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Abstract

A new construction of spherepackings using codes is given, which

covers the construction of Leech and Sloane [3]. The dense packings

of Sloane [10] are also obtained here, but without the use of

complex numbers. Several new records on the packing desity in high

dimensions are given. In the second part of this paper three new

alternatives of a construction, which leads to the Leech lattice
. 24 i
~n lR , are g ven.

Introduction

In section 1.1 some prelimanaries about spherepackings and codes

are collected. For more information about packings we refer to

Leech & Sloane [3], and Rogers [8]1 for more coding theory, see

the book by MacWilliams and Sloane [6].

In section 1.2 we give the general construction and show that it

is a generalization of construction C of Leech and Sloane [3].

In 1.3 up to 1.6 we give several examples, each time based on a

different tower of lattices, including in the last section

packings in dimension 80, 88, 96, 104, 112, 120 and 128 with new

high densities. Also the results of Sloane obtained by use of

complex numbers (cf. [10]), are obtained (The new record of Sloane

in lR 36 has been improved meanwhile). A list of densest known

spherepackings in,dimensions up to 128 is given in 1.7.
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In section 2.1 and 2.2 four constructions for the Leech l'attice

are given. The first one is the original construction (cf. [3]),

the others are equivalent to the construction of Tits [11], [12],

which uses the complex numbers, the quaternions and an algebraic

extension of the quaternions, respectively.

1.1 Jome definitions

A apherepacking is a collection of spheres in euclidean space JRn

such that no two spheres have an inner point in common.

The density A of a packing is the fraction of JRn which lies inside

the spheres. The centerdensity 6 is defined by 6 := ~/V , where
n

1T
n/ 2/r(n 1) 1 f h' nVn = '2 + is the vo ume 0 a uni t sp ere 1n JR •

A lattice L is an abelian group of vectors in JR 1'1, such that

JR®L=JR n •

If the centers of the spheres form a lattice, the packing is

called a lattice packing.

The minimum distance between two different points of L is denoted

by d i (L).m n

The ki8sing number of a lattice packing is the number of spheres

that touch one sphere.

An alphabet A is a finite set with a metric d on it, such that

d : A x A ~ ~ and gcd {d(x,y)lx,y € A} = 1. As alphabets we will

only consider the fields F = GF(q), where q = pr, a prime power,

with the Hamming metric. The metric on Fn is the componentwise

sum of the metric on F.

A code C is a subset of Fn • A code is linear if it is an abelian

group.

The weight of a vector is the distance to the null vector, i.e.

the number of nonzero coordinates. We will denote the minimum

distance in a code by d and the number of codewords by M.
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If the code is linear over GF(q), then there is a k E :N, called
kthe dimension of the code, such that M = q • A code is often

kdenoted by (n,M,d) or by (n,q ,d) if it is linear.

M (n,d) is the number of codewords for which a code with length n
q

and minimum distance dover GF(q) exists.

For two codewords x and y in C we define

.~ * y : = (x10 , x20x ' •••• , x 0 ) wi th Kronecker t, and
x 1 'Y1 2'Y2 n xn'Yn

C* := {x * ylx,y E C}. Note that C c C*.

From now on "distance" means the squared euclidean distance.

1.2 The construction

mLet La =. L1 =. .... =. Lk be a tower of lattices in lR • For i=1,2, •••. ,k

L
i
/L

i
_1

is a group with a metric induced by the euclidean metric of lR
m .

Denote a + L i _1 by!. As usual define, for!. E lRm and V C lR
m

,

d(!.,V) := inf d(x,l.). Then d(!,~) = d(~+Li_1~£+Li_l)= d(~-£,Li_l)

l.Ev
is uniquely determined.

If G and H are groups with metrics a 1 ,and a
2

respectively, we write

G ~ H if a group iromorfism (P : G .... H and acE lR eXists such that

for all x,y E G cr 1 (x,y) = c.cr2 «(DX,(PY). For example G~ ~/ t Z where

G = GF(2) with the Hamming metric and c = 4.

