphere with vertices vi/lvi[ and 

edges running between consecutive vertices. Assume that v and v' lie in the cone at the 

origin obtained by scaling L. Then another figure exists made o f  a (new) collection o f  

vectors vl . . . . .  v4, v, and v' subject to the constraints above together with the additional 

constraints 

[i)i - Vi+l[ = ki, 

Ivil = 2 for  i = l . . . . .  4, 

Ivl = Iv'l = e .  

Moreover, the quadrilateral L may be assumed to be convex. 

Proof. By rescaling v and v', we may assume that ]vl = Io'l = e. (Moving v or v' 

away from the origin increases its distance from the other vertices of  the configuration.) 

The diagonals satisfy Iv2 - v4[ > 2.1 and Iv1 - v31 > 2.1. Otherwise, if say Iv1 - v31 < 

2.1, then the faces with vertices (Vl, v2, v3) and (Vl, v4, v3) have circumradius less than 

~,/2. The edge from 0 to v has length at most v"2, so this edge cannot intersect these faces 

by the Euclidean simplicial complex argument used before Lemma 3.7 and in Lemma  

3.10. By Lemma 3.5, v cannot lie in the convex hull of  (0, vl, v3, vi). This leaves v 

nowhere to go, and a figure with IVl - w31 < 2. I does not exist. 

Next, we claim that we may assume that the quadrilateral L is convex (in the sense 

that it contains the geodesic arcs between any two points in the region). T o  see this, 

suppose the vertex vi lies in the cone over the convex hull of  the other three vertices vj. 

Consider the plane P through the origin, vi-1, and vi+l. The reflection v~ of  vi through 

P is no closer to v, v', or vi+2 and has the same distance to the origin, vi - l ,  and vi+l. 

Thus, replacing vi with v; if necessary, we may assume that L is convex. 

Most of  the remaining deformations are described as pivots. We fix an axis and 

rotate a vertex around a circle centered along and perpendicular to the given axis. If, for 

example, Iv3 - v4l < k3, we pivot the vertex 04 around the axis through 0 and Vl until 

Iv3 - v41 ---- k3. It follows from the choice of  axes that the distances f rom v4 to the origin 

and vl are left unchanged, and it follows from the convexity of  L that Iw - Va[ increases 

for w = v2, 03, v, and v'. Similarly, we may pivot vertices vi along the axis through the 

origin and vi+l until [vi - Vi-l[ = ki, for all i. 

Fix an axis through two opposite vertices (say Vl and v3) and pivot another vertex 

(say v2) around the axis toward the origin. We wish to continue by picking different axes 



Sphere Packings, I 15 

and pivoting until [vii = 2, for i = 1, 2, 3, 4. However, this process appears to break 

down in the event that a vertex 1)i has distance hi from one of  the enclosed vertices and 

the pivot toward the origin moves vi closer to that enclosed vector. We must check that 

this situation can be avoided. 

Interchanging the roles of (1)1, v3) with (v2, 1)4) as necessary, we continue to pivot 

until Ioll  = 11)31 = 2 or 11)21 = 11)41 = 2 (say the former). We claim that either v2 has 

distance greater than h2 from v or that pivoting 1)2 around the axis through 1)1 and v3 

moves v2 away from v. If not, we find that Iv1[ = I031 = 2, Iv - w21 = h2 and that 1) lies 

in the cone C = C(1)2) with vertex v2 spanned by the vectors from v2 to the origin, Vl, 

and v3. (This relies on the convexity of the region L.) 

To complete the proof, we show that this figure made from (0, vl, v2, v3, v) cannot 

exist. Contract the edge (v, 02) as much as possible keeping the triangle (0, vl, v3) fixed, 

subject to the constraints that 1) ~ C(1)2) and Iw - w'l > 2, for w = v, 1)2 and w' = 0, 

vl, 1)3. This contraction gives Iv - 1)21 < h2 < 2Vr2. 

Case 1: v lies in the plane of  (0, 02, 1)3). This gives an impossibility: crossing edges 

(1), 1)2), (0, v3) of length less than 2~/'2. Similarly, v cannot lie in the plane of  (0, '1)1, 1)2). 

Case 2: v lies in the interior of  the cone C(v2). The contraction gives Iv - w'l = 2 for 

w = v, v2 and w' = 0, 1)1, 1)3. The edge (1), v2)divides the convex hull of  (0, v l, v2, 1)3, v) 

into three simplices. Consider the dihedral angles of these simplices along this edge. The 

dihedral angle of the simplex (1)1, v2, 1)3, 1)) is less than Jr. The dihedral angles of  the 

other two are less than dih(S(2q"2, 2, 2, 2, 2, 2)) = zr/2. Hence, the dihedral angles 

along the diagonal cannot sum to 2zr and the figure does not exist. 

Case 3: v lies in theplane of(v2, 1:1, 1)3). Let r be the radius of  the circle in this plane 

passing through 1)1 and 1)3 obtained by intersecting the plane with a sphere of radius 2 at 

the origin. We have 2r > [vl - 1)31 > 2V~ because otherwise we have the impossible 

situation of  crossing edges (1)1, 1)3) and (v2, 1)) of length less than 2~/~. Let H be the 

perpendicular bisector of the segment (1)1, 1)3). By reflecting v through H if necessary 

we may assume that- v and v2 lie on the same side of  H,  Say the side of  v3. Furthermore, 

by contracting (1), v2), we may assume without loss of generality that 11)3 - v[ = 11)2 - 

1)31 = 2. Let f ( r )  = Iv - v21, as a function o f r .  f is increasing in r. The inequalities 

2~/'2 > h2 > I v -  v2l > f ( ~ )  = 2~/~ give the desired contradiction. [] 

Proof of  Proposition 4.2. Assume for a contradiction that o and v' are vertices enclosed 

by L. Let the center of  the Delaunay star be at the origin, and let vl . . . . .  v4, indexed 

consecutively, be the four vertices of the Delaunay star that determine the extreme points 

of L. 

We describe a sequence of deformations of the configuration (formed by the vertices 

vl . . . . .  v4, v, v') that transform the original configuration of vertices into particular rigid 

arrangements below. We show that these rigid arrangements cannot exist, and from this it 

follows that the original configuration does not exist either. These deformations preserve 

the constraints of  the problem. To be explicit, we assume that 2 _< Iwl _< 2.51, that 

2 <_ [w - v i i  if  w ~ vi, that 2 < Iv - v'[, and that [vi - vi+l [ _< 2.51, for i = 1, 2, 3, 4 

and w = vl . . . . .  v4, v, v'. Here and elsewhere we take our subscripts modulo 4, so that 
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vl = v5, and so forth. The deformations also keep v and v' in the cone at the origin that 

is determined by the vertices vi. 

We consider some deformations that increase Iv - v'l. By Lemma  4.3, we may 

assume that Ivil = 2, lol = Iv'l = Ivi - vi+ll  = 2.51, for i = 1 , 2 , 3 , 4 .  If, for 

some i, we have [vi - v[ > 2 and Ivi - v'l > 2, then we fix v i - i  and vi+2 and pivot 

vi+l around the axis through the origin and vi+2 away from v and v'. The constraints 

Ivi+l - vii  = Ivi - Vi- l[  = 2.51 force us to drag vi to a new position on the sphere 

of  radius 2. By making this pivot sufficiently small, we may assume that I vi - w l and 

[Vi+l - w[, for w = v, v', are greater than 2. 

The vertices v and v'  cannot both have distance 2 from both vi+2 and v i - l ,  for then 

we would have v = v'. So one of them, say v, has distance exactly 2 from at most one of 

vi+2 and v i - i  (say vi+2). Thus, v may be pivoted around the axis through the origin and 

vi+2 away from v'. In this way, we increase Iv - v'l until [vi - vl = 2 or Ivi - v ' l  = 2, 

f o r / =  1 , 2 , 3 , 4 .  

Suppose one of  v, v' (say v) has distance 2 from vi,  vi+1, and 0i+2. The configuration 

is completely rigid. By symmetry, the vertices v i - i  and v' must be the reflections of  

vi+l and v, respectively, through the plane through 0, vi,  and 1)i+ 2. In particular, v '  has 

distance 2 from vl ,  v i - l ,  and vi+2. We pick coordinates and evaluate the length Iv - v'[. 

We find that Iv - v'[ ~ 1.746, contrary to the hypothesis that the centers of  the spheres 

of  our packing are separated by distances of  at least 2. Thus, the hypothesis that v has 

distance 2 from three other vertices is incorrect. 

Diagram 4.4 

We are left with one of  the configurations of Diagram 4.4. An edge is drawn in the 

diagram, when the distance between the two endpoints has the smallest possible value 

(that is, 2.51 for the four edges of  the quadrilateral, and 2 for the remaining edges). Deform 

the figure of  case (a) along the one remaining degree of  freedom until Iv - v'l = 2. In 

case (a), referring to the notation established by Diagram 4.5, we have a quadrilateral 

on the unit sphere of  edges tl = 2arcsin(2.51/4)  ~ 1.357 radians, t2 = arccos(2.51/4) 

radians, and t3 = 2 arcsin(1/2.51) radians. The form of  this quadrilateral is determined 

by the angle a ,  and it is clear that the angle/~(c~) is decreasing in or. We have 

0 = dihmax = dih(S(2.51, 2, 2, 2.51, 2, 2)) ~ 1.87A.A.AA. 

The figure exists if and only if there exists ot such that 3(t~) +/~(2zr - 0 - or) = 2Jr - 0. 
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By symmetry, we may assume that ot < J r -  0 /2  -~ 2.20437. The condition Iv - vl[ > 2 

implies that 

(cost:z__- cos ~ c o s t 3 )  
ot > arccos k sint2 sint3 > 1.21. 

However, by monotonicity, 

~(ot) + ~(2:r - 0 - u) < ~ ( o t i )  - 4 - / ~ ( 2 z r  - 0 - f f i  - -  0.1) < 2Zr -- 0, 

for ui < u < 0.1 + oti, with oti = 1.21 + 0.1 i, and i = 0, 1 . . . . .  9, as a direct calculation 

of the constants/~(ui) + fl(2zr - 0 - o~i - 0.1) will reveal. (The largest constant, which 

is about 27r - 0 - 0.113., occurs for i = 0.) Hence, the figure of  Diagram 4.4(a) does 

not exist. 

tj 

V I 

Diagram 4.5 

To rule out Diagram 4.4(b), we reflect v, if necessary, to its image through the plane 

P through (0, vl, v3), so that P separates v and v'. The vertex v can then be pivoted away 

from v' along the axis through vl and v3. This decreases Ivl, but we may rescale so that 

Ivl = 2.51. Eventually Iv - v21 = 2 or Iv - v41 = 2. This is the previously considered 

case in which v has distance 2 from three of  the vertices vi. This completes the proof  

that the original arrangement of  two enclosed vertices does not exist. []  

5. Restrictions 

If  a Delaunay star D* is composed entirely of  tetrahedra, then we obtain a triangulation 

of the unit sphere. As explained in Section 2, we wish to prove that no matter what the 

triangulation is, we always obtain a score less than 8 pt. In this section we make a long 

list of  properties that a configuration must have if it is to have a score of  8 pt or more. 

The next section and the Appendix show that only one triangulation satisfies all of  these 

properties. Additional arguments will show that this triangulation scores less than 8 pt. 

This will complete the proof of  Theorem 1. 

In this section the term vertices refers to the vertices of  the triangulation of  the 

unit sphere. The edges of  the triangulation give a planar graph. We adopt the standard 

terminology of  graph theory to describe the triangulation. We speak of the degree of  a 
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vertex, adjacent vertices, and so forth. The n triangles around a vertex are referred to as 

an n-gon. We also refer to the corresponding n tetrahedra that give the triangles of the 

polygon. We say that a triangulation contains a pattern (al . . . . .  a,), for ai E N, if there 

are distinct vertices vi of degrees ai that are pairwise nonadjacent, for i = 1 . . . . .  n. Let 

N be the number of  vertices in the triangulation, and let Ni be the number of vertices of 

degree i. We have N = ~ Ni. 

In this section we start to use our various inequalities from Section 9 related to the 

score. Since the score tr(S) may be either F(S) or vor(S) depending on the circumradius 

of S, there are two cases to consider for every inequality. In general, the inequalities for 

F(S) are more difficult to establish. In the following sections we only cite the inequalities 

pertaining to F(S). Section 9 shows how all the same inequalities hold for vor(S). 

Proposition 5.1. Consider a Delaunay star D* that is composed entirely of quasi- 

regular tetrahedra. Suppose that o ( D*) > 8 pt. Then the following restrictions hold on 

the triangulation of the unit sphere given by the standard decomposition: 

1. 1 3 < N <  15. 

2. N = N 4 + N s + N 6 .  

3. A region bounded by three edges is either a single triangle or the complement of 

a single triangle. 

4. Two degree 4 vertices cannot be adjacent. 

5. N4 < 2 .  

6. Patterns (6, 6, 6) and (6, 6, 4) do not exist. 

7. The pattern (6, 6) or (6, 4, 4) implies that N > 14. 

8. If there are two adjacent degree 6 vertices, and a third degree 6 vertex adjacent to 

neither of the first two, then N = 15 and all other vertices are adjacent to at least 

one of these three. 

