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Abstract To the integral symplectic group Sp(2g, Z) we associate two posets of which
we prove that they have the Cohen-Macaulay property. As an application we show that the
locus of marked decomposable principally polarized abelian varieties in the Siegel space of
genus g has the homotopy type of a bouquet of (g − 2)-spheres. This, in turn, implies that
the rational homology of moduli space of (unmarked) principal polarized abelian varieties of
genus g modulo the decomposable ones vanishes in degree ≤ g − 2. Another application is
an improved stability range for the homology of the symplectic groups over Euclidean rings.
But the original motivation comes from envisaged applications to the homology of groups
of Torelli type. The proof of our main result rests on a refined nerve theorem for posets that
may have an interest in its own right.
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0 Introduction

This paper is about quasi-unimodular symplectic lattices, so let us begin with explaining that
notion: a symplectic lattice is a free abelian group L of finite rank endowed with a sym-
plectic form (a, b) ∈ L × L �→ 〈a, b〉. It is said to be unimodular if the associated map
a ∈ L �→ 〈a, 〉 ∈ Hom(L , Z) is an isomorphism; the rank of L is then even and half that
rank is called the genus of L . Let us say that L is quasi-unimodular of genus g if L becomes
unimodular of genus g once we divide out by its radical. For example, the intersection pair-
ing on an oriented surface with finite first Betti number is quasi-unimodular with the genus
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equal to that of the surface. The unimodular sublattices of L make up a poset (with respect
to inclusion) and our main result (Theorem 1.1) says that this poset is Cohen-Macaulay of
dimension equal to the genus.

However, for the applications we have in mind, the poset of unimodular decompositions
of L (where we now assume that L is unimodular) is more relevant. We derive from our
main result that this poset is also Cohen-Macaulay (Theorem 3.1). This has the following
interesting consequence: consider in the Siegel space of genus g the locus of decomposables,
i.e., the locus that parametrizes marked principally polarized abelian varieties that are decom-
posable as polarized varieties. This is a locally finite union of symmetric submanifolds (each
being isomorphic to a product of two Siegel spaces) and a nonempty intersection of such
submanifolds is also isomorphic to a product of Siegel spaces (with perhaps more factors). A
Siegel space is contractible and so the locus of decomposables comes with a Leray covering
by closed subsets. According to a classical result of Weil, the homotopy type of this locus
is then that of the nerve of this covering. This nerve is just a poset of unimodular decom-
positions and so we find (Corollary 3.3) that the locus of decomposables has the homotopy
type of a bouquet of (g−2)-spheres. (It would be desirable—and very interesting—to have a
reasonable presentation of the homology of this complex in degree g−2 as a module over the
symplectic group.) This implies that the rational homology of the pair (Ag, Ag,dec), where
Ag is the moduli space of principally polarized abelian varieties and Ag,dec parametrizes the
decomposables, vanishes in degree ≤ g − 2.

As an aside we observe that our results and arguments remain valid if we work over an
arbitrary Euclidean ring R rather than Z (so that L is now a R-module). This makes it possible
to improve Charney’s stability range for the homology groups of the groups {Sp(2g, R)}g≥0

by a unit or two (Theorem 4.1). We may paraphrase this by saying that from her perspective,
Euclidean rings behave as if they were fields.

Finally we show (Theorem 5.1) that for a closed orientable surface of genus g, the sep-
arating curve complex modulo the Torelli group has the same homotopy type as the locus
of decomposables in Siegel space of genus g, so has the homotopy type of a bouquet of
(g − 2)-spheres. (One of us [5] recently proved that this also holds for separating curve
complex itself.)

We shall not review the individual sections, but we wish to point out the central role played
by our Nerve Theorem 2.3: while the first half of the nerve theorem may be familiar from
Mirzaii-Van der Kallen ([7, Theorem 4.3]); it is the second half that we believe is new and
makes the theorem do the job that is needed here. We take the occasion to observe that its
proof illustrates our belief that it is best when a proof of a statement in any given category—
here a homotopy category—does not leave that category. This means that we have expunged
from the main argument all homology and the menagerie that usually accompanies it, such
as the use of spectral sequences, local systems and the Hurewicz theorem (and that remains
so when we use it to derive the results that motivated this paper). The shortness of the proof
of the Mirzaii-Van der Kallen part may be regarded as a testimony to the efficiency of this
approach.

1 The complex of unimodular sublattices

Let L be a free abelian group of finite rank endowed with a symplectic form (a, b) ∈ L×L �→
〈a, b〉. We say that L is unimodular if the associated map a ∈ L �→ 〈a, 〉 ∈ Hom(L , Z) is
an isomorphism. Then L has even rank and half that rank is called the genus of g. We say L
is quasi-unimodular if the associated map a ∈ L �→ ā := 〈a, 〉 ∈ Hom(L , Z) has a torsion
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free cokernel. So if Lo ⊂ L denotes the kernel of this map (often referred to as the radical
of L), then the induced symplectic form on L̄ := L/Lo is unimodular; the genus of L is then
by definition that of L̄ .

We now fix a quasi-unimodular symplectic lattice L of genus g. The collection of uni-
modular sublattices of L (the trivial lattice included) make up a poset that we shall denote by
U (L). Its standard height function is then given by the genus (= half the rank). A maximal
chain is of the form 0 = u0 � u1 � · · · � ug and so dim U (L) = g.

The main result of this article is

Theorem 1.1 The poset U (L) is Cohen-Macaulay of dimension g.

We shall prove Theorem 1.1 with induction on g. For g = 0, U (L) is a singleton and
there is nothing to show. We assume the theorem verified for genera <g. Let us first isolate
the two essential cases needed for the induction step.

