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Abstract.  A combinator ial  criterion for a toric variety to be projective is 
given which uses Gale- transforms.  Fur thermore,  classes of  nonproject ive toric 
varieties are constructed. 

1. Introduction 

Let o := R + a~ + • • • + R + a k be a cone in R a, where a 1 . . . . .  a k are primitive 
lattice points  ~ Z d \ { 0 } ,  and let o have only 0 as an apex. If  S is the unit sphere 
in R d, the intersection o 0 := o n S is a spherical cell. Suppose E0 is a spherical cell 
complex consist ing of such cells. The corresponding cones form a system E called 
a fan .  We can assume that  every point  ( R + a / ) n S  is a vertex of o 0 for any 
°0 ~ Y'o- W e  may  also consider E to be a cell complex, the vertices being 
one-dimensional  cones R + a s- 

I f  d i m o  := d im(a f ro )  (affine hull) equals k we call o and o o simpliciat.  We 
say Y or 2; 0 is simplicial  if every o ~ Z or o 0 ~ Y'o is simplicial, respectively. In  
the case of  a simplicial fan we also look at E as being generated by  projecting the 
simplexes 0 ' : =  conv{a  1 . . . . .  a k }  , that is, o = R +o '  for all o ~ Y.. The simplicial 
complex  Bst(Q ) of  all o '  thus defined bounds  a s tar-shaped polyhedron Q with 0 
in its kernel,  provided Y. covers the whole space R d. Let 6 := { x l ( x ,  y )  > 0 for 
all y ~ o } be the dual cone of o ( ( . , .  ) = inner product) ,  and let Ro be the ring of  
all Laurent -polynomia ls  r .a/zJ,  % ~ C (or any algebraically closed field), zJ .'= z~ ' 
• . .  J d  " . - -  " • v d Zd, J "-- (J1 . . . . .  Jd) ~ o n l  , only finitely m a n y  a s being ~ 0. SpeeR o (the 
set of  p r ime  ideals of R o )  is an affine variety. For  any two 01, 0 2 ~ Y. we glue 
together SpecRo,  and SpecRo2  by  the inclusion maps  

Ro, no 2 *- R , , ,  Ro,  no 2 ~ Ro2. 

If  this is done  for  all 01, 0 2 ~ X we obtain  a variety X x called toric variety (see 
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Kempf, Knudson, Mumford, and Saint-Donat [6], Oda [10], Danilov [2], and 
Teissier [14]; also [3]). 

Any fan can easily be extended to a fan that covers all of R a. For X x this 
means a compactification (completion). We assume in this article X to cover R a 
and hence X 0 to have the sphere as its point set. 

Our main goal is to extend some of the work of Oda and Miyake [10,11] from 
three to higher dimensions. In particular, we study questions of projectiveness of 
X x and construct classes of nonprojective toric varieties in all dimensions. We 
make use of the technique of the so-called Gale-transforms which proved to be 
very helpful in combinatorial convexity theory. 

In the "dictionary" that relates properties of Y. to properties of X x we focus 
on three "words" :  

1. For  d = 2, X can also be obtained by projecting the faces of a convex 
polyhedron P (see Fig. 1). For d > 2, this is, in general, not true. If it is 
true, we say Y. is strongly polytopal. Xr. is called projective if it is globally 
the set of zeros of finitely many homogeneous polynomials in d + 1 
variables. The following equivalence is true (see for example, [2], page 
118): 

X strongly polytopal ,~, X x projective. 

2. If o is simplicial and if dimo = d, that is, o ~ X(d), we assign to the 
generating vectors a t . . . . .  a d the determinant det o := det[a I . . . . .  ad]. It can 
be shown ([10], page 12) 

det o = +1 for all o ~ y~d) ,~ Xx is nonsingular. 