(pn :
n
n H is also denoted by (P.

i=1

Theorem 1 Let L c.: L C •••• •C_ Lk be a tower of lattices in lR
m

•0 ... 1-

For i=1;2, •.•. ,k let and let
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Then

( I (JJi~ + L~)
x C

2
x ••• x Ck i=1

is a set of centers of a packing in JRnm with centerdensity

6
nm

knm
n Mi '

i=1

where d min
i=O,1, •••• ,k

Proof

A lattice packing is obtained iff all codes are linear and

for all i=2,3, ••.• ,k

The only nontrivial fact is the minimum distance d.

k
Suppose ~ E 1. (JJi~ + ~ and

i=1
k

£ E L(JJiY ' + ~ , with ~ = (xi1'xi2' •.•.• 'xin) and
i==1 -l.

If ~ = ~ for i=j+1, j+2, •.• ,k-1,k then

d(~,!?) = d ( t. (JJ.x. , ~ (JJi~ + r;) =
i=1 1.--]. i=1

rd( ! (JJixis' ·i (J)iYis + LO\ ~
s=1 1=1 i=1 /
n

~ S~1d((JJjXjS' (JJjY js + Lj _1) > dj.dmin (L j > ,

because at least d
j

times
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In their construction of spherepackings, Leech and Sloane [ 3]

tower La = 2
-i in lR with L/L

i
_

1
Co! GFJ2)used the Z, L. 2 La

~

with the Hamming metric.

Due to the fact that several good codes over this alphabet

exist, most dense spherepackings are constructeJ in this way,

qee the table in section 1.7.

Observe that in the case with d
1

-a (mod 2) the codes C
2

'C3
' •..•. ,Ck

have to be self-orthogonal in order to give a lattice packing.

Since such codes have dimensions at most n/2, it is obvious that

dense lattice packings in high dimensions, say > 80, cannot be

obtained in this way.

1 • 3 Packings from ~ ~ th2 ~ t 11.2 c ....• in lR
2

•

2
In this section L

O
is the 2-dimensional lattice in lR generated by

(2, 0) and (1 ~ 13) with d
min

(La) = 4. This is the well known

hexagonal lattice, called ~ in [3], providing the densest packing

in 2 dimensions with

= 0.907 ••.•.••
1T-1 -~6

L
2 3 , according to ~

o La
2

Now we form te tower of lattices La =L 1 =..... ~ L k in lR with

-i 2(1-i)
L. := 2 .L.., so d i (L

i
) = 2 for i=1,2, •.•.•. ,k. Then we find

~ tJ m n

L
i
/L

i
_

1
~ GF(4) with the Hamming metric for all i=1,2, ••.•. ,k.

Translating theorem 1 to this special case we obtain

Corollary 2 For i=l,2, ••••• ,k le't C
i

be an (n,Mi,d
i

) code over

GF(4), with 1 < d
1
~ 4, d

i
< d i +1 ~ 4di and ~ < n.

Then a packing of spheres exist in lR2n with density
k

o = (2-13-~)n (!va)2n n M with
2n 2 i=1 i

d = min (2 2 (1-i)d
i

)
i=l, ••• ,k



A lattfce packing is obtained iff all codes are linear

* * nand for i=1,2,3, •••••• ,k C
i

C C
i

_
1

and C1 C L
O

• 0

This construction is the real version of the complex construction

of Sloane rio].
The best results are obtained with codes C

i
such that d

i
+1=4d

i
•

The first example gives the only known case in 'mich the

density of a packing, constructed with binary codes, is improved.

Example 1:

i) k=1, C
1
=(6,4

3
,4) produces a lattice packing in lR

12
with

-3highest known density 6
12

= 3 •
17 . - 9

ii) k=2, C
1
=(18,4 ,2) and C

2
= (18,4 ,8) (cf.[S]) produces a

lattice packing in lR
36 with centerdensity 6

36
2

16
3-

9
= 3.33 ••.•

Note that a nonlattice packing exists with 6
36

4, see the

table in section 1.7.

1.4 Packings from !Ii 2· C N' co:.!. A c.!. f\'
- 2 -3 2 - 3 2

c .....

As in the previous section L
O

is
2

the lattice ~ in lR • But now

generated by L
O

and (1, v1),

and L
i
/L

i
_ 1 ~ GF(3) with the Hamming metric, for i=1,2, •.•.• ,k.

