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1. Introduction. Let (r, 9, z) be a fixed cylindrical coordinate system and let S

measure the arc length along a curve C defined by

c . r = R(S) ^ R(0) = R( 1) = 0 ^ 0 < S < 1, (1.1)

g = Z(S) Z{0) = 0

characterizing the meridian curve of a closed membrane of revolution at its undeformed

state. By a closed membrane we mean that the curve C, together with the axis of sym-

metry, r — 0, encloses a simply connected domain.

Suppose the membrane, composed of a Mooney material [2], is inflated by a properly

nondimensionalized pressure p. Isaacson [1] has shown that as p —> the shape of the

inflated membrane becomes spherical. We develop formal asymptotic series to represent

the inflated membrane and find the series are power series in the parameter p~2 and

that the lowest-order term verifies the formula in [1]. The inflated membrane approaches

a spherical surface of radius R„ asymptotically as p —> °°, with

fl./p = C1Rc/8C2 , (1.2)

where Cx and C2 are the two constants defining a Mooney material, Rc is the distance

between the centroid of G and the axis of symmetry and the pressure p in (1.2) is non-

dimensionalized by the constant Ci .

We shall say that a closed membrane of revolution defined by the meridian curve C

is tubelike if Rc « 1, otherwise spherelike. Our result shows that the inflated shape of

an initially spherelike or tubelike membrane of revolution tends to a spherical surface

asymptotically as p —» =°. On the other hand, since (1.2) is only the first term of an

asymptotic series of powers of p~2, in order for the assumed asymptotic expansion to be

valid the condition Rc » l/p2 must be satisfied. It follows that for an initially spherelike

membrane the asymptotic solution is valid for "moderately large" pressures, while for

an initially tubelike membrane the asymptotic solution is valid for "very large" pressures.

Thus, from a practical point of view, an initially tubelike membrane may have burst

long before the asymptotic solution begins to be valid. Only in this sense do we say that

the asymptotic solution presented here is not applicable to initially tubelike membranes

of revolution. It appears, however, that a different asymptotic expansion may be ob-

tained for an initially tubelike membrane. This result will be reported in a future paper.
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2. Basic equations and a spherical membrane as a lead. Let the meridian curve

of a membrane of revolution be defined by (1.1) where R and Z are continuous but may

have discontinuous derivatives. We further assume that

R(S) ^ 0, 0 < S < 1, (2.1)

and

R(S) = S + OOS3), s-»o,
(2.2)

R(S) = (1 - S) + 0(53), !s(l-S)-»fl.

Conditions (2.2) are needed to ensure the convergence of the solution near the poles.

These conditions exclude the possibility that C has infinite curvature* or a cusp at

S = 0 and 1.
Suppose the membrane is inflated by a dimensionless pressure p, nondimensionalized

by the constant Ci defining a Mooney material [2]. The deformed shape of the membrane

can be characterized by a meridian curve

cj = X(S)^ o < $ < 1.
2 = Y(S)

If we denote by A! and A2 the principal extension ratio in the meridional and azimuthal

directions, respectively, then

A, = dL/dS, (2.4)

A2 = X/R, (2.5)

where L = L(S) measures the arc length along the curve c. A Mooney material is charac-

terized by a strain energy function W defined by

T1F(Ai , A2) = ^A? + A2 + ^2^2^ + AlAl + ^2 + ^2^ (2.6)

where k = C2/C1 , the ratio of the two Mooney constants, and W is nondimensionalized

by the quantity CiH, H being the constant thickness of the undeformed membrane.

The fundamental equations can be derived from (2.6) by using the principle of

virtual work. We prefer to use the set of equations given in [3]. These are

Tx = (l/A2)JFAl , (2.7)

T2 = (1/AOJFa. , (2.8)

X{dT1/dS) = (T2 - Ti)(dX/dS), (2.9)

(Tt/AJW/dS) + {TJX) sin 4> = p, (2.10)

(1/AJidX/dS) = cos 4>, (2.11)

{1/A^dY/dS) = sin0, (2.12)

where the subscripts on W denote partial differentiation with respect to the indicated

argument, Tj and T2 are, respectively, meridional and azimuthal stress resultants, and

* The curvature is R"/{1 — R'2)112.
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<f> is the angle between the tangent to c and the r-axis. Eqs. (2.4)-(2.12), together with

the boundary conditions

L( 0) = X(0) = X(l) = 7(0) = dT1(0)/dS = dT,{l)/dS = 0, (2.13)*

constitute the complete formulation of the problem.

