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Abstract. An earlier paper describes a program to prove the Kepler conjecture on sphere
packings. This paper carries out the second step of that program. A sphere packing leads to
a decomposition dR? into polyhedra. The polyhedra are divided into two classes. The first
class of polyhedra, called quasi-regular tetrahedra, have density at most that of a regular
tetrahedron. The polyhedra in the remaining class have density at most that of a regular
octahedron (about 0.7209).

1. Introduction

This paper is a continuation of the first part of this series [4]. The terminology and
notation of this paper are consistent with this earlier paper, and we refer to results from
that paper by prefixing the relevant section numbers with “l.”

We review some definitions from [4]. Begin with a packing of nonoverlapping spheres
ofradius 1in Euclidean three-space. Tamsityof a packing is defined in [2]. Itis defined
as alimit of the ratio of the volume of the unit balls in alarge region of space to the volume
of the large region. The density of the packing may be improved by adding spheres until
there is no further room to do so. The resulting packing is said saheated

Every saturated packing gives rise to a decomposition of space into simplices called
the Delaunay decompositiof8]. The vertices of each Delaunay simplex are centers of
spheres of the packing. By the definition of the decomposition, none of the centers of the
spheres of the packing lie in the interior of the circumscribing sphere of any Delaunay
simplex. We refer to the centers of the packingvagices Vertices that come within
2.51 of each other are calletbse neighbors

The Delaunay decomposition is dual to the well-known Voronoi decomposition. If the
vertices of the Delaunay simplices are in nondegenerate position, two vertices are joined

* This research was supported by the National Science Foundation.
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by an edge exactly when the two corresponding Voronoi cells share a face, three vertices
form a face exactly when the three Voronoi cells share an edge, and four vertices form a
simplex exactly when the four corresponding Voronoi cells share a vertex. In other words,

two vertices are joined by an edge if they lie on a sphere that does not contain any other of
the vertices, and so forth (again assuming the vertices to be in nondegenerate position).

We say that the convex hull of four vertices ig@asi-regular tetrahedroor simply
a tetrahedron if all four vertices are close neighbors of one another. If the largest
circumradius of the faces of a Delaunay simplex is at m@twe say that the simplex
is small Suppose that we have a configuration of six vertices in bijection with the
vertices of an octahedron with the property that two vertices are close neighbors if and
only if the corresponding vertices of the octahedron are adjacent. Suppose further that
there is a unique diagonal of length at most2 In this case we call the convex hull
of the six vertices ajuasi-regular octahedrofor simply anoctahedroi). A Delaunay
staris defined as the collection of all quasi-regular tetrahedra, octahedra, and Delaunay
simplices that share a common veriex

We assume that every simpl&in this paper comes with a fixed order on its edges,

1, ..., 6. The order onthe edges is to be arranged so that the first, second, and third edges
meet at a vertex. We may also assume that the edges numbardd+ 3 are opposite

edges foi = 1, 2, 3. We defineS(y, ..., Ys) to be the (ordered) simplex whosth

edge has lengtly;. If Sis a Delaunay simplex in a fixed Delaunay star, then it has a
distinguished vertex, the vertex common to all simplices in the star. In this situation, we
assume that the edges are numbered so that the first, second, and third edges meet at the
distinguished vertex.

A function, known as theompressiol™(S), is define on the space of all Delaunay
simplices. Sefoct = (—37 + 12 arccosl/+/3))/+/8 ~ 0.720903. LetS be a Delaunay
simplex. LetB be the union of four unit balls placed at each of the verticeS @fefine
the compression as

['(S) = —6oct VOI(S) + vol(SN B).

We extend the definition of compression to Delaunay sty settingl’(D*) =
> T'(9), with the sum running over all the Delaunay simplices in the star. We define
a point (abbreviatedpt) to beI'(S(2, 2, 2, 2, 2, 2)) ~ 0.0553736. The compression is
often expressed as a multiple puif

There are several other functions of a Delaunay simplex that will be usedifiéural
angledih(S) is defined to be the dihedral angle of the simgiatong the first edge (with
respect to the fixed order on the edgesshfThe solid angle(measured in steradians)
at the vertex joining the first, second, and third edges is denoté8)stkt rad S) be
the circumradius of the simple® More generally, let rad-) denote the circumradius
of the face of a simplex. Letf(a, b, ¢) denote the circumradius of a triangle with edges
a, b, c. Explicit formulas for all these functions appear in Section |.8.

Fix a Delaunay staD* about a vertexg, which we take to be the origin, and we
consider the unit sphere a4. Let v; andv, be vertices ofD* such thatvg, v;, andv,
are all close neighbors of one another. We take the radial projecgion$ v; to the
unit sphere with center at the origin and connect the pgntnd p, by a geodesic arc
on the sphere. We mark all such arcs on the unit sphere. The closures of the connected
components of the complement of these arcs are regions on the unit sphere, called the
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standard regionsWe may remove the arcs that do not bound one of the regions. The
resulting system of edges and regions will be referred to astmelard decomposition
of the unit sphere.