So we get

where

Corollary 3 For i=1,2, •••.• ,k let C
i

denote an (n,Mi,d
i

) code

over GF (3) with

1 < d 1 ~ 3, di < di +1 ~ 3di and dk ~ n.

2n
Then a packing of spheres exists in lR with

density (1 )2n k
6 = (2-13-lo:l) n '2Vd n Mi

2n i=1

d=
-i

min (4.3 d
i
).

i=1,2, •.•. ,k



a lattice packing in :JR6 with

6 = 2-33-~.
6
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A lattice packing is obtained iff all codes are linear

and cr C ci _l for i=2,3, ••••• ,k and cr c L~ • 0

This construction is new and the best results are obtained

The following examples, except the last one which is needed

in section 2, give the densest known packings obtained with

this construction.

Example 2 :
1

i) k=l, c
l
= (3,3 ,3) yields

highest possible density

11) 2 8
k=l, C1= (4,3 ,3) yields a lattice packing in:JR with

-4
highest possible density 0S= 2 •

iii) k=2, c
1
= (6,35 ,2), c

2
= (6,3 1,6) yields in :JR12 the densest

known lattice packing with density °
12

= 3-3.

iv) 11
k=2, c

l
= (12,3 ,2), c

2
=

24
lattice packing in:JR •

6 -1
(12,3 ,6) yields 6

24
= 3 for a

41.5 Packings from a lattice tower in:JR •

4 4
Let L

O
be the lattice in:JR generated by (2~) and (1,1,1,1).

-3
This lattice is called A

4
in [3], has density 04 = 2 and

minimum distance 4. Define L
1

to be the lattice generated by L
O

-i
and (1,1,0,0), (1,0,1,0) and (0,1,1,0), L

2i
;= 2 L

l
and

-i
L2i+ l ;= 2 Ll • It is clear that for i=1,2,3, ••.•. ,k

2-i
2
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Corollary 4 For i=1,2, •.•.• ,k let C, denote an (n,Mi,d.) code
1 1

d
i

1 < 2d. and d
k

< n.
+ - 1 -

4n
~ exists with density

k
n M with

. 1 i1=

a packing in

2-
3n(t Vdf n

over GF(4) with

d
1
=2, d

i
<

Then

6 =
4n

(
2-i )d = min 2 d

i
•

i=l, •••• ,k

The construction is new but no improvements of the results

using binary codes are obtained. The best densities are with

d
i

+
1

= 2d
i

• The last example is needed in section 2.
n-1

In all examples C
1

= (n,4 ,2).

Example 3 :

1) k=l, C = (2,4,2) gives highest possible lattice density
1

6 =
-4 8

8
2 in D'{. ~

ii) k=2,
1 6

16
=

-4
C = (4,4 ,4) gives highest known density 2 ~

2

iii) k=2,
2 6

20
=

-3
C

2
== (5,4 ,4) gives highest known density 2 ~

iv) k=3, C
2

=

o
6

32
= 2

4 1
(8,4 ,4), C

3
= (8,4 ,8) gives highest known density

= 1~

2
C

3
= (10,4 ,8) gives highest knownv)

vi)

6
k=3, C

2
= 00,4 ,4),

4
density 6

40
= 2 ~

3
k=2, C

2
= (6,4 ,4) gives 6

24

in JR24 •

-22 for a lattice packing
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81.6 Packings from a lattice tower in ~

8 -4
Let La be the lattice, AS (cf.[3]) in ~ with density 2 ,

generated by (2 ~8 and the vectors of the binary (8,2
4

,4)

code (see also examples 2f1 and 31). Define L1 to be generated

7
by La, the vectors of the binary (8,2 ,2) code and

, 1 1 1 1 1 1 1 1 -i
'2"' 2' 2' 2' 2' 2' 2' 2)· Further define L2i := 2 La and

-i
L

2i
+

l
:= 2 L

l
,then L

i
/L

i
_

l
~ GF(16) with the Hamming metric

2-iandd. (L
i

) = 2 , i=O,1, •.•.• ,k.mJ.n

Corollary 5 : For i=1,2, ••.• ,k let C
i

denote an (n,Mi,di ) code

over GF(16) with d l = 21' di < d i +1 ~ 2di and dk ~ n.

