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Spherical collapse in Galileon gravity: fifth force solutions, halo mass function and halo bias
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We study spherical collapse in the Quartic and Quintic Covariant Galileon gravity models within the frame-
work of the excursion set formalism. We derive the nonlinear spherically symmetric equations in the quasi-static
and weak-field limits, focusing on model parameters that fit current CMB, SNIa and BAO data. We demonstrate
that the equations of the Quintic model do not admit physical solutions of the fifth force in high density regions,
which prevents the study of structure formation in this model. For the Quartic model, we show that the effective
gravitational strength deviates from the standard value at late times (z . 1), becoming larger if the density is
low, but smaller if the density is high. This shows that the Vainshtein mechanism at high densities is not enough
to screen all of the modifications of gravity. This makes halos that collapse at z . 1 feel an overall weaker
gravity, which suppresses halo formation. However, the matter density in the Quartic model is higher than in
standard ΛCDM, which boosts structure formation and dominates over the effect of the weaker gravity. In the
Quartic model there is a significant overabundance of high-mass halos relative to ΛCDM. Dark matter halos are
also less biased than in ΛCDM, with the difference increasing appreciably with halo mass. However, our results
suggest that the bias may not be small enough to fully reconcile the predicted matter power spectrum with LRG
clustering data.

I. INTRODUCTION

The so-called ΛCDM model has been extremely successful
over the past 15 years in accounting for most of the accumu-
lated cosmological data [1–12]. In this model, general relativ-
ity (GR) describes gravity, most of the matter is in the form of
cold-dark-matter, and a cosmological constant Λ acounts for
the missing "dark energy" that is responsible for accelerating
the expansion of the universe. However, despite the overall
observational success, the fact that the value of Λ required
to explain the acceleration is many orders of magnitude be-
low any standard quantum field theory predictions is a major
embarassment. This problem has motivated the proposal of
a number of alternatives, one of which is the modification of
gravity (see [13] for an extensive review). The idea behind
these models is that GR breaks down on cosmological scales,
in such a way that it accelerates the expansion of the universe
without requiring Λ.

The Galileon gravity model [14–16] is an example of one
such model, and it has been receiving growing interest lately
[17–28]. In this model, the modifications of gravity are deter-
mined by a scalar field ϕ (dubbed the Galileon field) whose
Lagrangian is invariant under the Galilean shift transforma-
tion, ∂µϕ → ∂µϕ + bµ, where bµ is a constant four-vector.
In [14], it was shown that in four-dimensional flat space-time
there are only five Lagrangian densities that are Galilean in-
variant and that lead to second order field equations of mo-
tion. These Lagrangian densities are named after the power
with which ϕ appears (see Eq. (1) below): besides the linear
(L1) and quadratic (L2) terms, which describe a model like
quintessence with a linear scalar potential, there are also the
cubic, quartic and quintic terms (L3, L4 and L5, respectively)
that are responsible for the modifications of gravity. The
model was subsequently generalized to curved space-times in

∗ Electronic address: a.m.r.barreira@durham.ac.uk

[16], where it was concluded that explicit couplings between
Galileon derivative terms and curvature tensors are needed in
the quartic and quintic Lagrangians to retain the equations of
motion from becoming higher than second-order. The second
order nature of the equations is crucial to avoid the propa-
gation of Ostrogradsky ghosts [29], and makes the Galileon
model a subset of the more general Horndeski theory [30].
In the Galileon model, the spatial gradient of the scalar field
contributes to the modifications of gravity, which are often re-
ferred to as a fifth force. These spatial gradients have to be
suppressed in regions near massive objects, if the model is to
survive the stringent Solar System gravity tests that constrain
the magnitude of a long-distance fifth force to be very small
[31–34]. In the Galileon model, this is achieved by a mecha-
nism known as the Vainshtein effect [35–37], which relies on
the presence of nonlinear couplings of the scalar field deriva-
tives that appear in L3, L4 and L5. The general picture is that
far away from massive bodies, where the density is low, the
nonlinearities are not important and the Galileon field satis-
fies a linear Poisson-like equation. On the other hand, near
massive bodies, where the density is high, the nonlinear terms
become important and effectively suppress the spatial varia-
tions of the scalar field.

In previous work [17, 18], we have modified the CAMB

[38] and CosmoMC [39] codes to include the cosmology of
the Covariant Galileon model [15]. We have used these ex-
tended codes to place observational contraints on the cosmo-
logical parameter space, using data from the WMAP 9-yr re-
sults for the temperature power spectrum of the cosmic mi-
crowave background (CMB) [1], type Ia supernovae (SNIa)
from the SNLS 3-yr sample [3] and baryonic acoustic oscil-
lations (BAO) measurements from the 6df [8], SDSS DR7
[9] and BOSS [7] galaxy surveys. Our work, which was
kept at the linear level in perturbation theory, showed that
the Galileon model can fit the CMB data better than ΛCDM,
mainly due to the possibility of having less power than ΛCDM
on large angular scales, which is preferred by the WMAP 9-yr
data and also by the recent Planck results [2]. However, we
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have also pointed out a tension in the ability of the model to
explain the observed large-scale structure in the galaxy distri-
bution. The interpretation of this tension, however, is subject
to knowing exactly on which scales linear perturbation theory
hold, and also on how halo and galaxy bias apply in mod-
ified gravity theories compared to ΛCDM. The investigation
of these two uncertanties requires one to go beyond linear the-
ory. This can be particularly challenging in Galileon gravity
because of the highly nonlinear nature of its equations.

In a recent paper [40], we took a first step towards under-
standing the nonlinear formation of structure in Galileon grav-
ity by performing the first N-body simulations of the Cubic
Galileon model using the ECOSMOG code [41, 42]. In this
model, the higher order nonlinear terms that arise from L4

and L5 are absent, which makes the equations simpler and
allows them to be more easily solved by N-body codes. For
this model, we have found that for scales k . 0.1h/Mpc,
the nonlinearities do not affect the linear theory prediction,
which can therefore be used to further constrain the model.
However, the uncertainties relating halo and galaxy bias re-
main to be addressed. Moreover, as we will see below, the
Cubic Galileon model, contrary to the more general (Quartic
and Quintic) models, has the more serious problem of not be-
ing able to provide a reasonable fit to the low multipoles of
the CMB temperature power spectrum [40]. The next sim-
plest Galileon model one can study is the Quartic Galileon
model, in which the higher order nonlinear terms that arise
from L5 are absent. The numerical algorithm to simulate the
equations of this model has been presented recently in [43].
This algorithm was implemented in the ECOSMOG code [41]
to obtain the first nonlinear matter and velocity power spectra
predictions for the Quartic Galileon model. These first results
confirm that the extra nonlinearity plays a very important role
in determining the modifications to gravity. For instance, con-
trary to the case of the Cubic Galileon model, in the Quartic
model, the Vainshtein mechanism can have a measurable im-
pact on scales k . 0.1h/Mpc. At least to our knowledge,
N-body simulations of the Quintic Galileon model (which is
the most general, but the most nonlinear as well) have never
been performed.

In this paper, our goal is to study the spherical collapse of
matter overdensities in the Quartic and Quintic Galileon mod-
els, and use the excursion set formalism [44] to predict the
halo mass function and halo bias. By doing this, one is not
expected to reach the same level of accuracy as the N-body
simulations. However, the theoretical framework of the ex-
cursion set formalism provides a neat and easy way to capture
the main physical features of the models, which helps to build
intuition about their phenomenology. Part of this paper pro-
vides, therefore, a complementary analysis to the simulation
results of the Quartic Galileon model presented in [43]. It
is not our goal to draw precise quantitative conclusions from
our results. Instead, we are more interested in discussing the
physics of the model in a more qualitative point of view.

The outline of this paper is as follows. In Sec. II, we present
the Galileon gravity model, the background equations, and the
relevant nonlinear equations derived assuming spherical sym-
metry in the quasi-static and weak-field limits. We also re-

view the cosmology of the model parameters we will focus
our study on. In Sec. III, we look at the properties of the fifth
force in these models by discussing the existence of physical
solutions and its time and density dependence. In particular,
we will demonstrate that the Quintic Galileon models that are
compatible with current CMB data do not admit physical so-
lutions for the fifth force in high density regions. In Sec. IV,
we outline the main ideas of the excursion set formalism and
present the relevant equations for the spherical collapse of the
overdensities. We present our main results for the mass func-
tion and halo bias for the Quartic Galileon model in Sec. V.
We conclude in Sec. VI

Throughout this paper we assume the metric convention
(+,−,−,−) and work in units in which the speed of light
c = 1. Greek indices run over 0, 1, 2, 3 and we use 8πG =
κ = M−2

Pl interchangeably, where G is Newton’s constant and
MPl is the reduced Planck mass.

II. THE GALILEON MODEL

In this section, we present the Galileon gravity model and
the equations that we use to calculate the fifth force. We
shall also summarize the model predictions for the cosmic ex-
pansion history, and the CMB temperature and linear matter
power spectra.

A. Action and field equations

The action of the minimally coupled covariant Galileon
model is given by

S =

∫

d4x
√−g

[

R

16πG
− 1

2

5
∑

i=1

ciLi − Lm

]

, (1)

where g is the determinant of the metric gµν , R is the
Ricci scalar and Lm represents the matter content, which is
minimally coupled to the metric and Galileon fields. The
model parameters c1−5 are dimensionless constants and the
five terms in the Galileon Lagrangian density, fixed by the
Galilean invariance in flat spacetime, ∂µϕ → ∂µϕ + bµ, are
given by

L1 = M3ϕ,

L2 = ∇λϕ∇λϕ,

L3 =
2

M3
�ϕ∇λϕ∇λϕ,

L4 =
1

M6
∇λϕ∇λϕ

[

2(�ϕ)2 − 2(∇µ∇νϕ)(∇µ∇νϕ)

−R∇µϕ∇µϕ/2
]

,

L5 =
1

M9
∇λϕ∇λϕ

[

(�ϕ)3 − 3(�ϕ)(∇µ∇νϕ)(∇µ∇νϕ)

+2(∇µ∇νϕ)(∇ν∇ρϕ)(∇ρ∇µϕ)

−6(∇µϕ)(∇µ∇νϕ)(∇ρϕ)Gνρ

]

, (2)
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in which M3 ≡ MPlH
2
0 , where H0 is the present-day Hubble

expansion rate. In this model, the modifications to gravity
are driven by derivative interactions of gµν and ϕ (a proc-
cess known as kinetic gravity braiding [45, 46]). These in-
teractions arise through the coupling of covariant derivatives,
and through the couplings to the Ricci scalar R and the Ein-
stein tensor Gµν in L4 and L5. The latter two are neces-
sary to prevent the equations of motion from having higher
than second-order derivatives of the metric and the Galileon
field in curved spacetimes, such as the one described by the
Friedman-Robertson-Walker (FRW) metric [15]. Such terms,
however, break the Galilean shift symmetry. We will discuss
later the implications of these couplings to curvature.

