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high-aperture systems

Taco D. Visser and Sjoerd H. Wiersma

Confocal Microscopy Group, Department of Molecular Cytology, University of Amsterdam,
Plantage Muidergracht 14, 1018TVAmsterdam, The Netherlands

Received February 5, 1990; revised manuscript received April 4, 1991; accepted April 8, 1991

We present a model for investigating the effect of spherical aberration on the electromagnetic field and the
Poynting vector in the focal region of a high-aperture lens. The fields are obtained by integrating the vector
equivalent of Kirchhoff's boundary integral over the aberrated wave front. We have studied both diffraction
patterns and transfer functions. Our results differ significantly from those obtained by classical focusing the-
ory. For example, the intensity peak is narrower. Also the intensiy distribution is no longer symmetric on the
optical axis. A similar asymmetry has recently been measured.

1. INTRODUCTION
In two classical articles Wolf' and Richards and Wolf2
used the Debye approximation in a vectorial diffraction
theory to give a complete description of the electromag-
netic field of an ideal high-aperture system. It is our aim
in this paper to apply electromagnetic diffraction theory
to high-aperture lenses with spherical aberration. In re-
cent years the development of confocal microscopes has
given rise to a number of papers dedicated to the study of
high-aperture systems with aberrations.` All of these
use either Fourier diffraction or classical focusing theory.
A limitation of scalar theories is that they cannot accom-
modate polarization. Furthermore it has been pointed
out by Wolf' that, especially in high-aperture systems, a
scalar approach to electromagnetic phenomena is highly
suspicious. The larger the aperture, the more the vector
character of the electromagnetic field comes into play,
since then the refracted rays make an appreciable angle
with one another. For an aperture smaller than about
100, the results of the electromagnetic and the classical
focusing theory should more or less coincide.' Today's
confocal microscopes, however, typically have an aperture
of 120°. So, contrary to practice, an electromagnetic dif-
fraction theory, as described by Born and Wolf' and
Stamnes (Ref. 8, Sect. 15.4.1), should be used in this case
when one wants to describe spherical aberration. In a
different context, Ling and Lee9 have studied the focusing
of electromagnetic waves through a dielectric interface.
(For an alternative account of their results, see Ref. 8.)
When a converging spherical wave enters a medium with a
different permittivity, its form will be altered, giving rise
to spherical aberration. Ling and Lee, however, did not
concentrate on the role of this aberration.

One possible approach to dealing with a composed opti-
cal system is to combine ray-tracing methods together
with a diffraction theory (Ref. 8, Chap. 3).

Here we will use the electromagnetic Kirchhoff integral
to investigate the effects of spherical aberration in a high-
aperture lens. In a way this paper can be seen as an ex-
tension of the electromagnetic Kirchhoff theory by now
including spherical aberration.

This paper is organized as follows: in Section 2 we
present the vector-integral representations of the electric
and the magnetic fields by using the vector Kirchhoff
boundary integral. Section 3 is dedicated to the intro-
duction of spherical aberration and its effect on the
mathematical expression for the aberrated wave front. In
Section 4 the electric and magnetic fields on the wave
front in the exit pupil of the system are calculated for an
incoming plane monochromatic wave with arbitrary polar-
ization angle. In Section 5 we define the quantities
of interest to us: the energy density and the Poynting
vector that we shall both study in the vicinity of focus.
Furthermore we make some remarks on computational
aspects. In Section 6 a comparison is made between
the vector theory and the classical focusing theory.
Section 7 deals with diffraction patterns; our results are
presented in figures and in a table. In Section 8 the in-
fluence of spherical aberration on the optical transfer
function (OTF) is studied, and the results are compared
with Fourier theory. Finally, our results are summarized
in Section 9.

2. VECTOR-INTEGRAL REPRESENTATION
OF THE FIELDS
The coordinate system that we use is depicted in Fig. 1.
A polarized plane monochromatic wave with angular fre-
quency co comes in from the left, running parallel to the
optical axis. The polarization angle a is defined as the
angle between the incoming electric field E 0 and the posi-
tive x axis. Ideally the wave front after refraction, or
rather that portion of it that approximately fills the exit
pupil, coincides with a reference sphere. In the case of an
aberration-free lens, the reference sphere is a sphere with
the focal point as its center and with radius equal to A,
the distance along the optical axis from the exit pupil
to the focus. In the presence of aberrations, however, the
actual wave front at the exit pupil, called S, will deviate
from the reference sphere.

