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Abstract. An earlier paper describes a program to prove the Kepler conjecture on sphere
packings. This paper carries out the second step of that program. A sphere packing leads to
a decomposition ofR3 into polyhedra. The polyhedra are divided into two classes. The first
class of polyhedra, called quasi-regular tetrahedra, have density at most that of a regular
tetrahedron. The polyhedra in the remaining class have density at most that of a regular
octahedron (about 0.7209).

1. Introduction

This paper is a continuation of the first part of this series [4]. The terminology and
notation of this paper are consistent with this earlier paper, and we refer to results from
that paper by prefixing the relevant section numbers with “I.”

We review some definitions from [4]. Begin with a packing of nonoverlapping spheres
of radius 1 in Euclidean three-space. Thedensityof a packing is defined in [2]. It is defined
as a limit of the ratio of the volume of the unit balls in a large region of space to the volume
of the large region. The density of the packing may be improved by adding spheres until
there is no further room to do so. The resulting packing is said to besaturated.

Every saturated packing gives rise to a decomposition of space into simplices called
theDelaunay decomposition[8]. The vertices of each Delaunay simplex are centers of
spheres of the packing. By the definition of the decomposition, none of the centers of the
spheres of the packing lie in the interior of the circumscribing sphere of any Delaunay
simplex. We refer to the centers of the packing asvertices. Vertices that come within
2.51 of each other are calledclose neighbors.

The Delaunay decomposition is dual to the well-known Voronoi decomposition. If the
vertices of the Delaunay simplices are in nondegenerate position, two vertices are joined
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by an edge exactly when the two corresponding Voronoi cells share a face, three vertices
form a face exactly when the three Voronoi cells share an edge, and four vertices form a
simplex exactly when the four corresponding Voronoi cells share a vertex. In other words,
two vertices are joined by an edge if they lie on a sphere that does not contain any other of
the vertices, and so forth (again assuming the vertices to be in nondegenerate position).

We say that the convex hull of four vertices is aquasi-regular tetrahedron(or simply
a tetrahedron) if all four vertices are close neighbors of one another. If the largest
circumradius of the faces of a Delaunay simplex is at most

√
2, we say that the simplex

is small. Suppose that we have a configuration of six vertices in bijection with the
vertices of an octahedron with the property that two vertices are close neighbors if and
only if the corresponding vertices of the octahedron are adjacent. Suppose further that
there is a unique diagonal of length at most 2

√
2. In this case we call the convex hull

of the six vertices aquasi-regular octahedron(or simply anoctahedron). A Delaunay
star is defined as the collection of all quasi-regular tetrahedra, octahedra, and Delaunay
simplices that share a common vertexv.

We assume that every simplexS in this paper comes with a fixed order on its edges,
1, . . . ,6. The order on the edges is to be arranged so that the first, second, and third edges
meet at a vertex. We may also assume that the edges numberedi andi + 3 are opposite
edges fori = 1, 2, 3. We defineS(y1, . . . , y6) to be the (ordered) simplex whosei th
edge has lengthyi . If S is a Delaunay simplex in a fixed Delaunay star, then it has a
distinguished vertex, the vertex common to all simplices in the star. In this situation, we
assume that the edges are numbered so that the first, second, and third edges meet at the
distinguished vertex.

A function, known as thecompression0(S), is define on the space of all Delaunay
simplices. Setδoct = (−3π + 12 arccos(1/

√
3))/
√

8≈ 0.720903. LetSbe a Delaunay
simplex. LetB be the union of four unit balls placed at each of the vertices ofS. Define
the compression as

0(S) = −δoct vol(S)+ vol(S∩ B).

We extend the definition of compression to Delaunay starsD∗ by setting0(D∗) =∑
0(S), with the sum running over all the Delaunay simplices in the star. We define

a point (abbreviatedpt) to be0(S(2, 2, 2, 2, 2, 2)) ≈ 0.0553736. The compression is
often expressed as a multiple ofpt.

There are several other functions of a Delaunay simplex that will be used. Thedihedral
angledih(S) is defined to be the dihedral angle of the simplexSalong the first edge (with
respect to the fixed order on the edges ofS). Thesolid angle(measured in steradians)
at the vertex joining the first, second, and third edges is denoted sol(S). Let rad(S) be
the circumradius of the simplexS. More generally, let rad(F) denote the circumradius
of the face of a simplex. Letη(a, b, c) denote the circumradius of a triangle with edges
a, b, c. Explicit formulas for all these functions appear in Section I.8.

Fix a Delaunay starD∗ about a vertexv0, which we take to be the origin, and we
consider the unit sphere atv0. Let v1 andv2 be vertices ofD∗ such thatv0, v1, andv2

are all close neighbors of one another. We take the radial projectionspi of vi to the
unit sphere with center at the origin and connect the pointsp1 andp2 by a geodesic arc
on the sphere. We mark all such arcs on the unit sphere. The closures of the connected
components of the complement of these arcs are regions on the unit sphere, called the
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standard regions. We may remove the arcs that do not bound one of the regions. The
resulting system of edges and regions will be referred to as thestandard decomposition
of the unit sphere.

