
 
 
 
 

 

Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) / 

This is a self-archiving document (published version):  
 

 

 

 

 

 

 

 

 

 

Diese Version ist verfügbar / This version is available on:  

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-348785 

 

 

 

„Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFGgeförderten) Allianz- bzw. 
Nationallizenz frei zugänglich.“ 
 
This publication is openly accessible with the permission of the copyright owner. The permission is 
granted within a nationwide license, supported by the German Research Foundation (abbr. in German 
DFG). 
www.nationallizenzen.de/ 

 

 

 

Katrin Philipp, Florian Lemke, Matthias C. Wapler, Ulrike Wallrabe, Nektarios 
Koukourakis, Jürgen W. Czarske 

Spherical aberration correction of adaptive lenses 
 

Erstveröffentlichung in / First published in: 

SPIE BiOS. San Francisco, 2017. Bellingham: SPIE, Vol. 10073 [Zugriff am: 02.05.2019]. 

DOI: https://doi.org/10.1117/12.2250891 

 



PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Spherical aberration correction of
adaptive lenses

Katrin  Philipp, Florian  Lemke, Matthias C. Wapler, Ulrike
Wallrabe, Nektarios  Koukourakis, et al.

Katrin  Philipp, Florian  Lemke, Matthias C. Wapler, Ulrike  Wallrabe,
Nektarios  Koukourakis, Jürgen W. Czarske, "Spherical aberration correction
of adaptive lenses," Proc. SPIE 10073, Adaptive Optics and Wavefront
Control for Biological Systems III, 1007303 (21 February 2017); doi:
10.1117/12.2250891

Event: SPIE BiOS, 2017, San Francisco, California, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 02 May 2019  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Spherical aberration correction of adaptive lenses

Katrin Philippa, Florian Lemkeb, Matthias C. Waplerb, Ulrike Wallrabeb, Nektarios

Koukourakisa, and Jürgen W. Czarskea

aTechnische Universität Dresden, Germany
bUniversity of Freiburg, Germany

ABSTRACT

Deformable mirrors are the standard adaptive optical elements for aberration correction in confocal microscopy.
Their usage leads to increased contrast and resolution. However, these improvements are achieved at the cost
of bulky optical setups. Since spherical aberrations are the dominating aberrations in confocal microscopy, it is
not required to employ all degrees of freedom commonly offered by deformable mirrors.

In this contribution, we present an alternative approach for aberration correction in confocal microscopy based
on a novel adaptive lens with two degrees of freedom. These lenses enable both axial scanning and aberration
correction, keeping the setup simple and compact. Using digital holography, we characterize the tuning range
of the focal length and the spherical aberration correction ability of the adaptive lens. The operation at fixed
trajectories in terms of focal length and spherical aberrations is demonstrated and investigated in terms of
reproducibility. First results indicate that such adaptive lenses are a promising approach towards high-resolution,
high-speed three-dimensional microscopy.
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1. INTRODUCTION

Laser scanning confocal microscopy is a widely used technique for the investigation of biological specimens
because of the high axial and lateral resolution. However, aberrations caused by the specimens itself lead to a
degradation of the resolution. In the pioneering works of Booth et al.1,2 , the specimen-induced aberrations were
corrected using a deformable mirror leading to diffraction limited resolution and significantly improved contrast.
However, correcting aberrations with an deformable mirror in optical microscopes leads to bulky setups. In
contrast, adaptive lenses provide axial scanning for optical microscopes while still allowing a relative compact
optical setup.3,4 Recently, adaptive lenses with spherical tunability have been presented5,6 that promise an
alternative possibility for aberration correction. In contrast to aberration correction with a deformable mirror,
adaptive lenses allow for a compact setup and simultaneous axial scanning. Since the resolution of confocal
microscopes is mainly degraded due to spherical aberrations, two adequately designed degrees of freedom of the
lens surface should be enough to correct aberrations while simultaneously enabling axial scanning.