9. The triangulation is made of geodesic arcs on the sphere whose radian lengths are 

between 0.8 and 1.36. 

L e m m a  5.2. Consider a vertex of degree n,for some 4 < n < 7. Let Sl . . . . .  S, be the 

tetrahedra that give the n triangles. Then ~'~i~=l o (Si) is less than zn, where z4 = 0.33 pt, 

z5 = 4.52 pt, z6 = - 1.52 pt, and z7 = - 8 . 9  pt. Suppose that n > 6. Let Si . . . . .  $4 be 

any four of the n tetrahedra around the vertex. Then ~'~.4i= l tr(Si) < 1.5 pt. 

Proof. When n = 4, this is Lemma 9.5. When n = 5, this is Lemma 9.6. When n = 6 

or n = 7, we have, by Calculation 9.4, 

/I n 

~-"~cr(Si) < ~'~(0.378979dih(Si) - 0.410894) 
i = 1  i = 1  

= 2rr(f).~7R979) -- 0.410894n. 

The right-hand side evaluates to about -1.520014 pt and -8.940403 pt, respectively, 

when n = 6 and n = 7. 

Assume that n > 6, and select any four $I . . . . .  $4 of the n tetrahedra around the 

vertex. Let $5 and $6 be two other tetrahedra around the vertex. The dihedral angles of 
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$5 and $6 are at least dihmin, by Calculation 9.3. Each of the four triangles (associated 

with SI . . . . .  $4) must then, on average, have an angle at most (2rr - 2 dihmin)/4 at v. 

By Calculation 9.4, 

4 4 

E a(Si) < Z ( 0 . 3 7 8 9 7 9  dih(Si) - 0.410894) 
i=1 i=l  

< (2Jr - 2 dihmin)0.378979 + 4(-0.410894) < 1.5 pt. [] 

Proof of Proposition 5.1. Lett  = 2 ( N - 2 )  be the number oftriangles, an even number. 

By Euler's theorem on polyhedra, 

3/73 +2N4 + N 5  +0N6  - N7 . . . .  12. 

Let $1 . . . . .  St denote the tetrahedra of D*. Let tri = a(Si) be the corresponding score. 

Let soli denote the solid angle cut out by S~ at the origin. We have ~ s o l / =  4zr. Often, 

without warning, we rearrange the indices i so that the tetrahedra that give the triangles 

around a given vertex are numbered consecutively. When a vertex v of the triangulation 

has been fixed, we let oti denote the angles of the triangles at v, so that Y~. oti = 27r. The 

angle oti of a triangle is equal to the corresponding dihedral angle of the simplex Si. We 

abbreviate certain sums over n elements to Y~r when the context makes the indexing 

set clear. Throughout the argument, we use Calculation 9.1, which asserts that cri < 1 pt, 
for all i. The proofs show that if a triangulation fails to have any of properties 1-9, then 

the total score must be less than 8 pt. 
(Proof of 5.1.1 .) Assume that t > 28. By Calculation 9.9, 

E cr i 

(t) 

E (0.446634 sol/-0.190249) < 4zr (0.446634) + t (-0.190249) < 

(t) 

< 4rr(0.446634) + 28(-0.190249) < 8 pt. 

Suppose that t < 18. By Calculation 9.8, 

__Y'~r i < Z ( - 0 . 3 7 6 4 2 1 0 1  sol /+  0.287389) = 4zr(-0.37642101) + t(0.287389) 

(t) (t) 

_< 4zr(-0.37642101) + 18(0.287389) < 8pt. 

This proves that 12 < N < 15. The case N = 12 is excluded after 5.1.2. 

(Proof of 5.1.2.) By Lemma 8.3.2 and Calculation 9.3, each angle ot of each triangle 

satisfies dihmin < o~ < dihmax. In particular, ot > 7r/4, so that each vertex has degree less 

than 8, and cz < 2zr/3, so that each vertex has degree greater than 3. 

Assume for a contradiction that there is a vertex of degree 7. Consider the seven 

tetrahedra around the given vertex. By Lemma 5.2, the tetrahedra satisfy 

Z cri < pt. ~ 8 ~ 9 

(7) 

Suppose t < 24. For each vertex v, set (v = Y'~v tri, the sum running over the tetrahedra 

around v. Clearly, ~r cri = ( ~ v  (v)/3. Pick a vertex v that is not a vertex of any of the 
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seven triangles of the heptagon. By Lemma 5.2, we see that (~ < 0.33 pt if v has degree 

4, (v < 4.52 pt if v has degree 5, (v < - 1.52 pt if v has degree 6, and (v < - 8 . 9  pt if 

v has degree 7. In particular, if v has degree n, then (~ falls short of n points by at least 

0.48 pt. Thus, 

~_, tri < ~ cri + ~_, pt - 0.48 pt < ( -8 .9  + (24 - 7) - 0.48) pt < 8 pt. 
(t) (7) (t-7) 

Finally, we assume that t = 26 and N = 15. If  N6 = 0 and N7 = 1, then Euler's theorem 

gives the incompatible conditions 2N4 + N5 - 1 = 12 and N4 + N5 + 1 = 15. Thus, 

N6 > 0 or N7 > 1. This gives a second k-gon (k = 6 or 7) around a vertex v. This 

second polygon shares at most two triangles with the original heptagon. This leaves at 

least four triangles of a second polygon exterior to the first. Thus, by Lemma 5.2, 

E cri <_ ~_~ cri + E cri + E pt < - 8 . 9  pt + 1.5 pt + (26 - 11) pt < 8 pt. 
(26) (7) (4) ( t -  11) 

(Proof of 5.1.1, continued) Assume N = 12. We define three classes of quasi-regular 

tetrahedra. In the first class all the edges have lengths between 2 and 2.1. In the second 

class the fourth, fifth, and sixth edges have lengths greater than 2.1. The third class is 

everything else. 

Set e = 0.001, a = -0.419351, b = 0.2856354. The following are established by 

Calculations 9.10-9.12: 

or(S) < a sol(S) + b + e for S in the first class, 

a (S)  _< a sol(S) + b for S in the second class, 

or(S) < a sol(S) + b - 5e for S in the third class. 

Consider a vertex v of degree n = 4, 5, or 6 and the surrounding tetrahedra Sl . . . . .  Sn. 

We claim that 
n n 

(5.1.1.1) ~-~ o(S/) ~_< y~(a s o l ( S / ) - [ - b ) .  

i=1 i=1 

This follows directly from the stated inequalities if none of these tetrahedra are in the 

first class. It is also obvious if at least one of these tetrahedra is in the third class, because 

then the inequality is violated by at most - 5 e  + (n - 1)e _< 0. So assume that all of the 

tetrahedra are in the first two classes with at least one in the first class. By the restrictions 

on the lengths of the edges, a tetrahedron in the first class cannot be adjacent to one in 

the second class. We conclude that the tetrahedra are all in the first class. 

By Lemma 5.2, zn <_ n(O.904) pt. If )-'~.(n ) sol(S/) _ n(0.56176), then 

a(s/) <_ n(0.904) pt <_ ~--~(a(0.56176) + b) < E ( a  sol(s/) + b). 

(n) (n) (n) 

SO we may assume that ~(n) sol(S/) > n(0.56176). By Calculation 9.13, 

~_cr(Si) < E ( - 0 . 6 5 5 5 7 s o I ( S i )  + 0.418) 

(n) (n) 
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< Z ( a  sol(S/) + b) + Z(0 .132365  0.236219(0.56176)) 

(n) (n) 

< Z ( a  sol(S/) + b). 
(n) 

This establishes inequality (5.1.1.I). By averaging over every vertex, we see that the 

average of the scores a(S)  is less than the average of a sol(S) + b. So 

or(D*) = Z or(S) < Z ( a  sol(S) + b) = 47ra + 20b ~ 7.99998 pt < 8pt. 
(t) (t) 

(Proof of 5.1.3.) This is Lemma 3.7. (If we had not introduced quasi-regular tetrahedra, 

then this result would no longer hold.) 

(Proof of 5.1.4.) If two degree 4 vertices are adjacent, we then have the arrangement 

of Diagram 5.3. This is a quadrilateral enclosing two vertices, contrary to Proposition 

4.2. 

Diagram 5.3 

(Proof of 5:1.5.) As in the proof of 5.1.2, for each vertex v, set ~'v = ~ v  cri, the sum 

running over the tetrahedra around the vertex v. We use the estimates of ~'v that appear 

in Lemma 5.2. 

We have found that Ni = 0, i f /y~  4, 5, 6. By Euler's theorem, N5 = 12 - 2N4 and 

N6 = N4 + N - 12. Assume that N > 13 and that N4 > 3. Then 

Z c r i  = g Z ~ v < l  � 8 9  1 . 5 2 ( N 4 + N -  12))pt 

(t) (N) 

< �89 + 4 . 5 2 ( 1 2 -  6) - 1.52(3 + 1 3 -  12))pt < 8pt. 

(Proof of 5.1.6.) Suppose that we have the pattern (6, 6, 6) Then reordering indices 

according to the polygons in the pattern, we have, by the estimates of Lemma 5.2, 

Zcri <_ Z(Ti+~O'i + Z ~ i  + Z ~i 
(t) (6) (6) (6) (t- 18) 

< - 1.52 pt - 1.52 pt - 1.52 pt + (26 - 18) pt < 3.5 pt. 

Similarly, if we have the pattern (6, 6, 4), then we find 

Z ai -1 .52  - 1 . 5 2  +0.33 + ( 2 6 - 1 6 )  < 8  < pt pt pt pt pt. 
(t) 
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(Proof of 5.1.7.) We use the same method as in the proof of 5.1.6. If we have the 

pattern (6, 6), and if t < 22, then 

E ~ -< E ~  E ~  E r < - 1 . 5 2 p t - - 1 . 5 2 p t + ( 2 2 - - 1 2 ) p t  <8pt .  
(t) (6) (6) (t- 12) 

Similarly, if we have the pattern (6, 4, 4), then )'-~(r) tri is less than - 1.52 pt + 0.33 pt + 

0.33pt + 8 pt < 8 pt. 

(Proof of 5.1.8.) Let the two adjacent degree 6 vertices be vl and v2. Let the third be 

v3. The six Mangles in the hexagon around v3 give less than -1.52 pt. The ten triangles 

in the hexagons around vl and v2 give at most 

E tTi < E tTi < 1.5 pt - 1.52pt < Opt, 
(4) (6) 

by the argument described in the case t --- 26 of 5.1.2 (see Lemma 5.2). 

Suppose that t < 24. There remain at most 24 - 16 = 8 triangles, and they give 

a combined score of at most 8 pt. The total score is then less than ( -  1.52 + 8) pt, as 

desired. 

Now assume that t = 26. Suppose there is a vertex v that is not adjacent to any of vl, 

v2, or v3. As in the proof of 5.1.8, the ten triangles in the two overlapping hexagons give 

less than Opt. The other hexagon gives less than -1.52pt.  By Lemma 5.2, the n triangles 

around v fall short of n points by at least (5 - 4.52) pt = 0.48 pt. Each of the remaining 

triangles gives at most 1 pt. The score is then less than ( 0 -  1.52 + (26-  16) - 0.48) pt = 

8 pt, as desired. 

(Proof of 5.1.9.) This follows directly from the construction of the triangulation and 

the close-neighbor restrictions on the lengths of the edges of a quasi-regular tetrahedron. 

The lengths are between 0.8 < 2arcsin(1/2.51) and 2arcsin(2.51/4) < 1.36. This 

completes the proof of the proposition. [] 

6. Combinatorics  

Theorem 6.1. Suppose that a triangulation satisfies Proposition 4.2 and properties 

1-9 of Proposition 5.1. Then it must be the triangulation of Diagram 6.2 with 14 vertices 

and 24 triangles. 

Proof. Fix a polygon centered at a vertex u0, such as the hexagon in Diagram 6.3. The 

six vertices ol . . . . .  v6 of the hexagon are distinct, for otherwise two distinct geodesic 

Diagram 6.2 
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Vl v6 

Diagram 6.3 

v2 

arcs on the sphere would run between u0 and vi for some i. This is impossible, because u0 

and vi are not antipodal by Property 5.1.9. Similarly, the vertices of every other polygon 

of the triangulation are distinct. 

We then extend the polygon to a second layer of triangles. Each of the vertices vi has 

degree 4, 5, or 6, and two degree 4 vertices cannot be adjacent. The new vertices are 

denoted Wl . . . . .  wk. One example is shown in Diagram 6.4. 

w5 w~ 

Diagram 6.4 

There can be no identification of a vertex vi with a vertex wj, for otherwise there 

is a triangle (say with vertices wj, vk, uo, vi = wj) that is subtriangulated, contrary to 

Property 5.1.3. Similarly, there is no identification of two vertices wi and wj, for otherwise 

it can be checked that there is a quadrilateral (with vertices wi, vk, uo, ve, wj = wi) 

that encloses more than one vertex, which is impossible by Proposition 4.2. A purely 

combinatorial problem remains. It is solved in the Appendix. [] 

Proposition 6.5. The triangulation of Theorem 6.1 scores less than 8 pt. 