Let C be the cone with vertexv0 over one of the standard regions. The collection
of the Delaunay simplices, quasi-regular tetrahedra, and quasi-regular octahedra ofD∗

in C (together with the distinguished vertexv0) will be called astandard cluster. Each
Delaunay simplex inD∗ belongs to a unique standard cluster.

A real number, called thescore, will be attached to each cluster. Each star receives a
score by summing the scores for the clusters in the star.

The steps of the Kepler conjecture, as outlined in Part I, are:

1. A proof that even if all standard regions are triangular, the total score is less than
8 pt.

2. A proof that the standard clusters with more than three sides score at most 0pt.
3. A proof that if all of the standard regions are triangles of quadrilaterals, then the

total score is less than 8pt (excluding the case of pentagonal prisms).
4. A proof that if some standard region has more than four sides, then the star scores

less than 8pt.
5. A proof that pentagonal prisms score less than 8pt.

The proof of the first step is complete. The other steps are briefly discussed in
Part I. This paper establishes Step 2. Partial results have been obtained for Step 3 [5].
C. A. Rogers has shown that the density of a regular tetrahedron is a bound on the density
of packings inR3 [8]. The main result of this paper may be interpreted as saying that
the density(δoct ≈ 0.7209) of a regular octahedron is a bound on the density of the
complement inR3 of the quasi-regular tetrahedra in the packing.

The score of a Delaunay star is obtained by mixing Delaunay stars with the dual
Voronoi cells. Delaunay starsD∗ and the associated function0 behave much better than
estimates of density by Voronoi cells, provided each Delaunay simplex in the Delaunay
star has a small circumradius. Unfortunately,0(S) gives an increasingly poor bound
on the density as the circumradius of the Delaunay simplexS increases. When the
circumradius ofS is greater than about 1.8, it becomes extremely difficult to prove
anything about sphere packings with the function0(S). The score is introduced to
regularize the irregular behavior of0(S).

Voronoi cells also present enormous difficulties. The dodecahedron shows that a
single Voronoi cell cannot lead to a bound on the density of packings better than about
0.75. This led L. Fejes T´oth to propose an approach to the Kepler conjecture in which
two layers of Voronoi cells are considered: one central Voronoi cell and a number of
surrounding ones. Wu-Yi Hsiang has made some progress in this direction, but there
remain many technical difficulties [3], [7].

The method of scoring in this paper seeks to combine the best aspects of both ap-
proaches. When the circumradius of a simplex is small, we proceed as in Part I. However,
when the circumradius of a simplex is large, we switch to Voronoi cells. Remarkably,
these two approaches may be coherently combined to give a meaningful score to De-
launay stars and, by extension, a bound on the density of a packing. The calculations of
this paper suggest that this hybrid approach to packings retains the best features of both
methods with no (foreseeable) negative consequences.
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2. Some Polyhedra

Sometimes the tip of a Voronoi cell protrudes beyond the face of a corresponding De-
launay simplex (see Diagram 2.1(a)). This section describes a construction that amounts
to slicing off the protruding tip of a Voronoi cell and reapportioning it among the neigh-
boring cells (see Diagram 2.1(b)).

Diagram 2.1. (a) Voronoi cells and (b) reapportioned.

Let D∗ be a Delaunay star with centerv0 = 0. Let V be the Voronoi cell around
v0, obtained by duality fromD∗. As a matter of convenience, we may assume that each
point in R3 belongs to a unique Voronoi cell by making an arbitrary choice for each
point on the boundary of a cell. IfR is a standard cluster (possibly a single quasi-regular
tetrahedron) inD∗, let C(R) denote its cone overv0:

C(R) = {t x : t ≥ 0, x ∈ R}.
In general,V ∩ C(R) depends on more vertices than just those in the clusterR. It

is convenient to consider the slightly larger polyhedronV0
R defined by just the vertices

of D∗ that are inR. That is, letV0
R be the intersection ofC(R) with the half-spaces

{x : x · vi ≤ vi · vi /2, ∀i 6= 0}, where{vi }i are the vertices (other thanv0) of the
simplices and quasi-regular solids in the clusterR. The faces ofV0

R at v0 are contained
in the triangular faces bounding the standard region ofR. The other faces ofV0

R are
contained in planes through the faces of the Voronoi cellV . We refer to these as Voronoi
faces. If R is not a quasi-regular tetrahedron, setVR = V0

R. If R is a quasi-regular
tetrahedron, we take the slightly smaller polyhedronVR obtained by intersectingV0

R
with the half-space (containingv0) bounded by the hyperplane through the face ofR
opposite the originv0. (This may cut a tip from the Voronoi cell.) By construction,VR

depends only on the simplices inR. The polyhedronVR is based at the center of some
Delaunay star, giving it a distinguished vertexv. We writeVR = VR(v) when we wish
to make this dependence explicit.

