

Günter Ewald

Institut für Mathematik, Ruhr-Universität Bochum, Postfach 102148, 4630 Bochum 1, Federal Republic of Germany

Abstract. A combinatorial criterion for a toric variety to be projective is given which uses Gale-transforms. Furthermore, classes of nonprojective toric varieties are constructed.

1. Introduction

Let $\sigma := \mathbb{R}_{+} a_{1} + \cdots + \mathbb{R}_{+} a_{k}$ be a cone in \mathbb{R}^{d} , where a_{1}, \ldots, a_{k} are primitive lattice points $\in \mathbb{Z}^{d} \setminus \{0\}$, and let σ have only 0 as an apex. If S is the unit sphere in \mathbb{R}^{d} , the intersection $\sigma_{0} := \sigma \cap S$ is a spherical cell. Suppose Σ_{0} is a spherical cell complex consisting of such cells. The corresponding cones form a system Σ called a *fan*. We can assume that every point $(\mathbb{R}_{+} a_{j}) \cap S$ is a vertex of σ_{0} for any $\sigma_{0} \in \Sigma_{0}$. We may also consider Σ to be a cell complex, the vertices being one-dimensional cones $\mathbb{R}_{+} a_{j}$.

If dim $\sigma := \dim(\operatorname{aff} \sigma)$ (affine hull) equals k we call σ and σ_0 simplicial. We say Σ or Σ_0 is simplicial if every $\sigma \in \Sigma$ or $\sigma_0 \in \Sigma_0$ is simplicial, respectively. In the case of a simplicial fan we also look at Σ as being generated by projecting the simplexes $\sigma' := \operatorname{conv}\{a_1, \ldots, a_k\}$, that is, $\sigma = \mathbb{R}_+ \sigma'$ for all $\sigma \in \Sigma$. The simplicial complex $B_{\mathrm{st}}(Q)$ of all σ' thus defined bounds a star-shaped polyhedron Q with 0 in its kernel, provided Σ covers the whole space \mathbb{R}^d . Let $\check{\sigma} := \{x | \langle x, y \rangle \ge 0$ for all $y \in \sigma\}$ be the dual cone of $\sigma(\langle \cdot, \cdot \rangle = \text{inner product})$, and let R_{σ} be the ring of all Laurent-polynomials $\Sigma a_j \mathbb{Z}^j$, $a_j \in C$ (or any algebraically closed field), $\mathbb{Z}^j := \mathbb{Z}_1^{j_1}$ $\cdots \mathbb{Z}_d^{j_d}$, $j := (j_1, \ldots, j_d) \in \check{\sigma} \cap \mathbb{Z}^d$, only finitely many a_j being $\neq 0$. Spec R_{σ} (the set of prime ideals of R_{σ}) is an affine variety. For any two $\sigma_1, \sigma_2 \in \Sigma$ we glue together Spec R_{σ_1} and Spec R_{σ_2} by the inclusion maps

$$R_{\sigma_1 \cap \sigma_2} \leftarrow R_{\sigma_1}, \qquad R_{\sigma_1 \cap \sigma_2} \leftarrow R_{\sigma_2}.$$

If this is done for all $\sigma_1, \sigma_2 \in \Sigma$ we obtain a variety X_{Σ} called *toric variety* (see

Kempf, Knudson, Mumford, and Saint-Donat [6], Oda [10], Danilov [2], and Teissier [14]; also [3]).

Any fan can easily be extended to a fan that covers all of \mathbb{R}^d . For X_{Σ} this means a compactification (completion). We assume in this article Σ to cover \mathbb{R}^d and hence Σ_0 to have the sphere as its point set.

Our main goal is to extend some of the work of Oda and Miyake [10,11] from three to higher dimensions. In particular, we study questions of projectiveness of X_{Σ} and construct classes of nonprojective toric varieties in all dimensions. We make use of the technique of the so-called Gale-transforms which proved to be very helpful in combinatorial convexity theory.

In the "dictionary" that relates properties of Σ to properties of X_{Σ} we focus on three "words":

1. For d = 2, Σ can also be obtained by projecting the faces of a convex polyhedron P (see Fig. 1). For d > 2, this is, in general, not true. If it is true, we say Σ is strongly polytopal. X_{Σ} is called projective if it is globally the set of zeros of finitely many homogeneous polynomials in d+1variables. The following equivalence is true (see for example, [2], page 118):

 Σ strongly polytopal $\Leftrightarrow X_{\Sigma}$ projective.