Let C be the cone with vertexy over one of the standard regions. The collection
of the Delaunay simplices, quasi-regular tetrahedra, and quasi-regular octah&dra of
in C (together with the distinguished vertey) will be called astandard clusterEach
Delaunay simplex irD* belongs to a unique standard cluster.

A real number, called thecore will be attached to each cluster. Each star receives a
score by summing the scores for the clusters in the star.

The steps of the Kepler conjecture, as outlined in Part |, are:

1. A proof that even if all standard regions are triangular, the total score is less than
8 pt.

2. A proof that the standard clusters with more than three sides score at ptost O

3. A proof that if all of the standard regions are triangles of quadrilaterals, then the
total score is less thang@ (excluding the case of pentagonal prisms).

4. A proof that if some standard region has more than four sides, then the star scores
less than §t.

5. A proof that pentagonal prisms score less than 8

The proof of the first step is complete. The other steps are briefly discussed in
Part |. This paper establishes Step 2. Partial results have been obtained for Step 3 [5].
C. A. Rogers has shown that the density of a regular tetrahedron is a bound on the density
of packings inR3 [8]. The main result of this paper may be interpreted as saying that
the density(doct & 0.7209 of a regular octahedron is a bound on the density of the
complement ifR® of the quasi-regular tetrahedra in the packing.

The score of a Delaunay star is obtained by mixing Delaunay stars with the dual
Voronoi cells. Delaunay stai3* and the associated functidhbehave much better than
estimates of density by Voronoi cells, provided each Delaunay simplex in the Delaunay
star has a small circumradius. Unfortunatdly,S) gives an increasingly poor bound
on the density as the circumradius of the Delaunay sim@@ercreases. When the
circumradius ofS is greater than about 1.8, it becomes extremely difficult to prove
anything about sphere packings with the functio(S). The score is introduced to
regularize the irregular behavior B S).

Voronoi cells also present enormous difficulties. The dodecahedron shows that a
single Voronoi cell cannot lead to a bound on the density of packings better than about
0.75. This led L. Fejes @th to propose an approach to the Kepler conjecture in which
two layers of Voronoi cells are considered: one central Voronoi cell and a number of
surrounding ones. Wu-Yi Hsiang has made some progress in this direction, but there
remain many technical difficulties [3], [7].

The method of scoring in this paper seeks to combine the best aspects of both ap-
proaches. When the circumradius of a simplex is small, we proceed as in Part |. However,
when the circumradius of a simplex is large, we switch to Voronoi cells. Remarkably,
these two approaches may be coherently combined to give a meaningful score to De-
launay stars and, by extension, a bound on the density of a packing. The calculations of
this paper suggest that this hybrid approach to packings retains the best features of both
methods with no (foreseeable) negative consequences.
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2. Some Polyhedra

Sometimes the tip of a Voronoi cell protrudes beyond the face of a corresponding De-
launay simplex (see Diagram 2.1(a)). This section describes a construction that amounts
to slicing off the protruding tip of a Voronoi cell and reapportioning it among the neigh-
boring cells (see Diagram 2.1(b)).

)

Diagram 2.1. (a) Voronoi cells and (b) reapportioned.

Let D* be a Delaunay star with centes = 0. LetV be the Voronoi cell around
v, Obtained by duality fronD*. As a matter of convenience, we may assume that each
point in R® belongs to a unique Voronoi cell by making an arbitrary choice for each
point on the boundary of a cell. Ris a standard cluster (possibly a single quasi-regular
tetrahedron) irD*, let C(R) denote its cone over:

C(Ry={tx:t>0,xe R}.

In general,V N C(R) depends on more vertices than just those in the cluRtér
is convenient to consider the slightly larger polyhedithdefined by just the vertices
of D* that are inR. That is, Ietvg be the intersection of (R) with the half-spaces
(X 1 x-v <v-v/2 Vi # 0}, where{v;j}; are the vertices (other than) of the
simplices and quasi-regular solids in the cluggeiThe faces of\/S atvg are contained
in the triangular faces bounding the standard regioRoThe other faces o¥/Q are
contained in planes through the faces of the Voronoi\¢ellVe refer to these as Voronoi
faces. IfR is not a quasi-regular tetrahedron, &t = V3. If R is a quasi-regular
tetrahedron, we take the slightly smaller polyhedkgnobtained by intersectiny
with the half-space (containingy) bounded by the hyperplane through the faceRof
opposite the originyg. (This may cut a tip from the Voronoi cell.) By constructiory
depends only on the simplices i The polyhedronV/r is based at the center of some
Delaunay star, giving it a distinguished vertexWe write Vg = Vg(v) when we wish
to make this dependence explicit.