By construction,V0
R ⊃ V ∩C(R). It is often true thatVR = V ∩C(R). Let us study

the conditions under which this can fail. We say that a vertexw clipsa standard clusterR
(based atv1) if w 6= v1 and some point ofV0

R(v1) belongs to the Voronoi cell atw. Part I
makes a thorough investigation of the geometry when a vertexw clips a quasi-regular
tetrahedron. (The vertexwmust belong to a second quasi-regular tetrahedron that shares
a face withS. The shared face must have circumradius greater than

√
2, and so forth.)
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Lemma 2.2. Let R, based at a vertexv0, be a standard cluster other than a quasi-
regular tetrahedron. Suppose it is clipped by a vertexw. Then there is a face(v0, v1, v2)

of R such that(w, v0, v1, v2) is a quasi-regular tetrahedron. Furthermore, (v0, v1, v2)

is the unique face of the quasi-regular tetrahedron of circumradius at least
√

2.

Proof. Consider a pointp in VR\V . Then there exists a vertexw 6∈ C(R) of D∗ such
that p · w > w · w/2. The line segment fromp tow intersects the coneC(F) of some
triangular faceF that bounds the standard region ofR and hasv0 as a vertex. Letv1

andv2 be the other vertices ofF . By the construction of the faces bounding a standard
region, the edges ofF have lengths between 2 and 2.51.

Consider the regionX containingp and bounded by the planesH1 = span(v1, w),
H2 = span(v2, w), H3 = span(v1, v2), H4 = {x : x · v1 = v1 · v1/2}, andH5 = {x :
x · v2 = v2 · v2/2}. The planesH4 and H5 contain the faces of the Voronoi cell atv0

defined by the verticesv1 andv2. The planeH3 contains the faceF . The planesH1

andH2 bound the region containing points, such asp, that can be connected tow by a
segment that passes throughC(F).

Let P = {x : x ·w > w ·w/2}. The choice ofw implies thatX ∩ P is nonempty. We
leave it as an exercise to check thatX ∩ P is bounded. If the intersection of a bounded
polyhedron with a half-space is nonempty, then some vertex of the polyhedron lies in
the half-space. So some vertex ofX lies in P.

We claim that the vertex ofX lying in P cannot lie onH1. To see this, pick coordinates
(x1, x2) on the planeH1 with origin v0 = 0 so thatv1 = (0, z) (with z > 0) and
X ∩ H1 ⊂ X′ := {(x1, x2) : x1 ≥ 0, x2 ≤ z/2}. See Diagram 2.3. IfX′ meetsP,
then the pointv1/2 lies in P. This is impossible, because every point betweenv0 and
v1 lies in the Voronoi cell atv0 or v1, and not in the Voronoi cell ofw. (Recall that
|v1− v0| < 2.51< 2

√
2.)

Diagram 2.3

Similarly, the vertex ofX in P cannot lie onH2. Thus, the vertex must be the unique
vertex of X that is not onH1 or H2, namely, the point of intersection ofH3, H4, and
H5. This point is the circumcenterc of the faceF . We conclude that the polyhedron
X0 := X ∩ P containsc. Sincec ∈ X0, the hypotheses of Lemma I.3.4 are met for
T = F , and the verticesv0, v1, v2, andw are the vertices of a quasi-regular tetrahedron
S. By Lemma I.3.4,|w′ − vi | < 2.3, for i = 0, 1, 2. The circumradius of the faceF is
between

√
2 and 2.51/

√
3≈ 1.449.
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In the same context, ifw andw′ both clipR, then the regions they cut fromVR(v0) are
disjoint. For otherwise, a common point would belong to bothV0

S(w) andV0
S(w

′), where
SandS′ are the two quasi-regular tetrahedra constructed by the lemma. Section I.3 shows
thatSandS′ share their unique face of circumradius greater than

√
2. This is impossible,

because the lemma states that this face is shared withR.
Although the polyhedronX0 belongs to the Voronoi cell atw, it is included in the

polyhedronVR. Similarly, by repeating the construction atv1 andv2, we find that there are
small regionsX1, X2 (with vertexc) in polyhedraVR1 andVR2 atv1 andv2, respectively,
that belong to the Voronoi cell atw.

Call the unionX0 ∪ X1 ∪ X2 the tip protruding form the quasi-regular tetrahedron
S. Associated with a quasi-regular tetrahedron is at most one such tip. (The tip must
protrude from the face ofSwith circumradius greater than

√
2.) By construction, the tip

is the set of points

{x : |x − w| ≤ |x − vi |, for i = 0, 1, 2; det(x, v1, v2) det(w, v1, v2) ≤ 0}.

This isV0
S(w)\VS(w).

The tip is a subset of the Voronoi cell atw. Section I.3 explains the conditions under
which this can fail to hold. There must be another vertexu 6= w with the property that
|u − vi | < 2.3, for i = 0, 1, 2. Thenu, v0, v1, andv2 are the vertices of a second
quasi-regular tetrahedronS′ with faceF , and this contrary to our assumption thatR is
not a quasi-regular tetrahedron.

Corollary 2.4. The polyhedra VR coverR3 evenly as we range over all the standard
clusters of all the Delaunay stars of the packing.