2. If σ is simplicial and if dim $\sigma = d$, that is, $\sigma \in \Sigma^{(d)}$, we assign to the generating vectors a_1, \ldots, a_d the determinant det $\sigma := det[a_1, \ldots, a_d]$. It can be shown ([10], page 12)

det
$$\sigma = \pm 1$$
 for all $\sigma \in \Sigma^{(d)} \Leftrightarrow X_{\Sigma}$ is nonsingular.

3. If in a cell complex & we choose a relative interior point p of a cell C (p ∈ relint C), and if the star of C is replaced by the join of p to the boundary of this star, we say, a stellar subdivision s(p, C) has been achieved (Fig. 2). We call a stellar subdivision S(ℝ₊a, Σ) regular if a = a₁ + ··· + a_k for a₁,..., a_k generating a cone of Σ. (The term "bary-centric" used by Oda and Miyake is somewhat misleading.) There is a correspondence (see [10]):

(regular) stellar subdivision of $\Sigma \rightarrow$ blow-up of X_{Σ} (along a nonsingular center).

The inverse operation of a blow-up is called a *blow-down* (or σ -process).

2. Gale-Transforms and Facet-Splitting

Let $V := \{a_1, ..., a_v\}$ be a finite set of points (vectors) in \mathbb{R}^d , and let $(\alpha_1, ..., \alpha_v)$ be an affine dependence of V, that is,

$$\alpha_1 a_1 + \cdots + \alpha_n a_n = 0, \qquad \alpha_1 + \cdots + \alpha_n = 0.$$

We choose a basis of the (v - d - 1)-dimensional space of all affine dependences and write them as rows of a matrix

$$\begin{pmatrix} \alpha_{11} & \cdots & a_{1,v} \\ \vdots & & \vdots \\ \alpha_{v-d-1,1} & \cdots & \alpha_{v-d-1,v} \end{pmatrix} =: (\bar{a}_1, \ldots, \bar{a}_v).$$

The set of columns $\overline{V} := \{\overline{a}_1, \dots, \overline{a}_v\}$ is called a *Gale-transform* of V (see, for example, Grünbaum [5] or McMullen and Shephard [9], Ewald and Voß [4], and, for a coordinate-free introduction, McMullen [8]).

Example. Consider in \mathbb{R}^3 the triangular prism with vertices $a_1 = (1,0,0)$, $a_2 = (0,1,0)$, $a_3 = (0,0,1)$, $a_4 = (0,-1,-1)$, $a_5 = (-1,0,-1)$, and $a_6 = (-1,-1,0)$. Let the rectangular faces be split as indicated in Fig. 3. Figure 4 presents a Gale-transform of $V = \{a_1, \ldots, a_6\}$. If a_{i_1}, \ldots, a_{i_k} generate a cell ("face") σ of Σ we call $\overline{V} \setminus \{\overline{a}_{i_1}, \ldots, \overline{a}_{i_k}\}$ the coface $\overline{\sigma}$ of σ . We make use of a basic fact [13]:

Theorem. Σ is strongly polytopal if and only if $\bigcap_{\sigma \in \Sigma}$ relint $\bar{\sigma} \neq \emptyset$.

If, in particular, $0 \in \bigcap_{\sigma \in \Sigma}$ relint $\overline{\sigma}$, then a_1, \ldots, a_v represent the vertices of a convex polytope.

Fig. 3

G. Ewald

In the above example, the prism without face-splitting has a face-structure that satisfies the latter condition. If the splittings are carried out, however, among the cofaces there are $\bar{a}_1\bar{a}_4\bar{a}_6$, $\bar{a}_2\bar{a}_5\bar{a}_4$, $\bar{a}_3\bar{a}_6\bar{a}_5$ which have no relative interior point in common. So we obtain a nonstrongly polytopal fan Σ .

All determinants of Σ except det $[a_4, a_5, a_6]$ are ± 1 . Applying the regular stellar subdivision, $S(\mathbb{R}_+a, \Sigma)$ where $a = a_4 + a_5 + a_6$ provides a nonsingular, nonprojective variety $X_{S(\mathbb{R}_+a,\Sigma)\Sigma}$.