We will consider the case in which the acceleration is due
only to kinetic energy of the Galileon field and therefore we
will set c1 = 0. In this case, the action contains only deriva-
tives of the scalar field, and as a result, the exact value of ϕ is
irrelevant for the physics of the model. The modified Einstein
equations and the Galileon equation of motion are obtained
by varying the action of Eq. (1), with respect to gµν and ϕ,
respectively. We do not show them in this paper, since they
are lengthy and have been presented elsewhere ([15, 17, 23]).

B. Background equations

We will work with the perturbed FRW metric in the New-
tonian gauge

ds2 = (1 + 2Ψ) dt2 − a(t)2 (1− 2Φ) γijdx
idxj , (3)

where a is the cosmic scale factor and γij = diag [1, 1, 1]
(where i, j ∈ {1, 2, 3}) is the spatial sector of the metric,
which is taken here to be flat. The fields, ϕ, Ψ and Φ, are
assumed to be functions of time and space. In the equations
below ϕ = ϕ̄(t)+ δϕ(t, ~x), where δϕ is the field perturbation
and an overbar indicates background averaged quantities. We
will always use ϕ to denote the scalar field, and the context
should determine whether we refer to ϕ̄ or δϕ.

The background Friedmann and Galileon field equations
are, respectively, given by

3H2 = 8πG (ρ̄m + ρ̄r) +
1

2
c2ϕ̇

2 + 6
c3
H2

0

Hϕ̇3

+
45

2

c4
H4

0

H2ϕ̇4 + 21
c5
H6

0

H3ϕ̇5, (4)

and

0 = c2(ϕ̈+ 3Hϕ̇) +
c3
H2

0

(

12Hϕ̇ϕ̈+ 6Ḣϕ̇2 + 18H2ϕ̇2
)

+
c4
H4

0

(

54H2ϕ̇2ϕ̈+ 36ḢHϕ̇3 + 54H3ϕ̇3
)

+
c5
H6

0

(

45ϕ̇4H4 + 60ϕ̈ϕ̇3H3 + 45ϕ̇4ḢH2
)

, (5)

in which ρ̄m and ρ̄r denote the background densities for
matter (baryonic and cold-dark-matter) and radiation, respec-
tively, H = ȧ/a is the Hubble expansion rate and an over-
dot denotes the physical time derivative. In the above equa-
tions, as well as in the rest of the paper, the Galileon field ϕ is
given in units of MPl, i.e., we have applied the transformation
ϕ/MPl → ϕ.

For completeness, the background energy density and pres-
sure of the Galileon scalar field are given by

κρ̄ϕ =
1

2
c2ϕ̇

2 + 6
c3
H2

0

ϕ̇3H +
45

2

c4
H4

0

ϕ̇4H2

+21
c5
H6

0

ϕ̇5H3, (6)

κp̄ϕ =
1

2
c2ϕ̇

2 +−2
c3
H2

0

ϕ̈ϕ̇2

+3
c4
H4

0

[

−4ϕ̈ϕ̇3H − ϕ̇4Ḣ − 3

2
ϕ̇4H2

]

+
c5
H6

0

[

−15ϕ̈ϕ̇4H2 − 6ϕ̇5ḢH − 6ϕ̇5H3
]

. (7)

1. Background tracker solution

In general, Eqs. (4) and (5) have to be solved numerically to
determine the expansion rate and the background evolution of
the Galileon field. However, one can make use of an attractor
tracker solution of the background equations to obtain ana-
lytical expressions for the background quantities to make the
perturbed equations easier to handle. In the Galileon model,
the tracker solution is described by [21]

Hϕ̇ = constant ≡ ξH2
0 , (8)

where ξ is a dimensionless constant. In [17] and [18] it was
shown that the models that follow the tracker solution are
those that best fit data from SNIa, BAO and CMB.

Multiplying both sides of Eq. (4) by H2, using Eq. (8) to
eliminate ϕ̇ and dividing the resulting equation by H4

0 , we
obtain

E4 =
(

Ωm0a
−3 +Ωr0a

−4
)

E2

+
1

6
c2ξ

2 + 2c3ξ
3 +

15

2
c4ξ

4 + 7c5ξ
5, (9)

in which E ≡ H/H0, Ωm0 = ρ̄m0/ρc0 and Ωr0 = ρ̄r0/ρc0,
where ρc0 = 3H2

0/(8πG) is the critical energy density today.
At the present day (a = 1 and E = 1), Eq. (9) gives

1

6
c2ξ

2 + 2c3ξ
3 +

15

2
c4ξ

4 + 7c5ξ
5 = 1− Ωm0 − Ωr0,

(10)

which can be used to determine the value of ξ given
c2, c3, c4, c5 and Ωm0. Combining Eqs. (10) and (9), we get

E4 =
(

Ωm0a
−3 +Ωr0a

−4
)

E2 + 1− Ωm0 − Ωr0, (11)
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which gives the Hubble expansion rate at a analytically as

E(a)2 =
1

2

[(

Ωm0a
−3 +Ωr0a

−4
)

+
√

(Ωm0a−3 +Ωr0a−4)2 + 4(1− Ωm0 − Ωr0)
]

. (12)

Finally, using Eq. (8) we have

ϕ̇ = ξH0/E =⇒ ϕ′ = ξ/E2, (13)

where ′ ≡ d/dN , with N = ln(a).

C. Spherically symmetric nonlinear equations

We assume that δϕ, Φ and Ψ are spherically symmetric,
under which case the nonlinear field equations simplify con-
siderably. To make the problem tractable we shall also em-
ploy two other simplifying assumptions. The first one is the

so-called quasi-static approximation which corresponds to the
limit where the time derivatives of the perturbed quantities
are negligible compared to their spatial derivatives. For in-
stance, ∂t∂tΦ ≪ ∂r∂rΦ or ∂t∂rϕ ≪ ∂r∂rϕ

1. In [17, 47], it
was shown that such an approximation typically works well
in the Galileon model on length scales smaller than k ∼
0.01h/Mpc. The second simplifying assumption amounts
to neglecting the terms that are suppressed by the scalar po-
tentials, Φ and Ψ, and their first spatial derivatives, ∂iΦ and
∂iΨ. This is known as the weak-field approximation where,
for instance, (1− 2Φ) ∂i∂iϕ ∼ ∂i∂iϕ or ∂iΦ∂iΦ ≪ ∂i∂

iΦ.
This is plausible since these fields are typically very small
(. 10−4) on nonlinear scales. We will discuss the implica-
tions of these assumptions later in the paper.

Under the above approximations, the perturbed Poisson
(δG0

0 = κδT 0
0 ), slip ( δGr

r = κδT r
r ) and Galileon field equa-

tions of motion follow, respectively,

2
1

r2
(

r2Φ,r
)

,r = −2
c3
H2

0

ϕ̇2 1

r2
(

r2ϕ,r
)

,r +
c4
H4

0

[

6
ϕ̇2

a2
1

r2
(

r(ϕ,r )
2
)

,r −12Hϕ̇3 1

r2
(

r2ϕ,r
)

,r +3ϕ̇4 1

r2
(

r2Φ,r
)

,r

]

+
c5
H6

0

[

−4
ϕ̇2

a4
1

r2
(

(ϕ,r )
3
)

,r +12
Hϕ̇3

a2
1

r2
(

r(ϕ,r )
2
)

,r −15H2ϕ̇4 1

r2
(

r2ϕ,r
)

,r

+6Hϕ̇5 1

r2
(

r2Φ,r
)

,r −6
ϕ̇4

a2
1

r2
(rϕ,r Φ,r ) ,r

]

+ 8πGρ̄mδa2, (14)

2

r
(Φ,r −Ψ,r ) =

c4
H4

0

[

(

−4Hϕ̇3 − 12ϕ̈ϕ̇2
) ϕ,r

r
− ϕ̇4Φ,r

r
− 3ϕ̇4Ψ,r

r
+ 2

ϕ̇2

a2

(ϕ,r
r

)2
]

+
c5
H6

0

[

12
ϕ̈ϕ̇2

a2

(ϕ,r
r

)2

+ 6ϕ̈ϕ̇4Φ,r
r

− 6
(

Ḣϕ̇4 +H2ϕ̇4 + 4Hϕ̈ϕ̇3
) ϕ,r

r

− 6Hϕ̇5Ψ,r
r

+ 6
ϕ̇4

a2
ϕ,r
r

Ψ,r
r

]

, (15)

0 = −c2
1

r2
(

r2ϕ,r
)

,r +
c3
H2

0

[

4

a2
1

r2
(

r(ϕ,r )
2
)

,r −4(ϕ̈+ 2Hϕ̇)
1

r2
(

r2ϕ,r
)

,r −2ϕ̇2 1

r2
(

r2Ψ,r
)

,r

]

+
c4
H4

0

[

− 4

a4
1

r2
(

(ϕ,r )
3
)

,r +12
ϕ̈+Hϕ̇

a2
1

r2
(

r(ϕ,r )
2
)

,r −
(

12Ḣϕ̇2 + 24ϕ̈ϕ̇H + 26H2ϕ̇2
) 1

r2
(

r2ϕ,r
)

,r

+(12ϕ̈ϕ̇2 + 4Hϕ̇3)
1

r2
(

r2Φ,r
)

,r −12Hϕ̇3 1

r2
(

r2Ψ,r
)

,r −4
ϕ̇2

a2
1

r2
(rϕ,r Φ,r ) ,r +12

ϕ̇2

a2
1

r2
(rϕ,r Ψ,r ) ,r

]