Proof. The preceding analysis shows that the polyhedraVR are obtained from the
Voronoi cells by taking each protruding tip, breaking it into three piecesX0, X1, X2, and
attaching the pieceXi to the Voronoi cell atvi . The Voronoi cells coverR3 evenly. As a
result of this analysis, we see that the polyhedraVR coverR3 evenly.

To give one example of the size of the tip, we consider the extreme case of the tetra-
hedronS= S(2, 2, 2, 2.51, 2.51, 2.51). Diagram 2.5 shows a correctly scaled drawing
of a tip protruding from the largest face ofS.

Diagram 2.5
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3. The Score Attached to a Delaunay Star

This section gives some rules for computing the score. They were developed as a result
of computer experimentation suggesting when it is advantageous to use Voronoi cells
over Delaunay simplices. This section actually gives an entire family of scoring systems.
This extra bit of flexibility will be useful as we encounter new examples in the remaining
steps of the program. We expect the score to satisfy Conjecture I.2.2, which asserts
that the score of a Delaunay star is at most 8pt, for all the scoring systems satisfying
Properties 1–4 below. The Kepler conjecture is true if Conjecture I.2.2 holds for any one
such scoring system. We have found through experimentation that small or seemingly
innocent changes in the score can lead to enormous changes in the complexity of the
optimization problem.

3.1. This paper proves the second step of the program for all of the scoring systems
presented below. Writeσ(S) for the score ofS.

1. Suppose that the standard clusterR is a single quasi-regular tetrahedron:R = S.
When the circumcenter ofS is contained inS,

−4δoct vol(VR ∩ C(S))+ 4 sol(S)

3

is an analytic function of the lengths of the edges. This expression has an analytic
continuation, denoted vor(S,VR), to simplicesS that do not necessarily contain their
circumcenter.

If rad(S) > 1.41, then define the score to be vor(S,VR). If rad(S) ≤ 1.41, then define
the score to be the compression0(S). (This rule agrees with the definition of vor(S)
given in Section I.2.)

2. Let S be a small simplex that is not a quasi-regular tetrahedron. The score ofS
will be either vor(S) or0(S) depending on criteria to be determined by future research.1

These criteria may depend on whetherSbelongs to a quasi-regular octahedron, but not
on the position of any vertices of the packing outsideS. It is essential for the scoring
at all four vertices to have the same type (Voronoi or compression). The only constraint
imposed by the second step of the Kepler conjecture will beσ(S) ≤ 0, if S is small. This
leads to the following mild restrictions on the use of Voronoi scoring.

If one of the first three edges is the long edges (say the first), compression scoring is
to be used if the second, third, and fourth edges have length at most 2.06, and the fifth
and sixth edges have length at most 2.08.

If one of the last three edges (say the fourth) is the long edge, compression scoring is
to be used if (a), (b), (c), and (d) hold.

(a) The first edge has length at most 2.06.

1 More generally, we might add a small constant c to the score ofS at one of its vertices and subtract the
same constant from another vertex.
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(b) The second and third edges have length at most 2.08.
(c) The fifth and sixth edges have length at most 2.2.
(d) The fourth edge has length at most 2.58, or the fifth and sixth edges have lengths

at most 2.12.

3. Suppose thatR is any standard cluster other than a quasi-regular tetrahedron.
The cluster is a union of Delaunay simplicesS1, . . . , Sr . Index the simplices so that
S1, . . . , Sp, for somep ≤ r are the small simplices in the cluster. We define the score of
the clusterR to be ∑

1≤i≤p

σ(Si )+
∑

p<i≤r

vor(Si ,VR),

where vor(S,VR) = 4(−δoct vol(VR ∩ C(S))+ sol(S)/3).
4. If D∗ is a Delaunay star, then its total scoreσ(D∗) is a sum of the scores of the

standard clusters ofD∗.
Consider the quasi-regular tetrahedronS of Section 2 with verticesv0, v1, v2,

andw that has a protruding tipX0 ∪ X1 ∪ X2. Let solv(S) denote the solid angle ofS
at the vertexv. The analytic continuation vor(S,VR) has the following geometric
interpretation.

vor(S,VR(v)) = −4δoct(vol(S,VR(v))+ A(v))+ 4 solv(S)

3
,

with the correction termA(vi ) = − vol(Xi ), for i = 0, 1, 2, and

A(w) =
3∑

i=1

vol(Xi ).

The only pieces that are compression scored are small simplices, everything else is
Voronoi scored. The small simplices that are compression scored will be called simplices
of compression type. The Voronoi-scored small simplices will be called simplices of
Voronoi type. We define therestricted cellof a clusterR to be the complement inVR of
the small simplices in the packing.

Lemma 3.2.

(1) The score of a cluster depends only on the cluster, and not on the way it sits in a
Delaunay star or in the Delaunay decomposition of space.

(2) Let 3 denote the vertices of a saturated packing. Let 3N denote the vertices
inside the ball of radius N. (Fix any center for the ball.) Let D∗(v) denote the
Delaunay star atv ∈ 3. Then the score satisfies(in Landau’s notation)∑

3N

σ(D∗(v)) =
∑
3N

0(D∗(v))+ O(N2).