Since U (L) has a minimal element (namely 0), it is contractible and hence spherical of
dimension g. If u ∈ U (L), then U (L)<u = U (u)<u is spherical of dimension g(u)− 1 for
a similar reason. On the other hand, U (L)>u can be identified with U (u⊥)>0 and hence if
g(u) > 0, this is spherical of dimension g − g(u) − 1 by our induction hypothesis. If L is
unimodular, then L ∈ U (L) is a maximal element and then U (L)>u is even contractible.
So the only case to deal with here is when L is not unimodular and u = {0}: we must show
that U (L)>0 is then (g − 2)-connected.

Similarly, if u � u′ is an ordered pair in U (L), then u′′ := u⊥ ∩ u′ has genus g(u′′) =
g(u′) − g(u) and so if g(u′) − g(u) < g, then by our induction hypothesis, U (L)(u,u′) ∼=
U (u′′)(0,u′′) is spherical of dimension g(u′′)− 2. So we may restrict to the case when u′ = 0
and g(u) = L . In other words, we must show that when L is unimodular, then U (L)(0,L) is
(g − 3)-connected.

Let L be as above, i.e., quasi-unimodular of genus g. We denote the poset of isotropic
sequences in L that project to a partial basis of L̄ by I (L). For the induction step we need
the following proposition, which is a special case of a result due to Barbara van den Berg ([9,
Proposition 1.6.1]). It is inspired by a similar result in the Utrecht thesis (1979) of Maazen
[6], which says that the poset of partial bases of a free finitely generated module over a
Euclidean ring is Cohen-Macaulay. (See also the Appendix.) We here derive the result in
question from Maazen’s theorem.

Proposition 1.2 Let L be a quasi-unimodular lattice of genus g. Then the poset I (L) of
isotropic sequences that map to a partial basis of L̄ is Cohen-Macaulay of dimension g − 1.

Proof We first show that I (L) is spherical of dimension g − 1. Consider the poset I (L̄)

of nonzero primitive isotropic sublattices of L̄ . According to a theorem of Solomon-Tits [1,
IV 5, Theorem 2], I (L̄) is Cohen-Macaulay of dimension g − 1. So if a ∈ I (L̄) is of rank
k + 1, then I (L̄)>a is spherical of dimension g − 2 − k. Let f : I (L) → I (L̄) be the
poset map that assigns to an isotropic sequence in L the span of its image in L̄ . Let ã be the
preimage of a under the projection L → L̄ . Then f/a is the set of sequences (v0, . . . , vs) in
ã that map to a partial basis of a. Or equivalently, if we first fix a basis (w1, . . . , wr ) of Lo,
that (v0, . . . , vs, w1, . . . , wr ) is a partial basis of ã. According to Maazen ([6, Theorem III
4.2] or Theorem 6.1 below), this subposet is spherical of dimension k. So condition (Cop) of
Corollary 2.2 is fulfilled for n = g− 1 and we conclude that I (L) is spherical of dimension
g − 1.

We next verify the other properties needed for Cohen-Macaulayness. Let v ∈ I (L) have
length k + 1. Then I (L)<v is the poset of all proper subsequences of v. This is essen-
tially the boundary of a k-simplex and hence a (k − 1)-sphere. For a similar reason, if v′
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is a subsequence of v of length k′ + 1, then I (L)>v′ ∩ I (L)<v is spherical of dimension
k − k′ − 2.

Finally, if L ′ denotes the orthogonal complement of the span I of v in L , then L ′ is quasi-
unimodular of genus g − k − 1 with radical Lo ⊕ I and I (L)>v consists of the sequences
obtained by shuffling v with elements of I (L ′). By the above discussion combined with
[2, Corollary 1.7] for the shuffling, I (L)>v is therefore spherical of dimension g − k − 2.

We use I (L̄) to index full subcomplexes of U (L)>0 as follows. For a primitive vector
v ∈ L̄ denote by Lv the set of u ∈ L with 〈ū, v〉 = 0 and put Xv := U (Lv). For an isotropic
sequence v = (v0, . . . , vk), we put Lv := ∩i Lvi and Xv := ∩i Xvi = X (Lv). The collection
{U (Lv)>0}v∈I (L̄) covers the poset of u ∈ U (L) with 0 < g(u) < g (which we shall denote

by U (L)(0,g)): if u ∈ U (L)(0,g), then there is a primitive isotropic v ∈ L̄ perpendicular to
ū and for any such v we have u ∈ U (Lv)>0. The fact that U (Lv)>0 = ∅ if v has length g
will not bother us. Observe that if v′ is a subsequence of v, then U (Lv)>0 ⊂ U (Lv′)>0.

Proof (of Theorem 1.1 in case L is unimodular) We must show that U (L)(0,g) is (g−3)-con-
nected. We do this by verifying the hypotheses (i) and (ii) of Theorem 2.3 for X = U (L)(0,g),
for A := I (L̄) indexing the collection of full subposets {Xv := U (Lv)>0}v∈I (L̄) of
X and with n = g − 2. We take for height functions the standard ones on these posets:
ht(u) = g(u)− 1 and ht(v) = |v| − 1 (here |v| stands for the length of v).

By our induction hypothesis, the subset Xv = U (Lv)>0 is (g − 2 − ht(v))-connected.
This verifies 2.3-(i).

Given u ∈ X , then X<u = U (L)(0,u) is (g(u) − 3)-connected by induction. The poset
Au of v ∈ I (L̄)>0 with ū ⊥ v is just I (ū⊥) and hence is (g − g(u) − 2)-connected by
Proposition 1.2. Since g − g(u)− 2 = (g − 2)− ht(u)− 1, 2.3-(ii) is also satisfied.

Hence Theorem 2.3 applies. Since A is (g − 3)-connected (it is even (g − 2)-connected),
it follows that X is (g − 3)-connected.