3. If in a cell complex c¢ we choose a relative interior point p of a cell C 
(p  ~ rel intC),  and if the star of C is replaced by the join of p to the 
boundary of this star, we say, a stellar subdivision s (p ,~ )  has been 
achieved (Fig. 2). We call a stellar subdivision S(R+a, X) regular if 
a = a 1 + • • " + a k for a t . . . . .  a k generating a cone of X. (The term "bary-  
centric" used by Oda and Miyake is somewhat misleading.) There is a 
correspondence (see [10]): 

(regular) stellar subdivision of Y. ~ blow-up of X x (along a 

nonsingular center). 

The inverse operation of a blow-up is called a blow-down (or o-process). 

t I \ 

~ig.t 
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2. Gale-Transforms and Facet-Splitting 

Let V := = { a 1 . . . . .  a ,  } be a finite set of  points (vectors) in R d, and let ( a  1 . . . . .  a , )  
be an affine dependence of  V, that is, 

a l a  1 + • ' '  + a . a  v = O, a 1 + " "  + a v = O. 

We choose a basis of  the (v - d - 1)-dimensional space of  all affine dependences 
and write them as rows of a matrix 

Otll • . .  a l ,  v } 
• " = :  . . . .  

~a._a_x, x •.. a._a_1,./ 

The set of columns 7:= { d I ..... ~70 } is called a Gale-transform of V (see, for 
example, Gri~nbaum [5] or McMullen and Shephard [9], Ewald and Vo13 [4], and, 
for a coordinate-free introduction, McMullen [8]). 

Example .  Consider  in R 3 the triangular prism with vertices a 1 = (1,0,0), a 2 = 
( 0 , 1 , 0 ) ,  a 3 = ( 0 , 0 , 1 ) ,  a 4 = (0, - 1 ,  - 1 ) ,  a 5 = ( - 1 , 0 ,  - 1 ) ,  and a 6 = ( - - 1 ,  - 1 , 0 ) .  
Let the rectangular  faces be split as indicated in Fig. 3. Figure 4 presents a 
Gale- t ransform of V =  {a 1 . . . . .  a6}. If  a i . . . . . .  a generate a cell ("face")  o of y 

- -  A 1 ~  . 

we call V \ {  di~ . . . . .  ai~ } the coface 6 of o. We make use of a basra fact [13]: 

Theorem. E is strongly polytopal  i f  and only i f  f q o ~ : g r e l i n t t i * ~ .  
If, in particular, 0 ~fqo ~zre l in t  6, then a 1 . . . . .  a ,  represent the vertices of a 

convex polytope.  

% 

Fig. 3 
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Fig. 5 

In the above example, the prism without face-splitting has a face-structure 
that  satisfies the latter condition. If the splittings are carried out, however, among 
the cofaces there are ala4a6,  aEasa4,  a3a6a 5 which have no relative interior point 
in common.  So we obtain a nonstrongly polytopal fan E. 

All determinants of ~ except det[a 4, a 5, a6] are + 1. Applying the regular 
stellar subdivision, S(R +a, Y.) where a = a 4 + a 5 + a 6 provides a nonsingular, 
nonprojective variety Xs(n÷a,x)  x . 

An analogous construction for d = 4 can be obtained as follows. Consider the 
subdivision of a three-simplex as indicated in Fig. 5. It consists of double-sim- 
plexes  A 1 -'= 12457, A 2 := 23567, _A 3 ~= 31647, and four simplexes 
1435,2346,1235,1357. A Gale-transform 1 . . . . .  7 of 1 . . . . .  7 is shown in Fig. 6. This 
decomposi t ion of the simplex can be looked at as the Schlegel-diagram of a 
four-polytope P, that is, a central projection of P into one of its facets. A direct 
construction of P can be obtained by finding a Gale-transform of the points in 
Fig. 6 and taking their convex hull. I t  is known that Fig. 6 represents aoalri a 

Fig. 6 
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Gale-transform of P. The double-simplexes A1, A2, A 3 can be looked at as 
analogues of  the rectangular faces of the prism in Fig. 3 which are two-dimen- 
sional double-simplexes. 