As we will now show, the electric and magnetic fields in
the focal region can be expressed in terms of the wave
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dicular on S. Using

A x Bs = -eEs,

we get

E(x) = | dof(ni x Es) x VG - ikG\/ji.Es].

z

x

\ \refeerence
sphere

Fig. 1. Definition of the coordinate system. On the left are the
wave vector k and the electric vector Eil,, both before refraction.
The angle between the x axis and Ei_ is the polarization angle a.
The origin is placed at focus, which is the center of the reference
sphere with radius R. p is a point on the aberrated wave front S
where the Kirchhoff integral is evaluated. The aberration func-
tion w(O) is defined as the difference between IpI and R. The
azimuthal angle 4 is defined as usual as the angle between the
positive x axis and the projection of p onto the xy plane. The
z axis coincides with the optical axis.

number k, the inward normal n of the aberrated wave
front S, and the fields on S. For the electric field E(x, t)
and the magnetic field B(x, t), we have

E(x,t) = Re[E(x)exp(-icst)],

B(x, t) = Re[B(x)exp(- iwt)], (1)

where E(x) and B(x) are the time-independent parts of the
fields. The idea is to obtain the fields near focus by
evaluation of the vector equivalent of Kirchhoff's general-
ized boundary integral,' 0 with the integral over the now
distorted wave front S. For the electric field E(x) after
refraction, we have

E(x) = f [(Es. )VG + ( x Es) x VG

+ ik(fi x Bs)G]du, (2)

where the integral is over S, the aberrated wave front. Es
and Bs are the electric and magnetic fields on S. G is the
Green's function associated with the Helmholtz equation.
For G, we have

exp(iklp - xl)
G(p, x) =

4'7Tp - xI
VG=G( f-xl - ik)^

Expanding the triple cross product gives

E(x) = | do[(-ikG ,se + VG * )Es - A(VG Es)].

(7)

The Kirchhoff vector integral for the magnetic field isl'

B(x) = f dof-ik(i x Es)G + ( x Bs) x VG

+ ( Bs)VG]. (8)

Using the facts that, at S, we have

An Bs= 0

and that

fi X Es = (1/VA)Bs,

we eventually get

s = d,-ik G + VG Bs - (VG Bs)f 

(10)

(11)

Equations (7) and (11) will serve as a basis for further cal-
culations. In Sections 3 and 4 we will derive expressions
for all quantities appearing in Eqs. (7) and (11) in polar
coordinates for the case of spherical aberration.

3. SPHERICAL ABERRATION AND THE
FORM OF THE WAVE FRONT

In a system with rotational symmetry with incident wave
fronts orthogonal to the optical axis, the only aberration
that can be present is a spherical aberration. (Of course
in this case there can also be defocus, but this is usually
not considered to be a true aberration.) In this section
we will investigate how spherical aberration affects the
form of the wave front. The aberration function w is de-
fined as the deviation of the actual wave front from the
Gaussian reference sphere. See Fig. 1. In the case of
spherical aberration we have

W(X, y) = C(X2 + y) 2, (12)

(3)

The unit vector eG is directed from a point p on S, where
the integrand is evaluated, to the point x where the field is
calculated:

where x andy are coordinates in the exit pupil and C is the
aberration constant. Equivalently one can write

w(O) = CR4 sin 4 0, (13)

eG = - pl (4)

At the exit pupil, the wave vector, which we call ks, is
orthogonal to S and coincides with ft. Therefore the first
term of the integrand is zero, since Es and i are perpen-

where R is the distance along the optical axis from the
exit pupil to the focus. From Fig. 1 it is clear that r, the
distance from the origin to the wave front, is given by

r = R + w. (14)

Define now the wave front S as the collection of points

S

p
(5)

(6)
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approximately filling the exit pupil. We want an explicit
expression for S. Substituting Eq. (12) into Eq. (14) and
using r2 = x2 + y + z2 give

S(X,y,z) = x 2 + 2 + 2 - R2 2RC(X 2 + y2)2

- C2(x2 + y2)4 = 0. (15)

A vector normal to S is obtained by taking the gradient of
Eq. (15):

n(x) = -VS, (16)

or, explicitly,

2x - 8RC(x2 + y 2)x - 8C2(x2 + y 2)3x
n(x) - 2y - 8RC(x2 + y2)y - 8C2(X2 + y2)3y . (17)

