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SPHERES IN INFINITE-DIMENSIONAL NORMED SPACES

ARE LIPSCHITZ CONTRACTIBLE

Y. BENYAMINI1 AND Y. STERNFELD

Abstract. Let X be an infinite-dimensional normed space. We prove the following:

(i) The unit sphere {x G X: || x II = 1} is Lipschitz contractible.

(ii) There is a Lipschitz retraction from the unit ball of JConto the unit sphere.

(iii) There is a Lipschitz map T of the unit ball into itself without an approximate

fixed point, i.e. inffjjc - Tx\\: \\x\\ « 1} > 0.

Introduction. Let A be a normed space, and let Bx — {jc G X: \\x\\ < 1} and

Sx = {jc G X: || jc || = 1} be its unit ball and unit sphere, respectively.

Brouwer's fixed point theorem states that when X is finite dimensional, every

continuous self-map of Bx admits a fixed point. Two equivalent formulations of this

theorem are the following.

1. There is no continuous retraction from Bx onto Sx.

2. Sx is not contractible, i.e., the identity map on Sx is not homotopic to a

constant map.

It is well known that none of these three theorems hold in infinite-dimensional

spaces (see e.g. [1]). The natural generalization to infinite-dimensional spaces,

however, would seem to require the maps to be uniformly-continuous and not merely

continuous. Indeed in the finite-dimensional case this condition is automatically

satisfied.

In this article we show that the above three theorems fail, in the infinite-dimen-

sional case, even under the strongest uniform-continuity condition, namely, for maps

satisfying a Lipschitz condition. More precisely, we prove

Theorem. Let X be an infinite-dimensional normed space. Then

( 1 ) The unit sphere Sx is Lipschitz contractible.

(2) There is a Lipschitz retraction from Bx onto Sx.

(3) There is a Lipschitz map T: Bx -» Bx without an approximate fixed point, i.e.

inf{||jc - 71c II : jc G Bx) = d > 0.

The first study of Lipschitz maps without approximate fixed points, and Lipschitz

retractions from Bx onto Sx, was done by K. Goebel [3]. B. Nowak [5] proved the

theorem for several classical Banach spaces. Our work was greatly influenced by the

work of Nowak. Actually, the general scheme of the proof as well as two of the three
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main steps in the proof (Definition 1 and Propositions 1 and 3) are slight modifica-

tions of results in [5] which we reproduce for the sake of completeness and because

of the many misprints in [5].

In [4] the authors study fixed point properties of mappings whose iterates satisfy a

uniform Lipschitz condition. In this respect it is interesting to note that the map

constructed in part (3) of the Theorem has this property (as follows immediately

from its definition in the next paragraph).

Note that parts (2) and (3) of the Theorem follow immediately from (1). Indeed if

H(t, jc) is a Lipschitz homotopy joining the constant x0 G Sx to the identity on Sx,

then

¡H(2\\x\\- \,x/\\x\\),     1/2 < Hxll < 1,

r(X)      [jc„, 0<\\x\\<\/2,

is a Lipschitz retraction from Bx onto Sx. It is also easy to check that the map

/(jc) = -r(jc) is then a Lipschitz self-map of Bx without an approximate fixed point.

In the next section we shall formulate three propositions and deduce the theorem

from them. These three propositions will be proved in §§2-4, respectively.

We use standard terminology and notation. The reader is referred to [2] for basic

facts on normed spaces.

We end this introduction with a very useful observation which we shall use later

without further notice. If II II, and II II2 are two equivalent norms on a linear space X,

then the pair (Bt, S¡) is Lipschitz equivalent to the pair (B2, S2) under the map

jc -> ||jc|||Jc/||jc||2 (0 -> 0).(Here B¡ (resp. S¡) is the unit ball (resp. sphere) of X with

respect to the norm II II,, i = 1,2.) It follows that any Lipschitz property of Bx and

Sx—and, in particular, our Theorem—can be proved under any norm equivalent to

the original given norm.

1. In this section we give a definition and three propositions and then deduce the

Theorem. The propositions will be proved in the subsequent sections.

Definition. Let (5, d) he a metric space,y(X G S and e > 0. The point>>0 is said to

be an e-escapingpoint if there exists a Lipschitz mapping T: S — S satisfying:

(1.1) 7is Lipschitz homotopic to the identity on S.

(1.2) inf{d(T"y(), Tmy()): n > m > 0} » 5e.