An analogous construction for d = 4 can be obtained as follows. Consider the subdivision of a three-simplex as indicated in Fig. 5. It consists of double-simplexes $\Delta_1 := 12457$, $\Delta_2 := 23567$, $\Delta_3 := 31647$, and four simplexes 1435,2346,1235,1357. A Gale-transform $\overline{1}, \ldots, \overline{7}$ of $1, \ldots, 7$ is shown in Fig. 6. This decomposition of the simplex can be looked at as the Schlegel-diagram of a four-polytope *P*, that is, a central projection of *P* into one of its facets. A direct construction of *P* can be obtained by finding a Gale-transform of the points in Fig. 6 and taking their convex hull. It is known that Fig. 6 represents again a

Gale-transform of P. The double-simplexes $\Delta_1, \Delta_2, \Delta_3$ can be looked at as analogues of the rectangular faces of the prism in Fig. 3 which are two-dimensional double-simplexes.

Now we may split each of the facets $\Delta_1, \Delta_2, \Delta_3$ by a one-dimensional or a two-dimensional diagonal into three or two simplexes. There are eight typical combinations of such facet-splittings, two of which turn out to provide nonstrongly polytopal fans:

I. Split Δ_1 at 12, Δ_2 at 56, and Δ_3 and 347; II. split Δ_1 at 457, Δ_2 at 237, and Δ_3 at 16.

Figures 7 and 8 provide for cases I and II, respectively, three cofaces that have no relative interior point in common.

For any $d \ge 3$ we obtain the following statement. By *facet-splitting* we mean generally the straight subdivision of the facets of a convex polytope into convex polytopes whose vertices are all vertices of the original polytope.

Theorem 1. Let P be a convex d-polytope, $d \ge 3$, $0 \in int P$, with v rational vertices, and let P have at least v - d facets which are simplicial but not simplexes. Then by appropriate facet-splittings we obtain at least one complex B(P) on the boundary of P such that $\Sigma = \Sigma(B(P))$ is not strongly polytopal.

Proof. A Gale-transform of the vertex set vert P of P spans a space of dimension v - d - 1. Let $\Delta'_1, \ldots, \Delta'_{v-d}$ be simplicial facets that are not simplexes. If Δ'_j has more than d+1 vertices, we apply facet-splittings until we obtain a piece Δ_i of Δ'_j that has precisely d+1 vertices. So let $\Delta_1, \ldots, \Delta_{v-d}$ be (d-1)-cells of a cell-complex $B_0(P)$ realized on the boundary of P.

To each Δ_j let $\overline{\Delta}_j$ be a coface which is (v-d-2)-dimensional and hence spans a hyperplane H_j in \mathbb{R}^{v-d-1} . Now Δ_j can be split into simplexes using a Radon partition of vert Δ_j into subsets D_j, D'_j such that $D_j \cup D'_j = \text{vert } \Delta_j$,

Fig. 8

 $D_j \cap D'_j = \emptyset$, $(\operatorname{conv} D_j) \cap (\operatorname{conv} D'_j) \neq \emptyset$. We obtain (v - d - 1)-dimensional cofaces $\operatorname{conv}(\Delta_j \cup \{\bar{a}_{i_j}\})$, $a_{i_j} \in \operatorname{vert} \Delta_j$, which can lie on either side of H_j depending on whether $a_{i_j} \in D_j$ or $a_{i_j} \in D'_j$. Since $\Delta'_1, \ldots, \Delta'_{v-d}$ are simplicial, all splittings of the Δ_j are independent. Hence they can be chosen in such a way that

$$\bigcap_{j=1}^{v-d} \operatorname{relint} \operatorname{conv} \left(\overline{\Delta}_j \cup \{ \overline{a}_{i_j} \} \right) = \emptyset \,.$$

By Shephard's theorem, this proves our assertion.

Remark 1. Polytopes P as assumed in Theorem 1 do exist for any $d \ge 3$. Let, for example, C be a d-dimensional cube with 0 as its center, and consider in any one-dimensional face pq of C the supporting hyperplane H such that $H \cap C = pq$ and such that H is perpendicular to the plane spanned by 0, p, and q. Then the half-spaces bounded by such H and containing 0 intersect in a polytope P that has $v = 2^d + 2d$ vertices and $d \cdot 2^{d-1}$ simplicial facets that are not simplexes. Since $v - d = 2^d + d < d \cdot 2^{d-1}$ for $d \ge 3$ there are sufficiently many such faces available. Further examples for d = 4 can be found in Altshuler and Steinberg [1].