+
c5
H6

0

[

−8
ϕ̈

a4
1

r2
(

(ϕ,r )
3
)

,r +12
Ḣϕ̇2 +H2ϕ̇2 + 2Hϕ̈ϕ̇

a2
1

r2
(

r(ϕ,r )
2
)

,r −12
ϕ̇2

a4
1

r2
(

Ψ,r (ϕ,r )
2
)

,r

−12
(

3H2ϕ̈ϕ̇2 + 2ḢHϕ̇3 + 2H2ϕ̇3
) 1

r2
(

r2ϕ,r
)

,r −24
ϕ̈ϕ̇2

a2
1

r2
(rϕ,r Φ,r ) ,r +24

Hϕ̇3

a2
1

r2
(rϕ,r Ψ,r ) ,r

−6
ϕ̇4

a2
1

r2
(rΨ,r Φ,r ) ,r +6

(

4Hϕ̈ϕ̇3 + Ḣϕ̇4 +H2ϕ̇4
) 1

r2
(

r2Φ,r
)

,r −15H2ϕ̇4 1

r2
(

r2Ψ,r
)

,r

]

, (16)

1 Note that ∂rϕ = ∂rδϕ is a perturbed quantity.

where r is the comoving radial coordinate and ,r ≡ d/dr. We
have checked that these equations (together with the remain-
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ing components of the Einstein equations, which we do not
show for brevity) satisfy the independent conservation equa-
tions ∇νδG

µν = ∇νδT
µν = 0. In the last term in Eq. (14),

δ = ρm/ρ̄m − 1 is the matter density contrast of the spherical
top-hat overdensity w.r.t. the cosmic mean density. In this pa-

per, δ characterizes the density of the spherical halos through-
out their entire evolution, and not only during the stages where
it is small (|δ| ≪ 1).

Eqs. (14) and (16) can be simplified by integrating over
∫

4πr2dr. Doing so, and moving to the radial coordinate
χ ≡ aH0r, we can write Eqs. (14), (15) and (16) as

Φ,χ
χ

=
Ωm0δa

−3 +A1 (ϕ,χ /χ) +A2 (ϕχ/χ)
2
+A3 (ϕχ/χ)

3

A4 +A5 (ϕχ/χ)
, (17)

Ψ,χ
χ

=
B0 (Φ,χ /χ) +B1 (ϕ,χ /χ) +B2 (ϕ,χ /χ)

2

B3 −B4 (ϕ,χ /χ)
, (18)

0 = C1

ϕ,χ
χ

+ C2

(

ϕ,χ
χ

)2

+ C3

(

ϕ,χ
χ

)3

+ C4

Φ,χ
χ

+ C5

Ψ,χ
χ

+ C6

ϕ,χ
χ

Φ,χ
χ

+ C7

ϕ,χ
χ

Ψ,χ
χ

+ C8

(

ϕ,χ
χ

)2
Ψ,χ
χ

+ C9

Φ,χ
χ

Ψ,χ
χ

. (19)

The quantities Ai, Bi and Ci depend only on time and are
given in the Appendix. One can use Eqs. (17) and (18) to

eliminate Φ,χ and Ψ,χ in Eq. (19). The resulting equation is
a sixth-order algebraic equation for ϕ,χ /χ, which can be cast
as

0 = η02δ
2 + η01δ + (η11δ + η10)

[

ϕ,χ
χ

]

+ (η21δ + η20)

[

ϕ,χ
χ

]2

+ (η31δ + η30)

[

ϕ,χ
χ

]3

+ η40

[

ϕ,χ
χ

]4

+ η50

[

ϕ,χ
χ

]5

+ η60

[

ϕ,χ
χ

]6

. (20)

The coefficients ηab are given in terms of the functions Ai, Bi

and Ci in Eqs. (17), (18) and (19). Their expression is very
lengthy and for brevity we do not show them explicitly.

The strategy used to determine the total gravitational force
is as follows. For every moment in time and for a given matter
overdensity δ one has to solve the algebraic equation, Eq. (20),
to determine the gradient of the Galileon field inside the over-
density. Note that in the case of a top-hat profile, this gradient
will be proportional to the radial coordinate, just like in GR.
Having obtained the solution for ϕ,χ /χ, one can then plug
it into Eqs. (17) and (18) to determine the total gravitational
force (GR + fifth force), which is given by Ψ,χ.

In the following, it will be convenient to measure the impact
of the fifth force in terms of an effective gravitational constant
Geff . The latter is determined by the ratio of the total force to
the normal gravity contribution:

Geff

G
(a, δ) =

Ψ,χ /χ

Ψ,GR
χ /χ

=
Ψ,χ /χ

Ωm0δa−3/2
. (21)

In the Galileon model, Geff is in general time and density de-
pendent, but it is constant within a top-hat density profile.

D. Model parameters

Throughout the paper, whenever we refer to the Quintic and
Quartic Galileon models, we will be referring to the models
with the parameters given in Table I. These are model param-
eters that provide a reasonably good fit to a combination of
data made up of the WMAP 9yr results [1], SNIa from the
SNLS 3yr sample [3] and the BAO measurements from the
6dF Galaxy Survey [8], from the SDSS DR7 [7] and from the
SDSS-III BOSS [11]. These parameters were obtained with
our modified versions of the CAMB [38] and CosmoMC [39]
codes [17, 18].

The time evolution of the expansion rate, the
Galileon equation of state parameter wϕ = p̄ϕ/ρ̄ϕ
and the effective cosmological equation of state
weff = (ρ̄r/3 + wϕρ̄ϕ) / (ρ̄r + ρ̄m + ρ̄ϕ), are shown in
Fig. 1 for the Quintic and Quartic Galileon models. In the
top left panel, we show both the numerical solution (solid)
and the analytical expression (dashed) for the expansion rate
(Eq. (12)). One can see the very good agreement between the
two at all the epochs shown. This is because in both of these
models, the tracker is reached before the epoch when dark
energy starts to play a measurable role in the dynamics of the
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FIG. 1. (Top left) Time evolution of the expansion histories of the Quintic (blue) and Quartic (green) Galileon models, plotted as H/HΛCDM.
The solid lines represent the full numerical solution, whereas the dashed lines show the tracker solution of Eq. (12). (Top right) Time evolution
of the Galileon field (solid) and cosmological (dashed) equations of state, w and weff , respectively, for the ΛCDM (black), Quartic (green) and
Quintic (blue) Galileon models. (Bottom left) CMB temperature fluctuations angular power spectra, as function of the multipole moments, for
the ΛCDM (dashed black), Cubic (solid red), Quartic (solid green) and Quintic (solid blue) Galileon models. Also shown are the data points
with errorbars of the WMAP 9-yr results [1]. (Bottom right) Linear matter power spectrum, as function of scale k, for the ΛCDM (dashed
black), Cubic (solid red), Quartic (solid green) and Quintic (solid blue) Galileon models. The power spectrum is shown for z = 0.31, which
is the mean redshift of the Luminous Red Galaxies of the SDDS DR7 used to estimate the host halo spectrum shown as the data points with
errorbars [10].

universe. At earlier times, radiation and matter dominate, and
hence the expansion rate is not sensitive to the evolution of
the Galileon field and whether or not it is on the tracker. In
the top right panel of Fig. 1, one sees that this tracker solution
is characterized by an equation of state wϕ < −1. Moreover,
the Quintic Galileon model is attracted to the tracker much
later than the Quartic model, which follows the tracker
dynamics from a < 10−5. This is a consequence of the much
lower energy density of the Galileon field at z = 106 in the
Quartic Galileon compared to the Quintic, which favours the
tracker to be reached at much earlier epochs.

In the bottom panels of Fig. 1, we show the predicted power
spectra for the CMB temperature fluctuations (bottom left)
and for the linear clustering of matter (bottom right). We show
the predictions of the Quintic and Quartic Galileon models,
as well as the Cubic Galileon model that best fits the CMB,
SNIa and BAO data (see [40]) and the ΛCDM model with

the WMAP 9-year parameters [1]. With respect to the CMB
data, one sees that the Quartic model, contrary to the Cubic
model, is able to provide a fit similar to that of the Quin-
tic Galileon model. In [18], we showed that the latter can
fit the WMAP 9-yr data better than standard ΛCDM, being
just slightly disfavoured when the low-redshift SNIa and BAO
data is also taken into account. With respect to the Quin-
tic Galileon model, the Quartic Galileon is disfavoured by
∆χ2

Quartic ∼ −6. This is much smaller than the correspond-
ing difference for the Cubic Galileon case ∆χ2

Cubic ∼ −17
[40] 2. These differences in the fits of the different Galileon
models are mostly determined by the Integrated Sachs-Wolfe

2 Note that in these χ2 differences we are not taking into account the fact
that the different models have different numbers of free parameters.
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TABLE I. Parameters of the Galileon models studied in this paper.
Ωr0, Ωb0, Ωc0, h, ns, and τ are, respectively, the present day frac-
tional energy density of radiation (r), baryons (b) and cold dark mat-
ter (c), the dimensionless present day Hubble expansion rate, the
primordial scalar spectral index and the optical depth to reioniza-
tion. The scalar amplitude at recombination As refers to a pivot scale
k = 0.02Mpc−1. The universe is spatially flat in this model. The
parameters c2, c3, c4, c5 are the dimensionless constants that appear
in the action Eq. (1) and ρϕ,i/ρm,i is the ratio of the Galileon and
total matter (m) energy densities at zi. We also show the value of
χ2 = −2logP (where P is the posterior probability obtained from
the data from the WMAP 9yr results [1], the SNLS 3yr sample [3]
and the BAO measurements from the 6dF Galaxy Survey [8], from
the SDSS DR7 [7] and from the SDSS-III BOSS [11]), the Galileon
field time derivative at zi, the age of the Universe and the present day
value of σ8. Only in this table, the subscript "i" refers to quantities
evaluated at z = zi = 106.