By construction,\/g D V NC(R). Itis often true thaVg = V N C(R). Let us study
the conditions under which this can fail. We say that a vertekipsa standard clusteéR
(based aby) if w # vy and some point 0¥ 3(v1) belongs to the Voronoi cell at. Part |
makes a thorough investigation of the geometry when a vertelips a quasi-regular
tetrahedron. (The vertax must belong to a second quasi-regular tetrahedron that shares
a face withS. The shared face must have circumradius greater{f@rand so forth.)
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Lemma2.2. Let R based at a vertexy, be a standard cluster other than a quasi-
regular tetrahedronSuppose it is clipped by a vertex Then there is a facév, v1, v2)

of R such thatw, vg, v1, v2) is a quasi-regular tetrahedrarFurthermore (vg, vy, v7)

is the unique face of the quasi-regular tetrahedron of circumradius at lg¢@st

Proof. Consider a poinp in Vg\V. Then there exists a vertex ¢ C(R) of D* such
thatp-w > w - w/2. The line segment frorp to w intersects the con€(F) of some
triangular faceF that bounds the standard regionRfand hasvg as a vertex. Leb;
andv, be the other vertices df. By the construction of the faces bounding a standard
region, the edges d¥ have lengths between 2 and 2.51.

Consider the regioiX containingp and bounded by the planét = spar{vy, w),

Hy, = sparfvz, w), H; = spar{vy, v2), Hy ={X:X-vy=wv1- U1/2}, andHs = {x:
X - v2 = vy - v2/2}. The planedH,; and Hs contain the faces of the Voronoi cell &
defined by the vertices; andv,. The planeH3 contains the facé-. The planesH;
and H, bound the region containing points, suchpaghat can be connected toby a
segment that passes throughF).

LetP = {x:x-w > w-w/2}. The choice ow implies thatX N P is nonempty. We
leave it as an exercise to check tan P is bounded. If the intersection of a bounded
polyhedron with a half-space is nonempty, then some vertex of the polyhedron lies in
the half-space. So some vertexXfies in P.

We claim that the vertex of lying in P cannot lie orH;. To see this, pick coordinates
(X1, X2) on the planeH; with origin vg = 0 so thatv; = (0, z) (with z > 0) and
XNHy € X = {(X, %) : X1 > 0,% < z/2}. See Diagram 2.3. IX’ meetsP,
then the pointv;/2 lies in P. This is impossible, because every point betwegand
v lies in the Voronoi cell atyg or vy, and not in the Voronoi cell ofv. (Recall that
lvr — vo| < 2.51 < 24/2.)

Diagram 2.3

Similarly, the vertex ofX in P cannot lie onH,. Thus, the vertex must be the unique
vertex of X that is not onH; or H,, namely, the point of intersection éf3, Hs, and
Hs. This point is the circumcentar of the faceF. We conclude that the polyhedron
Xo := X N P containsc. Sincec € X, the hypotheses of Lemma 1.3.4 are met for
T = F, and the verticesy, v1, v2, andw are the vertices of a quasi-regular tetrahedron
S. By Lemma 1.3.4)w’ — vi| < 2.3, fori = 0, 1, 2. The circumradius of the fade is
betweeny/2 and 251/+/3 ~ 1.449. O
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In the same context, it andw’ both clipR, then the regions they cut frokk(vo) are
disjoint. For otherwise, a common point would belong to bb@low) andvg(w’), where
SandS are the two quasi-regular tetrahedra constructed by the lemma. Section 1.3 shows
thatSandS share their unique face of circumradius greater tf@nThis is impossible,
because the lemma states that this face is sharedRwith

Although the polyhedrorXy belongs to the Voronoi cell ab, it is included in the
polyhedrorVg. Similarly, by repeating the constructionatandv,, we find that there are
small regionsXy, X, (with vertexc) in polyhedraVg, andVg, atv, andv,, respectively,
that belong to the Voronoi cell at.

Call the unionXy U X1 U X, thetip protruding form the quasi-regular tetrahedron
S. Associated with a quasi-regular tetrahedron is at most one such tip. (The tip must
protrude from the face ddwith circumradius greater thayi2.) By construction, the tip
is the set of points

{X:|x—=w| < |x—ul|, fori =0,1,2; det(x, v, vp) det(w, vy, vo) < O}

This isVI(w)\Vs(w).

The tip is a subset of the Voronoi cellat Section I.3 explains the conditions under
which this can fail to hold. There must be another vette¥ w with the property that
lu—| < 23, fori = 0,1, 2. Thenu, vg, v1, andv, are the vertices of a second
guasi-regular tetrahedrdsi with face F, and this contrary to our assumption thrits
not a quasi-regular tetrahedron.