For the case when L is not unimodular, we intend to invoke both halves of Theorem 2.3.
We shall use the following elementary observation:

Lemma 1.3 Let v = (v0, . . . , vk) ∈ I (L̄). If u ∈ U (L) is of genus k + 1 and such that v
is contained in ū, then for every u′ ∈ U (Lv), u′ + u is unimodular of genus g(u′)+ k + 1.

Proof Choose a lift ei ∈ u of vi and extend (e0, . . . , ek) to a symplectic basis of u:
(e0, . . . , ek; f0, . . . , fk). For u′ as in the lemma, we have ei ⊥ u′. Since u′ is unimodular, there
exists a f ′i ∈ u′ such that fi− f ′i is perpendicular to u′. Then (e0, . . . , ek; f0− f ′0, . . . , fk− f ′k)
spans a unimodular lattice ũ and u+ u′ is the perpendicular direct sum of ũ and u′. So u′ + u
is unimodular of genus g(u′)+ k + 1.

Proof (of Theorem 1.1 in case L is not unimodular) We wish to apply 2.3 to the case when
X = U (L)>0, but with the same collection of subposets {Xv = U (Lv)>0}v∈I (L̄) and value
of n (namely g − 2) as in the unimodular case. The conditions (i) and (ii) are still satisfied
for this value of n. We also know that A = I (L̄) is (g − 2)-connected.

Let v = (v0, . . . , vk) ∈ I (L̄)k . For i = 0, . . . , k we choose ui ∈ X of genus 1 such
that vi ∈ ūi and u0, . . . , uk are pairwise perpendicular. For v′ < v, we let uv′ ∈ X be the
span of the ui with vi ∈ v − v′. Then uv′ ∈ X is of genus |v| − |v′| and is contained in Xv′ .
According to Lemma 1.3, the sublattice u + uv′ is unimodular for any u ∈ Xv−v′ . This is a
fortiori so when u ∈ Xv, but since uv′ ∈ Xv′ , we then in fact have u + uv′ ∈ Xv′ .
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So condition 2.3-(iii) is verified for sv(v′) := uv′ and ev(v′, u) := u + uv′ . It remains to
see that the resulting poset map

ŝv : (A<v)
op

�� Xv → X

is null-homotopic. The image Vv of ŝv is the union of Xv and the images of sv, ev. Let
u∅ denote the span of u0, . . . , uk . Note that sv(v′) = uv′ ≤ u∅ and that if u ∈ Xv, then
u + u∅ ∈ X by Lemma 1.3. So ŝv is homotopic to the constant map with value u∅ via the
relations (A<v)

op
�� Xv → Vv � u ≤ u + u∅ ≥ u∅.

2 Generalities on posets

We here collect some general results regarding posets that were used in the proofs of the
previous section. A poset X defines a simplicial complex with vertex set X for which its
k-simplices are chains x0 < x1 < · · · < xk . So the poset structure makes that every sim-
plex has a natural order of its vertices, in particular, has a natural orientation. The geometric
realization |X | of X is by definition that of the associated complex. So an element of |X |
is given by a function φ : X → R≥0 whose support is a chain x0 < x1 < · · · < xk and∑

i φ(xi ) = 1. We often allow ourselves the common abuse of terminology when we say
that X enjoys a given (topological) property (such as connectedness or dimension), when we
actually mean this to hold for |X |.

A Z-valued function f defined on the poset X is called a height function if it is strictly
increasing: x < y implies f (x) < f (y). If for every x ∈ X, dim(X≤x ) (the supremum of
the set of n for which there exists a chain x0 < x1 < · · · < xn = x in X ) is finite, then a
standard choice for f is f (x) := dim(X≤x ). We call a height function bounded if its image is
contained in a finite interval. Given a height function f on X , we take − f as height function
on Xop.

We use the convention that the dimension of the empty set is −1.
Recall that a poset X is said to be n-spherical if its geometric realization is of dimension

n and X is (n − 1)-connected (we agree that the empty set is (−1)-spherical). It is said to be
Cohen-Macaulay of dimension n if in addition

(i) for every x ∈ X, X<x resp. X>x is spherical of dimension dim X≤x − 1 resp. n− 1−
dim X≤x and

(ii) for every ordered pair x < y in X, X>x ∩ X<y is spherical of dimension dim X≤y −
dim X≤x − 2.

If X, Y are posets we define its join X ∗ Y as in [8, 1.8] to be the disjoint union of X and Y
equipped with the ordering which agrees with the given orderings on X and Y and which is
such that any element of X is less than any element of Y . Note that this is asymmetric in X
and Y . It is clear that with this definition an iterated join X1 ∗ X2 ∗ · · · ∗ Xn has as underlying
set the disjoint union of X1, . . . , Xn with the given partial order on any piece Xi and with
any element of Xi dominating X1 ∪ · · · ∪ Xi−1. In the case of two posets X, Y we will also
make use of the thick join X �� Y which is symmetric in X and Y . It is defined as follows.
Letting X × Y denote the product of X and Y in the category of posets, then X �� Y is the
disjoint union of X, Y, X × Y equipped with the ordering which is obtained by adding to
the given orderings on X, Y, X × Y the relations x < (x, y) > y for x ∈ X, y ∈ Y . The
poset map h(X, Y ) : X �� Y → X ∗ Y which maps x to x, (x, y) to y, y to y, is a homotopy
equivalence [6, Proposition II 1.2]. If X is d-connected and Y is d ′-connected, then X ∗ Y is
d + d ′ + 2-connected (and hence X �� Y is too).
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Let f : X → Y be a map of posets. Recall that f/y ={x ∈ X | f x ≤ y} and y\ f =
{x ∈ X | f x ≥ y}. We define the mapping cylinder of f, M( f ), to be the disjoint union
of X and Y equipped with the ordering which agrees with the given orderings on X and Y
and which is such that for x ∈ X, y ∈ Y , one has x > y if and only if f x ≥ y. Observe
that Y is a deformation retract of M( f ). Dually we define Mop( f ) := M( f op)op, where
f op : Xop → Y op. (As a set map f op equals f .) Again Y is a deformation retract, but in
Mop( f ) any element of x ∈ X is less than f x ∈ Y . If Y is a poset equipped with a height
function ht we let M( f,≤ k) denote the disjoint union of X and Y≤k := {y ∈ Y | ht(y) ≤ k}
with the ordering induced from M( f ).