Parameter Quintic Galileon Quartic Galileon

χ2 7989.97 7995.60
Ωr0h

2 4.28× 10−5 4.28× 10−5

Ωb0h
2 0.02178 0.02182

Ωc0h
2 0.125 0.126

h 0.735 0.733
ns 0.947 0.945
τ 0.0680 0.0791
log

[

1010As

]

3.127 3.152
log [ρϕ,i/ρm,i] −6.51 −37.39

c2/c
2/3
3

−3.59 −4.55
c3 10 20

c4/c
4/3
3

−0.199 −0.096

c5/c
5/3
3

0.0501 0 (fixed)

˙̄ϕic
1/3
3

2.31× 10−14 1.54× 10−20

Age (Gyr) 13.778 13.770
σ8(z = 0) 0.975 0.998

(ISW) effect, which is sensitive to the time variations of the
lensing potential φ = (Φ +Ψ) /2. In [17], we showed that φ
can have a nontrivial time and scale dependence (see Fig. 4 of
[17]). In particular, depending on the choice of the Galileon
parameters ci, the lensing potential can grow or decay very
rapidly, or display a milder time evolution. The latter cases
are those preferred by the data since they contribute less to
the ISW power on large angular scales (low-l). In the case of
the Cubic Galileon model one has that c4 = c5 = 0, which
gives the model less flexibility to produce milder time evolu-
tions in φ. Thus, the Cubic model does not fit the low-l data of
the CMB as well as the Quartic and Quintic Galileon models.
Note that in the ΛCDM model, the lensing potential decays at
late times, which is why this model predicts more ISW power
that the Quartic and Quintic Galileon models.

Contrary to the CMB predictions, the Cubic, Quartic and
Quintic Galileon models predict very similar power for the
linear clustering of matter. In particular, all models show
a general enhancement of the clustering power with respect
to the standard ΛCDM prediction, on all scales. However,

there are a number of uncertainties associated with cluster-
ing measurements that prevent a direct comparison with the
data. Firstly, there is the uncertainty related to the validity
of linear perturbation theory, whose assessment is less obvi-
ous in modified gravity theories due to the nonlinear screen-
ing mechanisms. To determine the regime of validity of lin-
ear theory one usually needs to resort to N-body cosmological
simulations. In [40], we showed that in the case of the Cubic
Galileon model, the simulation results recover the linear per-
turbation theory prediction on scales k . 0.1h/Mpc. These
are scales where linear theory is usually expected to be a good
approximation. On the other hand, N-body simulations of the
Quartic model [43] find that the nonlinear Vainshtein mech-
anism can have a measurable impact (although small) on the
growth of structure for k . 0.1h/Mpc. Nevertheless, even
if the Vainshtein screening is found to be negligible above a
given length scale, there is still a second important uncertainty
that is related to the bias of dark matter halos and galaxies.
Although it might be reasonable to expect that the bias would
result in an overall enhancement of the clustering power of
high-mass halos, the exact value of the bias and its mass and
scale dependence are not clear in modified gravity theories.
It is therefore important to have a better understanding of the
bias in models like the Galileon before making a robust com-
parison with the current and future data. One of the goals of
this paper is to take a first step in this direction.

III. FIFTH FORCE SOLUTIONS

In Eq. (21), we have parametrized the modifications to
gravity (the fifth force) as a rescaling of the effective gravi-
tational constant, which is time and density dependent. The
process of determining the total force involves solving a non-
linear algebraic equation, Eq. (20), which in general has more
than one branch of real solutions. Therefore, care must be
taken in making sure that the physical branch exists and is
correctly identified. We discuss these issues next.

A. Quintic Galileon

In the case of the Quintic Galileon model, Eq. (20) has six
branches of solutions, which in general can be either complex
or real. We require the physical branch to be real and to sat-
isfy:

ϕ,χ
χ

(δ → 0) → 0. (22)

This is the solution that exhibits the physical behavior that
there should be no fifth force if there are no density fluctua-
tions sourcing it. We must ensure that this solution exists at
every moment in time, and for every value of δ ≥ −1.

However, as we will show next, the Quintic Galileon model
equations do not satisfy this requirement. To better understand
why this happens, one can differentiate Eq. (20) w.r.t. δ to
obtain a differential equation for ϕ,χ /χ:
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FIG. 2. Evolution of the branches of solutions of Eq. (20) as function of the density constrast δ, for a = 0.5 (left panel) and a = 1 (right
panel). The physical branch corresponds to the solid blue line for which ϕ,χ /χ (δ = 0) = 0. For visualization purposes, in the a = 1 panel
we do not show the branch ϕ,χ /χ (δ = 0) = −11.477, which is far below the scale of the plot and has little importance for the discussion.

d

dδ

[

ϕ,χ
χ

]

=
−2η02δ − η01 − η11

[

ϕ,χ
χ

]

− η12

[

ϕ,χ
χ

]2

− η31

[

ϕ,χ
χ

]3

η11δ + η10 + 2 (η21δ + η20)
[

ϕ,χ
χ

]

+ 3 (η31δ + η30)
[

ϕ,χ
χ

]2

+ 4η4

[

ϕ,χ
χ

]3

+ 5η5

[

ϕ,χ
χ

]4

+ 6η6

[

ϕ,χ
χ

]5
. (23)

Just to illustrate our point, it suffices to consider the equa-
tions at a = 0.5 and a = 1 (we have checked that our
conclusion holds for other epochs too). When δ = 0,
Eq. (20) has four real roots {−2.059, −1.292, 0, 0.765}
at a = 0.5, whereas at a = 1 there are six real roots
{−11.477, −0.445, −0.261, −0.113, 0, 0.291}. These can
be used as the initial conditions to solve Eq. (23) and evolve
the different branches. The result is shown in Fig. 2. The
physical branch is the one that starts from zero at δ = 0,
but one sees that it cannot be evaluated beyond δ ≈ 2 and
δ ≈ 0.2 at a = 0.5 and a = 1, respectively. At these values
of δ, the differential equation becomes singular because the
physical branch becomes complex (and therefore unphysical),
together with the branch represented by the dashed red line.
The same thing happens for the (unphysical) branches repre-
sented by the solid green and dashed magenta lines at a = 1,
although at different values of δ. We have explicitly looked at
Eq. (20) for cases near these critical values of δ to confirm that
the breakdown of the differential equation is related to the ab-
sence of real roots. Moreover, we have also checked that the
problem persists for different choices of the Galileon and cos-
mological parameters around the regions of parameter space
preferred by the CMB, SNIa and BAO data [18].

The spherical collapse in the Galileon model has been also
studied in [48]. In the latter, the authors found that physi-
cal fifth force solutions exist both at low and high densities.
In particular, by taking the limit δ ≫ 1, the authors derive
the conditions for the existence of real solutions for Eq. (20).

This assumes that the physical solution does not become com-
plex for intermediate densities, which is what is shown not to
happen in Fig. 2 of this paper. We point out that it is hard to
directly compare the results of the two papers because of the
different notation adopted to describe the tracker background
evolution; also, contrary to [48], we focus on the parameters
of the model that fit the current data.

At this point, one may wonder whether this problem can be
avoided by relaxing the quasi-static and weak-field approx-
imations used to derive Eqs. (14), (15) and (16). However,
note that Fig. 2 shows that the physical solution does not even
exist in high density regions, where the terms that have been
neglected are expected to be small, and hence our approxi-
mations are justified (we will return to this point in the next
section). Another way to try to circunvent the problem is to
explore different choices of the Galileon and cosmological pa-
rameters. However, even if for a different choice of parame-
ters one could find physical solutions for all δ, such param-
eters would already be ruled out by the current CMB, SNIa
and BAO data. For these reasons, our study of the spherical
collapse in the Quintic model stops here!

B. Quartic Galileon

When c5 = 0, Eq. (20) becomes
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0 = η01δ + (η11δ + η10)

[

ϕ,χ
χ

]

+ η20

[

ϕ,χ
χ

]2

+η30

[

ϕ,χ
χ

]3

, (24)

which is third order, and therefore admits analytical solutions
given by the general expression

ϕ,χ
χ

= − 1

3η30

[

η20 + µkΓ +
Σ0

µkΓ

]

, k ∈ {1, 2, 3} ,(25)

where

Γ =

[

Σ1 +
√

Σ2
1 − 4Σ3

0

2

]1/3

, (26)

Σ0 = η220 − 3η30 (η11δ + η10) , (27)

Σ1 = 2η320 − 9η30η20 (η11δ + η10) + 27η30η01, (28)

and the three branches of solutions (labelled by k) correspond
to

µ1 = 1, µ2 = exp [−iπ/3] , µ3 = exp [iπ/3] . (29)

The physical branch, Eq. (22), corresponds to the k = 3 so-
lution, which is a complex number. As a result, Γ must be
complex as well and we can write it as

Γ = Σ
1/2
0 exp [iθ/3] , (30)

with θ given by

cos θ =
Σ1/2

Σ
3/2
0

, θ ∈ [0, π] . (31)

Using these expressions, Eq. (25) can be written as

ϕ,χ
χ

= − 1

3η30

[

η20 + 2
√

Σ0 cos

(

θ

3
− 2π

3

)]

, (32)

which allows us to analytically determine the magnitude of
the effective gravitational strength (Geff ) using Eq. (21).

The value of Geff as a function of the scale factor a and
density δ is shown in the colour map of Fig. 3, for the Quartic
Galileon model. The left and right panels correspond to δ > 0
and δ < 0, respectively. For δ > 0 we see that, contrary
to the case of the Quintic Galileon model, there are physical
solutions for sufficiently large values of the density contrast δ.
When a . 0.5 one has Geff/G ≈ 1. At later times, however,
Geff/G progressively deviates from unity, and this happens
in a density dependent way. In the linear regime (δ ≪ 1),
Geff increases with time, being roughly 40% larger than G
today. However, for δ & 1, one sees that gravity becomes

weaker with time (Geff/G < 1), or in other words, the fifth
force becomes repulsive. In particular, at the present day, the
effective gravitational strength is reduced to ∼ 60% of the
standard gravity value.