Corollary 2.4. The polyhedra ¥ coverR? evenly as we range over all the standard
clusters of all the Delaunay stars of the packing

Proof. The preceding analysis shows that the polyhédsaare obtained from the
Voronoi cells by taking each protruding tip, breaking it into three pietgsX1, X,, and
attaching the piec; to the Voronoi cell av;. The Voronoi cells coveR? evenly. As a
result of this analysis, we see that the polyhedsacoverR? evenly. O

To give one example of the size of the tip, we consider the extreme case of the tetra-

hedronS = S(2, 2, 2, 2.51, 2.51, 2.51). Diagram 2.5 shows a correctly scaled drawing
of a tip protruding from the largest face 8f

v

Diagram 2.5
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3. The Score Attached to a Delaunay Star

This section gives some rules for computing the score. They were developed as a result
of computer experimentation suggesting when it is advantageous to use Voronoi cells
over Delaunay simplices. This section actually gives an entire family of scoring systems.
This extra bit of flexibility will be useful as we encounter new examples in the remaining
steps of the program. We expect the score to satisfy Conjecture 1.2.2, which asserts
that the score of a Delaunay star is at mogt,&or all the scoring systems satisfying
Properties 1-4 below. The Kepler conjecture is true if Conjecture 1.2.2 holds for any one
such scoring system. We have found through experimentation that small or seemingly
innocent changes in the score can lead to enormous changes in the complexity of the
optimization problem.

3.1. This paper proves the second step of the program for all of the scoring systems
presented below. Write (S) for the score ofS.

1. Suppose that the standard clud®eis a single quasi-regular tetrahedrdtd= S.
When the circumcenter @is contained irS,

—480¢t VOI(VR N C(S)) +

4s0lS)
3

is an analytic function of the lengths of the edges. This expression has an analytic
continuation, denoted v@8, VR), to simplicesS that do not necessarily contain their
circumcenter.

Ifrad(S) > 1.41, then define the score to be ¢8rVR). If rad(S) < 1.41, then define
the score to be the compressibS). (This rule agrees with the definition of (®)
given in Section 1.2.)

2. Let S be a small simplex that is not a quasi-regular tetrahedron. The sc@e of
will be either voK'S) or I' (S) depending on criteria to be determined by future resefrch.
These criteria may depend on whetlsdpelongs to a quasi-regular octahedron, but not
on the position of any vertices of the packing outsildt is essential for the scoring
at all four vertices to have the same type (Moronoi or compression). The only constraint
imposed by the second step of the Kepler conjecture wil{® < 0, if Sis small. This
leads to the following mild restrictions on the use of Voronoi scoring.

If one of the first three edges is the long edges (say the first), compression scoring is
to be used if the second, third, and fourth edges have length at most 2.06, and the fifth
and sixth edges have length at most 2.08.

If one of the last three edges (say the fourth) is the long edge, compression scoring is
to be used if (a), (b), (c), and (d) hold.

(&) The first edge has length at most 2.06.

1 More generally, we might add a small constant ¢ to the scoatfone of its vertices and subtract the
same constant from another vertex.
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(b) The second and third edges have length at most 2.08.

(c) The fifth and sixth edges have length at most 2.2.

(d) The fourth edge has length at most 2.58, or the fifth and sixth edges have lengths
at most 2.12.

3. Suppose thaR is any standard cluster other than a quasi-regular tetrahedron.
The cluster is a union of Delaunay simplic8s ..., §. Index the simplices so that
S, ..., S, forsomep < r are the small simplices in the cluster. We define the score of
the clusteR to be

> o(S)+ ) vor(S, VR,

l<i<p p<i<r

where vorS, VR) = 4(—68oct VOI(VR N C(9)) + sol(S)/3).

4. If D* is a Delaunay star, then its total sceréD*) is a sum of the scores of the
standard clusters dd*.

Consider the quasi-regular tetrahedrBnof Section 2 with vertices, v, va,
andw that has a protruding tipXo U X; U X»,. Let sol,(S) denote the solid angle &
at the vertexv. The analytic continuation vog, Vi) has the following geometric
interpretation.

Vor(Sv VR(U)) = _450ct(V0|(S, VR(U)) + A(U)) + _4 SO3|U(S) ,

with the correction ternA(vi) = — vol(X;), fori =0, 1, 2, and
3
Aw) =Y vol(X)).
i=1

The only pieces that are compression scored are small simplices, everything else is
Voronoi scored. The small simplices that are compression scored will be called simplices
of compression typeThe Voronoi-scored small simplices will be called simplices of
Voronoi type We define theestricted cellof a clusterR to be the complement ¥y of
the small simplices in the packing.