Let us also define the mapping cone of f , although this notion will play a less promi-
nent role in this paper: it is the disjoint union C( f ) of a singleton {v f } and M( f ) whose
ordering extends the one on M( f ) and for which v f is smaller than every point of X and is
incomparable with the points of Y .

Proposition 2.1 Let f : X → Y be a map of posets and let ht be a bounded height function
on Y . Then M( f,≤ k) = X for k � 0, M( f,≤ k) = M( f ) ∼ Y for k � 0. Furthermore,
for every y ∈ Y of height k, the link of y in M( f,≤ k−1) can be identified with Y<y ∗ (y\ f ),
and so M( f,≤ k) is obtained from M( f,≤ k − 1) by putting for every y with ht(y) = k a
cone over Y<y ∗ (y\ f ). If in addition, Y<y ∗ (y\ f ) is (n − 1)-connected for all y ∈ Y , then
f is n-connected (which means that the pair (M( f ), X) is n-connected).

Proof The first assertion is clear and so is the second. If Y<y ∗ (y\ f ) is (n − 1)-connected
for all y ∈ Y , then |M( f )| is gotten, up to homotopy, from |X | by successive attachment of
cells of dimension ≥ n + 1 and so the pair (M( f ), X) is n-connected.

We get the following slight variation on Theorem 9.1. of Quillen [8]. Compare also
[7, Theorem 3.8].

Corollary 2.2 Let f : X → Y be a map of posets. Assume Y is endowed with a bounded
height function ht with the property that for some integer n and some set map t : Y → Z one
of the following is true:

(C) for every y ∈ Y, Y<y is (t (y)− 2)-connected and y\ f is (n − t (y)− 1)-connected
or dually,

(Cop) for every y ∈ Y, Y>y is (n − t (y)− 2)-connected and f/y is (t (y)− 1)-connected.

Then f is n-connected.

Proof In case (C), first observe that Y<y ∗(y\ f ) is (t (y)−2)+(n− t (y)−1)+2-connected,
hence n − 1-connected, so that the result follows from Proposition 2.1. In case (Cop), pass
to the opposite.

In many cases of interest, t = ht does the job. The same is true for the following nerve
theorem, which is the technical result that makes the proof of Main Theorem 1.1 possible.
The first half of the nerve theorem is familiar from Mirzaii-Van der Kallen ([7, Theorem
4.3]). We reprove it here to illustrate the efficiency of the present setup. The second half is
our key advance.

Theorem 2.3 (Nerve Theorem for Posets) Let X and A be posets both endowed with bounded
height functions. Assume that Aop labels full subposets of X in the sense for every a ∈ A
we are given a subposet Xa with the property that if x ∈ Xa, then also any y < x is in Xa

and a < b implies Xa ⊃ Xb. Let n be an integer such that for some set maps tX : X → Z

and tA : A → Z
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(i) for every a ∈ A, A<a is (tA(a)− 2)-connected, Xa is (n − tA(a)− 1)-connected and
(ii) for every x ∈ X, X<x is (tX (x) − 2)-connected and the full subcomplex Ax of A

spanned by the a ∈ A with x ∈ Xa is (n − tX (x)− 1)-connected.
Then A is (n − 1)-connected if and only if X is.
If in addition to (i) and (ii) there exist for every a ∈ A, poset maps sa : (A<a)op → X
and ea : (A<a)op × Xa → X such that

(iii) if b < a, then sa(b) ∈ Xb and for all x ∈ Xa one has ea(b, x) ∈ Xb and sa(b) ≤
ea(b, x) ≥ x, and

(iv) the resulting poset map ŝa : (A<a)op
�� Xa → X is null-homotopic, then there even

exists an n-connected map |A| → |X | (so that X is n-connected when A is).

Proof Denote by Z ⊂ Aop × X the subset of pairs (a, x) ∈ A × X with x ∈ Xa with the
induced partial order. We have poset projections

f : Zop → A and g : Z → X.

We now divide the proof in a number of steps. Since |Zop| = |Z |, the first assertion of the
theorem follows from:

Step 1 Both f and g are n-connected. For every a ∈ A, we have that a\ f ={(b, y) ∈ Z | b ≥
a, y ∈ Xb} contains {a}×Xa as deformation retract with retraction given by (b, y) �→ (a, y).
So by (i), a\ f is (n − ht(a)− 1)-connected. By that same assumption, A<a is (ht(a)− 2)-
connected. According to Corollary 2.2, f is then n-connected. A similar argument applied
to g : Z → X , with g/x instead of x\g, yields that g is n-connected.

From now on we assume that the conditions (iii) and (iv) are satisfied.

Step 2 Construction of a diagram, commutative up to homotopy. Let a ∈ A and put k = ht(a).
We shall need the following diagram of poset maps

((A<a)op
�� Xa)op hop−−−−→∼ A<a ∗ (Xa)op 1∗ jop

−−−−→∼ A<a ∗ (a\ f )op

s̃op
a

⏐
⏐
�

⏐
⏐
�attaching map

Zop −−−−→ M( f,≤ k − 1) M( f,≤ k − 1).