2z

One can re-express all points (x, y, z) in terms of 0 and +

as follows:

x = r(6)sin 0 cos 'k,

y = r(O)sin 0 sin b,

z = r(6)cos . (18)

We then get, for the unit inward normal vector on S,

= -1/{[2r(6)sin 0 - E]
2 + 4r2 (0)cos2 0}112

[2r(O)sin - e]cos ]
x [2r(O)sin 0 - ]sin o , (19)

2r(6)cos 

where we have defined

e = e(0) 8CRr 3 (0)sin' + 8C2r 7 (6)sin7 0. (20)

Note that, for zero aberration, i.e., C = 0 and E(6) = 0, we
regain the normal to a perfect sphere. Now the normal
appearing in Eqs. (7) and (11) is expressed in terms of 
and . From now on, we will omit the circumflex over
unit vectors.

By using standard analysis, one can deduce an expres-
sion for the infinitesimal surface element d of the aber-
rated wave front. It turns out that

d,= 1 + 1[ d(o r2(0)sin OdOdo.

k. Furthermore, both the incident and the refracted elec-
tric vector lie on the same side of M. In Fig. 2 we have
depicted the wave vector and the electric vector before
and after refraction. At refraction the wave vector k is
rotated into the direction of n. The normal to M is easily
seen to be n x k. Because of these considerations, the
refracted field Es can be written as the sum of an un-
changed component of EimC in the direction n x k and a
rotated component in the plane M. The latter component
before refraction has a magnitude equal to Ei,, [(n x
k) x k]. After refraction its length remains unchanged,
but it is now pointing in the direction of (n x k) x n.
Summarizing all this, we have

Es = (n k)"2 ( [Ein (n x k)](n x k)Inx k 2

+ {Ein [(n x k) x k]}(n x k) x n
I(nxk)xkl|(nxk)xnl (22)

The first term on the right-hand side is the unchanged
component, and the second one is the rotated component
of the incoming field. Because the incoming plane wave
is changed by the lens into an (aberrated) spherical wave,
the energy flux is smeared out. Conservation of energy
then leads to an angular dependent prefactor (n k)"2 .
In Refs. 2 and 11 an analogous equation is derived for a
perfect lens.

From the definitions in Section 2 it follows that

Ein = (cos a, sin a, 0) (23)

and also that

k= (0,0,-1).

The first factor of Eq. (22) then becomes

(n k)"/2 [2r(6)cos 611/2,

where we have defined

(24)

(25)

(26)N -{[2r(6)sin 0 - e]2 + 4r2 (0)cos2 6}1/2.

By substituting Eqs. (23)-(26) and Eq. (19) into Eq. (22)

(21)

For an aberration-free system we have dr(6)/dO = 0,
and thus the familiar spherical surface element d =
r2 sin OdOdk is recovered.

4. FIELDS ON THE WAVE FRONT

We now deduce an expression for Es, the (time-indepen-
dent) electric field on the wave front, just after refraction.
The effect of refraction on the polarization angle will be
neglected. From the Fresnel equations it follows that
this neglect is justified as long as the incoming wave vec-
tor does not make an appreciable angle with the normal of
the refracting surface. This means that after refraction
the electric vector makes the same angle with the meridi-
onal plane M as EiC does. M is defined as the plane con-
taining both the optical axis and the incoming wave vector

Fig. 2. Meridional plane M with the left-hand side being the
situation before, and the right-hand side, immediately after re-
fraction. Indicated are the wave vector, the electric vector, and
its components in the plane and perpendicular to it. The vector
n coincides with the refracted wave vector. Es is the electric
vector at the aberrated wave front. The vectors (n x k) x k and
(n x k) x n both lie in the meridional plane.
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and working out the cross products, we get, after a lengthy
calculation for the electric field on the wave front S,

Es(0, 4, a) = [(2r cos 0)/N]112

[sin
2 4) + 2rN-1 cos 0 cos 2 4)1

x cos a cos 4) sin 4(2rN-' cos 0 - 1)
-N-1(2r sin 0 - E)cos k

cos 4) sin 0(2rN'1 cos 0 - 1)1
+ sin a cos2 4) + 2rN' cos 0 sin2 ,

-N'1(2r sin 0 - e)sin 
(27)

in which we have dropped the explicit 0 dependence of r(0).
Notice that for zero aberration (i.e., = 0 and N = 2r)
Eq. (27) reduces to the expression for the electric field
given by Richards and Wolf2 [Eq. (2.23)]. (In fact they
take a to be zero.) In other words, for a perfect lens our
energy projection over the wave front reduces to the so-
called aplanatic projection as described in Ref. 8 (p. 462).