Proof. Statement (1) holds by construction.
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(2) The score reapportions the compression of a given star among surrounding stars.
The second part of the lemma follows from the claim that everything is accounted for,
if we ignore the boundary effects caused by the truncationN. Space is partitioned into
regions each counted−4δoct times by the compression of some star. Each point in a
sphere of the packing is counted four times by the compression of some star. To verify
Lemma 3.2(2), we must check that the same holds of the score.

We switch from Voronoi to compression scoring on certain small simplices. The
facesF of a small simplexS satisfy rad(F) ≤ √2, so no point on a faceF of S can
be closer to another vertex in the packing than it is to the closest vertex ofF . This has
two implications. First, the only polyhedraVR meeting a small simplexS are the four
based at the vertices ofS. Second, letR be a standard cluster. LetSbe a small simplex
in R. ThenVR ∩ C(S) = VR ∩ S. (In other words, tips cannot protrude from a small
simplex.) This means that the restricted cells and small simplices cover space evenly.
This decomposition is compatible with the standard decomposition of a Delaunay star.

Consider the rules defining the score. In counting the part of the volume of a sphere
contained in a simplexS, we see that it appears four times with weight 1 for a total
weight of 4, whenS is a small simplex of compression type. It appears once with weight
4 for a total weight of 4, whenS is of Voronoi type.

The result is now clear.

Remark 3.3. It is useful to summarize the proof from a slightly different point of view.
If S is a quasi-regular tetrahedron or a small Delaunay simplex, then the sum of its four
scores, for each of its four vertices, is 40(S). This follows directly from the definitions
(and the proof of Lemma 3.2) if the circumcenter ofS is contained inS(which is always
the case for small simplices), and it follows by analytic continuation in general. Any
other point in space belongs to a unique Voronoi cell centered at some vertexv. If the
point is not in a tip protruding from a quasi-regular tetrahedron, it is counted in the score
atv. If, however, the point belongs to a protruding tip, it is counted in the score at exactly
one of the three vertices, other thanv, of the quasi-regular tetrahedron. In this way, every
point inR3 is accounted for.

Remark 3.4. The choice of the parameterµ = 1.41 in Section 3.1(1) is somewhat
arbitrary. The choice is based on the comparison of the functions

f1(x) = vor(S(2, 2, 2, 2.51, 2.51, x),VS) and f2(x) = 0(S(2, 2, 2, 2.51, 2.51, x)).

The differencef1(x) − f2(x) has a zero for somex ∈ [2.2603, 2.2604]. This gives
a crude estimate of when it is advantageous to switch from0(S) to vor(S,VS). The
constant 1.41 is a little more than rad(S(2, 2, 2, 2.51, 2.51, 2.604)) ≈ 1.405656.

Proposition 3.5. The Delaunay stars in the face-centered cubic and hexagonal-close
packings score8 pt.

Proof. The eight regular tetrahedra each score 1pt, and each regular octahedron scores
0 pt, because it has densityδoct, for a total of 8pt.



144 T. C. Hales

We will see in Proposition 4.6 that the regular octahedron can be broken into smaller
pieces that score 0pt.

4. The Main Theorem

Theorem 4.1.

(a) The score of any small quasi-regular tetrahedron is at most1 pt.
(b) The score of any other standard cluster is at most0 pt.

Proof. Statement (a) is a special case of Calculation I.9.1. A quasi-regular tetrahedron
of Voronoi type scores less than 0pt by Lemma I.9.17. In the remainder of the proof, we
actually prove a much stronger statement. We explicitly decompose each cluster (other
than a quasi-regular tetrahedron) into a number of pieces and show that the density
of each piece is at mostδoct. Since vor(S,VR) and0(S) are zero precisely when the
corresponding densities areδoct (or when the volumes are zero), the theorem will follow.
The relevant pieces will be congruent to one of the followingtypes:

1. A small simplex that is not a quasi-regular tetrahedron.
2. A set{t x : 0 ≤ t ≤ 1, x ∈ P2} ⊂ R3, whereP2 is a measurable set and every

point of P2 has distance at least 1.18 from the origin (Diagram 4.2(a)).
3. A set{t x : 0≤ t ≤ 1, x ∈ P3} ⊂ R3, whereP3 is a wedge of a disk of the form

P3 = {(x1, x2, x3) : x3 = z0, x2
1 + x2

2 ≤ 2, 0≤ x2 ≤ αx1},
for someα > 0 and some 1≤ z0 ≤ 1.18 (Diagram 4.2(b)).

4. A Rogers simplexR(a, b,
√

2) where 1≤ a ≤ 1.18 and 4
3 ≤ b2 ≤ 2 (see

Section I.8.6 and Diagram 4.2(c)).

Diagram 4.2

In the first type, a unit ball is placed at each vertex of the simplexS, and the density
is the ratio of the volume of the part of the balls inS to the volume ofS. In the second,
third, and fourth types, a unit ball is placed at the origin, and the density is the ratio of
the volume of the part of the ball in the region to the volume of the region.