Here the top horizontal maps are homotopy equivalences: the first map is the opposite of the
natural map h : Xa �� (A<a)op → Xa ∗ (A<a)op encountered before (it sends b ∈ A<a to
b, x ∈ Xa to x and (b, x) to b) and the second map is the join of the identity map of A<a and
the opposite of the homotopy equivalence j : x ∈ (Xa) �→ (a, x) ∈ (a\ f ). The first lower
horizontal map is the inclusion. The vertical map on the left is the opposite of the poset map

s̃a : (A<a)op
�� Xa → Z ,

s̃a (b < (b, x) > x) = ((b, sa(b)) ≤ (b, ea(b, x)) ≥ (a, x)),

where b ∈ A<a and x ∈ Xa . Notice that gs̃a = ŝa . The vertical map on the right is the
embedding of the link of a ∈ M( f,≤ k) in M( f,≤ k − 1) that appears in Proposition 2.1
(it is given by A<a ⊂ A and (a\ f )op ⊂ Zop).

We check that the diagram is homotopy commutative. The two maps from ((A<a)op
��

Xa)op to M( f,≤ k − 1) (whose underlying set is A≤k−1 � Zop) are given by

(b > (b, x) < x) �→
{

((b, sa(b)) ≥ (b, ea(b, x)) < (a, x)) ,

(b = b < (a, x)).

123



Geom Dedicata

The first two elements in the second line lie in A<a ; all other elements lie in Zop. The defi-
nition of the partial order on M( f,≤ k − 1) is such that we see that the maps define together
one from the product poset (0 < 1) × ((A<a)op

�� Xa)op to M( f,≤ k − 1) and so are
homotopic.

Step 3 Conclusion. Let Z̃ ⊃ Z be the union of the mapping cones of the poset maps s̃a :
(A<a)op

�� Xa → Z (these mapping cones have Z in common). Since M( f,≤ k) is obtained
from M( f,≤ k− 1) by putting a cone over each A<a ∗ (Xa) with ht(a) = k, repeated use of
the above diagram yields a homotopy equivalence |Z̃ | ˜−→|M( f )|. Since |A| is a deformation
retract of |M( f )|, we find a homotopy equivalence |Z̃ | ˜−→|A|. Choose a homotopy inverse
H : |A| ˜−→|Z̃ |.

Each composite ŝa = gs̃a is null-homotopic by assumption (iv). This implies that the map
|g| extends to a continuous map G : |Z̃ | → |X |. As |Z̃ | is obtained from |Z | by attaching
cells of dimension ≥ n + 1, this map is still n-connected. So G H is as desired.

3 The complex of unimodular decompositions

We suppose L unimodular of genus g > 0. We call a subset u ⊂ U (L)>0 a unimodular
decomposition of L if the natural map ⊕u∈uu → L is an isomorphism. If u and u′ are
unimodular decompositions, then we say that u′ refines u (and we write u′ ≥ u) if every
member of u′ is contained in one of u. This makes the collection of such decompositions a
poset that we shall denote by D(L). We chose this convention for the partial order (rather
than its opposite) as to have the standard height function on D(L) assign to u the value |u|−1
(the value 0 being taken by the unique minimal element (L)). Notice that D(L) is a subcat-
egory of the category whose objects are finite subsets of U (L)>0 and whose morphisms are
surjections between these subsets. We sometimes write D+(L) for D(L)>(L), the subposet
of strict decompositions.

Recall that the barycentric subdivision of a poset X is the poset X ′ whose elements are
chains in X and for which < is the relation ‘subchain of’. Its geometric realization is homeo-
morphic to that of X .

Now observe that there is a natural poset map

f : (U (L)>0)
′ → D(L)

which assigns to a chain 0 �= u0 � u1 · · · � uk ⊂ L the decomposition whose members are
u0, u1 ∩ u⊥0 , . . . , uk ∩ u⊥k−1 and (in the case when uk �= L) u⊥k .

Theorem 3.1 The poset D(L) of unimodular decompositions of L is Cohen-Macaulay of
dimension g − 1.

We first prove a ‘simplicial counterpart’ of this theorem.

Lemma 3.2 Let X be a finite set with at least two elements. Denote by D+(X) the poset
of strict decompositions of X (this excludes the trivial decomposition {X}). Then D+(X) is
spherical of dimension |X | − 2.

Proof We prove this with induction on d := |X | − 2. The case d = 0 is trivial, so suppose
d > 0. The poset F (X) of proper nonempty subsets of X is the the barycentric subdivision
of the boundary of the simplex spanned by X and is hence a combinatorial d-sphere. The
poset F (X)′ of nested proper nonempty subsets of X can be identified with the barycen-
tric subdivision of F (X) and so is still a combinatorial d-sphere. Now consider the map
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g+ : F (X)′ → D+(X) which assigns to ∅ � X0 � X1 � · · · � Xh � X the partition
{X0, X1 − X0, . . . , Xh − Xh−1, X − Xh}. This is a map of posets to which we want to apply
Corollary 2.2. Let Y = {Y0, . . . , Yh+1} be a partition of X . Then

D+(X)>Y ∼= D+(Y0) ∗ D+(Y1) ∗ · · · ∗ D+(Yh+1)

and so by our induction hypothesis, D+(X)>Y is spherical of dimension−1+∑h+1
i=0 (|Yi | − 1)

= |X |−3−h = d−1−h. On the other hand, g+/u can be identified with F ({0, . . . , h+1})′,
hence is a sphere of dimension h. Now apply version (Cop) of Corollary 2.2.