Proof. Our initial bound on the score comes by viewing the triangulation as made up 

of two hexagons and twelve additional triangles. By Lemma 5.2 and Calculation 9.1, 

(6.6) ~ ai <_ ~_, tri + ~_, ai + ~_,pt < -1 .52  p t -  1.52 pt + 12 pt = 8.96 pt. 
(24) (6) (6) (12) 

A refinement is required in order to lower the upper bound to 8 pt. 
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If a vertex v has height Iv] >_ 2.2, then, by Calculation 9.2, we find cri < 0.5 pt for 

the tetrahedra at v. Thus, in inequality (6.6), if the vertex v of some pentagon has height 

Iv[ _> 2.2, then the term }-~.(12) pt may be replaced by Y~(9)pt + ~(3) 0.5 pt (there are 

three triangles in the pentagon that do not belong to the hexagon), and the upper bound 

on the score falls to 7.46 pt. 

If a vertex of degree 6 has height Iv[ > 2.05, then we claim that Y-~(6) cri < -3 .04  pt. 

In fact, by Calculation 9.7, the hexagon gives 

Z ~ r i  < Z(0.389195dih(Si)  - 0.435643) 

(6) (6) 

= 2yr(0.389195) - 6(0.435643) < -3 .04  pt. 

Estimate (6.6) is improved to 

Z cri < -3 .04  p t -  1.52pt + 12 pt = 7.44pt. 
(24) 

If the twelve tetrahedra have combined solid angle less than 6.48, then, by Calculation 

9.9, 

Z ~  

(12) 

E ( 0 . 4 4 6 6 3 4  sol(Si) - 0.190249) < 

(12) 

< 6.48(0.446634) + 12(-0.190249) < 11.039pt. 

Then estimate (6.6) is improved to the bound - 1 . 5 2 p t -  1.52pt + 11.039 pt = 7.999 pt. 

Now assume, on the other hand, that the combined solid angle of the two hexagons is 

at most 4zr - 6.48. Set K = (4zr - 6.48)/12 and define cr'(S) := cr (S) + (K - sol(S))/3. 

The solid angle of one of the two hexagons is at most 6K. For that hexagon, we have 

Z ~'(Si) = Z CTi "~- 
(6) (6) 

6K - E ( 6 )  SoI(Si) 
>_> Z O ' i .  

(6) 

By our previous estimates, we now assume without loss of generality that the heights 

I vl of the vertices of triangles in the hexagon are at most 2.05, 2.2, and 2.2, the bound of 

2.05 occurring at the center of the hexagon. By Calculation 9.15, 

E cr'(Si) < Z 0 . 5 6 4 9 7 8 d i h i - 0 . 6 1 4 7 2 5  

(6) (6) 

= 2zr(0.564978) + 6(-0.614725) < -2 .5p t .  

Estimate (6.6) becomes 

ai < ~ cr'(Si) + y ~  cri + ~ cri < ( -2 .5  - 1.52 + 12) pt = 7.98 pt. 
n n 

(24) (6) (6) (12) 

This completes the proof of the proposition. [] 
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7. The Method of Subdivision 

The rest of this paper is devoted to the verification of the inequalities that have been used 

in Sections 5 and 6. In this section we describe the method used to obtain several of our 

bounds. We call it the method of subdivision. Let p(x) = ~-]1 ci x l  be a polynomial with 
il . . x i ,  . real coefficients Cl, where I = (il . . . . .  in), x = (xl . . . . .  xn) 6/R n, and x t = x I . 

It is clear that if C is the product of intervals [al, bl ] x . . .  x [an, bn ] C ~n in the positive 

orthant (ai > 0, for i = 1 . . . . .  n), then 

Vx E C, Pmin(C) < p(x) < Pmax(C), 

where 

Pmin(C) = E clal-I- E clb' and Pmax(C)= ~ c,b'  + ~ c,a' .  
ct>O ct<0 c1>0 ct<0 

Another bound comes from the Taylor polynomial p(x) = ~,  dt (x - a) I at a: 

(7.1) do+ E dl(b-a)l<p(x)<d~ E d1(b -a ) l "  
dt <0,150 dt >0,1:~0 

If r(x) = p(x) /q(x)  is a rational function, and if qmin(C) > 0, then 

Pmin(C) Pmax(C) 
< r(x) < - -  

u ~ C, ql(C, p) - - q2(C, p ) '  

where ql(C, p) (resp. q2(C, p)) is defined as qmax(C) whenever Pmin(C) >__ 0 (resp. 

Pmax(C) < 0) and as qmin(C) otherwise. 

We define a cell to be a product of intervals in the positive orthant of IR n. By covering 

a region with a sufficiently fine collection of cells, various inequalities of rational func- 

tions are easily established. To prove an inequality of rational functions with positive 

denominators (say rl(x) < r2(x), for all x s C), we cover C with a finite number of 

cells and compare the upper bound of rl (x) with the lower bound of r2 (x) on each cell. 

If it turns out that some of the cells give too coarse a bound, then we subdivide each 

of the delinquent cells into a number of smaller cells and repeat the process. If at some 

stage we succeed in covering the original region C with cells on which the upper bound 

of rl (x) is less than the lower bound of r2(x), the inequality is established. 

A refinement of this approach applies the method to the partial derivatives. If, for 

instance, we establish by the method of subdivision that, for some i, 

0•/(x) _>_ O, Vx ~ C, 

then.we may compute an upper bound of p by applying the method of subdivision to the 

polynomial obtained from p by the specialization xi = bi, where bi is the upper bound 

ofxi on C. Thus, we obtain an upper bound on a polynomial by fixing all the variables 

that are known to have partial derivatives of fixed sign and then applying the method 

subdivision to the resulting polynomial. Similar considerations apply to lower bounds 

and to rational functions with positive denominators. 
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It is a fortunate circumstance that many of the polynomials we encounter in sphere 

packings are quadratic in each variable with negative leading coefficient (u, p, A, X in 

the next section). In this case the lower bound is attained at a comer of the cell. Of 

course, the maximum of a quadratic function with negative leading coefficient is also 

elementary: -t~(x - Xo) 2 + fl _< t ,  if or >_ O. 

8. Explicit Formulas for Compression, Volume, and Angle 

Many of the formulas in this section are classical. They can typically be found in 19th 

century primers on solid geometry. The formula for solid angles, for example, is due to 

Euler and Lagrange. For anyone equipped with symbolic algebra software, the verifi- 

cations are elementary, so we omit many of the details. All formulas in this section are 

valid for Delaunay simplices and for quasi-regular tetrahedra, unless otherwise noted. 

8.1. The Volume of  a Simplex 

As in the previous section, a cell in R n is a product of intervals in Rn. We define a 

function A: [4, 16] 6 C ]R 6 ~ R by 

(8.1.1) A(xl . . . . .  xt) = XlX4(--Xl +X2 +X3 --X4 +X5 + x t )  

+ X 2 X 5 ( X l  - -  X2  "~- X3  "t- X4  - -  X5 "t- X6) 

"1- X 3 X 6 ( X l  -Jr- X2 - -  X3 "1- X4 q'- X5 - -  Jr 

- -  X 2 X 3 X 4  - -  X l X 3 X 5  - -  X l X 2 X 6  - -  X 4 X 5 X 6 .  

We set Yi = ~ , ' ,  for i = 1 . . . . .  6. This relationship between xi and Yi remains in force 

to the end of the paper. Index the edges of a simplex as in Diagram 8.1.2. 

2 ~ 

0 5 

Diagram 8.1.2 

We also define u: [4, 1613 --~ 11 by 

( 8 . 1 . 3 )  U(XI,X2, Xt) = (Yl + Y2 + Y6)(Yl + Y2 -- Yt)(Yi --Y2+Y6) 

x (-Yl + Y2 "k Y6) 

= - -Xl  2 - -  X 2 - -  X 2 -t- 2XlX6 q- 2XlX2 -1- 2X2X6. 
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Lemma 8.1.4. There exists a simplex ofpositive volume with edges of length Yl . . . . .  Y6 
if and only/f  A(xl . . . . .  x6) > 0. I f  these conditions hold, then the simplex has volume 
A(xl . . . . .  x6)1/2/12. 

Proof. The function u = u(xl, x2, x6) is quadratic in each variable, with negative 

leading coefficient, so the minimum of u, which is 0, is attained at a vertex of the cube 

[4, 16] 3. At the vertices where the minimum is attained, A(xl . . . . .  x6) < 0. 

Assume A > 0. Then u > 0, and a simplex exists with vertices 0, X = (Yl, 0, 0), 

y = l ( . ,  Ul/2/yl, 0), Z ----- ( . , . ,  (A/u)l/2). Conversely, if the simplex exists, then it 

must be of the given form, up to an orthogonal transformation, so u > 0 (otherwise O, 

X, and Y are colinear) and A > 0. The volume is Idet(X, Y, Z)I/6 = Al/2)tl2. [] 

Let C be a cell contained in [4, 16] 6. The minimum of A on C is attained at a vertex of 

C: this is clear because A is quadratic in each variable with negative leading coefficient. 

To obtain an upper bound on A on a cell, we may use the method of Section 7. The 

restriction of A to the zero set of OA/Oxl is 

U(X4, X5, X6) " U(X2, X3, X4) 

4x4 

This is an upper bound on A(xl . . . . .  x6). 

8.2. The Circumradius of a Simplex 

The circumradius of a face with edges Y4, Ys, and Y6 is 

Y4Y5Y6 

r/(y4, Y5, Y6) = u(y2, y2,5 Y62) 1/2" 

Define p: [4, 16] 6 ~ ~ by 

(8.2.1) 
2 2  2 2  2 2  

p ( X l ,  �9 �9 �9 X6) ----- - - X l X  4 --  X2X 5 --  X3X 6 "ac 2XlX2X4X5 "+" 2XlX3X4X6 q- 2X2X3X5X6. 

Lemma 8.2.2. Suppose A > 0; then p > O. 

Proof. If A > 0, then the simplex of Lemma 8.1.4 exists. Let the coordinates of the 

circumcenter of the simplex be (x, y, z). Direct calculation shows that 0 < x 2-1- y2 +z  2 = 

p/(4A). [] 

Corollary 8.2.3. Let S be a Delaunay simplex of positive volume with edges of lengths 
Yi = vr'~l �9 The circumradius is �89 (p/A)1/2. 

Set 

X (Xl, x2, x3, x4, x5, x6) -~- XlX4X5 "~- XlX6X4 Jr" x2x6x5 + x 2 x 4 x 5  dr- x5x3x6 

+ X3X4X6 - -  2X5X6X ̀  - -  gig24 - -  X2X 2 - -  X3X 2. 
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We have 

P X (Xl . . . . .  x6) 2 

4"A - r/(y4, Ys, Y6) 2 = 4u(x4,  x 5, x6) A" 

The vanishing of g is the condition for the circumcenter of the simplex to lie in the 

plane through the face T bounded by the fourth, fifth, and sixth edges. X is positive if 

the circumcenter of S and the vertex of S opposite T lie on the same side of the plane 

through T and negative if they lie on opposite sides of the plane. We say that T has 

positive orientation when X > 0. 

8.2.4. The function p is quadratic in each of the variables xl . . . . .  x6 with negative 

leading coefficient. Thus, the minimum of/9 is attained at a vertex of a given cell 

C. The derivative is A20(p/A)/Oxl = X(xs, x6, Xl, x2, x3, xa)X(Xl, x2, x3, x4, xs, x6). 

This leads to bounds on the circumradius by the method of Section 7. 

The circumradius of a quasi-regular tetrahedron is increasing in xl . . . . .  x6 if the ori- 

entation of each face is positive. When a face fails to have a positive orientation, it satisfies 

the constraints of Section 3 (for example, Yl, Y2, Y3 E [2, 2.15], Y4, Ys, Y6 E [2.3, 2.51], 

r/(y4, Ys, Y6) > "v/-~, if it is the face opposite the origin). This allows us to determine 

bounds on the circumradius for most of the quasi-regular tetrahedra we encounter in this 

paper by inspection. For example, in Section 9 we study the simplices constrained by 

yi ~ [2, 2.1]. An upper bound on the circumradius is rad(S(2.1, 2.1, 2.1, 2.1, 2.1, 2.1)). 

8.2.5. Proof of Lemma 3.4. In the notation of Section 3.4 let T be the given face, and 

let v0 be a vertex satisfying the conditions of the lemma. Let S by the simplex at the 

origin v0 = 0, whose first, second, and third edges abut at vi, for i = I, 2, 3. Suppose 

for a contradiction that Iv0 - v312 = x3 >_ 2.152. In light of the results of this section, 

a contradiction follows if X(Xl . . . . .  x6) > 0, for xi > 4 for i = 1,2, x3 > 2.152, 

2.32 < xi < 2.512 for i = 4, 5, 6. (The lower bound of 2.3 comes from Remarks 3.2 

and 3.3: the circumradius of T is at least 4"2). Since T is acute, 

0X 
= X4(--X4 + X 5 "~ X6) > 0, 

OXl 

Similarly, X is increasing in x2 and x3. Thus, to minimize X, we take Xl = x2 = 4, 

x3 = 2.152. However, X is quadratic in each variable x4, xs, and x6 with negative 
leading coefficient, so the minimum occurs at a comer point of [2.32, 2.512] 3. We find 

X > X( 22, 22, 2-152, 2.512, 2.512, 2.512) ~ 0.885 > 0. [] 

For the set of Delaunay stars to be a compact topological space, simplices of zero 

volume must be included. Since the circumradius remains bounded, the degenerate 

Delaunay simplices of zero volume are planar quadrilaterals that possess a circumscrib- 

ing circle. 