We decompose all ofR3 into these four types and quasi-regular tetrahedra. Set all the
quasi-regular tetrahedra aside. Classify all the small simplices, including those contained
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in a quasi-regular octahedron, as regions of the first type. There remain the restricted
cells. Now fix a Delaunay starD∗, with center at the origin, and consider the restricted
cell of one of the clusters in the star. We may assume that the restricted cell does not lie in
a quasi-regular tetrahedron. Break the restricted cell up further by taking its intersection
with the cones over each of its Voronoi facesF . Let X be one such intersection. If the face
F has distance more than 1.18 from the origin, classifyX as a region of the second type.
Now assume the faceF has distanceh at most 1.18 from the center. Becauseh <

√
2,

the point in the plane ofF closest to the origin lies on the faceF . The set of pointsP2

on the faceF at distance greater than
√

2 from the origin gives rise to a region of the
second type. To study what remains, we may truncateF by intersecting it with a ball of
radius

√
2. Let F ′ ⊂ F be the truncated face.

By Voronoi–Delaunay duality, the faceF ′ lies in the bisecting plane between 0 and
some vertexv of the Delaunay star. Consider the collection of triangles formed by 0,
v, and another vertex of the Delaunay starD∗, with the property that either the triangle
has circumradius at most

√
2 or all three edges of the triangle have lengths between 2

and 2.51. Consider the half-planes (bounded by the line through 0 andv) containing the
various triangles in this collection. This fan of half-planes partitions the faceF ′ into a
collection of wedge-shaped pieces. Consider one of themF ′′. We claim that is has the
form of Diagram 4.3.

Diagram 4.3

More precisely,F ′′ is bounded by two triangular facesF1 andF2 (in this collection
of triangles), two edgese1 ande2 of the Voronoi cell dual to the triangles, and an arcα
obtained from the truncation. The two edgese1 ande2 are perpendicular to the facesF1

andF2, respectively, by the definition of Voronoi–Delaunay duality. The edgese1 ande2

meet the facesF1 andF2, respectively, by the construction of restricted cells. The edges
e1 ande2 cannot intersect at any point less than

√
2 from the origin, because the point of

intersection would be a point equidistant from the four vertices of a simplex formed by
the vertices ofF1 andF2. The simplex would have circumradius less than

√
2. Its faces

would then also have circumradius less than
√

2, so that the Delaunay simplex is small.
This is impossible, since all small simplices have already been classified as regions of
the first type.
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Lemma 4.4. In this context, assume that the faces F1 and F2 form an acute angle, and
let p be the point at which the line through e1 meets the plane through F2. Letw1 and
w2 be the third vertices of the faces F1 and F2, respectively(that is, those other than0
andv). If the distance from0 to p is at most

√
2, then the simplex(0, v, w1, w2) is small

or a quasi-regular tetrahedron.

Proof. Suppose that the distance fromp to 0 is at most
√

2. Letc1 be the circumcenter
of F1. Let Sbe the simplex(0, v, w1, w2).

We claim thatp lies in the interior of the triangleF2. The bisecting linè between 0
andv in the plane ofF2 containsp. The line` intersects two edges ofF2, once atv/2
and once at some other pointp′. If p is (strictly) outsideF2, then|p| > |p′|. This leads
to a contradiction, once we show|p′| ≥ √2. If p′ lies on the edge betweenv andw2,
this is clear, because an elementary exercise shows that every point on the line passing
throughw2 andv has distance at least

√
2 from the origin. Assumep′ lies between 0

andw2, and considerp′ as a function ofw2 andv. Its length|p′| attains its minimum
whenF2 is the right triangle|v| = 2, |v − w2| = 2, |w2| = 2

√
2. Thus,|p′| ≥ √2.

So p lies in the interior ofF2. The vertexw1 has distance at most
√

2 from p. No
vertexw1 can come within

√
2 of an interior point ofF2 unless the circumradius ofF2 is

at least
√

2. If the circumradius ofF2 is
√

2, thenp is the circumcenter ofS, so that the
circumradius ofS is

√
2, makingS a small simplex. If the circumradius is greater than√

2, then since|p−w1| ≤
√

2, p lies in the Voronoi cell atw1. Thus,w1 clips (possibly
degenerately) a standard region across the facesF2 from w1, based at 0,v, or w2. By
Lemma 2.2(w1, 0, v, w2) is a quasi-regular tetrahedron.

We continue with our description of the figure in Diagram 4.3. The arcα cannot be
interrupted by a further (Voronoi) edge ofF ′. Such an edge would be dual to a (Delaunay)
face with vertices 0,v, and somev′. The circumradius of the triangle with these three
vertices would be less than

√
2 (because every edge inF ′ comes within distance

√
2 of

the origin). This contradicts the construction ofF ′′ with half-planes given above. This
completes our discussion of the figure in Diagram 4.3. We emphasize, however, that the
edgese1 or e2 may degenerate to length 0, and the circular arcα may degenerate to a
point.