Proof (of Theorem 3.1) We proceed with induction on g ≥ 1. For g = 1, D(L) = {L} and
so there is nothing to show. Assume g > 1 and the theorem proved for genera <g. We apply
version (Cop) of Corollary 2.2 to f . Let u = {u0, . . . , uh} ∈ D(L), so that ht(u) = h. Then
we readily observe that

D(L)>u ∼= D+(u0) ∗ · · · ∗ D+(uh)

and so D(L)>u is spherical of dimension−1+∑h
i=0 (g(ui )− 1) = g− 2− h. On the other

hand, f+/u can be identified with the poset of nested nonempty subsets of {0, . . . , h}. This is
contractible as it has the entire set as its maximal element. So the conditions (Cop) of 2.2 are
satisfied. Combining this with Theorem 1.1 yields that D(L) is spherical of dimension g−1.
In passing we showed that D(L)>u is spherical. Notice that D(L)<u can be identified with
the poset D+({0, . . . , h}) of all strict decompositions of the set {0, . . . , h}. This is spherical
of dimension h − 1 by Lemma 3.2 above. Similarly on finds that if u < u′, then D(L)(u,u′)
is spherical of dimension |u′| − |u| − 2.

The poset D(L) appears in the moduli space of principally polarized abelian varieties.
Consider the complexification of L , LC := C⊗Z L and extend 〈 , 〉 bilinearly to LC. On LC

we also have the Hermitian form H defined by H(v,w) := √−1〈v,w〉, whose signature is
(g, g). The space S (L) of complex subspaces F ⊂ LC of dimension g on which 〈 , 〉 is zero
and H is positive definite can be understood as the moduli space of complex structures on
the real torus (R/Z)⊗Z L that are polarized by H . It is a symmetric space for the symplectic
group of LR and a choice of symplectic basis yields an isomorphism with the Siegel upper
half space of genus g. Notice that a unimodular decomposition u of L determines a proper
embedding of

∏
u∈u S (u) in S (L) with image a totally geodesic analytic submanifold. We

shall denote that submanifold by S (u).

Corollary 3.3 The locus S (L)dec in the genus g Siegel space S (L) which parametrizes
the principally polarized abelian varieties that are decomposable as polarized varieties is a
closed analytic subvariety of S (L) which has the homotopy type of a bouquet of (g − 2)-
spheres. In fact, the (closed) covering of S (L)dec by its irreducible components is a Leray
covering (which means that every nonempty finite intersection is contractible) whose nerve
is identified with D+(L)op via the correspondence u �→ S (u).

Proof It is clear that S (L)dec is the union of the S ({u, u⊥}), where u runs over the uni-
modular sublattices of L that are neither 0 nor L . It is known that this union is locally finite.
So S (L)dec is a closed analytic subvariety of S (L) and as there are no inclusion relations
among the S ({u, u⊥}), these yield the distinct irreducible components of S (L)dec. In view
of Weil’s nerve theorem it now suffices to prove the last statement.

It is a classical result (see for instance [4, Sect. 6.9]) that any principally polarized abelian
variety A of positive dimension has a unique decomposition into indecomposables. Precisely,
if {Ai }i is the collection of abelian subvarieties of positive dimension of A that receive from A
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a principal polarization and are minimal for this property, then the natural map
∏

i Ai → A is
an isomorphism. It follows that u �→ S (u) defines an bijection from D+(L) to the collection
of nonempty intersections of the irreducible components of S (L)dec. If we give the latter the
poset structure defined by inclusion, then this is in fact a poset isomorphism from D+(L)op.
Each S (u) ∼= ∏

u∈u S (u) is contractible and so the covering has the asserted properties.

Corollary 3.4 The locus Ag,dec ⊂ Ag of decomposables in the moduli space of principal
polarized abelian varieties of genus g is a quasiprojective subvariety. If ˜Ag → Ag is a
finite covering defined by a torsion free subgroup of Sp(2g, Z) of finite index, and ˜Ag,dec

denotes its preimage in ˜Ag, then the pair ( ˜Ag, ˜Ag,dec) is (g − 2)-connected. In particular,
Hk(Ag, Ag,dec;Q) = 0 for k ≤ g − 2.

Proof (Sketch of Proof) The first statement is in fact well-known, so let us just outline its
proof. It follows from Corollary 3.3 that Ag,dec ⊂ Ag is a closed analytic subvariety. The
Baily-Borel theory shows that its closure (relative to the Hausdorff topology) in the Baily-
Borel compactification A ∗

g of Ag is projective, as it is the image of an analytic morphism

from the union of A ∗
k × A ∗

g−k, k = 1, . . . , � 1
2 g� to A ∗

g . Since A ∗
g is projective, and has a

projective boundary, it follows that Ag,dec is quasiprojective.
As to the remaining statements, let Sg be the Siegel space attached to the standard sym-

plectic lattice Z
2g . According to Corollary 3.3, Sg,dec has the homotopy type of a bouquet

of (g − 2)-spheres. So we can construct a relative CW complex (Z , Sg,dec) obtained from
Sg,dec by attaching cells of dimension≥ g−1 in a Sp(2g, Z)-equivariant manner as to ensure
that Z is contractible and no nontrivial element of Sp(2g, Z) fixes a cell. If ˜Ag is defined by
the subgroup � ⊂ Sp(2g, Z), then � acts freely on Z (as it does on the contractible Sg) and
so there is a �-equivariant homotopy equivalence Z → Sg relative to Sg,dec. It follows that
there is also a homotopy equivalence �\Z → ˜Ag relative to ˜Ag,dec. Hence ( ˜Ag, ˜Ag,dec) is
(g − 2)-connected.

Remark 3.5 This corollary has a counterpart for the moduli space of stable genus g curves
with compact jacobian (see [5, Corollary 1.2]).