In this contribution, we present an adaptive lens with two degrees of freedom based on two glass-piezos that
sandwich the membrane. We characterize the ability of the lens to correct spherical aberrations with emphasis
to microscopic applications. Section 2 provides a description of the lens design and an introduction to the
modeling of the lens parameters, namely focal length and spherical aberration. In Section 3, the tunability of
the adaptive lens in terms of refractive power and spherical aberration is determined using digital holography
and the robustness of fixed trajectories is investigated.

Further author information: (Send correspondence to K.P.)
K.P.: E-mail: katrin.philipp@tu-dresden.de

Adaptive Optics and Wavefront Control for Biological Systems III, edited by Thomas G. Bifano, Joel Kubby, Sylvain Gigan,
Proc. of SPIE Vol. 10073, 1007303 · © 2017 SPIE · CCC code: 1605-7422/17/$18 · doi: 10.1117/12.2250891

Proc. of SPIE Vol. 10073  1007303-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 02 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



2. ADAPTIVE LENS WITH SPHERICAL ABERRATION CORRECTION

2.1 Lens design

The adaptive lens consists of a 50µm thin glass membrane, which is glued in-between two piezo rings (Fig. 1).
This piezo-glass sandwich seals a fluid chamber that is filled with transparent paraffin oil. The piezo rings enable
a direct deformation of the glass membrane which leads to a change of the focal length of the lens depending
on the curvature of the membrane. As shown in Fig. 1, one contracting and one expanding piezo ring lead to a
bending deformation with an approximately parabolic lens surface (Fig. 1 left) in comparison to two contracted
rings that yield a buckling deformation with a more hyperbolic lens surface (Fig. 1 right). In this way one can not
only control the focal power of the lens but as well its spherical behavior (see [6] for a more complete description
of the lens and [7] for the general principle).

Figure 1. Illustration of lens curvature with one expanding and one contradicting piezo ring (bending mode, left) and
both piezo rings contracting (buckling mode, right) [6].

2.2 Modeling of the lens

The refractive power and spherical aberration of the lens are described in terms of Zernike coefficients of the
wavefront phase. Digital holography is used to reconstruct the wavefront of a wave propagating through the
adaptive lens. The phase of the wavefront φ is described using Zernike polynomials

φ =
∑

n

n
∑

m=−n

αm
n Z

m
n . (1)

We use the defocus Zernike coefficient α0
2 and the primary spherical Zernike coefficient α0

4 to describe the behavior
of our lens. The corresponding normalized Zernike polynomials are

Z0
2 =

√
3
(

2ρ2 − 1
)

(defocus) (2)

Z0
4 =

√
5
(

6ρ4 − 6ρ2 + 1
)

(primary spherical) (3)

The defocus coefficient α0
2 of the Zernike polynomials is used to determine the focal length f of the lens as

1

f
= 4

√
3 · n1 − n0

n0

λα0
2

a2
(4)

with the wavelength λ, the refraction indices n0 and n1 of the surrounding medium and the lens material,
respectively, and the aperture radius a of the wavefront measuring device (see appendix 4.1 for complete deviation
of (4)). The primary spherical aberration coefficient α0

4 of the Zernike polynomials is used directly to describe the
sphericity of the lens, with α0

4 = 0 denoting a perfectly aspheric lens, i.e. without inducing spherical aberration
to a wavefront with wavelength λ = 532 nm.

3. EXPERIMENTS AND RESULTS

After introducing the conventions and notations, we now describe how to measure the Zernike coefficients using
digital holography. The holograms are recorded using a Mach-Zehnder setup in off-axis configuration (see Fig. 2).
The reconstruction of the object beam wavefront ψ = Aeiφ is conducted using the angular spectrum method.8,9

The recorded hologram with intensity H(nx, ny) is transfered to its angular spectrum with intensity S(fx, fy)
using a two-dimensional fast fourier transform (FFT).