For the magnetic field we have

Bs = VEn x Es. (28)

This yields

Bs(0,), a) = (2rN1 cos 0)1/2

(1 - 2rN'1 cos 0)sin 4) cos 1
x cos a -cos 2 - 2rN'1 cos 0 sin2 )

(2r sin 0 - e)N'1 sin 4
'sin2 4) + 2rN'1 cos 0 COS2 4)11

+ sin a (2rN'1 cos 0 - 1)sin 4 cos 4 .
(e - 2r sin 0)N'1 cos 4

(29)

Every quantity appearing in Eqs. (7) and (11) has now
been expressed in terms of 0 and . The electric and
magnetic fields can now be calculated for any arbitrary
point in the image space. These fields will be used in the
definitions in Section 5.

5. ENERGY DENSITY AND THE POYNTING
VECTOR

The time-averaged electric and magnetic energy density
distributions are defined7 as

(WE) = E.- E*

(WM)a = 2B. Ba*, (30)

respectively. Here * denotes complex conjugation and
(...) means averaging over a large number of periods.
Furthermore the label a indicates that the electric and
magnetic fields depend on the polarization angle a with
Es and Bs, respectively. We do not bother to insert the
exact constants of proportionality since we are interested
only in the relative distribution around the focal position.
The norm of the Poynting vector is the quantity to be
compared with the intensity as calculated in a scalar the-
ory. The time-averaged Poynting vector (S) can be writ-
ten as7

(S)a = 133 Re(Ea X Ba*).

Incidentally, one can show that, for an ideal high-aperture
system, the norm of the time-averaged energy flow and
the time-averaged total energy density are proportional on
the optical axis2 :

|(S)al c (W) a (32)

with (W)a being, of course, the sum of the two quantities
appearing in Eqs. (30). The complex components of E(x)
and B(x) yield a total of 12 real two-dimensional integrals.
To obtain numerical stability, we split the integration over
4 in each integral into two parts. So a total of 24 inte-
grals have to be evaluated to calculate (S),a in a single
point. This was done with routine DO1FCF of the NAG
library.' 2 This routine by van Dooren and de Ridder'3 ap-
proximates the integral with a seventh-degree rule. It
uses an adaptive subdivision strategy and was later opti-
mized by Genz and Malik.'4 The computation time de-
pends strongly on the aberration constant.

It should be pointed out that several other numerical
methods for dealing with diffraction integrals exist. We
mention the research of Hopkins,'5 Ludwig,'6 Stamnes
et al.,'7 and Stamnes (Ref. 8, Sec. 7.2).

6. COMPARISON WITH CLASSICAL
FOCUSING THEORY

We will now proceed to compare our results with a third-
order scalar diffraction theory. First we adopt the di-
mensionless axial and lateral optical coordinates u and v:

u = kz sin2 Ql,

v = k(x2 + y2)"2 sin fl, (33)

with l the angular semiaperture.
Classical focusing theory is based on three assump-

tions: (1) a scalar field, (2) the paraxial approximation,
and (3) the Debye approximation. For a detailed discus-
sion on the validity of this theory we refer to Ref. 8. For
the case of spherical aberration, classical focusing theory
gives an analytical expression for the intensity distribu-
tion along the optical axis,8 namely,'8

I(u,0) = (1/4I8I){[C(t1) + C(t2)]2 + [S(tl) + S(t2)] 2}, (34)

where

t,= (2vJi6J)1[1_ (u/87r)],

t2 = (27rJ5J)112(u/8ar3), (35)

and C(t) and S(t) are the Fresnel integrals defined as

2 )12 t

C(t) = t- |COS(X2 )dx,

S(t)= (2)1/2 sin(X2)dx (36)

Here 6 is defined as the wave-front aberration at the edge
of the exit pupil, measured in wavelengths. One can eas-
ily show' that classical focusing theory predicts an inten-
sity distribution that is symmetric around u = 4n-3. The
Fresnel integrals can be calculated with NAG routines
S20ACF and S20ADF 12

T. D. Visser and S. H. Wiersma
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<WE>

-20 -15 -10 -5 0 5 10 15 20
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Fig. 3. Time-averaged electric density (WE) (in arbitrary units)
along the optical axis: A, perfect high-aperture lens; B, lens
with spherical aberration equal to half a wavelength at the edge
of the exit pupil. The semiaperture angle is 600, and the polar-
ization angle is 30°.