4 Improved homological stability for the symplectic groups

As an aside we show in this section that our main result yields a slight improvement of a
result of Charney. We denote the basis elements of Z

2g by (e1, e−1, . . . , eg, e−g) and endow
Z

2g with the symplectic form that this notation suggests: 〈ei , e−i 〉 = sign(i) and 〈ei , e j 〉 = 0
when j �= ±i . Let us write Gg for the algebraic group attached to Sp(2g, Z) so that for
any ring R, Gg(R) = Sp(2g, R). The obvious embedding of Gg(R) in Gg+1(R) (which
identifies the Gg(R) as the Gg+1(R)-stabilizer of the last two basis vectors) induces a map
on homology that is known to be an isomorphism in low degree for many choices of R:
Charney [3], following up on earlier work of Vogtmann, proved such a result for noethe-
rian rings R of finite noetherian dimension. Her stability range is phrased in terms of the
connectivity properties of a poset H U g(R) whose elements are what she calls split uni-
modular sequences in R2g: these are sequences of pairs ((v1, v−1), . . . , (vk, v−k)) in R2g

such that 〈vi , v−i 〉 = sign(i) and 〈vi , v j 〉 = 0 when j �= ±i (so this is equivalent to giving
a k and a symplectic embedding of Z

2k in Z
2g). The result may the be stated as follows: if

a ≥ dim(R) + 2 is an integer such that H U g(R) is � 1
2 (g − a − 1)�-connected for all g,

then Hi (Gg(R)) → Hi (Gg+1(R)) is an isomorphism for g ≥ 2i + a + 1 and surjective for
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g = 2i +a. This is supplemented by the theorem that the connectivity assumption is fulfilled
for the case R is Dedekind domain resp. a principal ideal domain for a = 5 resp. a = 4. The
point we wish to make is that we can do slightly better when R is a Euclidean ring:

Theorem 4.1 If R is a Euclidean ring, then we may take a = 2: H U g(R) is � 1
2 (g − 3)�-

connected and hence Hi (Gg(R)) → Hi (Gg+1(R)) is an isomorphism for g ≥ 2i + 3 and
surjective for g = 2i + 2.

There is corresponding statement with twisted coefficients (see Theorem 4.3 of op. cit.)
that we will not bother to explicate. The proof of Theorem 4.1 rests on the observation that if
we view the contents of the Theorems 1.1 and 3.1 as properties regarding Gg(R) for R = Z,
then both statements and proofs remain valid if we let R be any a Euclidean ring (that prop-
erty enters in the proof of Theorem 6.1, a result that is due to Maazen). And we may replace
dim(R) with zero because Charney uses dim(R) only to deal with projective modules. In our
case they are free.

For the proof of 4.1 we need

Lemma 4.2 Let A be a set endowed with a partition P into a finite number of (nonempty)
subsets. Then the poset of sequences in A which hit every part of P at most once is spherical
of dimension |P| − 1.

Proof Denote this poset by X and let Y be the allied poset of nonempty finite subsets of A
that meet every part at most once. So we have an evident poset map f : X → Y . Since |Y |
can be identified with the iterated join of the distinct parts of A (which are |P| in number),
it is spherical of dimension |P| − 1. Observe that for any y ∈ Y, f/y is the poset of non-
empty sequences whose terms are distinct and lie in y. This is well-known to be spherical
of dimension |y| − 1 ([6, Theorem 2.1], or [10, Lemma 2.13(ii)]). On the other hand, |Y>y |
can be identified with the iterated join of the distinct parts of A not hit by y and as there are
|P|− |y| such parts, |Y>y | is spherical of dimension |P|− |y|− 1. Now apply Corollary 2.2.

Proof (of Theorem 4.1) Consider the poset map f : H U g(R) → D+(R2g) which assigns
to ((v1, v−1), . . . , (vk, v−k)) the collection of genus 1 summands Ui := Rvi + Rv−i , i =
1, . . . , k and the perp of their sum in R2g . Given u ∈ D+(R2g), denote by t (u) the number of
genus 1 summands in u and by s(u) the number of summands of higher genus. Then clearly
2s(u)+t (u) ≤ g, or equivalently, s(u) ≤ 1

2 (g−t (u)). Observe that f/u is a poset of the type
that appears in Lemma 4.2 above: a member of A is an oriented basis of any genus 1 summand
in u and P is the obvious partition defined by those summands. As there are t (u) parts, the
lemma tells us that f/u is (t (u)−2)-connected. On the other hand, D+(R2g)>u is a join of all
the D+(u), u ∈ u and hence is connected of dimension−2+∑

u∈u(g(u)−1) = g−2−|u|.
In view of the inequality

t (u)+ (g − |u|)− 2 = g − s(u)− 2 ≥ � 1
2 (g + t (u))� − 2 ≥ � 1

2 (g − 3)�,
it follows from the (Cop)-variant of Corollary 2.2 that H U g(R) is � 1

2 (g − 3)�-connected.

5 Relation to the separated curve complex

A variation of the complex D+(L) considered above appears in the study of the Torelli groups.
Let S be a closed connected orientable surface of genus g. Then H1(S) has the structure of
a unimodular lattice of genus g so that we have defined D(H1(S)). An isotopy class of
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embedded (unoriented) circles in S is called separating if the complement of a representative
decomposes S into two connected components of positive genus. Notice that then the homol-
ogy of the components determines a nontrivial unimodular splitting of H1(S). The separated
curve complex Csep(S) of S is the simplicial complex whose vertex set are the isotopy classes
of separating curves; a finite set of these spans a simplex precisely when its elements can be
represented by embedded circles that are pairwise disjoint. The mapping class group �(S)

(= the group of connected components of the orientation preserving diffeomorphisms of S)
acts on both H1(S) and Csep(S). The action on H1(S) has the full integral symplectic group
Sp(H1(S)) as its image; the kernel of this action is called the Torelli group of S, denoted here
by T (S). The map that assigns to a separating curve its associated unimodular splitting of
H1(S) extends to a Sp(H1(S))-equivariant poset map T (S)\Csep(S) → D+(H1(S)). This is
however not an isomorphism: think of the case when g embedded circles split off g genus 1
surfaces with a hole, so that what remains is a sphere with g holes. Nevertheless:

Theorem 5.1 The poset map T (S)\Csep(S) → D+(H1(S)) is a homotopy equivalence, in
particular, T (S)\Csep(S) is (g − 3)-connected.