For the present problem, it is convenient to integrate (2.10) once. Multiplying

(2.10) by XdX/dL and using (2.9) and (2.11), we obtain

(d/dL)(XT1 sintf>) = pX(dX/dL)
and hence

Tl sin 0 = fpZ (2.14)

by (2.13). We shall replace (2.10) by (2.14). Our objective is to solve the above equations

asymptotically for large values of p.

The asymptotic behavior can be readily visualized from the explicit solution of a

spherical membrane. To this end we introduce a spherical membrane defined by

r = R(S) = - sin irS

C : T 0 < S < 1. (2.15)

z = Z(S) = - (1 - cos 7r/S)
IT

The inflated shape can be characterized by the meridian curve

r = X(S) = — sin irS

c: T 0 < S < 1, (2.16)

2 = Y(S) = £ (1 - cos xS)
7r

where p/ir is the deformed radius. The explicit solution is [4]

Ai = A 2 = p

ni = t2 = 2(1 - ^(1 + kP2) (2.17)

(2.18)

V = -(l - ^)(1 + kp2).
p \ p /

It follows that, as p —> 00 (

p/p = Ai/p = A2/| = L/p = (1/4/c) - (4/p2) + 0(p-4)

Ti/p2 = T2/p2 = (1/8*) - (2/p2) + O (p-4).

We note that k ~ 0.2 is satisfied by some materials [4].

3. Asymptotic solution of a closed membrane. Consider now an arbitrary closed

membrane of revolution inflated by a large pressure p. Based on (2.18) we write

A, = p\i , A2 = p\2 , Ti = p2U , T2 = p2t2 , ^

L = pi, X = px, Y = py.

* The last two conditions are derived from the symmetry conditions at the poles (see, e.g., [4]).
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(2.6) can now be written as

W(Ai , A2) = p w(\i , X2 , e) (3.2)

where

w(\i , X2 , e) = k\l\l + e(X? + \l) + y2J t* ̂ 2^2 (3.3)

and e = p~2 is assumed to be a small parameter. Because of (3.3), we shall consider all

the newly introduced quantities in (3.1) and 0 as functions of S and e and write / = /(S, e)

where / is a generic symbol.

The system of equations (2.4)-(2.13), with (2.9) replaced by (2.14), now becomes

X! = dl/dS, (3.4)

X2 = x/R, (3.5)

t, = (1/X2) wXl , (3.6)

t?. = (1/Xj) , (3.7)

xidti/ds) = (t2 — ti)(dx/dS), (3.8)

t\ sin <t> = fx, (3.9)

(1/Xi) (dx/dS) = cos 0, (3.10)

(1/Xi) (dy/dS) = sin 0, (3.11)

1(0, e) = x(0, e) = x(l, e) = y(0, e) = = = 0. (3.12)

We shall assume that the solution can be expanded as an asymptotic series of powers

of e and adopt the convenient notation f0(S) = f(S, e)|,_0 and f„(S) = (d"/den)j(S, e)|«_0 •

Letting e = 0, the system of equations (3.4)-(3.12) becomes

Xl0 = dlo/dS, (3.13)

X20 = x0/R, (3.14)

^10 = 2ftX10X20 , (3.15)

^20 = 2/cXioX2o , (3.16)

x0(dt10/dS) = (<20 — tl0)(dx0/dS), (3.17)

«10 sin 0O = |z0 , (3-18)

(1/X10) (dx0/dS) = cos 0o, (3.19)

(I/X10) (dy0/dS) = sin 0o, (3.20)

Zo(0) = x0(0) = XoO) = 2/0 (0) = = 0. (3.21)