Now we may split each of the facets A 1, A 2, A 3 by a one-dimensional or a 
two-dimensional diagonal into three or two simplexes. There are eight typical 
combinations of such facet-splittings, two of which turn out to provide non- 
strongly polytopal fans: 

I. Split A I at 12, A 2 at 56, and A 3 and 347; 
II. split A 1 at 457, A 2 at 237, and A 3 at 16. 
Figures 7 and 8 provide for cases I and II, respectively, three cofaces that 

have no relative interior point in common. 
For any d > 3 we obtain the following statement. By facet-splitting we mean 

generally the straight subdivision of the facets of a convex polytope into convex 
polytopes whose vertices are all vertices of the original polytope. 

T h e o r e m  1. Let P be a convex d-polytope, d ~ 3, 0 E int P, with v rational 
vertices, and let P have at least v - d facets which are simplicial but not simplexes. 
Then by appropriate facet-splittings we obtain at least one complex B( P ) on the 
boundary of P such that Y. = E( B( P)) is not strongly polytopal. 

Proof. A Gale-transform of the vertex set vert P of P spans a space of dimen- 
sion v - d - 1. Let A' 1 . . . . .  A'o_ d be simplicial facets that are not simplexes. If A~ 
has more than d + 1 vertices, we apply facet-splittings until we obtain a piece Aj 
of A~ that has precisely d + 1 vertices. So let A 1 . . . . .  Av_ d be ( d -  1)-cells of a 
cell-complex Bo(P ) realized on the boundary of P. 

To each Aj let Aj be a coface which is ( v - d - 2 ) - d i m e n s i o n a l  and hence 
spans a hyperplane H, in R v-d-1. Now Aj Call be split into simplexes using a 
Radon partition of v~ert Aj into subsets Dj, D] such that D 2 u Df = vert A j, 

7 3 2 

s 6 Fig. 8 
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D I n / ~ '  = O, (cony Dj) ¢q (convD/) ~ O. We obtain (v - d - 1)-dimensional cofaces 
conv(A U { ~  }), a i ~ ver tA,  which can lie on either side of Hj depending on 
whether a~ ~ '/)i or h~ ~ D~'. ~ince A' 1 . . . . .  A'~_ d are simplicial, all splittings of the 
Aj are independent. ~Ienc~ they can be chosen in such a way that 

o - d 
1") relintconv(A~ u ( ai~ } ) = ~-  

j = l  

By Shephard's theorem, this proves our assertion. [] 

Remark 1. Polytopes P as assumed in Theorem I do exist for any d > 3. Let, for 
example, C be a d-dimensional cube with 0 as its center, and consider in any 
one-dimensional face pq of C the supporting hyperplane H such that H n C = pq 
and such that H is perpendicular to the plane spanned by 0, p, and q. Then the 
half-spaces bounded by such H and containing 0 intersect in a polytope P that 
has v = 2 d + 2 d  vertices and d . 2  d-1 simplicial facets that are not simplexes. 
Since v - d = 2 d + d < d . 2  d-1 for d > 3 there are sufficiently many such faces 
available. Further examples for d = 4 can be found in Altshuler and Steinberg [1]. 

Remark 2. In many cases there will be more than one nonstrongly polytopal fan 
that can be constructed from P. If, for example, d is even and v - d is odd, then 
the two possiblefacet-splittings of Aj are nonisomorphic. Replacing conv(Aj U 
( a i , } )  by conv( Aj kJ ( a k ) )  where a i , a k are in different sets Dj, Df, j = l  . . . . .  
v -  d, provides a fan ~laat is noni~om~rphic to the first one. This example 
generalizes cases I and II in the above four-dimensional example. 

Remark 3. If the hyperplanes Hj are linearly dependent, then, in general, less 
than o - d facet splittings will do to obtain nonstrongly polytopal fans. The same 
is true in many cases where the Aj have more than d + 1 vertices. 

3. Canonical Extensions 

We present now a further method of constructing nonprojective toric varieties 
from given ones. If the variety X:~ we start with has no singularities the same is 
true for the new ones. Also the possibility of turning the variety into a projective 
space by blow-ups and -downs is preserved. 