The effects of the fifth force that modify Geff in the Quartic
model can be thought of as being two-fold. Firstly, one has
the extra terms proportional to ϕ,χ /χ, that add up to the total
gravitational strength in Eqs. (17) and (18). Secondly, there
are also the time-dependent coefficients A4, B0 and B3 that
multiply the standard gravity terms, and that arise via explicit
couplings of the Galileon field to curvature. The effect of the
screening can be seen by writting Eq. (20) in the limit where
δ ≫ 1,

0 ≈ η01 + η11

[

ϕ,χ
χ

]

. (33)

Here, one sees that in regions where the density is sufficiently
high, the spatial gradient of the Galileon field, ϕ,χ /χ, does
not depend on δ. The Vainshtein mechanism in the Quartic
model works because

∣

∣

∣

∣

ϕ,χ
χ

∣

∣

∣

∣

=

∣

∣

∣

∣

η01
η11

∣

∣

∣

∣

≪
∣

∣

∣

∣

Ψ,χ
χ

∣

∣

∣

∣

∼ δ (δ ≫ 1) , (34)

and increasing the density δ further does not increase the gra-
dient of the Galileon field 3. However, the coefficients A4,
B0 and B3 depend only on the background evolution of the
Galileon field, and will not be affected by the Vainshtein
mechanism. This is why Geff/G does not approach unity
when δ ≫ 1 (c.f. Fig. 3). This result has in fact been found
to be generically possible in the framework of the most gen-
eral second-order scalar tensor theory [49, 50], which encom-
passes the Quartic Galileon model studied here.

The fact that the effective gravitational strength is time-
varying if the density is high is an unpleasent novelty of the
model. In fact, this may imply that the Quartic Galileon model
is automatically ruled out by the local gravity tests that con-
strain the modifications to gravity to be very small. For in-
stance, [49, 50] have claimed that Lunar Laser Ranging exper-
iments [51] can place very strong constraints on models like
the Quartic Galileon. It seems therefore reasonable to state
that the survival of the Quartic Galileon model as a candidate
for dark energy depends upon finding a cure for this apparent
local time variation of Geff . One may invoke the validity of
the quasi-static approximation in an attempt to ease this prob-
lem. For instance, if the time derivative of the Galileon field
perturbation is not completely negligible, then its contribution
to the coefficients A4, B0 and B3 could help soften the time
variation of Geff . However, we argue that this should not be
the case. The successful implementation of the screening in
the Quartic Galileon model means that the fluctuations of the

3 In the case of the Cubic Galileon model one has ϕ,χ /χ ∝
√
δ in high

densities [40].
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FIG. 3. Time and density dependence of the effective gravitational strength Geff of Eq. (21) for δ > 0 (left panel) and δ < 0 (right panel).
The colour scale bars at the right of each panel show the value of Geff/G. In the left panel the solid red and solid black lines represent the
trajectory in a− δ space of a halo that collapses at a = 1 (z = 0) and a = 0.5 (z = 1) in the Quartic Galileon model, respectively. The dashed
black line shows the trajectory of a large linear density region with density contrast δ = 0.01 today. In the right panel, the region marked in
black in the top left corner shows the values of a and δ for which the solution of the fifth force becomes a complex number. To facilitate the
visualization, note that the colour scale in the two panels is not the same.

Galileon field, δϕ, have to be much smaller than the metric
perturbation, i.e., δϕ ≪ Ψ (c.f. Eqs. (33) and (34)). Since Ψ
is typically very small for collapsed objects like cluster- and
galaxy-mass halos or the Sun (Ψ ∼ 10−6 to 10−4) 4, then δϕ
has to be even smaller. This justifies the use of the weak-field
assumption for the Galileon perturbation, δϕ. Consequently,
for consistency, the time variation of δϕ has to be very small
as well, ˙δϕ ≪ Ψ̇ ≪ ˙̄ϕ. The same reasoning applies to the
Quintic model studied in the last subsection. In the remaining
of the paper, we will focus on the cosmological interpretation
of the results.

For δ < 0, in Fig. 3, we see again that the modifications
to gravity arise only for a & 0.5, but here gravity can only
become stronger. In addition, there are no physical solutions
for the epochs and densities indicated by the black region in
the top left corner of the right panel of Fig. 3. In particu-
lar, the fifth force becomes complex in the most empty voids
(δ ∼ −1) for a & 0.6; at a = 1, underdense regions where
δ . −0.4 also do not admit a real fifth force. This is a prob-
lem that exists also in Cubic Galileon gravity models [40].
This absence of real physical solutions for the fifth force is
probably related to the fact that the quasi-static limit may not
be a good approximation in low density regions. Neverthe-
less, in this work we are interested in studying the formation
of halos (rather than voids), for which these low densities are
irrelevant.

4 Near black holes, for instance, one can have larger metric perturbations
Ψ ∼ 1.

IV. EXCURSION SET THEORY IN GALILEON GRAVITY

In this section, we layout the main premises of excursion
set theory [44, 52] and of the dynamics of the gravitational
collapse of spherical overdensities in the Galileon model (see,
e.g. [53–62] and references therein for applications of the
spherical collapse model and excursion set theory to other
modified gravity models).

A. Basics of excursion set theory

1. Unconditional probability distribution and halo mass function

The main postulate of excursion set theory is that dark
matter halos form from the gravitational collapse of regions
where the linear density contrast smoothed over some comov-
ing length scale R,

δlin (x, R) =

∫

W (|x− y|, R) δlin (y) d
3
y

= 4π

∫

k2W̃ (k,R) δlin,ke
ikxdk, (35)

exceeds a certain critical density threshold δlin,crit (to be de-
fined below). Here W (|x− y|, R) is the real space filter
(or window) function of comoving size R, and W̃ (k,R)
and δlin,k are the Fourier transforms of W (|x− y|, R) and
δlin (y), respectively. We use the subscript "lin" to remind our-
selves of the situations where the density contrast should be
interpreted as being small (|δ| ≪ 1), i.e., in the linear regime.
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The mass of the halo is given by

M = 4πρ̄m0R
3/3. (36)

For the same comoving radius R, the halo mass is different for
models with different matter densities ρ̄m0. As the standard
practice, we will assume that the probability distribution of the
initial (zi = 300) linear density contrast δlin(x) is a Gaussian
with zero mean

Prob. (δlin, S) dδlin =
1√
2πS

exp

[

−δ2lin
2S

]

dδlin, (37)

in which S ≡ S(R) is the variance of the density contrast field
on the scales of the size of the filter function R, and is given
by

S(R) ≡ σ2(R) = 4π

∫

k2PkW̃ (k,R) dk, (38)

where Pk is the linear matter power spectrum. Note that for
a fixed model, the variables R, M and S are related to one
another and will be used interchangeably throughout when re-
ferring to the scale of the halos.

In hierarchical models of structure formation, S(R) is a
monotonically decreasing function of R. Consequently, the
probability that the density field on a region smoothed over a
very large R exceeds the critial density δlin,crit is very small,
since the variance is also very small. As one smooths the den-
sity field with decreasing R, the field δlin (x, R) undergoes
a random walk with "time" variable S. In the excursion set
theory language, δlin,crit defines a "barrier" that the random
walks cross, and the aim is to determine the probability distri-
bution, f(S)dS, that the first up-crossing of the barrier occurs
at [S, S + dS]. In the particular case where the filter function
is a top-hat in k-space, then the random walk of the density
field will be Brownian. As we will see below, in the case of
the Galileon model, the critical density for collapse does not
depend on the scale S considered. This is called a "flat bar-
rier". In this case, f(S) admits a closed analytical formula
given by [44]

f(S) =
1√
2π

δc
S3/2

exp

[

− δ2c
2S

]

, (39)

where δc denotes the initial critical density, δlin,crit, for a
spherical overdensity to collapse at a given redshift, lin-
early extrapolated to the present day, assuming ΛCDM lin-
ear growth factor5. This linear extrapolation is done only for
historical reasons so that the values of δc we present in this
paper can be more easily compared with previous work. Note

5 In the case of δc, we will avoid writting the subscript lin to ease the nota-
tion.

also that, for consistency, one must compute the variance S in
Eq. (38) using the initial power spectrum of the models, but
evolved to z = 0 with the ΛCDM linear growth factor. We use
the BBKS fitting formula [63], whose accuracy in reproduc-
ing the ΛCDM and Quartic Galileon model Pk at the initial
time is more than sufficient for the purposes of the qualita-
tive discussion we present here6. We will follow the standard
procedure of adopting a filter function that is a top-hat in real
space, whose Fourier transform is given by

W̃ (k,R) = 3
sin (kR)− kR cos (kR)

(kR)
3

. (40)

Note that, strictly speaking, for this filter function the excur-
sion set random walks are not Brownian, and as a result, there
is some degree of approximation in taking Eq. (39). On the
other hand, this choice of filter function is that which is com-
patible with our definition of the mass of the smoothed over-
dense region (Eq. (36)).

In this paper the halo mass function is the comoving differ-
ential number density of halos of a given mass per natural log-
arithmic interval of mass. This quantity is obtained by associ-
ating f(S)dS with the fraction of the total mass that is incor-
porated in halos, whose variances fall within [S, S + dS] (or
equivalently, whose masses fall within [M,M + dM ]). The
mass function observed at redshift z is then given by

dn(M)

dlnM
dlnM =

ρ̄m0

M
f(S)dS

=
ρ̄m0

M

δc√
2πS

∣

∣

∣

∣

dlnS

dlnM

∣

∣

∣

∣

exp

(

− δ2c
2S

)

dlnM. (41)

This is known as the Press-Schechter mass function [64]. The
redshift dependence is included into δc (c. f. Fig. 4). In princi-
ple, one can distinguish the formation time from the observa-
tion time of the halos (see e.g. [65]). For simplicity, in this pa-
per we assume that these are the same, i.e., z = zform = zobs.