It follows from (3.15), (3.16) and (3.17) that

<io = £20 = constant. (3.22)



SPHERELIKE DEFORMATIONS OF A BALLOON 187

Using (3.14), (3.15) and (3.20), (3.18) becomes

dyJdS = (1/4 k)R(S)

and hence

2/o = J* R(S') dS'. (3.23)

Differentiating (3.18), keeping in mind that tln is a constant and using (3.19), we

obtain

dl0 = 2fi0 d<j>o (3.24)

lo — 2fio<^o (3.25)

by (3.21). (3.19) and (3.20), together with (3.13), (3.24) and (3.21), yield

x0 = 2£io sin <t>o , (3.26)

Vo = 2iio(l cos </>o), (3.27)

which, in turn, yield

xl + (yB - 2110)2 = (2Q2. (3.28)

Thus, as p —> oo, the inflated membrane is a spherical surface of radius 2t10. Eq. (3.28)

is essentially the result obtained by Isaacson. We must now determine ti0 . (3.23) and

(3.27) together with (3.21) imply

2/o(1) = ^ fo R(S) dS = 4f,

and hence

t10 = (1/16 k)Rc (3.29)

where Rc = /J R(S) dS is the distance between the centroid of C and the z-axis. (3.29)

reduces to (2.18) for an initially spherical membrane.

The function x0 can now be solved from (3.28) and (3.23):

Xq = Ik [/„S dS' f R(S,) d(S']1/2" (3"31)

For future purposes we need to know the behavior of x0 near S = 0 and 1. This can be

determined by using (2.2), (3.29) and (3.31). We have

z0 = (t10/2k)1/2S, S^O, (332)

x0 = (ti0/2k)1/2(l — S), S-+1.

We complete the zeroth-order solution by obtaining l0 from (3.13), (3.14), (3.15) and

(3.21):
<«s r „s' »i ~|-i/2

l0 = 2t10J R(S')IJ R(S") dS" J flOS")d,S"J dS'. (3.33)
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It can easily be shown that (3.32) is integrable for 0 < S < 1.

Differentiating (3.4)-(3.12) with respect to e and then setting t = 0, we obtain

Xu = dh/dS, (3.34)

X21 = xx /R, (3.35)

tn = 2fc(Xi0X2i + X11X20) + 2(X10/X2o), (3.36)

<21 = 2fc(X10X21 + X11X20) + 2(X2o/Xio), (3.37)

Xaidtn/dS) = (<21 — tn)(dx0/dS), (3.38)

tn sin 0 + turfi cos <j)0 = %X! , (3.39)

Xn dx0 1_ dx1

X10 dS X10 dS
+ sin , (3.40)

(341>

k(0) = Xl(0) = ®x(l) = ?/i(0) = = 0. (3.42)

Substituting (3.36), (3.37) into (3.38) and making other appropriate substitutions we

obtain

dtu/dS = F(S) (3.43)
where

I

2

R

2 1 RdS'
1 -

/'Jo
R dS

R
1 -

{[RdSl

{l'RdS')\f,RdS')'
(3.44)

It can easily be shown by using (2.2) that

lim F(S) = 0.
S-»0,1

It follows from (2.1) and the above that F(S) is continuous in [0, 1] and F(0) = F( 1) = 0.

Integrating (3.43) yields

in = <u(0) + f F(S') d<S' (3.45)
Jo

where the constant <n(0) remains to be determined.

We need another form of (3.43) for further deductions. First, (3.13), (3.14), (3.15),

(3.19) and (3.24) imply

dS = 8fcf10 sin <t>0 d<f>0 (3.46)

Substituting (3.36), (3.37) into (3.38) and making use of the known zeroth-order solution

and (3.46), we get

. , dtu sin2 </>o cos <j>0 1 R2 cos^o /0 An\
sm dio = mtl° R2 UUo (3>47)
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This is the relation needed and is equivalent to (3.43).

(3.35) and (3.36) imply

\ _ JL ^11 1 ^10 ^10 %1 im

11 2 fcX20 k\lo \2aR' ( }

Substituting (3.48) into (3.40) and solving for (/>j , we obtain

_ dxi _ ik_ dxo 4k dx0 4R dxn . .