Let Y~ be a simplicial fan in R a, and let V,= ( a  1 . . . . .  ao} be the set of its 
generating primitive lattice vectors. We embed R d into R d+l, replace a vertex 
(aj,0), say (ax,0), by (al,1), and join (al,1) to the complement of the star of 
(at ,0)  in the complex Bst(Q ) on the boundary of the star-shaped polytope such 
that Y~ projects the faces of Bst(Q) (see Section 1). Then we join ( 0 , - 1 )  to the 
boundary of the complex thus constructed. We obtain a complex B~t(Q ) which 
bounds a star-shaped polytope Q in R d+ 1. We call B~t(Q) or its associated fan ~2 
a canonical extension of Bst(Q ) or Y., respectively. Also X~ is then ~called~ a 
canonical extension of X:~ (Fig. 9). (According to Provan and Billera [12] Bst(Q ) is 
the simplicial wedge of Bst(Q ) on al; according to Klee and Kleinschmidt [7] the 
dual wedge.) 
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~,~) 

Co,-t) Fig. 9 

Bst((~) can also be obtained by doubling al in a Gale-transform V of 
V: al = ~v+ 1- The additional affine dependence al - By+ 1 = 0 provides us the new 
vertices (al ,1) , (az,0)  . . . . .  ( av ,0 ) , (0 , -1 )  in the extended original space. This 
interpretation of the canonical extension should be kept in mind but is not 
necessary for what follows. 

Theorem 2. Let X~ be a canonical extension of X~. 
(1) I f  Xr. has dimension d, X~ has dimension d + 1. 
(2) I f  X~ is projective, so is X~. 
(3) If X z is nonprojective, so is X% 
(4) If X~. is nonsingular and can, by blow-ups and -downs, be transformed 

into a projective space, the same is true for X~. 

Proof (1) True, by definition. 
(2) Let qal, . . . ,  tva o, ty > 0, j = l  . . . . .  v, be vertices of a convex polytope. 

Then (t, al, 0) is outside P0 := conv((qax, 1), (t2a 2, O) ..... (tvav, 0)}. Hence, if t > 0 
is sufficiently large, the line segment joining (txal,1) and ( 0 , -  t) is also outside 
P0. Therefore, Y. is also strongly polytopal, the realizing polytope being conv(P 0 
U{O,-t}). 

(3) Suppose ~2 were strongly polytopal, being realized by a polytope P. Then 
P := P n { Xa+ 1 = 0} is a realization for Y,, a contradiction. 

(4) The determinants of d + 1 rows associated with facets of P0 evidently 
reduce, up to a factor _+ 1, to determinants of d rows associated with the facets of 
Bst(Q), hence are +1.  

We apply first a stellar subdivision S(R + p, ~.) where p = (a l ,0 )+  ( 0 , -  1). 
The complex if'. '= [Bst(Q)\star(a 1, B(Q))]U[p .link star(a 1, B(Q))] ( p -~ '  := 
{ c o n v ( ( p } U o ) l a ~  } the join of p and ~') is isomorphic to B(Q). Hence 
regular stellar subdivisions and inverses applied successively to Bst(Q ) correspond 
to analogous operations for ~" and can naturally be extended to operations for 
/Ys,(Q)- If Bst(Q ) is thus transformed into a d-simplex, Bst(Q) is being trans- 
formed into a double-simplex which, in turn, is readily transformed into a 
simplex. (Compare Provan and BiUera [12] and Klee and Kleinschmidt [7].) [] 

Theorem 2 provides a construction method for nonprojective toric varieties in 
all dimensions d > 3. In particular, we have from the examples presented in 
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Section 2: 

T h e o r e m  3. (1) For any d > 3 there exist nonprojective toric varieties with 
v = d + 3 exceptional divisors. 

(2) For any d > 3 there exist nonsingular, nonprojective toric varieties having 
v = d + 4 exceptional divisors. 

Remark. If  X x can be b lown down, this only  carries over to X~ if R + a a v~ R + p 
in S(R + p, Y.). 
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