(1.3) For all « > 0, T maps Bs(T"yn, e) isometrically onto Bs(Tn+ly0, e) (where

Bs(y, e) = {jc G S: d(x, y) < e}).

(1.4) For all « > 0, 7"l(*s(7"+IÄ, e)) = Bs(T"y0, e).

Proposition 1. Let y0 be an e-escaping point in a metric space S, and let Z be

another metric space. Let g: [-1,1] X S -> Z be a Lipschitz map which constantly

attains the value z0 G Z outside the set [{, f ] X Bs(y0, e). Then g is Lipschitz

homotopic to the constant function z0 in [-1,1] X S by a Lipschitz homotopy HT(t, x)

(0 < t < l,(r, x) G [-1,1] X S), for which HT(t, x) = z0 whenever \t\>l-

Remark. The fact that g is Lipschitz homotopic to z0 is, of course, obvious and

does not require any assumptions on y0. Indeed, the homotopy hT(t, x) = g(íT, jc)

does the job. The assumption that yQ is e-escaping is used to construct a homotopy

HT with the additional property that HT(t, x) = z0 whenever 11 \> f.
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Proposition 2. Let X be an infinite-dimensional normed space and e < 1/500.

Then X admits an equivalent norm with respect to which Sx has an e-escaping point.

Proposition 3. Let X be a normed space, and let x0 G Sx and e > 0. Then the

identity map on Sx is Lipschitz homotopic to a mapping f: Sx — Sx, which constantly

attains the value -x0 outside the set {jc G Sx: II jc — jc0|| < e}.

Proof of the Theorem. Let X he an infinite-dimensional normed space, and let

y be a closed subspace of X of codimension one. By Proposition 2 there is an

equivalent norm ||| ||| on Y so that the unit sphere SY with respect to this new norm

admits an e-escaping point, y0, for some e < 1/500. We now identify X with R © Y

under the norm ||(?, y)\\ = max(|||y\\\, \ 11). This gives a norm on X, equivalent to the

original one, and we shall prove the Theorem for this norm. To save notation we

assume this is the given norm on X, and we then have Sx = ([-1, 1] X SY) U

({"LI}    XBy).

Set jc0 = (j, y0) G Sx and z0 = -jc0. By Proposition 3 there is a Lipschitz map/:

Sx — Sx, Lipschitz homotopic to the identity on Sx, so that /(jc) = z0 = -jc0

whenever || jc — jc0|| > e. If x = (t, y) G Sx satisfies II jc — jc0|| < e, then, since e < ¿,

(t, y) G [\,¡] X BSy(y0, e) C [-1,1] X SY. It follows that g = /¡[-ujxs, satisfies the

conditions of Proposition 1 (with 5 = SY). As y0 is an e-escaping point in SY, it

follows that g is Lipschitz homotopic, as a map from [-1,1] X SY into Sx, to the

c0 G Sx, by a homotopy HT(t, y) satisfying HT(t, y) — z0 whenever

A-

Now extend HT to a homotopy F7 in Sx by defining FT(x) = z0 for jc G 5^\[-l, 1]

X SY and all t. It is easy to see that FT is a Lipschitz homotopy in S^ joining/to the

constant z0. Since/is Lipschitz homotopic to the identity on Sx, it follows that Sx is

Lipschitz contractible.

Remarks. (1) The definition of e-escaping point, Propositions 1 and 3, and the

general scheme of the proof are slight modifications of the results of Nowak [5],

where the same terminology is also used. Notice, however, that our definition of an

e-escaping point is more general than the one used in [5].

(2) Analyzing the proof of the Theorem and the propositions, one can see that

there is, in fact, an absolute constant K < oo, independent of the given infinite-di-

mensional X, so that the identity on Sx is contractible to a constant map by a

homotopy satisfying a Lipschitz condition with constant at most K. To see this one

should only check that all the renormings in the proofs can be made up to some

absolute constants, and that e can be chosen independent of X. A similar remark

holds concerning (2) and (3) of the Theorem. We leave the details to the interested

reader.

2. Proof of Proposition 1. Let The the map associated toy0 by the definition of an

e-escaping point. Define two maps/: [-1,1] X 5 -» Z, i = 0,1, by

'g(t, T~"x),      t > 0 and jc G Bs(T"y0, e), « > 0,

• g(-t,T~"x),    t <0 and x G Bs(T"y0,e),n> 1,

z0, otherwise;
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/»(*.*)
g(\t\,T-"x),     xGBs(T"y0,e),n>0,

otherwise.