This Voronoi face-wedge can be broken into three convex pieces: the convex hull of
0, v/2, and the circular arc, and the convex hulls of 0,v/2, and the edgeei , for i = 1, 2.
The first piece has the third type, the others have the fourth type. The boundary condition
4
3 ≤ b2 expresses the fact that the circumradius of a triangle with sides of length at least
2 cannot be less than 2

√
2/3. This completes the reduction to the four given types.

Now we must show that each of the given types has density at mostδoct.

Type 1. A small simplex that is not a quasi-regular tetrahedron. LetS be a small
simplex of Voronoi type with at least one edge longer than 2.51. By the monotonic-
ity properties of the circumradius, we know that the circumradius ofS is at least
rad(S(2, 2, 2, 2.51, 2, 2)) > 1.3045. Letδ(a, b, c) denote the density of the Rogers
simplex (R(a, b, c) (see Lemma I.8.6). By Roger’s lemma (I.8.6(2)), the six Rogers
simplicesVS have density less thanδoct and vor(S,VS) < 0 if the circumradius of the
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three faces is at least 1.207(δ(1, 1.207, 1.3045) < δoct). This condition on the circum-
radius of the faces holds whenever there are two edges longer than 2.51 at the origin
(η(2.51, 2, 2) > 1.207) or whenever there are two oppositely arranged edges longer
than 2.51.

Thus, to show that vor(S) < 0 for small simplices of Voronoi type, we must consider
the following cases: (1) one edge longer than 2.51, (2) two adjacent edges longer than
2.51, and (3) three edges longer than 2.51 meeting at a vertex. These cases are covered
by Calculation 4.5.2. In (1), we may assume that at least one of the conditions for
compression scoring in Section 3.1 fails to hold. In Calculation 4.5.2(2), we may make
the stronger assumption rad(S) < 1.39 for otherwise, the Rogers simplices at the origin
have density at mostδ(1, η(2, 2, 2.06), 1.39) < δoct so that vor(S) < 0.

We rely on Calculation 4.5.1 for small simplices of compression type. The appendix
proves the result for simplices in an explicit neighborhood ofS(2

√
2, 2, 2, 2, 2, 2). These

calculations are established by methods of interval arithmetic described in Part I. Source
code appears in [6].

Calculation 4.5.1. If S is a small simplex that is not a quasi-regular tetrahedron, then
0(S) ≤ 0. If equality is attained, then the simplexS is congruent toS(2

√
2, 2, 2, 2, 2, 2)

or to the simplex of zero volume(S(2
√

2, 2, 2, 2
√

2, 2, 2).

Calculation 4.5.2. AssumeS is small. vor(S(y1, . . . , y6)) < 0 if y1, . . . , y6) belongs
to any of the cells (1)–(11). LetI denote the interval [2, 2.51] andL = [2.51, 2

√
2].

(1) L[2.06, 2.51]I 4.
(2) L I 2[2.06, 2.51]I 2.
(3) L I 3[2.08, 2.51]I .
(4) [2.06, 2.51]I 2L I 2.
(5) I [2.08, 2.51]I L I 2.
(6) I 3L[2.2, 2.51]I .
(7) I 3[2.58, 2

√
2][2.12, 2.51]I .

(8) L I 3L I .
(9) L I 3L2.

(10) I 3L2I .
(11) I 3L3.

Type 2. The set{t x : 0 ≤ t ≤ 1, x ∈ P2}. In this case the density is increased
by intersecting the set with a ball of radius 1.18 centered at the origin. The resulting
intersection has density 1/1.182 < δoct, as required.

Type 3. The set{t x : 0≤ t ≤ 1, x ∈ P3}. The bounding circular arc ofP3 has distance√
2 from the origin. The set has the same density as a right circular cone, with base a

disk of radius
√

2− h2 and heighth. This cone has volumeπ(2− h2)h/3. The solid
angle at the apex of the cone is 2π(1−cosθ), where cosθ = h/

√
2. This gives a density

of
√

2/(h2+h
√

2). This function is maximized over the interval [1, 1.18] ath = 1. The
density is then at most 2−√2< δoct.
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Type 4. A Rogers simplexR1 = R(a, b,
√

2), where 1≤ a ≤ 1.18 and4
3 ≤ b2 ≤ 2.

By Lemma I.8.6(2), the density of this simplex is at most that of the Rogers simplex
R2 = R(1, 2

√
3/3,
√

2). This simplex has the densityδoct of a regular octahedron. (In
fact, the regular octahedron may be partitioned into simplices congruent toR2 and its
mirror.) We see that the original simplexR1 has densityδoct exactly when, in the notation
of Lemma I.8.6(2),|s1| = |s2|, for all λ1, λ2, andλ3 as above. This implies thata = 1
andb = 2

√
3/3. This completes the proof of Theorem 4.1.

Proposition 4.6. A cluster other than a quasi-regular tetrahedron attains a score of0
pt if and only if it is made up of simplices congruent to S(2, 2, 2, 2, 2, 2

√
2), and possibly

some additional simplices of zero volume.