As stated above, a scalar theory cannot accommodate
the polarization of light. Therefore this comparison is
limited to the case of unpolarized light. In our approach
the electromagnetic properties of unpolarized light can be
studied by integrating over the polarization angle a in
Eqs. (30). We can write the time-averaged Poynting vec-
tor for unpolarized light as

(S) = if (S),,da. (37)

As we will now show, this integral can be performed ana-
lytically. The Poynting vector (S), depends only on a
from Es and Bs. From Eqs. (7) and (11) it is clear that
E(x) and B(x) depend linearly on Es and Bs, so, according
to Eqs. (27) and (29), we can write symbolically

Et(x) = C cos a + D sin a,

Ba(X) = F cos a + H sin a.

Thus we have

1 2r
(S)=-2Re | [(C x F*)cos 2 a + (D x H*)sin2 a

(38)

+ (C x H* + D x F*)sin a cos allda}. (39)

This integration can be done in a trivial manner and
yields

(S) = Re(C x F* + D x H*), (40)

again up to a constant of proportionality. This concludes
our calculation of (S).

7. DIFFRACTION PATTERN

As above, we take to be the wave-front aberration at the
edge of the exit pupil, measured in wavelengtlhs. All our
results are for 8 in the range of 0-2, which is more than
would be permitted in practice. We have assumed imag-
ing in air. First we calculated (S)a, and (WE),, for an

aberration-free system (i.e., C = 0) and found for a semi-
angular aperture fl of 60°, good agreement with all the
results of Richards and Wolf,2 although, as stated above,
contrary to our theory their theory is based on the Debye
approximation.

In Fig. 3 the time-averaged electric energy distribution
(which is presumably what a photographic plate records) is
depicted for both an ideal high-aperture lens and one with
spherical aberration with 8 = 0.5. In the aberrated case
the peak has shifted from the focal point, as could be ex-
pected. But also the symmetry of the distribution on the
u axis is now broken.

Comparing the intensities with those as given by
Eq. (34), we find, just as in the ideal case,2 that for semi-
apertures smaller than 5 our results agree well with
classical focusing theory (for all values of that we exam-
ined). For high apertures, however, we find that there
are significant differences between the predictions of the
two theories; for a typical example, see Fig. 4. According
to the electromagnetic theory, spherical aberration causes
the axial distribution to be no longer symmetric around
the maximum: The minima before the peak are much
smaller than those behind it and can even become zero.
(Notice that the axial distribution for a perfect high-
aperture lens does not have any zeros.) Recent mea-
surements of the axial response function of a confocal
microscope with various amounts of spherical aberration
by Wilson and Carlini (Ref. 4, Fig. 8) seem to confirm this
feature. Also the peak shift away from the Gaussian
image plane is now less than 4vr-. Finally, the peak width
as predicted by the electromagnetic theory is less than
that of the classical theory. These are all general fea-
tures, which are also found for other values of and .
More results can be found in Table 1, as follows:

(1) With the same , the peak width [or rather, the full
width at half-maximum (FWHM)] gets less as the aper-
ture increases.

(2) With fl constant, the FWHM gets larger when 
increases. Both were to be expected.

Intensity

-20 -10 0 10 20

U-.
Fig. 4. Comparison of scalar and electromagnetic diffraction
theories (in arbitrary units) for = 0.5 along the u axis: A, the
intensity for the scalar theory; B the norm of the time-averaged
Poynting vector. In this example the semiaperture angle was
60°. In this case the vector theory yielded a Strehl ratio of 0.97.
Notice that, unlike in the case of a perfect high-aperture lens, we
find that one of the first minima is zero.
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Table 1. Vector Theory, Position, and Full Width
at Half-Maximum for the

Electromagnetic Diffraction Theorya
100 400 600

a Peak FWHM Peak FWHM Peak FWHM

0.5 6.20 11.15 5.61 9.96 4.88 8.51
1.0 12.50 11.70 11.24 10.26 9.80 8.67

1.5 18.75 13.16 16.87 11.07 14.74 9.01

'The position of the peak and the FWHM for the intensity distribution
on the optical axis for various values of spherical aberration and for differ-
ent semiapertures. The amount of aberration is measured in wavelengths
at the edge of the exit pupil. All FWHM's and positions are in optical
units along the u axis.