Then. a packing in ~8n exists with density

with

(
2-i )d = min 2 d

ii=l, •.•. ,k

A lattice packing is obtained iff all codes are linear

and for i=2,3, ••••••• ,k C* C C and C*1 C Ln
o

. 0
i i-l

This construction is new and gives several new record densities. In the
n-lfollowing examples C

1
= (n,16 ,2), while the last example is

used in section 2.

Example 4

i) k=l, C
1

= (2,16,2) gives highest known density 6
16

= 2-
4

;

ii) k=2, C
2

= (4,16
1

,4) gives highest known density 632= 2°= 1;

2 4
iii) k=2, C2= (5,16 ,4) gives highest known density 640 = 2 ;

. n~ n~

iv) k=3, 10 ~ n ~ 15, C
2
= (n,16 ,4), C

3
= (n,16 ,8) gives

density 6 = 2
8n

-44 which are all better than any packing
On '

density in those dimensions p:l::eyiously known.
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13 9 1
k=4, C

2
= (16,16 ,4), C

3
= (16,16,8), C

4
= (16,16,16)

give 6
128

= 2
88

, also a new record, the old one being

2
85

(cf. [ 3] ) •

vi) k=l,
2

C
1

= (3,16 ,2)

-4
2 •

I i i 24 'h d 'tgives a att ce n lR WJ.t ensJ. y

1.7 A table of dense packings

Two tables are given which yield the densest packings obtainable

with the methods described in the foregoing sections. Also the

highest known densities and upper bounds are given. In the first

table the dimension is at most 32 and the densities and bounds

are given in their numerical values, whereas in the second table

the logarithm to the base two of the densities and bounds are

given.

The first column gives the dimension, the second the highest

density obtained by the above described construction and the

third column the section in Which the packing is constructed,

where 1.2 refers to construction C of Leech and Sloane (cf.[3]),

using the binary codes which are given in Appendix A of [6].

The fourth value is the maximum known density if this is higher

than the one in column two. These packings can be found in [3],

except for the dimensions 25 up to 32, but there the method is

the same as in 24 dimensions.

The last column gives the best known upper bound. This appears

to be Rogers bound (cf.[3]) up to dimension 96 and the recent

Levenstein bound (cf.[4])for higher dimensions.
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Dim. Density Section Max. Density Bound

1
-1 0.500 1.2 0.5002 =

2 -1 -~ 0.'289 1.3 0·2892 .3 =
3

-21:! 0.177 1.2 0.1862 =
4

-3 0.125 1.2 0 .. 1312 =
5

-3 I:! 0.088 1.2 0.1002 =
6 -3 -I:! 0.072 1.4 0.0812 3 =

-4 0.0707 2 = 0.063 1.2

8
-4 1.4, 1.5 0.06332 = 0.0625 1 .2,

9
-4":l o 044 1.2 0.0602 =

10 2-7 .5 = 0.039 1.2 0.060

11 2-832 = 0.035 1.2 0.061

12 -3 0.037 1.3, 1.4 0.0663 =
13

-5 1.2 2-8 .32 = 0.035 0.0732 = 0.031

14
-5 1.2

-4 -":l 0.0832 = 0.031 2 .3 = 0·036

15
-4I:! 0.044 1.2 0.0972 =

16
-4 1.2, 1.5, 1.6 0.1182 = 0.063

17
-41:! 0.044 1.2

-4 0.063 0.1462 = 2 =
18 3-2~ = 0.064 1.3

-3 -I:! 0.072 0.18623=

19 2-3~ = 0.088 1.2 0.243

20
-3 0.125 1.2, 1.5 0.3252 =

21 -2":l 0.177 1.2 0.4432 =
22

-2 0.250 1.2 2-1 3-~ = O. ~89 0.6172 =
23

-1 I:! -1 0.8782 = 0.354 1.2 2 = 0.500

24
-1 1.2 2

0 = 1.000 1.2732 = 0.500

25 2-1~ = 0 . .354 1 .2
-~ 1.8802 = 0.707

26
-2 -1

2 = 0.250 1.2 2 = 0.500 2.827

27
-f":l 0.354 1.2 4.3252 =

28
-1

2 = 0.500 1.2 6 .• 730

29 2-1~ = 0.354 1.2
-I:! 0.707 10.6422 =

30
-1 2° = 17.0942 = 0.500 1.2 1.000

31 -~ 1.2 27.8802 = 0.707

32 2
0 = 1.000 1.2, 1.5, 1.6 46.147

TABLE I



Dim.