Lemma 3.2.

(1) The score of a cluster depends only on the clusted not on the way it sits in a
Delaunay star or in the Delaunay decomposition of space

(2) Let A denote the vertices of a saturated packihgt Ay denote the vertices
inside the ball of radius N(Fix any center for the bal) Let D*(v) denote the
Delaunay star ab € A. Then the score satisfi¢m Landau’s notatioh

Y o(D*()) = ) T(D*(v)) + O(N?).
AN AN

Proof. Statement (1) holds by construction.
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(2) The score reapportions the compression of a given star among surrounding stars.
The second part of the lemma follows from the claim that everything is accounted for,
if we ignore the boundary effects caused by the truncalospace is partitioned into
regions each countedd4s,.; times by the compression of some star. Each point in a
sphere of the packing is counted four times by the compression of some star. To verify
Lemma 3.2(2), we must check that the same holds of the score.

We switch from Voronoi to compression scoring on certain small simplices. The
facesF of a small simplexS satisfy radF) < +/2, so no point on a facg of S can
be closer to another vertex in the packing than it is to the closest vertex biiis has
two implications. First, the only polyhedig meeting a small simple$ are the four
based at the vertices & Second, leR be a standard cluster. L&8tbe a small simplex
in R. ThenVg N C(S) = VRN S. (In other words, tips cannot protrude from a small
simplex.) This means that the restricted cells and small simplices cover space evenly.
This decomposition is compatible with the standard decomposition of a Delaunay star.

Consider the rules defining the score. In counting the part of the volume of a sphere
contained in a simplexs, we see that it appears four times with weight 1 for a total
weight of 4, wherSSis a small simplex of compression type. It appears once with weight
4 for a total weight of 4, whes is of Voronoi type.

The result is now clear. O

Remark 3.3. Itis useful to summarize the proof from a slightly different point of view.

If Sis a quasi-regular tetrahedron or a small Delaunay simplex, then the sum of its four
scores, for each of its four vertices, iE@). This follows directly from the definitions
(and the proof of Lemma 3.2) if the circumcenteSi6 contained irs (which is always

the case for small simplices), and it follows by analytic continuation in general. Any
other point in space belongs to a unique Voronoi cell centered at some vetfake
pointis notin a tip protruding from a quasi-regular tetrahedron, it is counted in the score
atv. If, however, the point belongs to a protruding tip, it is counted in the score at exactly
one of the three vertices, other tharof the quasi-regular tetrahedron. In this way, every
point inR2 is accounted for.

Remark 3.4. The choice of the parametgr = 1.41 in Section 3.1(1) is somewhat
arbitrary. The choice is based on the comparison of the functions

f1(x) =vor(S(2,2,2,251,251,x),Vs) and f(x) =T(S(2, 2, 2,251, 251, x)).
The differencef;(x) — f,(x) has a zero for somg € [2.2603 2.2604]. This gives

a crude estimate of when it is advantageous to switch ffa®) to vor(S, Vs). The
constant 1.41 is a little more than &2, 2, 2, 2.51, 2.51, 2.604)) ~ 1.405656.

Proposition 3.5. The Delaunay stars in the face-centered cubic and hexagonal-close
packings scoré pt.

Proof. The eight regular tetrahedra each scopt &nd each regular octahedron scores
0 pt, because it has densidy, for a total of 8pt. O



144 T. C. Hales

We will see in Proposition 4.6 that the regular octahedron can be broken into smaller
pieces that score .

4. The Main Theorem

Theorem 4.1.

(a) The score of any small quasi-regular tetrahedron is at niqst
(b) The score of any other standard cluster is at mpgt.

Proof. Statement (a) is a special case of Calculation 1.9.1. A quasi-regular tetrahedron
of Voronoi type scores less tharpbby Lemma 1.9.17. In the remainder of the proof, we
actually prove a much stronger statement. We explicitly decompose each cluster (other
than a quasi-regular tetrahedron) into a number of pieces and show that the density
of each piece is at most;. Since vof(S, Vi) andI'(S) are zero precisely when the
corresponding densities atg: (or when the volumes are zero), the theorem will follow.
The relevant pieces will be congruent to one of the followtyyaes

1. A small simplex that is not a quasi-regular tetrahedron.

2. Aset{tx : 0 <t < 1,x € P,} c R whereP, is a measurable set and every
point of P, has distance at least 1.18 from the origin (Diagram 4.2(a)).

3. Aset{tx:0<t <1, x € P3} c R®, whereP; is a wedge of a disk of the form

P3 = {(X1, X2, X3) : X3 = Z0, X2 + X2 < 2,0 < Xp < aXy},

for somex > 0 and some k z5 < 1.18 (Diagram 4.2(b)).
4. A Rogers simplexR(a, b, v/2) where 1< a < 1.18 and% < b? < 2 (see
Section 1.8.6 and Diagram 4.2(c)).