8.3. Dihedral Angles 

Let dih(S) be the dihedral angle of a simplex S along the first edge. It is the (interior) 

angle formed by faces with edges (2, 1, 6) and (1, 3, 5). 
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L e m m a  8 .3 .1 .  

cosdih(S)  = 
OA/Ox4 

(U(Xl, X2, X6)U(Xl, X3, X5)) 1/2' 

where u is the function defined by (8.1.3). 

The partial derivative of  cos dih(S) with respect to x3 is 

2Xl (OA/Ox2)  

U(Xl, x2, x6)I /Eu(x l ,  x3, x5) 3/2' 

so that the sign of the partial derivative is determined by the sign of  OA/Ox2. Similar 

considerations apply to the partial derivatives with respect to x2, Xs, and x6. 

L e m m a  8.3.2. Let S be a quasi-regular tetrahedron. The the dihedral angle of S along 

any edge is at most arccos( -29003/96999)  = dihmax ~ 1.874444. 

Proof. Suppose that dih(S) > 7r/2, so that the numerator n = OA/OxginLemma8.3.1 

is negative. To bound cos dih(S) from below, we minimize U(Xl, x2, x6), U(Xl, x3, x5), 

and the numerator n over the variables x2, x3, xs, and x6. 

We have Oi u = xj + xk - xi > 0 on the indicated domain, for i = 2, 3, 5, and 6, so 

that 

U(Xl, x2, x6)u(xl, x3, x5) >_ U(Xl, 22, 22) 2 = ( - x ~  + 16Xl) 2. 

Similarly, Oin = Xl + Xj -- x k > O, for i = 2, 3, 5, and 6, so that 

n(x l  . . . . .  x6) > n(xl ,  2 2, 2 2, x4, 2 2, 2 2) ----= Xl (16 - x I - 2x4). 

Thus, 

16 - x I - 2x4 2x4 
0 > cosdih(S) ~ - 1 

- 1 6 - x l  1 6 - x l  

2(2.51) 2 - 2 9 0 0 3  

1 16 - 2.512 96999 
[] 

8.4. The Solid Angles of a Delaunay Simplex 

Let S be a Delaunay simplex with vertices v0 . . . . .  v3. By the solid angle SOil(S) of  the 

simplex at the vertex i, we mean 3 vol(S r Bi) ,  where Bi is a unit ball centered at vi. For 

simplicity, suppose that v0 is located at the origin, and that, in the notation of  Diagram 

8.1.2, the vertices Vl, v2, v3 are the edges of  lengths Yl, Y2, and Y3. We write sol for sol0. 

Set 

(8.4.1) a(yl, Y2, . . . ,  Y6) = YlY2Y3 + gYl(y2 + y23 

1 2 2 I . .  2 +  2 
+ gY2(Yl + Y3 -- y2) + -~Y3tYl Y2 -- y2). 
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L e m m a  8,4.2. 

sol(S) = 2arccot ( 2 - ~ / 2 ) .  

Proof. (See [H2, p. 64].) We use the branch of  arccot taking values in [0, zr]. [] 

The function a is increasing in yl,  Y2, and y3 on [21 4] and is decreasing in the variables 

y4, Ys, and Y6 on the same interval. 

We claim that a > 0 for any Delaunay simplex. We prove this in the case A > 0, 

leaving the degenerate case A = 0 to the reader. The area of  the face T opposite the 

origin is at most 4~/3 (since its edges are all at most 4). There exists a plane that is 

tangent to the unit" sphere between this face and the unit sphere [HI ,  2.1]. The area of  

the radial projection of  T to this plane is less than the area of  a disk D of  radius 1.5 on 

the plane centered at the point of  tangency. The solid angle (that is, the area of  the radial 

projection of  T to the unit sphere) is less than the area of  the radial projection of D to 

the unit sphere). This area is 2~r(1 - cos(arctan(1.5))) < zr. Lemma  8.4.2 now gives the 

result. This allows us to use Lemma 8.4.2 in the form sol(S) = 2 arctan(A1/2/(2a)) .  

8.4.3. The solid angle is the area of  a spherical triangle. Let x, y, and z be the cosines 

of  the radian lengths of  the edges of  the triangle. By the spherical law of  cosines, the 

solid angle, expressed as a function of x, y, and z is 

(xyz) 
c(x ,y , z )+c(y , z , x )+c(z ,x , y ) -Tr ,  c(x ,y ,z)  :=  arccos ~/(1 - y T ) ( T - z 2 )  " 

The partial derivative with respec t  to x of  this expression for the solid angle is 

( -  1 - x  + y + z ) / ( (x  + 1 )~/t), where t = 1 - x  2 - y2 _ z 2 + 2xyz. The second derivative 

of  this expression evaluated at - 1  - x + y + z = 0 is - 2 ( 1  - y)(1 - z)t -3/2 < 0. So the 

unique critical point is always a local maximum. If.neither edge at a vertex of a spherical 

triangle is constrained, then the triangle can be contracted or expanded by moving the 

vertex. If  the lengths of  the edges are constrained to lie in a product of  intervals, then the 

minimum area occurs when two of  the edges are as short as possible and the third is at 

one of the extremes. The maximum area is attained when two of  the edges are as long 

as possible and the third is at one of  the extremes or at a critical point: x = y + z - 1 

(or it symmetries,  y = x + z - 1, z = x + y - 1). 

8.5. The Compression of a Delaunay Simplex 

The compression F(S)  of  a Delaunay simplex S is defined as 

(8.5.1) 

where 

(8.5.2) 

F(S) = -6oct vol(S) + 
)-'~4=1 soli (S) 

-3~r  -t- 12 arccos(1/~/3) 
8oct = ~ 0.72. 
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We let ao = a(yl,  Y2, Y3, Y4, Y5, Y6), where a is the function defined in (8.4.1). We also 

let aj, a2, and a3 be the functions a for the vertices denoted vl, rE, and 03 in Diagram 

8.1.2. For example, al  = a(yl, Y5, Y6, Y4, Y2, Y3). Set t = -v/A/2. By the results of 

Sections 8.1 and 8.4, we find that F(S) = -8o~rt/6 + ~ 3  o 2 arctan(t/ai). Recall that 

ai > 0 on a cell C. We wish to give an elementary upper bound of F on C. Set, for t >__ 0 

and a = (a0, al, a2, a3) ~ Ii4+, 

- 3 ~  
y(t ,  a) := 6 i=0 \a i  / " 

The partial derivative of y with respect to ai is -2 t / (3 ( t  2 + a2)) < O, so y(t ,  a) < 

y(t,  a-) ,  where a -  = (a 0 , a I , a 2 , a 3) is a lower bound of a on C, as determined by 

Section 8.4. We study y(t) = y(t,  a - )  as a function of t to obtain an upper bound on 

F (S). We note that 

- -  8oct  3 a i  4 a i  1 

y ' ( t ) =  6 + 2 ~ - - ~ ( t 2 + a 2 )  and y ' t ( t ) = - g y ~ . ( t 2 + a 2 ) 2 < _ O .  
i=0 

Upper and lower bounds on t are known from Section 8.1. An upper bound on y for t 

in [train, tmax] is the maximum of s and s where e is the tangent to y at any 

point in [tn~n, tmax]- 

8.6. Voronoi cells 

We assume in this section that the simplex S has the property that the circumcenter of 

each of the three faces with vertex at the origin lies in the cone at the origin over the 

face. This condition is automatically satisfied if these three faces are acute Mangles. In 

particular, it is satisfied for a quasi-regular tetrahedron. 

When the cone over a quasi-regular tetrahedron S contains the circumcenter of S, 

Section 2 sets vor(S) = -48o~t vol(S0) + 4 sol(S)/3, where S0 is the intersection of S 

with a Voronoi cell at the origin. Otherwise, vor(S) is defined as an analytic continuation. 

This section gives formulas for vol(S0). 

As usual, set S = S(yl . . . . .  Y6) and xi = y2. Suppose at first that the circumcenter 

of S is contained in the cone over S. The polyhedron S0 breaks into six pieces, called the 

Rogers simplices. A Rogers simplex is the convex hull of the origin, the midpoint of an 

edge (the first, second, or third edge), the circumcenter of a face along the given edge, 

and the circumcenter of S. Each Rogers simplex has the form 

R = R(a, b, c) := S(a, b, c, (c 2 - b2) I/2, (c 2 - a2)  1/2, (b 2 --  a2)  1/2) 

for some 1 < a < b < c. Here a is the half-length of an edge, b is the circumradius of a 

face, and c is the circumradius of the Delaunay simplex. 
The volume is vol(R(a, b, c)) = a(b 2 - a 2 ) 1 / 2 ( c  2 - b2)1/2/6. The density 8(a, b, c) 

of R = R(a, b, c) is defined as the ratio of the volume of the intersection of R with a 

unit ball at the origin to the volume of R. It follows from the definitions that 

(8.6. l) vor(S) = E 4 vol(R(a, b, c))(-8oct + 8 (a, b, c)), 
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where c is the circumradius rad(S), and (a, b) runs over the six pairs 

( ~ ,  r/(yl, Y2, Y6)), 

( 2 '  r/(y2, Y3, Y4)), 

Y3, 
-~ rl(y3, Yt, Ys)), 

( 2 ,  rl(Yl, Y2, Y6)) , 

( ~ ,  r/(y2, Y3, Y4)), 

( 2 '  r/(y3, Yl, Ys')- 

Upper and lower bounds on vol(R (a, b, c)) follow without difficult from upper and lower 

bounds on a, b, and c. Thus, an upper bound on 8 (a, b, c) leads to an upper bound on 

vor(S). The next lemma, which is due to Rogers, gives a good upper bound [R]. 

Lemma 8.6.2. The density 8(a, b, c) is monotonically decreasing in each variable for 
l < a < b < c .  

Proof. Let 1 _< al _< bi _< Cl, 1 _< a2 < b2 _< c2, a2 < al, b2 < bl, C2 ~ Cl. The 

points of R(al, bl, Cl ) are realized geometrically by linear combinations 

sl = )`1 (al, 0, 0) + )`2(al, (b~ - al2) 1/2, 0) + )`3(al, (b~ - a2) 1/2, (c 2 - b2)1/2), 

where )`~, )`2, )`3 ~ 0 and )`l + ),2 + )`3 __5 1. The points of R(a2, b2, c2) are realized 

geometrically by linear combinations 

s2 = kl (a2, O, O) + Z2(a2, (b 2 - a2) 1/2,2 O) + X3(a2, (b 2 - a2) 1/2,2 ( c2 - b2)1/2), 

with the same restrictions on )`i. Then 

- -  2 2 )Sl 12 Isal 2 = )`~()`t + 2)`2 + 2)`3)(a~ - a 2) + )`2(L2 + 2)`3)(b~ - b~) + )`3(cl - c~). 

So lsll 2 >__ Is212. This means that the linear transformation sl ~-~ s2 that carries the 

simplex $1 to $2 moves points of the simplex Sl closer to the origin. In particular, the 

linear transformation carries the part in $1 of the unit ball at the origin into the unit ball. 

This means that the density of R(al, bl, Cl) is at most that of R(a2, b2, c2). [] 

If the circumcenter of S is not in the cone over S, then the analytic continuation gives 

vor(S) = y ~  4eR vol(R(a, b, c))(-8oa + 6(a, b, c)), 
R 

where eR = 1 if the face of the Delaunay simplex S corresponding to R has positive 

orientation, and eR = - I otherwise. (The face of S "corresponding" to R(a, b, c) is the 

one used to compute the circumradius b.) 

8.6.3. A calculation based on the explicit coordinates of S and its circumcenter given 

in Lemma 8.1.4 shows that 

( (Yl ) )  XI(X2 + X6-- XI)X(X4, X5, X3,XI,X2, X6) 
eR vol R ~-, r/(yl, Y2, Y6), rad(S) = 48U(Xl, X2, x6)A(Xl . . . .  , X6) 1/2 
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If the circumcenter of S is not contained in S, then the same formula holds by analytic 

continuation. By definition, eR = - 1 exactly when the function X is negative. Although 

this formula is more explicit than the earlier formula, it tends to give weaker estimates 

of vor(S) and was not used in the calculations in Section 9. 

8.6.4. There is another approximation to vor(S) that will be useful. Set Sy = 

S(2, 2, 2, y, y, y). (We hope there is no confusion with the previous notation Si.) For 

1 _< a < b < c, let vol(R(a, b, c)) = a((b 2 - a2)(c 2 - b2))1/2/6 be as above. Set 

r(a) = vol(R(a, r/(2, 2, 2a), 1.41)). 