The following figure illustrates the nature of g, f0 and /, :

"t  3/4

f  1/4

I I

VvE)

f  -  3/4

1

f   :H-h--

Bs(T V£)

H-I-
B   (Ty   ,e)

s       o
B  (y   ,e)

so

J 3/4

t - 3/4

-   1

fr   bTt'V ,e)
+

B   (T^y^.e) B   (Ty   ,E)
s       o

H-1 I-•-

Bs(yo'£)

I 3/4

3/4
-1-   1

Here S is realized as the horizontal line, the maps are constant (and equal to z0)

outside the "rectangles", and inside each "rectangle" they are defined by the
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corresponding value (with respect to T~") of g in the "rectangle" [\, |] X Bs(y0, e).

Note that by the definition of an e-escaping point, the "rectangles" are indeed

disjoint (in fact the distance between two "rectangles" is at least 3e), and also that

T~" is an isometry of Bs(T"y0, e) onto Bs(y0, e). Thus/ are indeed Lipschitz maps.

By (1.1) T is Lipschitz homotopic to the identity, and let GT he the Lipschitz

homotopy, in S, joining the identity to T. Then

, ¡W,x), t>0,

*Át'X)     \f0(t,GT(x)),    r<0,

is a Lipschitz homotopy in [-1,1] X S joining f0 to/,.

The map FT](t, x) = /,(| t | (1 — t) + r, x) gives a Lipschitz homotopy joining /,

to the constant z0, and the map

F°(t x) = J/o(|i|T+(1 _t)'x)'    x$Bs(y0,e),

\g{(,x), xGBs(y0,e),

is a Lipschitz homotopy joining g to/0. The desired homotopy HT is now obtained by

applying successively F°, Fr and F1. Since all three have the constant value z0 for

| r |> 4, the same holds for HT.

3. To prove Proposition 2, we shall need two lemmas.

Lemma 1. Let X be a normed space and I > e > 0. Let a, b be two points in X so

that a ¥= b and \\a\\ = \\b\\ = {. There exists a map U = Uah: Bx -» Bxsatisfying:

(3.1) Usatisfies a Lipschitz condition with constant at most 1 + l/2e.

(3.2) U maps Bx(a, e) isometrically onto Bx(b, e), and ¡Ja = b.

(3.3) U-\Bx(b,e)) = Bx(a,e).

(3.4) i/jc = x whenever d(x,[a, b\) > 2e (where [a, b] = [ta + (1 - t)b: 0 < t =£

1}). In particular Ux = x for x G Sx.

(3.5) U maps lines parallel to [a, b] into themselves.

Proof. Define

a(x)

1, d(x,[a,b])<e,

2 -e-ld(x,[a,b]),    e<d(x,[a,b]) < 2e,

0, d(x,[a,b])>2e,

Then a: Bx -» [0,1] satisfies a Lipschitz condition with constant 1/e.

Now set Ux = x + a(x)(b — a). The conditions on ||a||, ||¿»|| and e immediately

imply that U maps Bx into itself, and that it satisfies (3.1)—(3.5). We only check

(3.3): If Ux G B(b, e), we have

e> \\b - Ux\\ = \\b-x- a(x)(b - a)\\ = \\[a(x)a + (1 - a(x))b] - x\\.

But 0 < a(x) < 1, so that a(jc)a + (1 - a(x))b G [a, b]. Thus d(x,[a, b]) < e and

a(jc) = 1, i.e. e> \\b — Ux\\ = \\b - x - (b - a)\\ = \\a - x\\, and jc G B(a, e).
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Lemma 2. Let X be an infinite-dimensional normed space and 0 < e < 1/500. Then

there exists a point x0 G Bx which is an e-escaping point in Bx with respect to a map T:

Bx -* Bx which, in addition ro (1.1)—(1.4), also satisfies

(3.6) Tx = x   for x G Sx.

Proof. Note that the homotopy condition (1.1) is trivially satisfied here because

Bx is convex, hence Lipschitz contractible. Let {w„}*=, be a normalized basic

sequence in X with biorthogonal functionals {m,,} C X* satisfying ||<pj| < 4, and set

z„ = w„/4.(See[2,p,93].)