Diagram 4.2

In the first type, a unit ball is placed at each vertex of the sim@leand the density
is the ratio of the volume of the part of the ballsSrio the volume ofS. In the second,
third, and fourth types, a unit ball is placed at the origin, and the density is the ratio of
the volume of the part of the ball in the region to the volume of the region.

We decompose all @3 into these four types and quasi-regular tetrahedra. Set all the
guasi-regular tetrahedra aside. Classify all the small simplices, including those contained
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in a quasi-regular octahedron, as regions of the first type. There remain the restricted
cells. Now fix a Delaunay stdd*, with center at the origin, and consider the restricted
cell of one of the clusters in the star. We may assume that the restricted cell does not lie in
a quasi-regular tetrahedron. Break the restricted cell up further by taking its intersection
with the cones over each of its Voronoi faded_et X be one such intersection. If the face

F has distance more than 1.18 from the origin, clasXifys a region of the second type.
Now assume the facé has distancé at most 1.18 from the center. Because: v/2,

the point in the plane oF closest to the origin lies on the faée The set of point$>,

on the faceF at distance greater thaji2 from the origin gives rise to a region of the
second type. To study what remains, we may trun€aby intersecting it with a ball of
radius+/2. LetF’ C F be the truncated face.

By Voronoi—Delaunay duality, the fade’ lies in the bisecting plane between 0 and
some vertexy of the Delaunay star. Consider the collection of triangles formed by 0,
v, and another vertex of the Delaunay s, with the property that either the triangle
has circumradius at most2 or all three edges of the triangle have lengths between 2
and 2.51. Consider the half-planes (bounded by the line through f)ammhtaining the
various triangles in this collection. This fan of half-planes partitions the Fdato a
collection of wedge-shaped pieces. Consider one of tRémNe claim that is has the
form of Diagram 4.3.

Diagram 4.3

More preciselyF” is bounded by two triangular fac€s and F, (in this collection
of triangles), two edges, ande, of the Voronoi cell dual to the triangles, and an arc
obtained from the truncation. The two edgg®nde, are perpendicular to the faces
andF,, respectively, by the definition of Voronoi—-Delaunay duality. The edgasnde,
meet the faces; andF,, respectively, by the construction of restricted cells. The edges
e; ande, cannot intersect at any point less thd@ from the origin, because the point of
intersection would be a point equidistant from the four vertices of a simplex formed by
the vertices of; andF,. The simplex would have circumradius less thép. Its faces
would then also have circumradius less thé®, so that the Delaunay simplex is small.
This is impossible, since all small simplices have already been classified as regions of
the first type.
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Lemma 4.4. In this contextassume that the faceg &Bnd F, form an acute angleand
let p be the point at which the line through meets the plane through, A_et w; and
wy be the third vertices of the faces &nd F,, respectivelythat is those other that®
andv). If the distance fron® to p is at most/2, then the simplex0, v, w1, w») is small
or a quasi-regular tetrahedran

Proof. Suppose that the distance frgmto 0 is at most/2. Letc; be the circumcenter
of F1. Let Sbe the simplex0, v, wy, wy).

We claim thatp lies in the interior of the triangl&,. The bisecting lin¢ between 0
andv in the plane ofF, containsp. The line¢ intersects two edges %, once atv/2
and once at some other poipt If pis (strictly) outsider, then|p| > | p’|. This leads
to a contradiction, once we shaw'| > +/2. If p’ lies on the edge betweanandwy,
this is clear, because an elementary exercise shows that every point on the line passing
throughw, andv has distance at least2 from the origin. Assume’ lies between 0
andw,, and considep’ as a function ofw, andv. Its length|p’| attains its minimum
whenF, is the right trianglev| = 2, |v — wa| = 2, |wa| = 2¢/2. Thus,|p/| > /2.

So p lies in the interior ofF,. The vertexw; has distance at most2 from p. No
vertexw, can come within/2 of an interior point of, unless the circumradius & is
at leasty/2. If the circumradius oF; is +/2, thenp is the circumcenter o8, so that the
circumradius ofSis +/2, makingS a small simplex. If the circumradius is greater than
V2, then sincép — w1| < +/2, p lies in the Voronoi cell atv;. Thus,w- clips (possibly
degenerately) a standard region across the fagdsom w;, based at Oy, or w,. By
Lemma 2.2(wq, 0, v, wy) is a quasi-regular tetrahedron. O

We continue with our description of the figure in Diagram 4.3. Thesacannot be
interrupted by a further (Moronoi) edge Bf. Such an edge would be dual to a (Delaunay)
face with vertices Oy, and some/’. The circumradius of the triangle with these three
vertices would be less thay2 (because every edge i comes within distance/2 of
the origin). This contradicts the constructionff with half-planes given above. This
completes our discussion of the figure in Diagram 4.3. We emphasize, however, that the
edgese; or e, may degenerate to length 0, and the circularcarnay degenerate to a
point.