Lemma 8.6.5. Assume that the circumradius of a quasi-regular tetrahedron S is a t  

least 1.41, and that 6 < Yl + Y2 + Y3 < 6.3. Set a = (Yl + Y2 + Y3 - 4)/2. Pick y to 

satisfy sol(Sy) = sol(S). Then 

(1) 
vor(S) < vor(Sy) - 83oct 1 - ~ r(a) 

Proof. If S is any quasi-regular tetrahedron, let Sm be the simplex defining the "tan- 

gent" Voronoi cell, that is, Sm is the simplex with the same origin that cuts out the same 

spherical triangle as S on the unit sphere, but that satisfies Yl = Y2 = Y3 = 2. The lengths 

of the fourth, fifth, and sixth edges of St~ are between ~/8 2(2.3) = ~ . 4  and 2.51. 

The faces of Sm are acute triangles. A calculation similar to the proof in paragraph 8.2.5, 

based on X (3.4, 3.4, 4, 4, 4, 2.512) > 0, shows that the circumcenter of St~ is contained 

in the cone over S~,  

Since S ~  is obtained by "truncating" S, we observe that vor(Stan) - 4~oct vol(S\Stan), 
where S and St~ are the pieces of Voronoi cells denoted $0 in Section 2 for S and Stan, 

respectively. By a convexity result of Fejes Ttth, vor(Stan) < vor(Sy) IF-F, p. 125]. (This 

inequality relies on the fact that the circumcenter of St~ is contained in the cone over 

S~..) 
Let al be the half-length of the first, second, or third edge. Since vol(R(al, b, c)) is 

increasing in c, we obtain a lower bound on vol(R (al, b, c)) for c = 1.41, the lower bound 

on the circumradius of S. The function vol(R(at, b, 1.41)), considered as a function of 

b, has at most one critical point in [aj, 1.41] and it is always a local maximum (by a 

second derivative test). Thus, 

(8.6.6) vol(R(aj, b, c)) > min(vol(R(al, brain, 1.41)), vol(R(al, bmax, 1.41))), 

where brain and bronx are upper and lower bounds on b ~ [al, 1.41]. A lower bound on 

b is 17(2, 2, 2al), which means that vol(R(al, brain, 1.41)) may be replaced with r(al) 

in inequality (8.6.6). By Heron's formula, the function r/(a, b, c), for acute triangles, is 

convex in pairs of variables: 

r]6(a 2 q- b 2 _ c2)(a 2 - b 2 if- c2) ( -a  2 q- b 2 -Jr- c2)(a 2 q- b 2 q- c 2) 

l~aa?]b b - -  l~2b = a6b6c4  > O. 

Thus, an upper bound on bmax is 17(2, 2.51,2a), where a = (Yl + Y2 + Y3 - 4)/2. This 

means that 

vol(R((al, bmax, 1.41))) 
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may be replaced with the function vol(R(al, 17(2, 2.51, 2a), 1.41)) in inequality (8.6.6). 

Now 1 < al < a, and vol(R(al, b, c)) is decreasing in the first variable (for 1 < at and 

b < ~f2), so we may use the lower bound 

vol(R(a, r/(2, 2.51, 2a), 1.41)) 

instead. By Calculations 9.20.2 and 9.20.3, we conclude that vol(R(al, b, c)) > r(a) .  

This lower bound is valid for each Rogers simplex. The volume of S\Stan is then at least 

( ( 1  - y ~ )  + (1 - ~23) + (1 - y ~ ) )  2r(a)" 

The concavity of 1 - 8 / y  3 gives ~ - - l ( 1  - 8/y3i) > 1 - 1 /a  3. We have established that 

vol(S\Smn) > 1 -  ~ 2r(a). 

The result follows. [] 

8.6.7. We conclude our discussion of Voronoi cells with a few additional comments 

about the case in which analytic continuation is used to define vor(S), with S a quasi- 

regular tetrahedron. Assume the circumcenter c of S lies outside S and that the face T 

of S with negative orientation is the one bounded by the first, second, and sixth edges. It 

follows from Section 3 that Yl, Y2, Y6 ~ [2.3, 2.51] and Y3, y4, Y5 E [2, 2.15]. 

Let Pl (resp. P2) be the point on T equidistant from the origin, v3, and 1) 1 (resp. i)2), 

XlU(Xl, X2, X6)(--3Cl Jr- X3 Jr XS) 2 
iPll 2 xi 

= "-~ -I- 4(aA/OX4)2  

Let p0 be the circumcenter of T (see Diagram 8.6.8). 

V! 

Pj 

1/o 

V2 

Diagram 8.6.8 

en = - I  for the Rogers simplex with vertices the origin, P0, c, and vl/2. It lies 

outside S. The other Rogers simplex along the first edge has eR = l, so that the part 
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common to both of these Rogers simplices cancels in the definition of vor(S). This means 

that vor(S) becomes the sum of the usual contributions from the two Rogers simplices 

along the third edge, 

4 vol(R(a, b, c))(-8oct  + 8(a, b, c)) 

for (a, b, c) -- (yl/2, JT(Yl, Y3, Y5), IPl]) and (y2/2, r/(y2, Y3, Y4), IP2I), and 

4 sol(S") 
v(S') :----- 48oct vol(S") - - ,  

3 

where S" is the convex hull of 0, P0, Pl, P2, and c. 

We claim that in any cell satisfying the constraints given above, IPll is minimized 

by making Yl, Y2, Y6 as large as possible and Y3, Y4, Y5 as small as possible. To show 

this, the derivatives have to be written explicitly from the formula for IPl [ 2 given above. 

The partial derivatives with respect to x2 . . . . .  x6 factor into products of the polynomials 

0 A /Oxi, for i = 3, 4 , 5 ,  xl, (x3 + x5 -- x l), u (x l, x2, xr), (--xl  x4 + x2x5 + x lx6 -- xsx6), 

and (XlX2 - x2x3 - x ix4 + X3X6). The signs of these polynomials are easily determined. 

The partial with respect to xl is complicated (the numerator has 88 terms), and we had 

to resort to the method of subdivision to determine its sign. We omit the details. 

To complete our estimate, we describe an upper bound on v(S") .  The ratio sol(S")/ 

(3 vol(S")) is at least 1/rad(S) 3, because S" is contained in a sphere of radius rad(S), 

centered at the origin. We have 

vol(S") 
< ~ l P 0  - P l l l c  - P011P01, 

2 - 

because the convex hull of 0, P0, Pl, and c, which is one side of S", is a pyramid with 

base the right triangle (Pl, po, c) and height at most IP01 = r/(ya, Y2, Y6). Of course, 

[C --  P0 ] 2 = r a d ( S )  2 - 17 (Y I, Y2, Y6) 2- W e  n o w  have a bound on v (S") in terms of quantities 

that have been studied in Section 8, if we rely on the bound IPo - pll < 0.1381. Write 

Pl = Pl (Yl . . . . .  Y6). This bound is obtained from the following inequalities: 

Ip0 - pl[ = (r/(yl, Y2, Y6) 2 - 4 / 

< (r/(yl, 2.51,2.51) 2 -  Xl '~! /2__ Qpl(Y1, 2.51, 2, 2, 2, 2.51)12 _ X I ]  1/2 
- 4 /  4 1  

_< (~(2.51, 2.51, 2.51) 2 2"512) 1/2 

< 

The inequality 

/ 
~lpl (2.51, 2.51, 2, 2, 2, 2.51)12 - - -  

0.1381. 

2"512) 1 / 2 4  

that replaces Yl with 2.51 results from Calculation 9.21. 

8.7. A Final Reduction 

Let S be a Delaunay simplex. Suppose that the lengths of the edges Yl, Y5, and Y6 are 

greater than 2. Let S' be a simplex formed by contracting the vertex joining edges 1, 5, 
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and 6 along the first edge by a small amount. We assume that the lengths Y'l, Ys, and y~ 

of the new edges are still at least 2 and that the circumradius of S' is at most 2, so that 

S' is a Delaunay simplex. 

Proposition 8.7.1. F(S') > r ' (s) .  

We write sol/, for i = 1, 2, 3, for the solid angles at the three vertices Pl, P2, and P3 

of S terminating the edges 1, 2, and 3. Let P'l be the vertex terminating edge 1 of S'. 

Similarly, we write sol I, for i = 1, 2, 3, for the solid angles at the corresponding vertices 

of S'. We set vol(V) = vol(S) - vol(S') and wi = s o l / -  sol I. It follows directly from 

the construction of S' that w2 and w3 are positive. The dihedral angle ot along the first 

edge is the same for S and S'. The angle ~i of the triangle (0, pl, Pi) at Pl is less than 

the angle fl~ of the triangle (0, P'l, Pi) at P'l, for i = 2, 3. It follows that Wl is negative, 

since - w j  is the area of the quadrilateral region of Diagram 8.7.2 on the unit sphere. 

s' t 
v, 

Diagram 8.7.2 

Lemma 8.7.3. 8oct vol(V) > lo2/3 + w3/3. 

The lemma immediately implies the proposition because wl < 0 and 

r ( s ' )  - p ( s )  - - -  

- -W 1 W 2 W3 

3 3 3 
+ 8o~t vol(V). 

Proof. Let T' be the face of S' with vertices p'p P2, and P3- We consider S' as a function 

of t, where t is the distance from Pl to the plane containing T'. (See Diagram 8.7.2.) It 

is enough to establish the lemma for t infinitesimal. 

As shown in Diagram 8.7.2, let Vl be the pyramid formed by intersecting V with the 

plane through Pl that meets the fifth edge at distance to = 1.15 from P3 and the sixth 

edge at distance to from P2- Also, let the intersection of V with a ball of radius to centered 

at Pi be denoted Vi, for i = 2, 3. For t sufficiently small, the region 111 is (essentially) 

disjoint from I12 and V3. 

We claim that vol(Vl) > vol(V2 N V3). Let 0 be the angle of T' subtended by the fifth 

and sixth edges of S'. Then vol(Vl) = Bt/3, where B is the area of the intersection of 
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Vl and T': 

(8.7.4) B = sin O(y~ - to)(Y'6 - to) 

2 

Since S' is a Delaunay simplex, the estimates ~r/6 < 0 < 2zr/3 from [HI, 2.3] hold. In 

particular, sin0 > 0.5, so B > 0.25(2 - 1.15) 2, and vol(Vl) > 0.06t. 

If vol(V2 ~ V3) is nonempty, the fourth edge of S must have length less than 2t0. The 

dihedral angle a '  of V along the fourth edge is then less than the tangent of the angle, 

which is at most t + O(t2),  in Landau's notation. As in [HI, 5], we obtain the estimate 

f 
ro (to - 1)2(2t0 + 1)or' 

vol(V2 f3 V3) < et' t 2 - t 2 d t  = 3 < 0.025t + O(t2) .  

This establishes the claim. 

Thus, for t sufficiently small 

~oct vol(V) >_ 8oct(vol(Vl) -]- vol(V2) '1- voI(V3) - voI(V2 f3 V3)) 

> ('oct/03' ( ?  + - ~ ) >  1 " 0 9 ( 3 + 3 ) "  [] 

9. Floating-Point Calculations 

This section describes various inequalities that have been established by the method of 

subdivision on SUN workstations. The full source code (in C++) for these calculations 

is available [H6]. 

Floating-point operations on computers are subject to round-off errors, making many 

machine computations unreliable. Methods of interval arithmetic give users control over 

round-off errors [AH]. These methods may be reliably implemented on machines that al- 

low arithmetic with directed rounding, for example, those conforming to the IEEE/ANSI 

standard 754 [W], [IEEE], [P]. 

Interval arithmetic produces an interval in the real line that is guaranteed to contain the 

result of an arithmetic operation. As the round-off errors accumulate, the interval grows 

wider, and the correct answer remains trapped in the interval. Apart from the risk of 

compiler errors and defective hardware, a bound established by interval arithmetic is as 

reliable as a result established by integer arithmetic on a computer. We have used interval 

arithmetic wherever computer precision is a potential issue (Calculations 9.1-9.19, in 

particular). 

Every inequality of this section has been reduced to a finite number of inequalities of 

the form r(xo) < 0, where r is a rational function ofx ~ ]~n and x0 is a given element in 

]R n. To evaluate each rational expression, interval arithmetic is used to obtain an interval 

Y containing r(xo).  The  stronger inequality, y < 0 for all y e Y, which may be verified 

by computer, implies that r (x0) < 0. 

To reduce the calculations to rational expressions r(xo),  rational approximations to 

the functions Vff, arctan(x), and arccos(x) with explicit error bounds are required. 

These were obtained from [H7]. Reliable approximations to various constants (such as 

rr, ~r and 8oct) with explicit error bounds are also required. These were obtained in 

Mathemat ica  and were double checked against Maple.  
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Let S = S(yl . . . . .  Y6) be a quasi-regular tetrahedron. We label the indices as in 

Diagram 8.1.2. Let I" = F(S(yl . . . . .  Y6)) be the compression. We also let dih = 

dih(S(yl . . . . .  Y6)) be the dihedral angle along the first edge, and let sol = 

sol(S(yl . . . . .  Y6)) be the solid angle at the origin, that is, the solid angle formed by 

the first, second, and third edges (yl, y2, Y3) of S. 