01 ~ R dS Rxo dS Xl + Rtl0 dS 11 xl dS' (^49J

Substituting (3.49) into (3.39) and making use of the zeroth-order solution repeatedly,

we obtain

+ <*»»

or, after applying (3.46), (3.26) and (3.27),

2k , o* \ 2^io
R (y° - 2tlo) dS - Xl = ~^T "u r *„

cos <j>a dxi 1 x _ 2tn 1 cos2 <t>o (3 51)

sin <j>o d<t>o sin2 <t>0 1 sin <f>0 2ktt0 sin3 <f>0

Multiplying (3.51) by tan2 <£0, we have

d ( , , 2 \ _ 2 _J__ J?L /q ,oN
o \ 1 an ° cos 4>0 11 / cos 4>n d<t>0 2kti„ sind<t>,

or, after applying (3.47), (3.46), (3.26) and (3.27),

cm aij tan <A0 :1t~
\ cos <t>0

,) = G(S) dS, (3.53)

4 _1_^
G(S) ~ fc2 x04 B 4&2 a:2' (3"54)

It can easily be shown by using (2.1), (2.2) and (3.32) that G(S) is continuous on [0, 1]

and

lim G(S) = 0. (3.55)
S-»0,1

Integrating (3.53) and using (3.26) and (3.27) yields

Xl = 4<10 hk - Vo ~ 2tw [" G(S') dS' + e y° — 2<1" (3.56)
Zo Xo Jo Xo

where c is a constant to be determined and tn(S) is given by (3.45).

It can easily be shown by using (2.2) that

lim - [S F(S') dS', — [° G(S') dS' = 0. (3.57)
s^o Xo Jo ' Xo Jo

Thus, to satisfy the condition ^(O) = 0, we must have

4,'°Sf-c!®=o»c=2,"(°)- <3-58>

The constant tn(0) can now be determined by using the condition xt(l) = 0, viz.

tn(0) = | J (G - 2F) dS. (3.59)
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Using (3.58) and (3.59), (3.45) and (3.56) become

tu = \ f1 (G - 2F) dS + F(S') dS', (3.60)
4 Jo Jo

^ + y° ~ 2tl° £ (G - 2F) dS - f* G(S') dS'] • (3.61)xx -

The function t2i can now be solved from (3.38). We have

I — i 4kx0F(S) .
<u R(S)(y0 - 2t10) {6-bZ)

It can easily be seen by using (3.44) that t21 = tn at the poles and hence the conditions

of symmetry are satisfied. (3.44) also shows that the second term in (3.62) is finite at

the equator of the asymptotic sphere, i.e. at y0 = 2tl0 .

Eliminating dxi/dS from (3.49) and (3.50) and using (3.60), (3.61) and the zeroth-

order solution repeatedly, we obtain

= _yoh1 + i_ rs + dS,_ (3 63)
XqLio Xo Jo

It follows from (3.57), (3.60) and (3.63) that <pi vanishes at S = 0 and 1 and hence the

conditions of symmetry at the poles are again satisfied.

Eliminating X„ from (3.40) and (3.41), applying (3.49) and (3.50) to remove $i and

dxi/dS and using the zeroth-order solution repeatedly, we get

dyJdS = -R3/±k2xl, (3.64)

and hence

Vi
1 f" R\S') , .

~ ~4k2 J0 xl(S') dS (3'65)

by (3.42). Finally, the quantity h can be obtained from (3.34) and (3.48). Thus, we have

formally completed a two-term asymptotic expansion.

4. Examples: a circular tube with two flat end membranes and the sphere. Con-

sider a closed membrane of revolution characterized by a meridian curve

C : r = R(S) = S, 0 < S < a

= a, a < <S < 1 — a, (4.1)

= 1 — jS, 1 - a < S < 1

where 0 < a < J characterizes the slenderness of the "tubular balloon." The special

case a = J consists of two flat circular membranes sealed along the circumferences.