Proof. Types 2 and 3 always give strictly negative scores for regions of positive volume.
According to Calculation 4.5, a region of the first type with positive volume gives a strictly
negative score unless it is congruent toS(2, 2, 2, 2, 2, 2

√
2).

Consider a region of the fourth type with score 0pt. We must havea = 1 and
b = 2

√
3/3. The circumradius of the facesF1 and F2 of Diagram 4.3 is then 2

√
3/3.

This forces the facesF1 andF2 to be equilateral triangles of edge length 2. The arcα in
Diagram 4.3 must reduce to a point. The edgese1 ande2 in Diagram 4.3—if they have
positive length—must then meet at a point at distance

√
2 from the origin. This point is a

vertex of a Voronoi cell and the circumcenter of a Delaunay simplexS (of circumradius√
2). The only simplex with two equilateral faces of side 2 and rad(S) = √2 is the

wedge of an octahedronS= S(2, 2, 2, 2, 2, 2
√

2). This is a small simplex.
The other possibility is that both the arcα and an edge (saye2) degenerate to length

0. In this case, Lemma 4.4 shows that the restricted cell belongs to a small Delaunay
simplex or a quasi-regular tetrahedron. These cases have already been treated.

Appendix

We give a direct argument that0(S) ≤ 0 pt, when the lengths of a small simplexS
are within 0.001 ofS0 = S(2

√
2, 2, 2, 2, 2, 2). SetS= S(y1, y2, y3, y4, y5, y6). Write

y1 = 2
√

2− f1, andyi = 2+ fi for i > 1, where 0≤ fi ≤ 0.001. Setx1 = y2
1 = 8−e1

andxi = y2
i = 4+ ei , for i > 1. Then 0≤ ei ≤ 0.006. Recall from Section I.8.4 that

a(y1, y2, . . . , y6) = y1y2y3+ 1
2 y1(y

2
2+y2

3−y2
4)+ 1

2 y2(y
2
1+y2

3−y2
5)+ 1

2 y3(y
2
1+y2

2−y2
6).

Set

a0 = a(y1, y2, y3, y4, y5, y6), a00 = a(2
√

2, 2, 2, 2, 2, 2) = 16+ 12
√

2,
a1 = a(y1, y5, y6, y4, y2, y3), a10 = a(2

√
2, 2, 2, 2, 2, 2) = 16+ 12

√
2,

a2 = a(y4, y2, y6, y1, y5, y3), a20 = a(2, 2, 2, 2
√

2, 2, 2) = 16,
a3 = a(y4, y5, y3, y1, y2, y6), a30 = a(2, 2, 2, 2

√
2, 2, 2) = 16.

Section I.8.4 and the bounds onfi give ai ≥ a−i , wherea−0 = a−1 = 32.27 anda−2 =
a−3 = 15.3.
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Let 1 be the function of Section I.8.1, and set10 = 1(8, 4, 4, 4, 4, 4). Set t =√
1(x1, . . . , x6)/2, andt0 =

√
10/2. A simple calculus exercise shows that

1(x1, . . . , x6) ≥ 1(8, 4, 4, x4, 4, 4) = 128− 8e2
4.

This givest ≥ 5.628. Letbi = 2/(3(1+ t2
0/a

2
i 0)), so thatb0 = b1 = (3+ 2

√
2)/9 and

b2 = b3 = 16/27. Setc0 = −δoct/6+
∑3

0 bi /ai 0 ≈ −0.00679271. Then

(t − t0)c0 = (1−10)c0

4(t + t0)
≤ −2e2

4c0

(t + t0)
≤ 0.002e2

4 < 0.0002f4.

We are ready to estimate0(S). An argument parallel to that of Lemma I.9.1(1) gives

0(S) ≤ 0(S0)+ (t − t0)c0+ t
3∑

i=0

bi (ai 0− ai )

a2
i 0

+ t
3∑

i=0

bi (ai 0− ai )
2

a2
i 0a−i

. (1)

The two sums on the right-hand side are polynomials infi with no constant terms. To
give an upper bound on these polynomials, write them as a sum of monomials, and
discard the negative monomials of order greater than 2. The positive monomials of order
greater than 2 are dominated by

f d1
1 f d2

2 · · · f d6
6 ≤ (0.001)d1+···+d6−1( f1+ f2+ · · · + f6).

This approximation shows that the first sum in (1) is at most−0.005f1 − 0.04 f4 −
0.03( f2+ f3+ f5+ f6) and the second sum in (1) is at most 0.00056( f1+ f2+· · ·+ f6).
The result easily follows.

This argument is easily adapted to a neighborhood ofS1 = (2
√

2, 2, 2, 2
√

2, 2, 2).
In this case, fori = 1, . . . ,4, we haveai 0 = 16+ 8

√
2, bi = 2

3, a−i = 27, t0 = 0,
c0 ≈ −0.0225, andt ≥ 0. A similar arguments leads to the conclusion that0(S) <
0(S1) = 0 pt, if S is a small simplex such thatS 6= S1, and the lengths of the edges ofS
are within 0.01 of those ofS1.
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