All of the following inequalities are to be considered as inequalities of analytic func- 

tions of Yl . . . . .  Y6. Although each of the calculations is expressed as an inequality 

between functions of six variables, Proposition 8.7.1 has been invoked repeatedly to 

reduce the number of variables to three or four. For instance, suppose that we wish 

to establish/(sol,  F) < 0, where/(sol ,  F) is an expression in F(S(yl . . . . .  Y6)) and 

sol(S(yl . . . . .  y6)). Invoking Proposition 8.7.1 three times, we may assume that the ver- 

tices marked vl, v2, and v3 in Diagram 8.1.2 each terminate an edge of minimal length. 

It is then sufficient to establish the inequality in seven situations of smaller dimension; 

that is, we may assume the edges i 6 I have minimal length, where I is one of 

{1, 4}, {2, 5}, {3, 6}, {4, 5}, {4, 6}, {5, 6}, {1, 2, 3}. 

Similarly, for an inequality in F and dihedral angle, we reduce to the seven cases 

I = {1,4}, {2, 5}, {3, 6}, {1, 2, 3}, {1, 5, 6}, {3, 4, 5}, {2, 4, 6}. 

The first two calculations are inequalities of the compression F of a quasi-regular tetra- 

hedron. 

C a l c u l a t i o n  9.1. P ~ 1 pt. 

This first inequality and Calculation 9.3 are the only ones that are not strict inequalities. 

Set So = S(2, 2, 2, 2, 2, 2). By definition, F(S0) = 1 pt. We must give a direct proof 

that So gives the maximum in an explicit neighborhood. Then we use the method of 

subdivision to bound F away from 1 pt outside the given neighborhood. An infinitesimal 

version of the following result is proved in [HI]. 

L e m m a g . l . 1 .  I f  y i ~ [ 2 , 2 . 0 6 ] , f o r  i = 1 . . . . .  6 ,  then F(S(yl . . . . .  Y6)) < F ( S 0 ) ,  

with equality if  and only if S(yl . . . . .  Y6) = So. 

Set aoo = a(2, 2, 2, 2, 2, 2) = 2 0 ,  Ao = A(22, 22, 22, 22, 22, 22), to = ~/~o/2 = 
2 2 -1 4V/-2, and bo = 2(1 + to/aoo) = 50/81. Set f = maxi(yi - 2) _< 0.06 and a -  = 

a(2, 2, 2, 2 + f ,  2 + f ,  2 + f )  = 20 - 12f  - 3 f  2. As in Section 8, we set t = ~r 

We have arctan(x) < arctan(xo) + (x - x o ) / ( 1  + x2), if x, xo > 0. We verify below that 

A >_ A o under the restrictions given above. Then 

8o, t t 
(9.1.2) F ( S ) -  - - g - - + 2 Z a r c t a n  

i=O \a i  / 

< r ( s 0 )  8oc,(t - to) + bo 

- 6 i=0 
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= r ( S o )  
8o. (A - Ao) 

24(t + to) 

3 boto 
b~176 Z ( a o o  - ai) + 

+ a 2  i--o ao 2 

_< F(So)+ (At -+t0A~ ( 8o~t24 

3 
boto Z ( a o  ~ _ ai)2" 

+ a2a-  i=o 

3 t - t o  
+bo  Z 

i=O ai 

-~ (aoo -- ai) 2 

i=0 ai 

boto 3 
bo +  ,(aoo - ai) 
a -  a 2  i--0 

Set co = - 8 o a / 2 4  + bo /a-  > 0. Write Yi = 2 + 35, with 0 < 35 < f .  Set xi = 

4 + ei = y/2 = 4 + 435 + f/2. Then 35 < el~4, for i = 1 . . . . .  6. Set e = 4 f  + f2 .  

Set /~(el  . . . . .  er) = A(Xl . . . . .  xr). We find that a2Zx/ae2 0et = 4 + e4 + e5 - e6 > 0 

and similarly that 02A/OeiOel > 0, for i = 3, 5, 6. So 07~/Oej is minimized by taking 

e2 = e3 = e5 = e6 = 0, and this partial derivative is at least 

(el, 0, 0, e4, 0, 0) = 16 - 8el - 2ele4 - e 2 > 16 - 8e - 3e 2 > 0. 
0e~ 

Thus A > Ao. The partial derivative OA/Oel is at most 

~e l  (el, e, e, e4, e, e) = 16 + 16e - 8el + nee4 - 2ele4 - e 2 < 16 + 16e + 4ee4 - e42 

< 1 6 + 1 6 e + 3 e  2. 

So A - Ao < (16 + 16e + 3e2)(el + . . .  + e6). 

We expand )~-~=o (ai - aoo )  = 5(el + . . .  +e6) + h i  +h2  +h3  as a sum of  homogeneous 

polynomials hi of degree i in f l  . . . . .  f6. A calculation shows that hi = 0. Also h2 is 

quadratic in each variable f / w i t h  negative leading coefficient, so h2 attains its minimum 

at an extreme point of  the cube [0, f]6.  A calculation then shows that h2 > - 1 4 f  2 on 

[0, f ]6.  By discarding all the positive terms of h3, we find that 

h3 > -ft2f4- flf~- f/f5 - f2f/- f/f6- f3f~ > -6f 3. 

3 
Thus, ~i=o(ai - aoo) > 5(el +... + e6) - 14f 2 - 6f 3. Since e = max(e/), we find 

that f < e/4 _5< (el +--" + e6)/4. This gives 

Z ( a o o  - ai) < (el  + " "  + e6) - -5  + + . 

i=0 

3 
Similarly, we expand ~i=o(aoo - ai) 2 as a polynomial in f l  . . . . .  f r .  To obtain an upper 

bound, we discard all the negative terms of the polynomial and evaluate all the positive 

terms at ( f l  . . . . .  f r )  = ( f ,  . . . .  f ) .  This gives 

3 

E ( a o o  - ai) 2 < 4 9 4 4 f  2 + 7 2 9 6 f  3 + 3684 f  4 + 8 2 8 f  5 + 7 3 f  6 

i----0 

< �88 + . . .  + e6)(4944f  + 7 2 9 6 f  2 + 3 6 8 4 f  3 + 8 2 8 f  4 + 73f5) .  
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We now insert these estimates back into inequality (9.1.2). This gives 

F(S) F(So) b0t0 ._5 
~ - ( 1 6  + 16e + 3e 2) + + 3 .5 f  + 1.5f  2) 

(9.1.3) (el + ~-~6e6) - < 0 a~0 ( 

boto 
-t- 4a2a-------C (4944f + 7296f  2 -t- 3684f  3 -I- 828f  4 -I- 73f5). 

The right-hand side of this inequality is a rational function of f .  (Both a -  and e depend 

on f . )  Each of the three terms on the right-hand side is increasing in f .  Therefore, the 

right-hand side reaches its maximum at f = 0.06. Direct evaluation at f = 0.06 gives 

F(S) - F(So) < -0.00156(el + . . -  + e6). 

To verify Calculation 9.14, the computer examined only 7 cells. Calculation 9.1 

required 1899 ceils. Calculation 9.6.1 required over 2 million cells. The number of cells 

required in the verification of the other inequalities falls between these extremes. 

Calculationg.2. F < 0.5pt, i fyl  ~ [2.2, 2.51]. 

The next several calculations are concerned with the relationship between the dihedral 

angle and the compression. 

Calculation 9.3. dih(S(yl . . . . .  Y6)) > dihmin := dih(S(2, 2.51, 2, 2, 2.51, 2)) 

0.8639. 

Since this bound is realized by a simplex, we must carry out the appropriate local 

analysis in a neighborhood of S(2, 2.51, 2, 2, 2.51, 2). 

Lemma 9.3.1. Suppose that2 < Yi < 2.2,fori = 1,3,6, andthat2 < Yi = 2.51,for 

i = 2, 4, 5. Then dih(S(yl . . . . .  Y6)) > dihmin. 

Proof This is an application of Lemma 8.3.1. By that lemma, dih(S) is increasing in 

x4, so we fix x4 = 4. The sign of Ocosdih/Ox2 is the sign of OA/Ox3, and a simple 

estimate based on the explicit formulas of Section 8 shows that OA/Ox3 > 0 under the 

given constraints. Thus, we minimize dih(S) by setting x2 = 2.512. By symmetry, we 

setx5 = 2.512. 

Now consider dih(S) as a function of xl, x3, and x6. The sign of O cos dih/Ox3 is 

the sign of OA(xl, 2.512, x3, 22, 2.512, x6)/Ox2. The maximum of this partial (about 

-2.39593) is attained when Xl, x3, and x6 are as large as possible: Xl = x3 = x6 = 2.22. 

So dih(S) is increasing in x3. We take x3 = 4, and by symmetry x6 = 4. 

We have 

0 cos dih(S) 2q (x I ) 

OXl U(Xl, X2, X6)3/2U(Xl, X3, X5) 3/2' 

where tl(Xl) ,~, 464.622 - 1865.14xl + 326.954x~ - 92.9817x~ + 4x 4. An estimate 

of the derivative of q (x) shows that ti (x) attains its maximum at xl = 4, and tl (4) < 

-6691 < 0. Thus dih(S) is minimized when Xl = 4. [] 

Calculation 9.4. 1-" < 0.378979 dih - 0.410894. 
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Lemma 9.5. I f  $1, $2, $3, and $4 are any four tetrahedra such that dih(S]) + dih(S2) + 

dih(S3) + dih(S4) > 2zr, then F(S1) + . . .  + F(S4) < 0.33 pt. 

This lemma is a consequence of the following three calculations, each established by 

interval arithmetic and the method of subdivision. 

Caleulation 9.5.1. 
F < -0.19145 dih + 0.2910494, 

provided dih ~ [dih(S(2, 2, 2, 2, 2, 2)), 1.42068]. 

Calculation 9.5.2. 

F < -0.0965385 dih + 0.1562106, 

provided dih ~ [1.42068, dih(S(2, 2, 2, 2.51, 2, 2))]. 

Calculation 9.5.3. 

F < -O.19145dih+0.31004, 

provided dih > dih(S(2, 2, 2, 2.51,2, 2)). 

To deduce Lemma 9.5, we consider the piecewise linear bound s on F obtained 

from these estimates. The linear pieces are s < 1 pt,  s C3, and Ca on [dihmin, d]], 

[dl, d2], [d2, d3], and [d3, dihmax], where dl = dih(S(2, 2, 2, 2, 2, 2)), d2 = 1.42068, and 

d3 = dih(S(2, 2, 2, 2.51, 2, 2)). (See Calculation 9.1 and Lemma 8.3.2.) Diagram 9.5.4 

illustrates these linear bounds. (There are small discontinuities at dl, d2, and d3 that 

may be eliminated by replacing s by s + ei, for some ei > 0, for i = 1, 2, and 

4.) We then ask for the maximum of s + s + s + s under the constraint 

(h +t2+ta+t4)/4 > zr/2 ~ [dE, d3]. Since s is constant on (dihmin, dl) and decreasing 

on [dl, dihmax], we may assume that ti > d], for all i. Since the slope of s is equal to 

the slope of s we may assume that ti > dE, for all i, or that ti < d3, for all i. If ti < d3, 

for all i, then we find that ti > 2rr - 3d3 > dE. So in either case, ti > dE, for all i. By 

convexity, an upper bound is 4e3 (rr/2) < 0.33 pt.  

11 . 12 13 14 lpt d~l  ~ 

0 pt 

D i a g r a m  9.5.4 

Lemma 9.6. /fSl . . . . .  $5 are anyfive tetrahedra such that dih(S1) + . - .  + dih(Ss) >_ 

2rr, then 

F(S]) + . . .  + F(Ss) < 4.52 pt.  

This is a consequence of two other calculations. 
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Calculat ion 9.6.1. F < -0 .207045  dih + 0.31023815, provided dih ~ [do, 27r - 4do ] ,  

where do = dih(S(2, 2, 2, 2, 2, 2)). 

Calcula t ion 9.6.2. F < 0.028792018, if dih > 2rr - 4 d 0 .  

Calculations 9.1, 9.6.1, and 9.6.2 give a piecewise linear bound e on I" as a function 

of  dihedral angle. See Diagram 9.6.3. (Again, there are minute discontinuities that may 

be eliminated in the same manner as before.) We claim that 4.52 pt  > s (tl) + . . .  + e (ts) 

whenever tl + . . .  + t5 > 2rr. As in Lemma 9.5, we may assume that ti > do. Since s 

is decreasing on [do, dihmax], we may assume that tl + . - .  + t5 = 27r. Thus, only the 

interval [do, 2rr - 4d0] is relevant for the optimization. On this interval, the bound is 

linear, so e(tl)  + . . -  + s < 5s < 4.52 pt.  

1 pt 

0 pt 

H 
do 

I(x) 

Diagram 9.6.3 

C a l c u l a t i o n  9.8.  

Calculat ion 9.9.  

Calcula t ion 9.10. 

1 . . . . .  6. 

Calcula t ion 9.7. F < 0.389195 d i h -  0.435643, if yl > 2.05. 

The next inequalities relate the solid angles to the compression. 

F < -0 .37642101 sol + 0.287389. 

F < 0.446634 sol - 0.190249. 

F < -0 .419351 sol + 0.2856354 + 0.001, if yi ~ [2, 2.1], for i = 

The following calculation involves the circumradius. We leave it to the reader to check 

that the dimension-reduction techniques of  Lemma 8.7.1 may still be applied. 