2. Conditional probability distribution and halo bias

Equations (39) and (41) assume that the starting point of
the excursion set random walk is the origin of the δlin − S
plane. The mass function computed using Eq. (41) gives the
abundance of halos that have collapsed from the mean cos-
mological background. However, it is well known that the
clustering of halos is biased towards the underlying clustering
of dark matter, i.e., the number density of halos is different in
different regions. Within the framework of excursion set the-
ory, this is described by the so-called halo bias parameter δh
[66]. The latter is determined by computing the abundance of

6 Note that one can use ΛCDM to compute the matter power spectrum of the
Galileon model at the initial time, but one has to use the parameters given
in Table I.
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halos that have formed from a region characterized by S = S0

and δlin = δ0, and compare it with the abundance of the halos
that have formed from the mean background (S = δlin = 0).
It can be shown that δh is given by [66]

δh = (1 + δenv)
f(S|S0, δ0)dS

f(S)dS
− 1, (42)

where δenv is the density contrast of the underlying dark
matter region or environment where the halos are forming.
f(S|S0, δ0) is the probability distribution that a random walk
that starts (or passes through) (δ0, S0) crosses the critical bar-
rier δc at [S, S + dS], and is given by

f(S|S0, δ0) =
1√
2π

δc − δ0

(S − S0)
3/2

exp

[

− (δc − δ0)
2

2(S − S0)

]

,

(43)

for a flat barrier. Here, δ0 is the linearly extrapolated (with
the ΛCDM linear growth factor to today) initial density of the
underlying dark matter region, so that its density is δenv, at a
given redshift7. From Eqs. (43) and (42) one sees that dense
regions can boost the clustering of halos, since the effective
height of the barrier becomes lower (δc − δ0 < δc). On the
other hand, the clustering can also be suppressed if the mass
of the halos is comparable to the mass available in the region
specified by S0. For example, halos with variance S < S0

will not form because the random walks cannot cross the bar-
rier before their starting point (this effect is known as halo
exclusion).

One is often interested in the limit of very large regions
with small density contrast (S0 ≪ 1, 0 < δ0 ≪ 1), where the
treatment simplifies considerably. In this case, we can Taylor
expand δh as [67]:

δh =

∞
∑

k=0

bk
k!
δk ≈ b0 + b1δenv +O

(

δ2lin,env
)

, (44)

where we have truncated the series at the linear term, as we
are assuming low density regions (from here on δenv should
be interpreted as a small linear overdensity). Since we taking
the limit where the dark matter regions look like the mean
background, S0, δ0 → 0, then b0 = 0. The linear term b1 is
then the leading one, and is given by

b1 =
d

dδenv
δh|δenv=0

=
1

f(S)

[

f(S) +

(

dδ0
dδenv

)

d

dδ0
f(S|0, δ0)|δ0=0

]

= 1 +

(

dδ0
dδenv

)

δ2c/S − 1

δc

= 1 + g(z)
δ2c/S − 1

δc
. (45)

7 Just like for δc, we will avoid writting the subscript lin in δ0 to ease the
notation.

To find the expression of g(z), one notes that

δenv =
Dmodel(z)

Dmodel(zi)
δenv,i =

Dmodel(z)

Dmodel(zi)

DΛCDM(zi)

DΛCDM(0)
δ0

=
Dmodel(z)

DΛCDM(0)
δ0, (46)

where δenv,i is the initial density of the regions whose density
today in a given model is δenv. In Eq. (46), Dmodel(z) is the
linear growth factor of a given model and we have assumed
that Dmodel(zi) = DΛCDM(zi) (see next subsection). Thus,
g(z) is simply given by

g(z) ≡ dδ0
dδenv

=
DΛCDM(0)

Dmodel(z)
. (47)

In Eq.(45), the model dependence is included in g(z) and
δc. In particular, g(z) accounts for the fact that different mod-
els have different values of δ0 to yield the same δenv at redshift
z.

B. Linear growth factor and spherical collapse dynamics

The final ingredient to derive the mass function and the lin-
ear halo bias is to determine the threshold barrier δc, and to
specify the equation that governs the evolution of the linear
overdensities (which determines g(z), Eq. (47)). For scales
inside the horizon, the latter can be written as

δ̈lin + 2Hδ̇lin − 4πGρ̄mδlin = 0, (48)

or equivalently, by changing the time varible to N = lna, as

D′′ +

(

E′

E
+ 2

)

D′ − 3

2

Geff(a)

G

Ωm0e
−3N

E2
= 0, (49)

where the linear growth factor D(a) is defined as δlin(a) =
D(a)δlin(ai)/D(ai). The initial conditions are set up at
zi = 300 using the known matter dominated solution D(ai) =
D′(ai) = ai

8. These initial conditions are the same for all the
models we will study (c.f. Eq. (46)). The linear growth fac-
tor obtained by solving Eq. (49) enters the calculation of the
linear halo bias through g(z).

Recall we have defined δc as the linearly extrapolated value
(using the ΛCDM linear growth factor) of the initial density of
the spherical overdensity for it to collapse at a given redshift.
To determine this value, we consider the evolution equation
of the physical radius ζ of the spherical halo at time t, which
satisfies the Euler equation

8 Not to be confused with the initial times of Table I.
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ζ̈

ζ
−
(

Ḣ +H2
)

= −Ψ,ζ
ζ

= −H2
0

Ψ,χ
χ

= −Geff(a, δ)

G

H2
0Ωm0δa

−3

2
, (50)

where we have used Eq. (21) in the last equality. Note that
ζ = ar = χ/H2

0 , where r is the comoving radial coordi-
nate. Changing the time variable to N and defining y(t) =
ζ(t)/ (aR), Eq. (50) becomes

y′′ +

(

E′

E
+ 2

)

y′

+
Geff(a, y

−3 − 1)

G

Ωm0e
−3N

2E2

(

y−3 − 1
)

y = 0,

(51)

where we have used that δ = y−3 − 1 invoking mass con-
servation 9. The initial conditions are then given by y(ai) =
1−δlin,i/3 and y′(ai) = δlin,i/3 (here, δlin,i is the initial linear
density contrast). The value of δc is found by a trial-and-error
approach to determine the initial density δlin,i that leads to col-
lapse (y = 0, δ → ∞) at redshift z, evolving this afterwards
until the present day using the ΛCDM linear growth factor.

It is important to note that, despite the presence of the Vain-
shtein screening, the modifications to gravity incorporated
into Geff do not introduce any scale dependence in the dynam-
ics of the collapse of the spherical overdensities. The reason
for this is that the implementation of the Vainshtein mecha-
nism does not depend on the size of the halo R, but only on
its density. Consequently, the critical barrier δc is "flat", i.e.,
it is only time-dependent and not S-dependent. In fact, in the
previous subsection we have already anticipated this result,
which is the one for which Eqs. (39), (41) and (43) are valid.
The situation is different, for instance, in models that employ
the chameleon screening mechanism. In these cases, the fifth
force is sensitive to the size of the halo, and the barrier can
have a nontrivial shape [56].

1. Limitations of the spherical top-hat profile description

It is well known that the Sheth-Tormen mass function [68–
70] fits ΛCDM N-body simulation results better than Eq. (41).
The reason is because the Sheth-Tormen mass function is de-
rived by assuming the ellipsoidal collapse of the overdensities,
which is a more realistic description of the intrinsically triax-
ial proccesses of gravitational instability. In the excursion set
picture, the ellipsoidal collapse translates into a mass depen-
dent (i.e. ’non-flat’) critical barrier. In this paper, we are only
interested in a qualitative analysis and, therefore, the spherical
collapse model is sufficient. However, even if one models the

9 Explicitly: ρ̄ma3R3 = (1 + δ) ρ̄mr3 ⇒ δ = (aR/r)3 − 1 = y−3 − 1.

Galileon mass function with the standard Sheth-Tormen for-
mulae, some complications may still arise. We comment on
two such complications.

Firstly, the Sheth-Tormen mass function contains two free
parameters (a and p in Eq. (10) of [68]), which were orig-
inally fitted against N-body simulations of ΛCDM models.
The ellipsoidal collapse captures a number of departures from
the spherical collapse, but the magnitude of such departures
can be different for different models. As a result, one expects
these two parameters to be different in Galileon gravity. Sec-
ondly, in the paradigm of hierarchichal structure formation,
larger objects form by the merging or accretion of smaller ob-
jects. As a result, the assumption that the overdense regions
remain a top-hat throughout all stages of the collapse may not
be a good approximation, specially when it comes to capture
the effects of the screening mechanism. For example, consider
the formation of a very massive halo; then, in the case of the
spherical top-hat collapse, the effects of the screening mecha-
nism only become important in the late stages of the collapse,
when the density of the region is sufficiently high. In reality,
however, the screening mechanism should start to have an im-
pact on the formation of this very massive halo much earlier,
because the halo forms via the continuous merging/accretion
of higher-density objects that has been affected by the screen-
ing since earlier times.

The investigation of the performance of the excursion set
theory formalism in reproducing the simulation results of
Galileon gravity models [40, 43] is the subject of ongoing
work.

V. RESULTS

In this section we present our results for the halo mass func-
tion and halo bias. These will be shown for the WMAP9 best-
fitting ΛCDM model [1] (dashed black) and three variants of
the Quartic Galileon model. The first one is the "full" Quartic
Galileon (solid blue) model characterized by Eqs. (12) and
(21). The second model is a linear force Quartic Galileon
model (solid green), in which Geff/G is obtained by taking
the limit where |δ| ≪ 1 (c.f. Fig.3). Comparing these two
models allows one to measure the effects of the δ-dependence
of Geff . The last variant is a model we call QCDM (solid red),
in which the modifications to gravity are absent Geff/G = 1,
but the expansion history and matter density are the same as
in the other two variants. This model is useful to isolate the
changes introduced by the modified gravitational strength, ex-
cluding those that arise through the different matter density
and modified expansion rate. These models are summarized
in Table II.

A. Evolution of the critical density δc

Before presenting the predictions for the halo mass func-
tion and bias, it is instructive to look at the time dependence
of δc. This is shown in the top panel of Fig. 4, and the bottom
panel shows the difference with respect to the ΛCDM model.
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TABLE II. Summary of the models for which we study the mass function and halo bias. We also show the collapse threshold δc at redshift
zero for each of these models.

Model Ωm0h
2 H(a) Geff/G δc (z = 0)

ΛCDM 0.137 ΛCDM 1 1.677
QCDM 0.148 Eq. (12) 1 1.565
Linear force Quartic Galileon 0.148 Eq. (12) Eq. (21) (δ ≪ 1) 1.497
Full Quartic Galileon 0.148 Eq. (12) Eq. (21) 1.594

FIG. 4. The top panel shows the time evolution of the linearly ex-
trapolated value (assuming ΛCDM linear growth factor) of the ini-
tial critical density for the halo collapse to occur at scale factor a for
the ΛCDM (dashed black), QCDM (solid red), linear force Quartic
model (solid green) and full Quartic Galileon model (solid blue). The
bottom panel shows the difference relative to ΛCDM.