OTF

-0.1

spatialfrequency->

Fig. 5. Incoherent OTF for various amounts of spherical aberra-
tion as predicted by electromagnetic Kirchhoff theory. The re-
sults are for a lens with a semiaperture of 60° that images in air.
Indicated is the amount of aberration at the edge of the pupil in
wavelengths: A, ideal lens; B, 0.25; C, 0.50; D, 0.75. The dashed
curves are the transfer functions according to Fourier theory:
B2, 0.25; C2 , 0.50.

(3) For the same 8, the peak shift away from the Gaus-
sian image plane decreases as fl increases.

It should be stressed that a nonparaxial scalar theory3

also predicts an asymmetric axial intensity distribution.
That theory, however, differs in two respects from ours.
First, the FWHM is greater than that of the vectorial the-
ory (for instance, for fl = 600 and 8 = 0.5, the difference
is 10%). Second, in the same example the scalar theory
does not yield a zero for the first minimum, whereas ours
does (see Fig. 4). More precise measurements are needed
to determine the limits of validity of either of the two
approaches.

8. OPTICAL TRANSFER FUNCTION

Our knowledge of the influence of spherical aberration on
the diffraction pattern enables us to calculate the OTF
The incoherent OTF, which we call C(m, n), can be written
as an inverse Fourier transform (Ref. 7, p. 485):

C(m,n) = f _ Ih(x,y)I 2exp[2iri(mx + ny)]dxdy, (41)

where m and n are spatial frequencies. The amplitude
point-spread function is denoted h(x, y). The integrals
are over the Gaussian image plane. Note that, with spheri-

Cal aberration, this is no longer the plane in which the
maximum intensity occurs. Now clearly h(x,y)l2 is the
intensity distribution in the Gaussian image plane of
the lens if we have an incoming plane wave. So, in our
approach, we can substitute

Ih(x, y)I = (S(x, Y))UnpOlarized (42)

Because of rotational symmetry, (S) depends only on v, the
optical coordinate of Eqs. (33), which implies that the two-
dimensional Fourier transform in Eq. (41) can be written
as a one-dimensional Fourier-Bessel (or zeroth-order
Hankel) transform:

C(p) = 2r fj(S(v))j 2 vJo(2vpv)dv, (43)

with J0 the zeroth-order Bessel function. We have stud-
ied cases for which 8 < 1.0. In Fig. 5 we have depicted
the OTF for several degrees of spherical aberration.
When the aberration at the pupil's edge is 0.75A (curve D)
the OTF becomes negative for certain spatial frequencies.

The usual approach to the OTF is to calculate the auto-
correlation function of aperture aberration functions.
For spherical aberration, this calculation was first done
by Black and Linfoot.'9 Using Fourier theory, they
derived that2 0

C(p) =
4 (1-P2 /4)1/2 ([_t2[1/2_p 2. 2 + 2

-J dt JCos 8r~ps S2 +t+ ds .

(44)

When comparing this with our approach, one may indeed
ask whether Fourier optics is valid in high-aperture sys-
tems. Black and Linfoot and the present authors do not
think so, but, as stated in Section 1, it is commonly used in
the literature. So if we then compare this approach with
the electromagnetic theory, we find (for 8 < 1.0) that the
latter typically predicts transfer functions that are worse.
See Fig. 5.

9. CONCLUSION

We have studied the effect of spherical aberration on the
electromagnetic field in high-aperture systems using a
Kirchhoff theory. We find that the distribution of the
time-averaged electric energy distribution is not symmet-
ric along the u axis. The optical transfer function ac-
cording to this new theory, typically is worse than that
predicted by Fourier optics. We have shown that the elec-
tromagnetic Kirchhoff theory yields results that differ
from the scalar classical focusing theory (based on the
paraxial and the Debye approximations) when applied to
high-aperture systems with spherical aberration. The
most prominent difference is that the intensity distribu-
tion is no longer symmetric on the optical axis. Recent
experimental evidence seems to confirm this feature. A
similar asymmetry is also predicted by a nonparaxial
scalar theory. This theory, however, differs in other re-
spects from ours. Further measurements are needed to
decide between these two approaches.
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