We inflate the balloon by a large pressure p and the solution is given by

Ti(8) = p2[t10 + p~2tu + 0(p~4)],

T2(S) = p2[t20 + p~2t21 + 0(p"4)], ^ ^

X(S) = p[x o + p~2x 1 + 0(p"4)],

Y(S) = p[y0 + p~2yi + 0(p~4)].
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Because of the symmetry, R(S) = 22(1 — S), we shall give the solution for the interval

0 < S < J. The functions involved in the two-term expansion are, for the interval

0 < S < a,

<10 = <20 = a(l - a)/16k , (4.3)

So = | [2a(l - a) - <S2]1/2, (4.4)

y0 = (1/8k) S2, (4.5)

_ 1 , , I 1 — fa a . 2 — 3^ 2/S 
13 3 In ^ ^ In / ro /"i ^ c2iv2
\ a 1— a 1— a a / l^all — a) — o I

8a(l - a) - 6S2 2a(l - a) - S2

S[2a(l - a) - S2]1/2 2a(l - a)

(4.6)

D . 2a(l — a) — S2
»■ - 8 ln Ml - .) ■ <4-"

r, 1 , o 1 1 — 2<* a, 2 — 3a S
<„ = 2 [- 3 ln —   ln y -

a 1—a 1— a a — a)

2 a (1 — a) — S2 2a(l — a)

2a(l — a) 2a(l — a) — S2

(4.8)

5[2a(l - a) - S2] j 2S 2S 4a(l - a)S
<2! <11 2[S2 _ a(l _ a)] ^ a(1 _ a) 2a(1 _ a) _ S2 + [2a(1 _ a) _ £2]2

(4.9)
and, for the interval a < S <

<io = <20 = a(l _ a)/16/c (4.10)

1 - f) - s. (4.11)

2/o = (a/4*) (S - |) (4.12)

Zi =

'-1HI'
1 — a  L _ I _ a , (1 ~ 2a)

^ a 1 — a 2a(l — a)

\2

a

+ 4inV=^-r^-m2-^-^+ —+
1 — a 1 — a a a(l — a)

+

{(s - fjK1 -1) - 4'

5-i ('-!)-

('-I)-2 , 4S 2a .
 1   ■ In

a a 1 — a c a

2

S

S

(4.13)

+ •S-I MM 1,
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8 .

0 = Va

P = 10

k = 0.2

6 L T^T^S.86

T2

T,

Roo=l'17

0.1 0.2 0.3 0.4 0.5

Fig. 1. A tubular balloon with the height equal to the diameter.
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0.1 0.2 0.3 0.4 0.5

Fig. 2. A balloon made of two flat membranes sealed along the edges.
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1 3 , S - 5 (l - 5) - 5
Ol 2^ 1 2 \ 2/ f . 1 .V

2/i = 8 In   2   In In tt ^-r , (4.14)
1— a 1— a a (1 — fa)

2

cr 1 — a Za^l — a) i — a I — a a

a a

— — + — h 7 \ , (4.15)
a(l — a) s_|

«■ " + 5rMS " !)[(' - l) - S] - 7 .xf/~1
(5-l)[(1-l)~S]

(4.16)

We note that the last term in (4.6) tends to zero as S tends to zero. Also, the condition

R(S) = 72(1 — S) and (3.44) imply F(S) = —F( 1 — S). This condition simplifies
the above calculation considerably.

Two sets of data for the cases a = J and a = \ are given in Figs. 1 and 2. The broken

lines indicate the results of a one-term expansion which yields the asymptotic spherical

surface. The solid lines indicate the results of a two-term expansion.

We have not tried to compare the above asymptotic solution for a tubular balloon

with a numerical solution which is not readily available. The two-term asymptotic

solution for an initially spherical membrane, however, does appear to be in very good

agreement with the exact solution for large pressures. The asymptotic solution for the

spherical membrane calculated by using the equations given in Sec. 3 is exactly the

same as (2.18). For k = 0.2 and p = 10, the results are

p = 10[1.25 - + OaO"1)],

Tj = T2 = 100[0.625 - tw + 0(10-4)].
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