S(fx, fy) =
1

NxNy

Nx−1
∑

nx=0

Ny−1
∑

ny=0

H(nx, ny)exp {2πi(fxnx∆x+ fyny∆y)} (5)
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Figure 2. Mach-Zehnder setup in off-axis configuration. The laser beam of wavelength λ = 532 nm is expanded and
split into a reference and object beam by a beam splitter. The object beam propagates through the adaptive lens and is
superimposed by the reference beam at the second beam splitter with a small angle of a few degrees between the beams.
The resulting hologram is recorded using a CCD camera.
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Figure 3. Left: raw angular spectrum of an adaptive lens holograph (log scale). The local maximum in the lower picture
half represents the real image contribution, the central maximum the dc contribution and the maximum in the upper half
is the twin-image (virtual) contribution. Right: Angular spectrum after high pass and Gaussian filtering and centered
around xG, yG.

H(nx, ny) is the intensity distribution of hologram at pixel position nx, ny, ∆x,∆y are the size of the camera
pixels and fx, fy are the (digitized) angular frequencies with fx/y ∈ N,−Nx/y/2 ≤ fx,y ≤ +Nx/y/2. As
depicted in Fig. 3, the angular spectrum consists of a DC contribution and a contribution from the real and the
virtual image. The contribution of DC-term is removed by a high-pass filter and the twin-image is eliminated
by a multiplication of a Gaussian window G with the angular spectrum. The central position (xG, yG) of the
Gaussian window is located at the center of mass of the real image contribution in the angular spectrum S. The
filtered angular spectrum is then multiplied with the propagation kernel

K(fx, fy) = exp
{

−i
√

k2 − r2 · d
}

, r = 2π

√

(
fx

Nx∆x
)2 + (

fy
Ny∆y

)2 (6)

with the propagation distance d and the wavenumber k = 2π
λ . In order to obtain the phase and amplitude of the

object wave, an inverse FFT is used.

The resulting reconstructed wavefront Ψ

Ψrec =
1

NxNy

Nx−1
∑

nx=0

Ny−1
∑

ny=0

G(nx, ny) · S(nx, ny) ·K(nx, ny) (7)

is used to determine the phase φ and the amplitude A of the reconstructed wave

Ψrec = Aexp{iφ} (8)
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Figure 4. Actuation voltages of the two piezo rings of the adaptive lens (a), the corresponding defocus (b) and primary
spherical aberration Zernike coefficients (c). 3050 different combinations of actuation voltages have been applied, denoted
with the measurement number on the x-axis. The blue lines indicate the first iteration of the resulting Zernike coefficients
(b+ c). The second iteration is based on the smoothed angular spectrum and phase center positions that are given to the
reconstruction algorithm in order to remove the outliers in the Zernike coefficient determination (b + c, red lines).

The phase φ is then unwrapped using least-squares two-dimensional phase unwrapping.10 Since the reconstruc-
tion outside the lens area is not working adequately, the reconstructed phase is cropped around its center position
(xcent,phase, ycent,phase).

The defocus and spherical aberration coefficients (see Section 2.2) are now extracted from the reconstructed
phase to characterize the lens behavior. For a characterization of the lens, the actuation voltages U1 and U2 of the
two piezo rings are tuned between 0V and 120V, respectively (Fig. 4). The corresponding defocus and primary
spherical aberration Zernike coefficients are determined using the described digital holography evaluation. For
a data evaluation that is robust against outliers of the automatically determined center position (xG, yG) of the
Gaussian window for the filtering in the angular spectrum and the center position (xcent,phase, ycent,phase) a data
evaluation consisting of two iterations is conducted. First the center positions of the Gaussian window as well of
the reconstructed phase image are automatically determined. Since the actuation voltage is changed slowly and
quasi-continuously with each measurement, a smooth curvature of the resulting Zernike coefficients is expected.
Thus, in the second iteration, the automatically detected center positions in dependency of the measurement
number are smoothed. The outliers, i.e. the center positions not laying on the smoothed curves are re-evaluated
with fixed center positions. As can be seen in Fig. 4b and Fig. 4c, the second iteration yields a robust data
evaluation.