Remark 2. In many cases there will be more than one nonstrongly polytopal fan that can be constructed from P. If, for example, d is even and v - d is odd, then the two possible facet-splittings of Δ_j are nonisomorphic. Replacing $conv(\overline{\Delta}_j \cup \{a_{i_j}\})$ by $conv(\overline{\Delta}_j \cup \{a_{k_j}\})$ where a_{i_j}, a_{k_j} are in different sets $D_j, D'_j, j = 1, ..., v - d$, provides a fan that is nonisomorphic to the first one. This example generalizes cases I and II in the above four-dimensional example.

Remark 3. If the hyperplanes H_j are linearly dependent, then, in general, less than v - d facet splittings will do to obtain nonstrongly polytopal fans. The same is true in many cases where the Δ_j have more than d + 1 vertices.

3. Canonical Extensions

We present now a further method of constructing nonprojective toric varieties from given ones. If the variety X_{Σ} we start with has no singularities the same is true for the new ones. Also the possibility of turning the variety into a projective space by blow-ups and -downs is preserved.

Let Σ be a simplicial fan in \mathbb{R}^d , and let $V := \{a_1, \dots, a_b\}$ be the set of its generating primitive lattice vectors. We embed \mathbb{R}^d into \mathbb{R}^{d+1} , replace a vertex $(a_j, 0)$, say $(a_1, 0)$, by $(a_1, 1)$, and join $(a_1, 1)$ to the complement of the star of $(a_1, 0)$ in the complex $B_{st}(Q)$ on the boundary of the star-shaped polytope such that Σ projects the faces of $B_{st}(Q)$ (see Section 1). Then we join (0, -1) to the boundary of the complex thus constructed. We obtain a complex $\tilde{B}_{st}(\tilde{Q})$ which bounds a star-shaped polytope \tilde{Q} in \mathbb{R}^{d+1} . We call $\tilde{B}_{st}(\tilde{Q})$ or its associated fan $\tilde{\Sigma}$ a canonical extension of $B_{st}(Q)$ or Σ , respectively. Also $X_{\tilde{\Sigma}}$ is then called a canonical extension of X_{Σ} (Fig. 9). (According to Provan and Billera [12] $\tilde{B}_{st}(\tilde{Q})$ is the simplicial wedge of $B_{st}(Q)$ on a_1 ; according to Klee and Kleinschmidt [7] the dual wedge.)

 $\overline{B}_{st}(\overline{Q})$ can also be obtained by doubling \overline{a}_1 in a Gale-transform \overline{V} of $V: \overline{a}_1 = \overline{a}_{v+1}$. The additional affine dependence $\overline{a}_1 - \overline{a}_{v+1} = 0$ provides us the new vertices $(a_1, 1), (a_2, 0), \dots, (a_v, 0), (0, -1)$ in the extended original space. This interpretation of the canonical extension should be kept in mind but is not necessary for what follows.

Theorem 2. Let X_{Σ} be a canonical extension of X_{Σ} .

- (1) If X_{Σ} has dimension d, X_{Σ} has dimension d + 1.
- (2) If X_{Σ} is projective, so is $X_{\tilde{\Sigma}}$.
- (3) If X_{Σ} is nonprojective, so is $X_{\tilde{\Sigma}}$.
- (4) If X_{Σ} is nonsingular and can, by blow-ups and -downs, be transformed into a projective space, the same is true for X_{Σ} .

Proof. (1) True, by definition.

(2) Let $t_1a_1, \ldots, t_va_v, t_j > 0$, $j = 1, \ldots, v$, be vertices of a convex polytope. Then $(t, a_1, 0)$ is outside $P_0 := \operatorname{conv}\{(t_1a_1, 1), (t_2a_2, 0), \ldots, (t_va_v, 0)\}$. Hence, if t > 0 is sufficiently large, the line segment joining $(t_1a_1, 1)$ and (0, -t) is also outside P_0 . Therefore, $\tilde{\Sigma}$ is also strongly polytopal, the realizing polytope being $\operatorname{conv}(P_0 \cup \{0, -t\})$.