Comparing the ΛCDM and QCDM models, the differences
are driven by the different matter densities and by the dif-
ferent expansion rates. The physical matter density, Ωm0h

2,
is smaller in the ΛCDM than in the QCDM model (c.f. Ta-
ble II), so that structure formation is enhanced in the latter.
On the other hand, the expansion rate acts as a friction term
that slows down structure formation. In Fig. 1, we saw that
HΛCDM > HQCDM for 0.3 . a . 0.8. During these times,
the friction will be higher in ΛCDM, but lower for all other
times. The net effect is that structure formation is suppressed
overall in the ΛCDM model, which is why δc is larger: the ini-
tial critical densities have to be larger to account for the slower
collapse. One also notes that the relative difference between
these two models starts to flatten for a & 0.5. This is due to
the fact that, after this time, HQCDM starts to grow relative
to HΛCDM, which effectively brings the rate of the growth of

structure closer together in the two models.
The differences between the three variants of the Quartic

Galileon model are driven only by the differences in Geff .
In particular, in the linear force model, δc is smaller than in
QCDM because gravity is stronger at late times (a & 0.5)
and the initial densities have to be smaller for the collapse to
occur at the same epoch. On the other hand, δc is larger in
the full Quartic Galileon model compared to QCDM, which
means that the collapsing halo feels an overall weaker gravity.
This is illustrated by the solid red in the left panel of Fig. 3,
which represents the trajectory in a − δ space of a halo that
collapses at the present day. Here, one sees that by the time
the fifth force deviates from unity (a & 0.5), the density of the
halo is already sufficiently large for it to feel the negative fifth
force (Geff/G < 1). It is interesting to note that this brings the
full model predictions closer to ΛCDM because the resulting
weaker gravity in the Quartic Galileon model compensates the
faster growth driven by the higher matter density.

As we look back in time, the curves of the three Quartic
model variants get closer to one another. This is expected
because Geff/G ≈ 1 in the three models for a . 0.5, and
therefore there is nothing driving any differences. The solid
black line in the left panel of Fig. 3 shows the trajectory in
a − δ space of a halo that collapses at a = 0.5 (z = 1),
where one sees that it never crosses any region where Geff/G
significantly deviates from unity.

B. Halo mass function

The left panel of Fig. 5 shows the mass function of Eq. (41)
predicted for the models of Table II at redshifts z = 1 and
z = 0. All the models show the standard result that the
number density of halos decreases with halo mass. Moreover,
the number of the most massive halos progressively increases
with time, while the number of lowest mass halos decreases
(the latter effect is not seen due to the range of abundances
plotted). This is a result of hierarchical structure formation:
with time, low-mass halos merge to form higher mass objects.
The two panels on the right show the difference with respect
to the ΛCDM model at each redshift.

At z = 0, all the variants of the Quartic Galileon model
predict more massive halos, but fewer low-mass halos com-
pared to ΛCDM. This is expected because δc is smaller in all
the Quartic variants (structure formation is enhanced), which
favours the merging of smaller halos into bigger ones. The
linear force model has the lowest value of δc, and therefore
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FIG. 5. The left panel shows the halo mass function of Eq. (41) for the ΛCDM (dashed black), QCDM (solid red), linear force Quartic model
(solid green) and full Quartic Galileon model (solid blue), for two different redshifts z = 1 and z = 0. The two panels on the right show the
difference relative to ΛCDM for the two redshifts.

is the model in which these differences to ΛCDM are more
pronounced. In the excursion set language, the explanation
is that lower values of δc shift the peak of the first-crossing
distribution f(S), Eq. (39), towards lower S, or equivalently,
towads higher M 10. This enhances the abundance of high-
mass halos, but suppresses at the same time the number of
low-mass halos. The opposite happens in the case of the full
Quartic Galileon model. In this case, the δ-dependence of
Geff results in an overall weaker gravity for halos that form at
z > 1, which increases δc. As a result, one finds that there
are fewer high-mass halos compared to QCDM; the overall
weaker gravitational strength felt by the collapsing halos in
the Quartic Galileon model compensates slightly the effects
of the higher matter density.

The differences between the results for the three variants
of the Quartic Galileon model become less pronounced as
one looks back in time. This follows from the fact that
Geff/G ∼ 1 at sufficiently early times a . 0.5, and so the
models become essentially undistinguishable.

10 In other words, if δc is lower then the random walks first up-cross the
barrier sooner (low S), rather than later (high S).

C. Halo bias

Figure 6 shows the linear halo bias of Eq. (45) for the mod-
els listed in Table II. The left panel shows the standard qual-
itative behaviour that high-mass halos cluster more (b1 > 1,
biased halos) and low-mass halos cluster less (b1 < 1, anti-
biased halos), with respect to the underlying linear dark matter
distribution. The mass M∗ that separates these two regimes
is determined by S(M∗) = δ2c . This is a result of hierarchi-
cal structure formation which predicts that, in higher-density
regions, low-mass halos are more likely to merge to form
higher-mass halos. This results in an overabundance of the
latter, and in a suppresion of the former. In this paper, we are
more interested in the differences between models in this qual-
itative picture, which are determined by two factors. The first
one is the different dynamics of the collapse, and is encapsu-
lated in the different values of δc. In particular, larger values
of δc lead to higher bias at all mass scales (c.f. Eq. (45)). The
second factor is the different dynamics of the linear evolution
of the regions where the halos are forming, and is described by
the term g(z) in Eq. (45). Larger values of g(z) increase the
bias for M > M∗ (δ2c/S > 1), but decrease it for M < M∗

(δ2c/S < 1).

Following these considerations, the bias is generally
smaller in the three variants of the Quartic Galileon model
because of the lower value of δc compared to ΛCDM
(c.f. Fig. 4). Moreover, g(z) is also smaller in the Quartic
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model variants than in ΛCDM, which is why the differences
become more pronounced (more negative in the right panels of
Fig. 6) with increasing mass. Note that, at the low-mass end of
the panels, the changes in δc and g(z) in the Quartic Galileon
model variants with respect to ΛCDM shift the bias in oppo-
site directions. However, the bias is still smaller in any of
the Quartic model variants for low-mass halos, which shows
that the changes in δc play the dominant role over g(z) in de-
termining the differences between these models and ΛCDM.
The linear force Quartic Galileon model is that where the ha-
los are less biased at all mass scales because it is the model
where gravity is strongest (lowest δc value). One also notes
that the difference between the linear force model and QCDM
becomes slighlty more pronounced with halo mass, since g(z)
is smaller in the former compared to the latter. The case of the
full Galileon model is perhaps the most interesting one due
to the δ-dependence in Geff . The dashed black and solid red
lines in Fig. 3, show, respectively, the trajectories in a − δ
space of a linear overdensity that has δ = 0.01 and of a halo
that collapses today. One sees that at late times, a & 0.5,
the spherical halo feels an overall weaker gravity compared to
QCDM (larger δc), but that the larger region, where the den-
sity is small, feels an overall stronger gravity (smaller g(z))
compared to QCDM. As a result, in light of the changes driven
by δc and g(z), one has that at the high-mass end, these effects
shift the linear bias in opposite directions, and the net result
is an approximate cancellation, w.r.t. QCDM. On the other
hand, at lower mass scales, the changes in δc and g(z) both
shift the bias upwards, which therefore becomes larger in the
full Quartic model compared to QCDM. In particular, at the
lowest mass scales shown, the bias in the full Quartic Galileon
approaches that of the ΛCDM model.

Similarly to what we have seen in the previous subsections,
the bias of halos that form at z & 1 (a . 0.5) tend to become
the same in the three variants of the Quartic Galileon model,
because at these early times the three models are undistin-
guishable.

VI. CONCLUSIONS

We have studied the nonlinear growth of large scale struc-
ture in the Quartic and Quintic Galileon gravity models. For
this, we have derived the nonlinear Einstein and Galileon field
equations assuming spherical symmetry, the quasi-static ap-
proximation and the weak field approximation. Using these
equations, we studied the spherical collapse of matter over-
densities and used the excursion set formalism to predict the
halo mass function and halo bias.

In these models, the spatial gradient, ϕ,χ /χ, of the
Galileon field contributes to the fifth force and its value is ob-
tained by solving a nonlinear algebraic equation, Eq. (20). In
the case of the Quintic Galileon model, we demonstrated that,
if δ is above order unity, then the field equations do not ad-
mit physical solutions. This is because the branch of solutions
for ϕ,χ /χ that vanishes when δ = 0 (which characterizes
the physical behaviour) becomes a complex root of Eq. (20)
(c.f. Fig. 2). Evidently, the impossibility of evaluating the fifth

force at these densities prevents the study of the spherical col-
lapse in the Quintic model. We have argued that it is unlikely
that relaxing the quasi-static approximation can help to solve
this problem. In the case of the Quartic model, we showed
that the physical solutions exist on sufficiently high density
regions, but do not exist at late times if the density is suffi-
ciently low (c.f. Fig. 3). However, here the case is likely to
be related to the breakdown of the approximations adopted,
which, indeed, are not expected to hold in very low density
regions. Fortunately, for the halo spherical collapse study we
presented, such low densities are not important and the prob-
lem is irrelevant.

We have seen that at early times (z & 1, or a . 0.5)
in the Quartic model, the effective gravitational strength is
Geff/G ≈ 1 (c.f. Fig. 3). With time, Geff/G increases if
the density is small (δ ≪ 1), and at the present day one
has Geff/G ≈ 1.4. On the other hand, if the density is of
order unity or above, the value of Geff/G decreases, and at
the present day it is Geff/G ≈ 0.6 for δ ≫ 1. Thus, the
modifications to gravity are not completely screened on high
densities. The reason for this is that the Galileon field con-
tributes to Geff/G not only through its spatial gradients, but
also through the background time evolution that multiplies the
standard gravity terms (c.f. Eqs. (17), (18) and (19)). The lat-
ter will still be present, even at high densities where the Vain-
shtein screening successfully suppresses the spatial gradients.