This Voronoi face-wedge can be broken into three convex pieces: the convex hull of
0,v/2, and the circular arc, and the convex hulls of (2, and the edge, fori = 1, 2.

The first piece has the third type, the others have the fourth type. The boundary condition
‘5‘ < b? expresses the fact that the circumradius of a triangle with sides of length at least

2 cannot be less than/2/3. This completes the reduction to the four given types.
Now we must show that each of the given types has density atdngest

Type 1. A small simplex that is not a quasi-regular tetrahedron. &dte a small
simplex of Voronoi type with at least one edge longer than 2.51. By the monotonic-
ity properties of the circumradius, we know that the circumradiusSa$ at least
rad(S(2, 2, 2, 2.51, 2,2)) > 1.3045. Leté(a, b, c) denote the density of the Rogers
simplex (R(a, b, ¢) (see Lemma 1.8.6). By Roger’'s lemma (1.8.6(2)), the six Rogers
simplicesVs have density less thafa.; and voxS, Vs) < 0 if the circumradius of the
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three faces is at least207(5 (1, 1.207, 1.3045 < 8o¢t). This condition on the circum-
radius of the faces holds whenever there are two edges longer than 2.51 at the origin
(n(2.51, 2,2) > 1.207) or whenever there are two oppositely arranged edges longer
than 2.51.

Thus, to show that v@6) < 0 for small simplices of Voronoi type, we must consider
the following cases: (1) one edge longer than 2.51, (2) two adjacent edges longer than
2.51, and (3) three edges longer than 2.51 meeting at a vertex. These cases are covered
by Calculation 4.5.2. In (1), we may assume that at least one of the conditions for
compression scoring in Section 3.1 fails to hold. In Calculation 4.5.2(2), we may make
the stronger assumption g8 < 1.39 for otherwise, the Rogers simplices at the origin
have density at most(1, (2, 2, 2.06), 1.39) < 8ot SO that votS) < 0.

We rely on Calculation 4.5.1 for small simplices of compression type. The appendix
proves the result for simplices in an explicit neighborhoo8@4/2, 2, 2, 2, 2, 2). These
calculations are established by methods of interval arithmetic described in Part I. Source
code appears in [6].

Calculation 4.5.1. If Sis a small simplex that is not a quasi-regular tetrahedron, then
I'(S) < 0. If equality is attained, then the simpl&is congruent t&(2v/2, 2, 2, 2, 2, 2)
or to the simplex of zero volumes(2+/2, 2, 2, 2+/2, 2, 2).

Calculation 4.5.2. AssumeSis small. vorS(yy, ..., ¥s)) < 0if yi, ..., ys) belongs
to any of the cells (1)-(11). Ldtdenote the interval [2.51] andL = [2.51, 2+/2].

(1) L[2.06, 2.51]14.
(2) L12[2.06,2.51]12.
(3) L13[2.08,2.51]I.
(4) [2.06, 2.51]12L12,
(5) 1[2.08 2.51]IL12.
(6) 13L[2.2,2.51]I.
(7) 1%[2.58,2v/2][2.12, 2.51]1.
(8) LI3LI.

(9) L1312,

(10) 13L2].

(11) 13L3.

Type 2. The set{tx : 0 <t < 1,x € Py}. In this case the density is increased
by intersecting the set with a ball of radius 1.18 centered at the origin. The resulting
intersection has density/1.18° < 8o, as required.

Type 3. Theseftx : 0 <t <1, x € P3}. The bounding circular arc d? has distance

V2 from the origin. The set has the same density as a right circular cone, with base a
disk of radiusv/2 — h2 and heighth. This cone has volume (2 — h?)h/3. The solid

angle at the apex of the cone is@ — cosd), where co® = h/+/2. This gives a density

of v/2/(h? + h+/2). This function is maximized over the interval [IL18] ath = 1. The
density is then at most2 v/2 < 8ot
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Type 4. A Rogers simpleXR, = R(a, b, +/2), where 1< a < 1.18 andj < b? < 2.