By evaluating all measured combinations of actuation voltages, we determine the range of the aberration
correcting adaptive lens in terms of refractive power 1/f and primary spherical aberration coefficient α0

2 (Fig. 5).
The lens can be operated with refractive powers between about −3Dpt and 5Dpt. As depicted in Fig. 5,
spherical aberration correction Zernike coefficients in the range between about −1 and 0.1 were measured with our
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Figure 5. Spherical aberration tunability α0

2 in depen-
dence of the refractive power 1/f of the adaptive lens
based on the 2nd iteration of the Zernike coefficient de-
termination (see Figs. 4b and 4c , red lines).
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Figure 6. Tuning the spherical aberration at fixed de-
focus of about 2.9Dpt(green) 3.4Dpt(red) 3.9Dpt(blue).
The measurement was repeated ten times, the iteration
number is indicated with an increasing marker size.

actuation voltages routine. The range between 1Dpt and 4.5Dpt promises best aberration correction capabilities
because the spherical aberration Zernike coefficients can be tuned between about −0.3 and 0 in this range. Thus,
the following investigates are conducted in this range.

In order to apply the adaptive lens for aberration correction in an optical microscope, the spherical aberration
has to be tuned at a fixed focal length. As a proof of principle, a look-up-table for focal length and spherical
aberration coefficient in dependence of the actuation voltages and voltage tuning direction has been determined.
The inverted look-up-table was used to generate actuation voltage trajectories to tune the spherical aberrations
at a fixed focal length as demonstrated in Fig. 6. Repeating the measurements ten times showed a mean
refractive power standard deviation of σ1/f,rel = 0.3% and a mean spherical aberration coefficient standard
deviation of σZ0

4
= 1.1%. Consequently, the aberration correcting lens promises a robust compensation for

induced aberrations in a range complementary to the lens domain shown in Fig. 5. First experiments with an
oko 37 channel deformable mirror that was used to introduce spherical aberrations suggest that the lens is able
to correct these aberrations. Future efforts will focus on modeling of specimen-induced aberrations and their
correction using the adaptive lens.

4. CONCLUSIONS

In this contribution, we presented a first investigation of the domain of an aberration correcting lens in terms
of refractive power vs. spherical aberration correction. The application of fixed trajectories was demonstrated
with a refractive power repeatability of a mean standard deviation of 0.3% and a spherical aberration correction
repeatability of a mean standard deviation of 1.1%. In conclusion, this first characterization of the spherical
aberration correction capability of the adaptive lens looks promising and has to be investigated further.
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APPENDIX

4.1 Relation between defocus coefficient α0
2
and wavefront curvature R

In this section, the relation between the Zernike Defocus coefficient and the radius of the wavefront curvature is
deviated. A spherical wavefront with radius of curvature R is assumed that enters an aperture with radius a.
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This resulting phase difference ∆ on the optical axis at the edge of of the aperture is given by

∆ = R−
√

R2 − a2. (9)

Assuming a wavefront Φ, that consists only of the normalized defocus Zernike polynomial yields

Φ = α0
2Z

0
2 = α0

2

√
3(2ρ2 − 1) (10)

Note, that Φ is zero for ρ = ±1/
√
2.

Normalizing (9) to an aperture of unit radius, expressing it in units of wave numbers and setting ∆(ρ =
±1/

√
2) = 0 yields

∆ =
a

λ

(

√

(R/a)2 − ρ2 −
√

(R/a)2 − (1/
√
2)2
)

(11)

which can be simplified to

∆ =
R

λ

(

1−
√

(ρa/R)2 −
√

1− (a/
√
2R)2

)

. (12)

A Taylor expansion of quadratic terms results to

∆ =
R

λ

(

1− 1

2

(ρa

R

)2

− 1 +
1

2

(

a√
2R

)2
)

(13)

which simplifies to

∆ = − a2

4λR
(2ρ2 − 1) (14)

Finally, the radius of curvature R is obtained by equaling (9) and (10)

R = − a2

4
√
3λW 0

2

. (15)

The focal length f is then obtained using the lensemakers equation

1

f
= −n1 − n0

n0

1

R
(16)

with the refraction indices n0 and n1 for the surrounding medium and the lens fluid, respectively.
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