Denote by Lnk (n ¥* k) the straight line [tzn + (1 — t)zk: t G R) passing through

zn and zk. If {«, k} D {m, /} = 0, then

(3.7) d(Ln k,LmJ)^ 1/32 >\0e.

Indeed,  if x = tzn + (\ — t)zk, y = £zm + (1 - f)z,,   assume  |r|> {   (otherwise

| 1 — t\> i, and then

\\x-y\\>i\ <p„(tzn + (1 - t)zk - fzm - (1 - S)z,) |>| 11/16 > 1/32.

Denote by Unm the map constructed in Lemma 1 for a = z„, b = zm and the given e.

Note that by (3.7), if {«, k} h {m,l} = 0, then U„tk(x) = jc whenever d(x, Lml)

< 2e, and, in particular, when Um ,(x) ¥= x, or x - Um,(y) for some y ¥= jc. Thus

the infinite composition Vx(x) = ( • • • ° i/2«-i,2« ° ' ' ' ° ^3,4 ° U\.i)(x) ls we" ^e"

fined and satisfies:

(3.8) Vt is a Lipschitz map with constant at most 1 + l/2e.

(3.9) K, maps Bx(z2n_x, e) isometrically onto Bx(z2n, e).

(3.10) Vx~\Bx(z2n, e)) = Bx(z2n^, e).

(3.11) K,jc = jcforjc G 5^.

Defining similarly V2(X) = ( ■ • • °U2n%2n+x° ■■■ ° U45 ° U23)(x), V2 also

satisfies (3.8), (3.11) and:

(3.12) V2 maps Bx(z2n, e) isometrically onto Bx(z2n+], e).

(3.13)F2-1(R^(z2n+1,e)) = R^(z2„,e).

We now define T — V2VX. T is a Lipschitz function, and z, is an e-escaping point

with an associated map T. Indeed, as observed before, (1.1) is trivially satisfied. Also

T"z\ = z2n+\> and 0-2) follows from (3.7). Condition (1.3) follows from (3.9) and

(3.12), and (1.4) from (3.10) and (3.13).

Proof of Proposition 2. Let Y be a closed subspace of X of codimension one.

Identify X with R © Y and, by equivalently renorming X, if necessary, assume that

\\(t,y)\\ = max(|i|,||-y||).

By Lemma 2 there is a point y0 G BY which is e-escaping in BY with respect to a

Lipschitz map V: BY -> BY satisfying Vy = y whenever \\y\\ = 1.

We have Sx = ({1} X BY) U ([-1,1] X 5y) U ({-1} X BY), and define T: Sx -»

Sxhy

(YVy),     t=\,
T(t,y)= ,

(t,y),      t^l.
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Then T is a well-defined Lipschitz map, T: Sx -+ Sx, and (1, y0) is an e-escaping

point of Sx associated with this T. Indeed (1.2)—(1.4) follow immediately from the

corresponding properties of V, and T is Lipschitz homotopic to the identity by the

homotopy HT(x) = t7jc + (1 — t)jc. By the special structure of Sx and the fact that

Tx ¥= x only for points x = (t, y) with t — 1, y G BY, it follows that HT(x) is indeed

a point of Sx whenever jc is.

4. Proof of Proposition 3. The proposition is trivial when X is one dimensional, so

assume dim X> 2. Fix jc0 G Sx and let <p G X* satisfy ||<p|| = <p(jc) = 1. Renorm-

ing A by m jc m =| y(x) | + ||jc — <p(jc)jc0||, we obtain a representation of Aas R © Y,

with Y = Ker(m), and with norm ||(r, y)\\ =|/| +||_y||. The point jc0 is identified

with (1,0). To save notation we assume this is the given norm on X.

Now define, for e/2 < t < 2, a function <pT: [-1,1] -» [-1,1] by

(í)=Í2t-1í+1-2t-1,     t-r</<l,

and let

FT(t,y) = i[<pT(t), 17l<P|ij)l^)       (FT(±1,0) = (±1,0)).

If (t, y) G Sx, i.e. 111 +1| y \\ = 1, then also FT(t, y) G Sx, and FT, e/2 < t *£ 2, is

a Lipschitz homotopy of Sx, with Lipschitz constant c/e for some c < oo. (We leave

the straightforward verification to the reader.)

For t = 2, F2(t, y) = (/, y), i.e. F2 is the identity, while f(t, y) = Fc/2(t, y)

satisfies/(jc) = (-1,0) = -jc0 whenever ||jc — jc0|| > e.
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