33

34

35

36

37

18

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

2
log (densityl

0.5

1

1.5

2

1 .5

2

2.5

4

3.5

4.2

4.5

5.6

6.2

6.6

7.2

8.2

8.5

9

10

10.3

11

12

13

14

14

15

16

17

18

19

20

22

21.3
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Section

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.'5 ,1.6

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

2
log (max. dens.)

14.0

2
log (bound)

6.28

7.04

7.83

8.64

9.46

10.31

11.17

12.04

12.94

13.85

14.78

15.72

16.68

17 .65

18.64

19.64

20.66

21 69

22.73

23.79

24.86

25.95

27.04

28.15

29.27

30.41

31.55

32.71

33.88

35.06

36.25

37.45

38.66
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Dim.
2 2 2
log (density) Section log(max. dens) log (bound)

66 22.3 1.2 39·88

67 23.3 1.2 41 .12

68 24.3 1.2 42.36

69 25.3 1.2 43.61

70 26.3 1.2 44.88

"'1 27.3 1.2 46.15

72 28.3 1.2 47.43

73 2'9.3 1.2 48.73

74 29.3 1.2 50.03

75 29 .., 1.2 51.34

76 29.3 1.2 52.66

77 30.3 1 .2 53.99

78 31. 3 1.2 55.33

79 31.3 1.2 56.88

80 36 1.6 58.04

81 33.2 1.2 59.40

82 33.2 1.2 60.78

83 33 .• 5 1.2 62.16

84 37 1.2 63.55

85 36.5 1.2 64,.95

86 37 1.2 66.36

87 37.5 1.2 67.78

88 44 1.6 69.20

TABLE II
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2log (denSity)
2

Dim. Section log (max. dens.)

89 38.2 1.2 70.63

90 38.6 1.2 72.07

91 38.5 1.2 73.52

92 40 1.2 74.98

93 39.5 1.2 76.44

J4 40 1.2 77 .91

95 41.5 1.2 79.39

96 52 1.6 80.86

97 43.5 1.2 82.34

98 44 1.2 83.82

99 45.5 1.2 85.31

100 47 1.2 86.80

101 46.3 1.2 88.30

102 47.3 1.2 89.81

103 48.5 1.2 91.33

104 60 1.6 92.85

105 50.5 1.2 94.38

106 52 1.2 95.92

107 53.5 1.2 97.46

108 55 1.2 99.01

109 56.5 1.2 100.56

110 58 1.2 102.12

111 59.5 1.2 103.69

112 68 1.6 105.26

113 62.5 1.2 106.84

114 64 1.2 108.43

115 64.5 1.2 110.02

116 66 1.2 111.62

117 67.5 1.2 113.22

118 69 1.2 114.83

119 70.5 1.2 116.45

120 76 1.6 118.07
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210g (density) 2
Dim. Section log (max. dens.)

121 73.5 1.2 119.70

122 75 1.2 121.33

123 76.5 1.2 122.97

124 78 1.2 124.61

125 78.5 1.2 126.26

: 26 81 1.2 127.91

127 81.5 1 .2 129.57

128 88 1.6 131.24

TABLE II (continued)
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2.1 Translating lattices

In this section we give a general theory for translating lattices

obta ined from binary codes. This 1 eads to the kro\om construction

of the Leech lattice am doubling the centerdensities in dimensions

25 up to 32.

We recall the imp~tant fact that the Leech lattice is the unique

unimodular lattice, that is with centerdensity equal 1, in :1(24

with minimum distance 4 (cf. [2];) •

First we eKtem our terminology of section 1.2. Recall that

we will

by ali or lia for
k

and a = LqJi~'
i=1

qJ. : G. -+ L, (mod L
i

1) is a group isomorfism. Denote the
1. 1. 1. -

"coset leader" qJi (1) by Ii and qJi (a)

derote k

~ = ( LcUli'
i=1

I C
i

1.)
i= 1 n 1.

by

k

i~1\(Ci1,ci2"·,,,,cin) =

k
\' lic .•l. -1.

i=1

Let W
u
(~) be the number of coordinates of E.:i equal to a. So for

the Hamming weight w(c.) we have
J

w (c,)
a J

n.