A negative fifth force at high densities (small length scales)
can have interesting observational consequences. For in-
stance, the first results from N-body simulations of the Quartic
Galileon model have been recently presented in [43]. There,
it was shown that the gravitational potential of the halos be-
comes shallower, which favours lower concentration, pro-
vided that the average velocity of dark matter particles does
not decrease too much [43]. Also, given the same kinematical
data, i.e. galaxy rotation curves or galaxy velocity dispersion
in clusters, or the same X-ray or Sunyaev-Zeldovich signals
from difuse gas in clusters, then a lower value of the gravita-
tional strength would result in a higher estimated dynamical
mass for dark matter halos (see e.g. [71]). However, despite
all this interesting phenomenology, it is important to bear in
mind that the weaker and time-varying gravitational strength
in the Quartic model is in fact putting the model into huge
tension with the local Solar System tests of gravity. In this pa-
per, we focused on the cosmological properties of this model,
but if it turns out that the time variation of Geff on local scales
cannot be "cured", then the model is observationally ruled out.
In our view, such a "cure" is also not likely to come from the
relaxation of the quasi-static or weak-field approximations.

We have seen that the way the Galileon modifies the dy-
namics of the spherical collapse of overdensities is sensitive
to the density of the halo, but not to its size or mass. In other
words, the critical density for collapse, δc, which determines
the height of the barrier in the excursion sets, is "flat". Our
results show that δc becomes smaller when one changes from
the ΛCDM to the QCDM model. This is mostly because of
the higher matter density in the latter, which makes the ha-
los collapse faster. In the linear force Quartic model, the fifth
force is non-negligible and positive for a & 0.5, which further
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FIG. 6. The left panel shows the linear halo bias parameter of Eq. (45) for the ΛCDM (dashed black), QCDM (solid red), linear force Quartic
model (solid green) and full Quartic Galileon model (solid blue), for two different redshifts z = 1 and z = 0. The two panels on the right
show the difference relative to ΛCDM for the two redshifts.

decreases the critical density δc because it further boosts the
collapse of the halos. In the case of the full Quartic model,
the spherical halos feel a negative fifth force in the collapsing
stages for a & 0.5 (c.f. Fig 3), which makes δc larger than in
QCDM.

Using the excursion set theory formalism, we have com-
puted the mass function for the Quartic Galileon model. We
have seen that, at z = 0, all the variants of the Quartic
Galileon model we studied predict more high-mass halos than
ΛCDM, but fewer low-mass halos (c. f. Fig. 5). This is mainly
due to the higher matter density in the Galileon models, which
enhances structure formation, and thus makes it easier for
smaller halos to merge into more massive ones. In the case
of the linear force model, the enhanced gravitational strength
leads to more halos at the high-mass end. On the other hand,
in the full Quartic Galileon model, the halos that collapse
at z = 0 feel overall a weaker gravity, and therefore, the
model predicts fewer high-mass halos compared to QCDM.
In the full model, the fact that the screening mechanism can-
not suppress all the modifications to gravity, compensates the
boosting effect on halo formation driven by the higher mat-
ter density. This brings the model predictions slightly closer
to those in ΛCDM. However, the number of high-mass halos
in the full Quartic Galileon model is still considerably larger
than in ΛCDM, which shows that the different matter den-
sity plays the dominant role in determining the different halo
abundances in these two models.

Our results for the mass function in the Quartic Galileon
model can be interpreted in the context of observations that
have been claimed to be in tension with standard ΛCDM.
In particular, X-ray and lensing measurements have detected
galaxy clusters that seem to be too massive and to have formed
too early, compared to what one would expect from ΛCDM
[72–75]. In addition, the detection in the CMB of the ISW
signal associated with super clusters (hot spots) and super
voids (cold spots) has also been claimed to suggest that clus-
ters were more massive and voids emptier in the past, and
that they existed in higher number than in the ΛCDM expec-
tation [76–79]. However, [80–84] have shown that the tension
with the LCDM model is ameliorated by using an appropri-
ate estimate of the statistics of rare structures, such as massive
clusters or large voids (see also [85]). Such apparently un-
usual objects become more common in models with standard
gravity if the initial distribution of density fluctuations is non-
Gaussian [86, 87]. The main difficulty with this solution is
that the values of fNL required to explain these observations
are generally too large to be compatible with other CMB con-
straints (see however [88]). On the other hand, our qualitative
results for the mass function of the Quartic Galileon model
show that the enhanced rate of structure formation (driven
mainly by the higher matter density) helps to produce more
high-mass objects relative to ΛCDM, whilst at the same time
being compatible with the CMB temperature power spectrum.

We have also studied the halo bias in these models. In par-
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ticular, we saw that the bias in the variants of the Quartic
Galileon model is generally smaller than in ΛCDM, and that
the differences become more pronounced with increasing halo
mass. Within these variants, the bias is the lowest in the linear
force model at all mass scales. In the case of the full Quartic
model, at z = 0, the bias is larger for low-halo masses com-
pared to QCDM, but the two predictions become comparable
at higher halo masses (c.f. Fig. 6). In the Galileon model,
the bias of dark matter halos is determined by the interplay
of the different values of δc and g(z) (c.f. Eq. (45)). While
larger values of δc can only lead to higher bias, larger values
of g(z), (which corresponds to slower clustering of the under-
lying dark matter field), make high-mass halos more biased,
but low-mass halos less biased. For instance, in the case of
the full Quartic model, for high-mass halos, the weaker grav-
ity felt by the halos and the faster evolution of the underly-
ing matter density relative to QCDM compensate each other,
which is why the two models predict roughly the same bias.
However, for low-mass halos, the faster evolution of the linear
density field will also push the linear bias to higher values, and
consequently, the bias is noticeably larger. Our results for the
halo bias show that the changes introduced by the modified
gravitational strength (measured by the differences between
the Quartic model variants) are sub-dominant over those in-
troduced by the higher matter density w.r.t. ΛCDM (measured
by the differences between QCDM and ΛCDM).

From the point of view of the linear matter power spectrum
of Fig. 1, the lower halo bias in the Quartic Galileon model
means that the amount by which its linear theory curve should
be shifted upwards is smaller compared to ΛCDM. We note
that the higher matter density in the Galileon model, which
results in a higher clustering amplitude, also contributes sig-
nificantly to the lower linear bias prediction. Moreover, the
data in the bottom right panel of Fig. 1 shows the host halo
power spectrum of LRGs, which are thought to typically re-
side in halos with an effective mass ≈ 1014M⊙/h [89–91].
Our linear bias results show that these high-halo masses are
precisely those for which the differences between the Quartic
Galileon and ΛCDM models are more pronounced. At these
halo masses, the bias in the Quartic model can be a few tenths
of percent smaller relative to ΛCDM. However, judging from
Fig. 1, this may not be enough to fully ease the tension of
the model with galaxy clustering data. As we mentioned be-
fore, our study is mostly qualitative and we shall leave more
quantitative results for future work. In particular, it would
be interesting to interpret the different linear halo bias in the
Galileon model in light of current empirical halo ocupation
models [90], and halo-weighting schemes to reconstruct the
mass distribution from galaxy surveys [92, 93].

In conclusion, our work shows that the modifications of
gravity that arise in the Quartic Galileon gravity model can
have interesting and testable predictions for the large scale
structure in the Universe. In the present paper, our goal was
to present a simplified study in order to get some first impres-
sions on the phenomenology of the model and to help plan fu-
ture studies. For instance, the first N-body simulations of the
Quartic Galileon model were presented in [43], and it woud
be interesting to use the excursion set methodology presented

here to develop a halo model [94] for Galileon gravity, and see
how it compares with the results from high-resolution simu-
lations (see e.g. [95]). In principle, our equations can also be
used to compute the halo mergers trees with less work than
by using N-body simulations, which could be used to study
galaxy formation in the Galileon model. Such studies would
be important to help devise and interpret the results of future
large-scale galaxy surveys, the goals of which include testing
the laws of gravity on cosmological scales.
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Appendix A: Time-dependent coefficients of the spherically

symmetric nonlinear equations

The coefficients Ai, Bi, Ci in Eqs. (17), (18) and (19), are
given, respectively, by

A1 = −2c3ξϕ
′ − 12c4ξ

2ϕ′ − 15c5ξ
3ϕ′ (A1)

A2 = 6c4ξϕ
′ + 12c5ξ

2ϕ′ (A2)

A3 = −4c5ξϕ
′ (A3)

A4 = 2− 3c4ξ
2ϕ′2 − 6c5ξ

3ϕ′2 (A4)

A5 = 6c5ξ
2ϕ′2 (A5)

B0 = −2− c4ξ
2ϕ′2 + 3c5ξ

3ϕ′′ϕ′ (A6)

B1 = 4c4

(

−ξ2ϕ′ − 3

2
ξ2ϕ′′

)

+6c5

(

−3

2
ξ3ϕ′′ − ξ3ϕ′

)

(A7)

B2 = 2c4ξϕ
′ + 6c5ξ

2ϕ′′ (A8)

B3 = −2 + 3c4ξ
2ϕ′2 + 6c5ξ

3ϕ′2 (A9)

B4 = 6c5ξ
2ϕ′2 (A10)

C1 = −c2 − 2c3

(

4ξ + ξ
ϕ′′

ϕ′

)

− c4

(

26ξ2 + 6ξ2
ϕ′′

ϕ′

)

−6c5

(

4ξ3 + ξ3
ϕ′′

ϕ

)

(A11)

C2 = 4c3 + 6c4

(

2ξ + ξ
ϕ′′

ϕ′

)
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+6c5

(

2ξ2 + ξ2
ϕ′′

ϕ′

)

(A12)

C3 = −4c4 − 4c5ξ
ϕ′′

ϕ′
(A13)

C4 = 2c4
(

3ξ2ϕ′′ + 2ξ2ϕ′
)

+3c5
(

3ξ3ϕ′′ + 2ξ3ϕ′
)

(A14)

C5 = −2c3ξϕ
′ − 12c4ξ

2ϕ′ − 15c5ξ
3ϕ′ (A15)

C6 = −4c4ξϕ
′ − 12c5ξ

2ϕ′′ (A16)

C7 = 12c4ξϕ
′ + 24c5ξ

2ϕ′ (A17)

C8 = −12c5ξϕ
′ (A18)

C9 = −6c5ξ
2ϕ′2 (A19)

where we have assumed the tracker background solution.
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