By Lemma 1.8.6(2), the density of this simplex is at most that of the Rogers simplex
R, = R(1, 2//3/3, v/2). This simplex has the densify of a regular octahedron. (In
fact, the regular octahedron may be partitioned into simplices congruddt and its
mirror.) We see that the original simpl& has density,c; exactly when, in the notation
of Lemma 1.8.6(2)/s1| = |s,|, for all A1, 1,2, andA3 as above. This implies that= 1
andb = 2./3/3. This completes the proof of Theorem 4.1. O

Proposition 4.6. A cluster other than a quasi-regular tetrahedron attains a scor@ of
ptif and only if itis made up of simplices congruent @2, 2, 2, 2, 2./2), and possibly
some additional simplices of zero volume

Proof. Types 2 and 3 always give strictly negative scores for regions of positive volume.
According to Calculation 4.5, aregion of the first type with positive volume gives a strictly
negative score unless it is congruen8@, 2, 2, 2, 2, 2v/2).

Consider a region of the fourth type with scorgp® We must havea = 1 and
b = 24/3/3. The circumradius of the facdg and F, of Diagram 4.3 is then 23/3.
This forces the faceB; andF; to be equilateral triangles of edge length 2. Thecanc
Diagram 4.3 must reduce to a point. The edgeande, in Diagram 4.3—if they have
positive length—must then meet at a point at distavi@drom the origin. This pointis a
vertex of a Voronoi cell and the circumcenter of a Delaunay simBléf circumradius
V2). The only simplex with two equilateral faces of side 2 and8d= /2 is the
wedge of an octahedrd®= S(2, 2, 2, 2, 2, 2/2). This is a small simplex.

The other possibility is that both the arcand an edge (sag) degenerate to length
0. In this case, Lemma 4.4 shows that the restricted cell belongs to a small Delaunay
simplex or a quasi-regular tetrahedron. These cases have already been treated]

Appendix

We give a direct argument that(S) < 0 pt, when the lengths of a small simpléx
are within 0.001 of§ = S(2v/2,2, 2,2, 2, 2). SetS = S(y1, Y2, Y, Ya, Vs, Ye). Write
y1 = 2v/2— f,andy; = 2+ f; fori > 1, where O< f; < 0.001. Se; = y? =8—¢,
andx; = yi2 =4+ ¢,fori > 1. Then 0< g < 0.006. Recall from Section 1.8.4 that

a(ys, Yo, -+ Yo) = Y1YoYa+ 31 (Yo + Y3 — YD+ 3V (Vi + Y5 — Y8 + 3 ya (V2 + Y2 — Y3).
Set

a0 = a(yr, Y2, V3, Ya, V5, ¥6), @00 = a(2v/2,2,2,2,2,2) = 16+ 12V/2,
ar =alys, Ys Yo, Ya, Y2, ¥3), o= a(2v2,2,2,2,2,2) = 16+ 12V2,
az = a(Ya Y2, ¥6, Y1, Y5, ¥3)s ap=a(2,2 2 2/2,2,2) =16,
az = a(ys, ¥s, ¥3. Y1, ¥2, ¥6), ago =a(2,2,2,2/2,2,2) = 16.

Section 1.8.4 and the bounds dngive a; > a, wherea, = a; = 3227 anda, =
a; =153.
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Let A be the function of Section 1.8.1, and s&p = A(8,4,4, 4,4, 4). Sett =
VAKX, ..., Xg)/2, andty = /Ag/2. A simple calculus exercise shows that

A(X1, ..., %) = A(8,4,4,%4,4,4) = 128— 8¢j.

This givest > 5.628. Leth; = 2/(3(1 + tZ/a%)), so thathy = by = (3+ 2+/2)/9 and
by = by = 16/27. Setcy = —8oct/6 + Y o by /aio ~ —0.00679271. Then

A—A —2€2
(&= Ao)C _ =26 _ g3 < 0.0002f,.

=t =) = Tt —

We are ready to estimai&(S). An argument parallel to that of Lemma 1.9.1(1) gives

3 bi (2o — & 3 bi (o — & )?
NS =TS+ —toeo+ty 2B —8) 3 B@e=8F
i=0 i

ao ~  aha

The two sums on the right-hand side are polynomial$; iwith no constant terms. To

give an upper bound on these polynomials, write them as a sum of monomials, and
discard the negative monomials of order greater than 2. The positive monomials of order
greater than 2 are dominated by

fhfd. . % < (0.00)%F+61(f) 4 fo4 .. 4 fg).

This approximation shows that the first sum in (1) is at me6t005f; — 0.04f, —
0.03(f,+ f3+ f5+ fg) and the second sumin (1) is at moQ@O54 f; + fo+- - -+ fg).
The result easily follows.

This argument is easily adapted to a neighborhoo8,cf (2v/2, 2, 2, 2v/2, 2, 2).
In this case, foi = 1,...,4, we haveao = 16+ 82, b = 2,8~ = 27,4 = 0,
Co ~ —0.0225, and > 0. A similar arguments leads to the conclusion tha$) <
I'(S) = 0pt, if Sis a small simplex such th&# S, and the lengths of the edges®f
are within 0.01 of those d§;.
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