Calcula t ion 9.11. I" < -0 .419351 sol + 0.2856354, provided that Y4, Ys, Y6 > 2.1 

and that the circumradius of  S is at most 1.41. 

Calcula t ion 9.12.  

i, and y4 ~ [2, 21 ]. 

F < -0 .419351  sol +0 .2856354  - 5(0.001), i fy i  > 2.1 for some 

Calcula t ion 9.13. F < -0 .65557  sol + 0.418, i fy l  ~ [2, 2.1], for i = 1 . . . . .  6. 
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Calculation 9.14. sol(S) > 0.21. 
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Calculation 9.15. F + (K - sol)/3 < 0.564978 dih - 0.614725, where K = 

(47r - 6.48)/12, provided Yl ~ [2, 2.05], and Y2, Y3 E [2, 2.2]. 

Calculation 9.16. dih > 0.98 and sol > 0.45, provided Yl e [2, 2.05], and Y2, Y3 

[2, 2.2]. 

Let F(S) be replaced by vor(S) in each of the Calculations 9.1-9.16 to obtain a new 

list of inequalities 9.1'-9.16'. (In 9.11' we drop the constraint on the circumradius of S.) 

We claim that all of the inequalities 9.*' hold whenever S is a quasi-regulartetrahedron of 

circumradius at least 1.41. In fact, inequalities 9. !', 9.2', 9.4', 9.5.1 ', 9.5.2', 9.5.3', 9.6.1 ', 

9.6.2', and 9.7' follow directly from 9.17 and the inequalities dihmin < dih < dihmax. 

Calculations 9.3, 9.14, and 9.16 are independent of F, and so do not require modification. 

Inequalities 9.8', 9.11', and 9.12' also rely on 9.17, 9.18, and 9.19, inequality 9.9' on 9.14, 

and inequality 9.15' on 9.16. Inequalities 9.10' and 9.13' are vacuous by the comments 

of paragraph 8.2.4. 

Write S = S(yl, y2, Y3, y4, ys, y6), vor = vor(S), and let rad = rad(S) be the 

circumradius of S. 

Lemma 9.17. If the circumradius is at least 1.41, then vor < -1 .8  pt. 

ProoJ~ If sol > 0.91882, then the lemma is a consequence of Lemma 9.18. (The proof 

of Lemma 9.18, under the restriction sol > 0.91882, is independent of the proof of this 

lemma.) Assume that sol < 0.91882. 

If S' and S and Delaunay stars, related as in Section 8.7, then vor(S') > vor(S) 

because S~ is obtained by slicing a slab from 30. This means that we may apply the 

dimension-reduction techniques described at the beginning of this section, unless the 

deformation decreases the circumradius to 1.41. An interval calculation establishes the 

result when yl + Y2 + Y3 > 6.3 and the circumradius constraint is met (Calculation 

9.17.1). When the dimension-reduction techniques apply, the dimension of the search 

space may be reduced to four, and an interval calculation similar to the others in this 

section gives the result (Calculation 9.17.2). 

We lacked the computer resources to perform the interval analysis directly when the 

dimension-reduction techniques fail and found it necessary to break the problem up into 

smaller pieces when Yl + Y + 2 + Y3 < 6.3. We make use of the following calculations. 

Calculation 9.17.1. vor(S) < - 1.8 pt provided yl + y2 Jr Y3 > 6.3, rad(S) = 1.41, 

and sol(S) < 0.91882. 

Calculation 9.17.2. vor(S) < -1.8ptprovidedthatrad(S) > 1.41,yl+y2-I-y3 >_ 6.3, 

sol(S) _< 0.912882, and S lies in one of the seven subspaces of smaller dimension 

associated with I (sol, F) at the beginning of the section. 
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Calculation 9.17.3.1. 

sol > 0.767. 

Assume that yl + y2 -I- Y3 < 6.3 and that rad > 1.41. Then 

Calculation 9.17.3.2. 

sol > 0.83. 

Assume that yl + y2 + Y3 < 6.192 and that rad > 1.41. Then 

Calculation 9.17.3.3. 

sol > 0.87. 

Assume that yl + Y2 + Y3 < 6.106 and that rad > 1.41. Then 

Calculation 9.17.3.4. 

sol > 0.9. 

Assume that Yl + Y2 + Y3 < 6.064 and that tad > 1.41. Then 

Calculation 9.17.3.5. 

sol > 0.91882. 

Assume that Yl + Y2 -k Y3 < 6.032 and that tad > 1.41. Then 

In the interval arithmetic verification of Calculations 9.17.3, we may assume that 

rad = 1.41 and that Yl + Y2 + Y3 is equal to the given upper bound 6.3, 6.192, etc. To 

see this we note that the circumradius constraint is preserved by a deformation of S that 

increases Yl, Y2, or Y3 while keeping fixed the spherical triangle on the unit sphere at 

the origin cut out by S. We increase Yl, y2, and Y3 in this way until the sum equals the 

given upper bound. Then fixing Yl, y2, and Y3, and one of y4, ys, and Y6, we decrease 

the other two edges in such a way as to decrease the solid angle and circumradius until 

rad = 1.41. 

This deformation argument would break down if we encountered a configuration in 

which two of Y4, Ys, and Y6 equal 2, but this cannot happen when rad(S) > 1.41 because 

this constraint on the edges would lead to the contradiction 

1.41 < rad(S) < rad(S(2.3, 2.3, 2.3, 2, 2, 2.51)) < 1.39 

It is possible to reduce Calculations 9.17.3 further to the four-dimensional situation 

where two of y4, Y5 and Y6 are either 2 or 2.51. Consider a simplex S with vertices 0, 01, 

02, and 03. Let pi be the corresponding vertices of the spherical triangle cut out by S on 

the unit sphere at the origin. Fix the origin, v2, and 03, and vary the vertex 01. The locus 

on the unit sphere described as pl traces out spherical triangles of fixed area is an arc of a 

Lexell circle C. Define the "interior" of C to be the points on the side of C corresponding 

to spherical triangles of smaller area. The locus traced by Vl on the circumsphere (of S) 

with Iv~l constant is a circle. Let C', also a circle, be the radial projection of this locus 

to the unit sphere. Define the "interior" of C' to be the points coming from larger Ivl I. 

The two circles C and C' meet at Pl, either tangentially or transversely. The interior of C 

cannot be contained in the interior of C' because the Lexell arc contains p*, the point on 2 
the unit sphere antipodal to P2 [FT, p. 23], but the interior of of C' does not. Furthermore, 

if Iv~l = 2 and I021 + I031 > 4, then 02 or 03 lies in the interior of C and C', so that 

the circles have interior points in common. This means that 01 can always be moved in 

such a way that the solid angle is decreasing, the circumradius is constant, and the length 

I0~1 is decreasing (or constant if loll = 2). If  any two of y4, Ys, and Y6 are not at an 
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extreme point, this argument can be applied to Vl, v2, or v3 to decrease the solid angle. 

This proves the reduction. 

We are now in a position to prove the lemma for simplices satisfying yl +Y2 +Y3 < 6.3. 

Calculation 9.17.3.1 allows us to assume sol > 0.767. As in Section 8.6, let Sy = 

S(2, 2, 2, y, y, y). We rely on the fact that vor(Sy)is decreasing in y, for y 6 [2.26, 2.41 ]. 

In fact, the results of Section 8.6 specialize to the formula 

(9.17.4) vor(Sy) = 
--8r 2 

(12 - y2)1/2(16 - y2) 

( ( 1 2  - y2)1/2y2 "~ 

+ S a r c t a n \  6 4 - 6 y  2 1 '  

and the sign of its derivative is determined by a routine Mathematica calculation. It is clear 

that sol(Sy) is continuous and increasing in y. Since so1($2.26) < 0.767 and sol(S2.41) > 

0.91882, our conditions imply that sol(S) = sol(Sy) for some y ~ [2.26, 2.41]. Let r(a) 

and vol(R(a, b, c)) be the functions introduced in Section 8.6.4. 

This suggests the following procedure. Pick y so that sol(S) > sol(Sy). Calculate the 

smallest (or at least a reasonably small) a for which 

(1) 
se(y, a) := vor(Sy) - 48oct 1 - ~ 2r(a) 

is less than -1 .8  pt. Monotonicity (Calculation 9.20.1) and Lemma 8.6.5 imply that 

vor(S) < -1 .8pt ,  ifyl  +Y2+Y3 > 2(2+a).  To treat the case that remains (Yl +y2+y3 < 

2(2 + a)), use Calculations 9.17.3 to obtain a new lower bound on sol(S), and hence 

a new value for y. The procedure is repeated until a = 0.016. Calculation 9.17.3.5 

completes the argument by covering the case Yl + Y2 + Y3 < 6.032. We leave it to the 

reader to check that 

~(2.2626, 1.096), ~(2.326, 1.053), ~(2.364, 1.032), ~(2.391, 1.016) 

are less than -1 .8  pt and that 

so1($2.2626) < 0.767, so1($2.326) < 0.83, so1($2.364) < 0.87, so1($2.391) < 0.9. 

This completes the proof of Lemma 9.17. [] 

Lemma 9.18. Ifrad(S) > 1.41, then vor < -0.419351 sol +0.2856354. 

Proof. We adopt the notation and techniques of Lemma 9.17. If sol < 0.918819, 

then the result follows from Lemma 9.17. (The proof of Lemma 9.17 is indepen- 

dent of the argument that follows under that restriction on solid angles.) Let f ( S )  = 

-0.419351 sol(S) + 0.2856354 - vor(S). We show that f ( S )  is positive. We use the 

inequality f ( S )  > f(Stan) "+" 4•oct vol(S\St~) of Lemma 8.6.4. A routine calculation 

based on formula (9.17.4) shows that f (Sy )  is increasing, for y ~ [2.4085, 2.51]. 

If sol > 0.951385, then we appeal to Fejes T6th's convexity argument described in 

Section 8.6. To justify the use of his argument, we must verify that the cone over Stan 

contains the circumcenter of S. The first, second, and third edges have length 2, and the 

fourth, fifth, and sixth edges are between 2.21 and 2.51 (Calculation 9.18.2). These are 
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stronger restrictions on the edges than in the proof of Lemma 8.6.5, so the justification 

there applies here as well. We observe that SO1($2.4366) < 0.951385 so that 

f (S)  > f(Stan) > f(Sy) > f($2.4366) ~ 0.000024 > 0, 

where y satisfies sol(Sy) = sol(Stan). We may assume that 0.918819 < sol < 0.951385. 

L e m m a  9.18.1. The combined volume of the two Rogers simplices along a common 

edge of a quasi-regular tetrahedron S is at least 0.01. 

Proof. The combined volume is at least that of the right-circular cone of height a and 

base a wedge of radius v ' ~  - a 2 and dihedral angle dihmin, where a is the half-length 

of an edge and b is a lower bound on the circumradius of a face with an edge 2a. This 

gives the lower bound of 

(b2 a2)a dihmin - > 0.1439(b 2 - a2). 
2rr 

We minimize b by setting b 2 = )?(2, 2 ,2a)  2 = 4 / ( 4 - a 2 ) .  Then b 2 - a 2 = 

(a 2 - 2)2/(4 - a2), which is decreasing in a ~ [1, 2.51/2]. Thus, we obtain a lower 

bound on b 2 - a 2 by setting a = 2.51/2, and this gives the estimate of the lemma. [] 

We remark that so1($2.4085) < 0.918819. If 1.15 < (Yl + y2 + Y3 - 4)/2, then Lemma 

9.18.1 and Section 8.6 give 

f(S)>f(S2.4o85)+48oct(l_ 1.1531 ) 0 . 0 1 > 0 .  

(Analytic continuation is not required here, because of the constraints on the edges in 

Calculation 9.18.2.) We may now assume that Yl + Y2 + Y3 < 6.3. To continue, we need 

a few more calculations. 

Calculation 9.18.2. If sol > 0.918, then y4, Ys, y6 > 2.21. 

Calculation 9.18.3.1. If yl + y2 + Y3 < 6.02 and rad > 1.41, then sol > 0.928. 

Calculation 9.18.3.2. I fy l  + Y2 + Y3 < 6.0084 and rad > 1.41, then sol > 0.933. 

Calculation 9.18.3.3. If yl + Y2 + y3 < 6.00644 and rad > 1.41, then sol > 0.942. 

In the verification of these calculations, we make the same reductions as in Calcula- 

tions 9.17.3. 

Adapting the procedure of Lemmas 9.17 and 8.6.5, we fine that a lower bound on the 

solid angle leads to an estimate of a constant a with the property that f (S) > 0 whenever 

Yl +Y2 +Y3 > 4 + 2 a .  That is, we picka so that ~l(y, a) := f(Sy)+88oa(1 - 1/a2)r(a) 
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is positive, where y is chosen so that sol(Sy) is a lower bound on the solid angle. The 

values 

~1 (2.4085, 1101), ~l (2.4165, 1.0042), ~l (2.42086, 1.00322), ~l (2.4286, 1.0017) 

are all positive. This yields the bound Yl + Y2 + Y3 < 6.0034. 