If we write c, as the j-th row of a kxn~atrix, then w
J al ,u2 ' .. •• .,uk

t
is the number of times the column (al~ •.•.• ,ak) occurs in the matrix.

Note that L
U, •••• , a

k

w
aI, •••• , Uk

a = U
j



w*(c ) =
~
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Define w*(~) to be the sum of the coordinates of Ej' so

L a.wa (~).a E G
j

Let L
O

:. L
1

e' ....5. Lk. in lRm,;, groups G
i

and codes Ci over Gi

fOr 1-1, ••••• , k. be given as in theorem 1. Furthe.· let Lk. 5 Lk.+1

~.~ n be such that n.dmin(~+l) < d. Then, in general, it is not
n n

possible to find a subset of Lk.+l at distance d from La •

However sometimes one can find one or more such cosets of a

lattice packing and increase the density in this way.

Lemma-

Proof

-i
Let LO = 2 ~, L

i
= 2 LO' so G

i
= GF(2), for i=1,2, •••• ,k.

Given codes C
i

= (n,Mi,di ) for i=1,2, •••• ,k, with

d
i

< d
i

+1 ~ 4d
i

, 4(d
k

- d
k

_
1

) ~ n ~ 4~ and Ck _1 and

Ck. being linear with C: c:: Ck._l •

n
Then!. E I.k+l exists with de!. + r,f) ~ d , where

d = d i (f) and f is the lattice obtained by theorem 1.
m n

It is clear that li = 2
1

- i for i=1,2, ••••• ,k+l.

dk - 1
Let £ be such that d(£, Ck _1) ~ -:r- .
Define!. := lk_l £ + 1k+1 (1,1, ••••• ,1).

for all a , a , •••••• , a,. 2 E GF (2) •
1 2 ....-

d(l
k

+
1

, a
k

_
1

1
k

_
1

+ a
k

1
k

) =:t if (a
k

_
1
,a

k
)=(O,O) or (0,1) and

4

d(lk+1,ak_llk_l + ak
1k.) =~f (ak-1 ' ak.) = (1 ,0) or (1,1).

4k
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For ~ € GF(2)n let a l := a + c. Then we get, with ~ € Ci '

i=l, ,k

d(x In C + In c++ Inks' + Ln
O

) >-' ......1-1 ......~2 • • • • • • • ...... ~~

\ -k -k= L (w.4 + W1 .9.4 ).
a € GF(2) O,a ,n

\' -k -k <\-1 1 dk _ 1 9
thus [. (w.4 + wi .9.4 ) > (n- ~).'k + -2-·'k =

a EGF(2) O,a,n 4 4

Example 3

d
k

we have - _> d. Cl-k
4

7
n=8, C1= (8,2 ,2), C2=

translating r over x =

(8,2
4

,4) given or = 2-
5

but

5 1 7('4 ' '4 ) gives a doubled

density of maximal value.

Example·6: n=24, C1= (24,2 23 ,2),
._---

5Translating over ~ = (i '

12
C2= (24,2 ,8) gives or
23-----

1 0
- ) gives density 2 =1
4

-1
= 2 •

and the

famous Leech lattice is obtained.
Also in dimension 25 up to 32 the density can be doubled in the

same way: see the fifth column of table 1. Possible dimensions for

applying the lemma are 48 up to 64 with the sequence of codes

C1= (n,M1,4) and C
2
= (n,M

2
,16) and dimensions 96 up to 128 with the

codes C
1
= (n,M

1
,2), C

2
= (n,M

2
,8) and C

3
= (n,M

3
,32).
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The only condition to be cheeked is wether Ck* C Ck_1 for

k=2 resp. 3.

The linearity of the codes C
k

and C
k

_
1

and the fact that

C
k
* C C

k
_1 is necessary, as the following example shows.