(3) Suppose $\overline{\Sigma}$ were strongly polytopal, being realized by a polytope \tilde{P} . Then $P := \tilde{P} \cap \{X_{d+1} = 0\}$ is a realization for Σ , a contradiction.

(4) The determinants of d+1 rows associated with facets of P_0 evidently reduce, up to a factor ± 1 , to determinants of d rows associated with the facets of $B_{st}(Q)$, hence are ± 1 .

We apply first a stellar subdivision $S(\mathbb{R}_+ p, \tilde{\Sigma})$ where $p = (a_1, 0) + (0, -1)$. The complex $\mathscr{C}' := [B_{st}(Q) \setminus \operatorname{star}(a_1, B(Q))] \cup [p \cdot \operatorname{link} \operatorname{star}(a_1, B(Q))] \quad (p \cdot \mathscr{C} := \{\operatorname{conv}(\{p\} \cup \sigma) | \sigma \in \mathscr{C}\}\$ the join of p and \mathscr{C}) is isomorphic to B(Q). Hence regular stellar subdivisions and inverses applied successively to $B_{st}(Q)$ correspond to analogous operations for \mathscr{C}' and can naturally be extended to operations for $\tilde{B}_{st}(\tilde{Q})$. If $B_{st}(Q)$ is thus transformed into a d-simplex, $\tilde{B}_{st}(\tilde{Q})$ is being transformed into a double-simplex which, in turn, is readily transformed into a simplex. (Compare Provan and Billera [12] and Klee and Kleinschmidt [7].)

Theorem 2 provides a construction method for nonprojective toric varieties in all dimensions d > 3. In particular, we have from the examples presented in

Section 2:

Theorem 3. (1) For any $d \ge 3$ there exist nonprojective toric varieties with v = d + 3 exceptional divisors.

(2) For any $d \ge 3$ there exist nonsingular, nonprojective toric varieties having v = d + 4 exceptional divisors.

Remark. If X_{Σ} can be blown down, this only carries over to X_{Σ} if $\mathbb{R}_{+}a_{1} \neq \mathbb{R}_{+}p$ in $S(\mathbb{R}_{+}p, \Sigma)$.

References

- 1. A. Altshuler and L. Steinberg, Enumeration of the quasisimplicial 3-spheres and 4-polytopes with eight vertices, manuscript.
- V. I. Danilov, The geometry of toric varieties. Uspekhé Nauk 33 (1978) 85-134, Russian Math. Surveys 33 (1978), 97-154.
- 3. G. Ewald, Torische Varietäten und konvexe Polytope. To appear in Studia Scientiarum Mathematicarum Hungarica, Budapest.
- G. Ewald and K. Voß, Konvexe Polytope mit Symmetriegruppe. Comm. Math. Helvet. 48 (1973), 137-150.
- 5. B. Grünbaum, Convex Polytopes, John Wiley, 1967.
- 6. G. Kempf, F. Knudson, D. Mumford, and B. Saint-Donat, Toroidal Embeddings I. Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1973.
- 7. V. Klee and P. Kleinschmidt, The d-step conjecture and its relatives, manuscript.
- 8. P. McMullen, Transforms, diagrams and representations, in Contributions to Geometry (Proc. Geom. Symp. Siegen 1978), 92–130.
- 9. P. McMullen and G. C. Shephard, Convex Polytopes and the Upper Bound Conjecture, Cambridge Univ. Press, 1971.
- 10. T. Oda, Torus Embeddings and Applications, Tata Institute, Bombay, 1978.
- T. Oda and K. Miyake, Almost homogeneous algebraic varieties under algebraic torus action. Manifolds-Tokyo 1973 (Hattori, ed.), Univ. of Tokyo Press 1975, 373-381.
- 12. J. S. Provan and G. J. Billera, Decompositions of simplicial complexes related to diameters of convex polyhedra. Math. Operations Research, 5 (1980), 576–594.
- 13. G. C. Shephard, Spherical complexes and radial projections of polytopes, Israel J. of Math. 9 (1971), 257-262.
- 14. B. Teissier, Variétés toriques et polytopes. Seminaire Bourbaki, 33e. année (1980/81), Nr. 565, 1-14.

Received July 3, 1985.