Assume that S satisfies Yl + y2 + Y3 < 6.0034 and rad(S) > 1.41. Then by Cal- 

culation 9.18.3.3, sol(S) = sol(Stun) _> 0.942. Also rad(St~) > rad(S)/1.0017 > 

1.41/1.0017 > 1.4076, because rescaling St~ by a factor of 1.0017 gives a simplex 

containing S. This means that St~ satisfies the hypotheses of the following calculation. 

Calculation 9.18.4 completes the proof of Lemma 9.18. [] 

Calculation9.18.4. If rad(St~ > 1.4076 and 0.933 < sol(St~) < 0.951385, then 

f ( Stan) > O. 

In this verification we may assume that the fourth, fifth, and sixth edges of St~ are at 

least 2.27, for otherwise the circumradius is at most 

rad(S(2, 2, 2, 2.27, 2.51, 2.51)) < 1.4076. 

In the verification of Calculation 9.18.4, we also rely on the fact that 

fl(X4, X5,X6) :---- f(S(2,  2, 2, ~/~,  ~r ~ ) )  

is increasing in (x4, x5, x6) ~ [2.272, 2.512]. Here is a sketch justifying this fact. The 

details were carried out in Mathematica with high-precision arithmetic. The explicit 

formulas of Section 8.6 lead to an expression for Ofl/Ox4 as 

W(x4, X5, X6)(-X4 "1- X5 "~ X6) 

( -16  + Xa)2A 3/2 

where W is a polynomial in x4, xs, and x6 (with 13 terms). To show that W is positive, 

expand it in a Taylor polynomial about (x4, xs, x6) = (2.272, 2.272, 2.272) and check 

that the lower bound of inequality (7.1) is positive. 

Calculation 9.19. If y4 ~ [2, 2.1], then sol.< 0.906. 

For a _< b ___ c, we have vol(R(a, b, c)) = a((b 2 - a2)(c 2 - b2))1/2/6. The final 

four calculations are particularly simple (to the extent that any of these calculations are 

simple), since they involve a single variable. They were verified in Mathematica with 

rational arithmetic. 

Calculation 9.20.1. The function (1 - 1/a 2) vol(R(a, 77(2, 2, 2a), 1.41)) is increasing 

on [1, 1.15]. 

Calculation 9.20.2. The function vol(R(a, 17(2, 2, 2a), 1.41)) is decreasing for a 

[1, 1.151. 
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Calculation 9.20.3. For a E [1, 1.15] we have 

vol(R(a, 17(2, 2, 2a), 1.41)) < vol(R(a, 17(2, 2.51, 2a), 1.41)). 

1". C. Hales 

Calculation 9.21. Let pl -- Pl (Yl . . . . .  Y6) be the point in Euclidean space introduced 

in Section 8.6.7. For y e [2.3, 2.51], 

dy  0(2.51,2.51, y ) -  > - 0 . 7 5 > ~ y y  Ip~(y, 2.51,2,2,2,2.51)l 2 -  
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Appendix. Proof of Theorem 6.1 

D. J. Muder 

Notation and Observations. Let P be a point of degree d. If we consider P to be the 

center of the configuration, then thefirst rim of points will be the set of d points adjacent 

to P, and the second rim will be those at distance 2 from P. Let 8(P) be the sum of the 

degrees of the first rim points. If d = 6, it is easy to see that the number of points on the 

second rim is s = 8(P) - 24, and the total number of points of distance at most 2 from 

P is 8(P) - 17. The second rim is thus an s-gon. This s-gon and the triangulation of 

the P-side of the s-gon are referred to as the inner graph. The inner-graph degree of a 

second rim point is called its inner degree. The number of second-rim points with inner 

degree 5 is equal to the number of degree 4 points in the first rim, and the number of 

second-rim points with inner degree 3 is equal to the number of degree 6 points on the 

first rim. All other second-rim points have inner degree 4. Points beyond the second rim 

are called extra points. If there are no extra points, then there are at least two second-rim 

points whose degrees are equal to their inner degrees. Let N~ (P) be the number of points 

of degree A in rim i around P. Notice that if d = 6, then 

a(P) = 30 - N~(P) + N~(P). 

Further, Euler's formula gives N - 12 = N6 - N4. Putting this together with 5.1.1 and 

5.1.5, we see 

13_< 1 2 + N 6 - N 4 _ <  15, 

l <_ l + N4 <_N6 <_3+ N4 <_5. 

Lemma 1. There is no triangle whose vertices all have degree 6. 
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Lemma 2. Suppose N6 > 3. Let G6 be the subgraph of points of degree 6. Either G6 

is three points in two components, or it is a single (open or closed) path, with no other 

edges. 

With these lemmas and this notation, we consider the different possible values of N6. 

N6 = 1. This forces N4 = 0. Let P be the degree 6 point. Then 8(P) = 30, all thirteen 

points are in the inner graph, and all six second-rim points have inner degree 4. However, 

at least two of these second-rim points have inner degree equal to degree. Contradiction. 

N6 = 2. If the two degree 6 points are adjacent, let P be either one. Now 8 (P) = 31 - N4 ~, 

and we see that there are no extra points, and all second-rim points hav e degree 5. All 

but N41 second-rim points have inner degree less than 5, and at least two of them will 

have inner degree equal to degree. So N4 > N4 l = 2, and N < 12. Contradiction. 

If the degree 6 points are not adjacent, then the (6, 6) forces N > 14, so N4 = 0. If 

8(P) is either of the two degree 6 points, 8(P) = 30, so the second rim has six points, 

all of inner degree 4, and there is one extra point. If the extra point has degree 5, it is 

adjacent to all but one of the second-rim points. This unique second-rim point is then 

part of a quadrilateral, which can only be triangulated by the diagonal edge that does not 

include the extra point. This creates two second-rim points of degree 6, in violation of 

our assumptions. Therefore the extra point has degree 6, and we have Diagram 6.2. 

N6 = 3. Either G6 is an open path or it has two components. In either case there is a 

(6, 6), so N > 14 and Na = 0 or 1. 

In the first case let P be the center of the path. Now 8 (P) = 32 - N4 l . We see that there 

are no extra points and any degree 4 point is in the first rim. The second rim has at most 

one point of inner degree greater than 4, and two points whose inner degrees are equal 

to their degrees. So there must be a point of degree 4 on the second rim. Contradiction. 

In the second case 5.1.8 forces N = 15, hence N4 = 0. If P is one of the points in 

the two-point component of G6, then 8(P) = 31, so there is one extra point and seven 

second-rim points. Either one or two of the second rim points is not connected to the 

extra point. In either case at least one of these two has degree = inner degree, which is 

at most 4. Contradiction. 

N6 = 4. Now G6 is either an open or closed path of length 4. If open, then, by 5.1.8, 

N = 15 and N4 = 1. If P is either of the interior degree 6 points, then 8 (P) = 32 - N41, 

the second rim is an (8 - N l)-gon with N~ points of inner degree at least 5 and N41 extra 

points. We cannot have N4 l = 0, or else there would be at least two second-rim points 

of degree 4, so N~ = 1. This holds no matter which interior degree 6 point we started 

with, so the degree 4 point must be adjacent to both. It must also be adjacent to one of 

the other two, or else there is a (6, 6, 4). Therefore there is a degree 6 point whose first- 

rim degree sequence is 6 /4 /6 /5 /5 /5 ,  producing a second-rim inner degree sequence of 

4/3/5/3/4/4/4. The point of inner degree 5 is the fourth neighbor of the degree 4 point, 

and cannot be degree 6 without making G6 closed. Therefore there is an edge connecting 

the two points of inner degree 3. Adding this edge to the inner graph creates a hexagon 

with all points of "inner" degree 4, and the extra point in its interior. The extra point is 

connected to five of these points, and the sixth has degree 4. Contradiction. 
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If G6 is a closed path, then a degree 4 point Q must triangulate this quadrilateral. 

Using Q as the center, there are four first-rim points and eight second-rim points. The 

second rim can be drawn in a square with the four points of inner degree 3 on the comers 

and the four points of inner degree 4 at the midpoints. There is at most one additional 

degree 4 point (other than Q). If it is anywhere but at one of the second-rim midpoints, 

a (6, 6, 4) exists. The four midpoints cannot be adjacent to any additional second-rim 

points without creating an illegal triangle or quadrilateral. Since there can be at most one 

more degree 4 point, at least three of the four second-rim midpoints must be joined to 

the extra point(s). Two midpoints of consecutive sides cannot be joined to the same extra 

point without forcing the corresponding comer to be degree 4, which is impossible. So 

there must be two extra points, and thus no degree 4 points other than Q. One extra point 

must be joined to the midpoints of each pair of parallel sides of the square. However, all 

these edges cannot be drawn without intersecting. 

N6 = 5. Now G6 is a path of length 5, closed so that a (6, 6, 6) does not exist. Any 

point in this pentagon is nonadjacent to two others, so the situation of 5.1.8 applies in 

five different ways. Let P, Q, R ~ G6 with P and Q adjacent, but neither adjacent to 

R. Then there are eight points adjacent to either P or Q, and six points adjacent to R, 

so there are exactly two common points in these two sets. In our case these two points 

are precisely the other two points of degree 6. This means that no point inside or outside 

the pentagon can be connected to more than two points of the pentagon. Thus the only 

possible configuration for the 15 points is to form three concentric pentagons, with G6 

as the middle one. Prior to triangulating the inner and outer pentagons, all of their points 

have degree 4. Triangulating either creates more degree 6 points. Contradiction. 

Proof of Lemma 1. Let Pl, P2, and P3 be the vertices of such a triangle. If Pj has no 

neighbors of degree 4, then the only possibility is 8(Pj) = 32, which forces Ng = 4, 

N~ --- 2, and N = 15. All second-rim points have inner degree at most 4, and there are 

no extra points. Therefore two second-rim points have degree and inner degree 4. Call 

them QI and Q2. Therefore, N4 > 2, N6 _> 5, and N 2 _> 2. Let Rl and R2 be second-rim 

points of degree 6. Each Qk and Re must be adjacent, or else (Pj, Re, Qk) is a (6, 6, 4). 

However, all edges from Qj are inner-graph edges. So QI R1Q2R2 must be a second-rim 

quadrilateral, which is impossible. Thus N4 ~ (Pj) _> 1 for each Pj. 
This forces N4 = 2. At least one of the degree 4 points is adjacent to two of the 

Pj. One of these two, say P1, is not adjacent to the other degree 4 point. Since 8(P) _< 

32, we are left with four possible first-rim degree sequences for/ '1: (1) 6 /6 /4 /5 /5 /5 ;  

(2) 6 /6 /4 /6 /5 /5 ;  (3) 6 /6 /4 /5 /6 /5 :  or (4) 6 /6 /4 /5 /5 /6 .  

The last three possibilities are easily dealt with. Sequence (3) contains a (6, 6, 4). 

Sequence (4) creates two 6-6-6 triangles joined at an edge. Let PI and P2 be the vertices 

of the edge, and let P3 and P4 be the other vertices of the triangles. The conditions 

N41(Pj) _> 1 and N4 = 2 force/'3 and P4 to have sequence (1). In (2) we can invoke 

5.1.8 with the three degree 6 points in the first rim. Call them Rl, R2, and T, with RI 

adjacent to RE. In order for the numbers to work out, there can be precisely two points 

which are adjacent to T as well as one of the Rj. However, in (2) the center, the first-rim 

degree 4 point, and the second-rim neighbor of the first-rim degree 4 point must all fit 

this description. 
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Sequence (1) is more difficult to eliminate. Let Rl . . . . .  R6 be the first-rim points 

listed in the order of  (1). Let $1 . . .  $7 be the second-rim points, with $I being adjacent 

to both Rj and R2, and $7 having only Rl as a first-rim neighbor. There is at least one 

degree 6 point in the second r i m - - i f  it is at Sl, then 8(Rl) ---- 32; if it is anywhere else 

we can invoke 5.1.8. In either case, N = 15 and there are two degree 6 points outside the 

first rim. These must lie in {$6, $7, Sl, $3} to avoid making a (6, 6, 4) with R1 and R3. 

At most one of these points can be adjacent to Rl (since 8(Rl)  < 33), so $3 must have 

degree 6. Now $3 must connect to both the degree 6 and degree 4 points in {$6, $7, $1 } to 

avoid making a (6, 6, 6) or (6, 6, 4) with the center point. However, $3 has inner degree 

5 and so can connect to at most one of those points. Contradiction. 

Proof  o f  Lemma 2. If  G6 has at least three points and no triangles, then there exists a 

(6, 6) forcing N > 14. Any point in G6 can be adjacent to at most  two others, or else ei- 

ther a triangle or a (6, 6, 6) is created. Therefore each component is a path. There cannot 

be three or more components without producing a (6, 6, 6). I f  G6 has two components,  

each of  them must be a complete graph for the same reason. Since there are no trian- 

gles, both of  the components must have at most two points. I f  there are two components 

with two points each, then 5:1.8 forces N = 15. Each component is adjacent to eight 

non-G6 points of  the original graph, and not adjacent to three. Now 5.1.8 forces each 

point in the other component to be adjacent to these three. However, two points can have 

only two common neighbors. So the only two-component G6 is the one described in the 

lemma. [] 
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