Example 7 15 8n=16,C
1
= (16,2 ,2), C2= (16,2 ,6) give

which is less than the highest

-4of 2 - O~0625. Doubling or
5 115

by translating r over ~ = (4 ' 4 ) would yield a

-17 8or • 2 .3 • O~0501,

known density in :R
16

new record. However for

~= ~1(14012) + ~2(041606) and ~ = ~2(0 160
9

) one has

5 1~ 13 3 13 6 3
d(~ + ~,~). 1(~,!-~) • d{(4' ~),(1'2 ,0 '2 ,0 )}=1< d = 2·

This is due to the fact that the Preparata code C
2

is not

self-orthogonal, so C; ¢ C
1

•

11 6(12, 3 , 2) and C2= (12 , 3 , 6) •

-1
is obtained with or- 3

1 1 1
(3' 3\13 ) and 13= '3 11 •

example 2 iv) a lattice packing r
8 If=3 . Note that 11= (1, Vt ), 12=

As in

and d

2.2 Three other constructions of the Leech lattice

In thiis paragraph we construct a lattice packing r in JR24 with
r

density or and minimum distance d. Then we give l/cS r vectors !:i'
with ~1=Q, such that the cosets ~ + r (i.l,2, ••••• ,1/o r ) are

mutually at distance d and the vectors form an additive group,

isomorfic to the addition group of the field. So a lattice packing

in :R
24 with density 1 is obtained, which has to be the Leech

lattice.

Apply corollary 3 with k-2, n=12, c
1
=
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Define ~2 :- 13 (1,1,1, •.•• ,1) + 11 (1,0,0, ••••. ,0) and ~3 :== 2~2'

Then it can be proved that d(~.,r) ~ d for i==2,3, using the

fact w (c~) • 0(3) for all a € GF(3), Which is clear by in~ecting
a -~

the complete weight enumerator of the ternary Golay code C2

(c f • [ 5], Ch • 19, p •598) •

5 3
rlpply corollary 4 with k=2, n=6, C

1
"" (6,4 ,2) and C2= (6,4 ,4).

A lattice packing r in JR24 is obtained with or == t and dr "" 4.

The field GF(4) is represented by {0,1,£,1+£}. Note that

1 1 1 1
11- (1,1,0,0), E:l 1- (1,0,1,0), 12- (1,0,0,0), £1 2"" (2'2'2'2)

and 13
Define

1
= 2 11 ,

~2 : = 13 (1 , 1 , • • . • , 1) + £1
1

(1 p,O, •••• ,O),

~3 - £1
3

(1 , 1, ••.• , 1) + (1 +£ ) 11 (1,0, •••. , 0) and

~ := ~2 + ~3 • From the complete weight enumerator of C2

(cf.[4], p.296) we learn w (c
2

) .0(2) for all a € GF(4).
a-

Then it is not hard to prove that d(~,r) ~ d for i=2,3,~

2 "
At last applying corollary 5 with k=l, n=3 and C1== (3,16 ,2)

-1
a lattice packing r is obtained with or == 16 and dr = 4.

We represent the field GF(16) by the 4-dimensional vector space .•

over GF(2) with base 1'£2'£3,E:4 •

6 5Let 11- (1,1,0 ), E:
2

1
1

== (1,0,1,0 ),

18 14 4 2
E: 411 == (2 ), 12= ('2 ,0 ), £212 - (0 ,

7
and £414- (1,0 ).

Define ~2 :- 1 2(1,1,1) + 1 1 (£3,0,0), ~3 :- E: 2l 2 (1,1,1)+ 11 (£2,0,0).

~ := E:312(1 ,1,1) + 11 (1,0,0), ~ := E:41 2(1,1,1) + 1 1 (E:4 ,O,O)

and x_ •••••••• ,x to be the nonzero linear comrinations of
-E; -16

~2' •••••• '!s over GF ( 2) •
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Proof Let I C GF(16) be the coset of the surspace, generated

by 1, 8
2

and 8 4 so

I .- {1;3' 1+83, £2'+£3' £3 +1 £4' 1 + £2 + £3' 1 + £3 .... 84 ,

for all a E I, w (c - (8 3,0,0» • O. But
a. -

w*(~ - (£3,0,0» = I a. wa(~ - (£3,0,0» = £3 thus
a E GF(16)

I Wa. (c - (£3,0,0»). 1(2), contradiction.

0: E I

Similar arguments can he applied to prove d(~,r)~ d for

i-3, .•..•. ,16.0

So we cor~tructed the Leech lattice in four different ways.
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