This may be regarded as a natural companion of a result of one of us [5] that states Csep(S)

is (g − 3)-connected as well.
Before getting into the proof, we give a construction of T (S)\Csep(S) entirely in terms of

D+(H1(S)).
In what follows a tree is a finite simplicial complex of dimension 1 that is contractible.

This amounts to giving a pair T = (T0, T1), where T0 is a finite set (the vertex set) and T1 is a
nonempty collection of two-element subsets of T0 (the set of edges) such that |T0| = |T1|+1
and its geometric realization is connected. The degree of a vertex v ∈ T0, degT (v), is the
number of elements of T1 that contain v.

We denote by T00 ⊂ T0 the collection of vertices of degree≤ 2. The identity |T0| = |T1|+1
is equivalent to

∑
v∈T0

(degT (v) − 2) = −2. If di (T ) denotes the number of vertices of
degree i , then this amounts to

∑
i≥3(i − 2)di = d1 − 2, which shows that if we fix a bound

on |T00| = d1 + d2, then we have only finitely many isomorphism classes.
Notice that if E is a nonempty set of edges of T1, and if we contract every connected

component of T − E , then we have formed a quotient tree π E : T → T E with the property
that π E maps E maps bijectively onto the edge set of T E .

Lemma 5.2 Let E and E ′ be nonempty sets of edges of a tree T such that there exists an
isomorphism h : T E ∼= T E ′

with the property that π E ′
and hπ E have the same restriction

to T00. Then E = E ′.

Proof We prove this with induction on |T1|. For |T1| = 1 there is nothing to show and so
suppose |T1| > 1. We prove that there is a terminal edge e of T on which π E and π E ′

coincide, i.e., for which either e /∈ E ∪ E ′ or e ∈ E ∩ E ′. This suffices: in the first case we
can apply the induction hypothesis to the tree T/e, obtained by contracting e, and the images
of E and E ′ in T/e. In the second case, π E (e) is a terminal edge with terminal vertex π E (v)

and similarly for π E ′
(e) and π E ′

(v). Since the isomorphism h takes π E (v) to π E ′
(v), it will

take π E (e) to π E ′
(e). So here too the induction hypothesis can be invoked to the tree T/e

and the images of E and E ′ in T/e.
Choose a terminal vertex v ∈ T00 and let e = {v, v′} ∈ T1 be the corresponding terminal

edge. If deg(v′) = 2 (so that v′ ∈ T00), then π E and π E ′
coincide on e.

So it remains to consider the case when deg(v′) ≥ 3. This implies that T − e is discon-
nected. Assume that e ∈ E . Then e subsists as an end edge in T E and π E (v) is terminal in
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T E . But then π E ′
(v) is also terminal in T E ′

. If e /∈ E ′ (so that v is contracted by π E ′
), then

this can only happen if all but one of the components of T − e get contracted by π E ′
. So

if v′′ ∈ T00 is a terminal vertex of such a component, then π E ′
maps v and v′′ to the same

vertex. Then π E will have the same property. But e lies on the geodesic string in T from v

to v′′ and so π E (v) �= π E (v′), contradiction. So e lies in E ′ also.  �
Let u be a finite set with at least two elements. We define a u-tree as a tree T endowed with

a map i : u → T0 from to u to the vertex set T0 of T with the property that its image contains
T00. In view of the preceding observation, there are only finitely many isomorphism classes
of u-trees. In fact, the number of vertices not in u such a tree can have is at most |u| − 2 and
so its number of edges will be at most 2|u| − 3. This bound is attained when i is injective,
all vertices in the image of i have degree 1 and all other vertices have degree 3. Since a tree
automorphism is determined by its restriction to the set of terminal vertices, an u-tree has no
automorphism other than the identity. We denote the set of isomorphism classes of u-trees
by T (u). We say that a u-tree is strict if the map i : u → T0 is injective and we denote the
corresponding subset of T (u) by Ṫ (u).

We turn T (u) into a partially ordered set by stipulating that (T ′, i ′) ≤ (T, i) if T ′ is
obtained from T by means of a contraction map whose composite with i yields i ′. Lemma
5.2 shows that this contraction is already determined by the associated injection T ′

1 ⊂ T1. So
T (u)≤(T,i) can be identified with the poset of nonempty subsets of T1 and hence |T (u)≤(T,i)|
with the simplex σ(T ). By the above computation, the dimension of T (u) is at most 2|u|−4.

Lemma 5.3 The poset T (u) is contractible.

Proof If u has just two elements, then T (u) is a singleton (it has a single edge) and that is
certainly contractible. Suppose therefore that |u| ≥ 3. Then the cone C(u) on u (which has
one vertex ∗ not in u and edges {∗, u}, u ∈ u) is clearly a u-tree. Notice that T (u)≤C(u)

is the simplex on u and hence is contractible. We also have a deformation retraction of
T (u) → T (u)≤C(u) which assigns to every u-tree in T (u) the u-tree in T (u)≤C(u) obtained
by contracting all the internal edges, that is, the edges that do not have a vertex of degree one.

We return to the poset D+(L) of strict unimodular decompositions of L . Observe that any
u ∈ D+(L) is a finite subset of the set of all unimodular lattices u with 0 �= u �= L and that
the relation u′ ≤ u determines (and is given by) a surjection u → u′. So the poset D+(L) is
a subcategory of the category of sets. We define a poset T D(L) of tree decompositions of
L: its underlying set is the disjoint union of the isomorphism classes of strict u-trees, where
u runs over D+(L):

T D(L) :=
⊔

u∈D(L)

Ṫ (L)

and we stipulate that (T ′, i ′ : u′ ↪→ T ′
0) ≤ (T, i : u ↪→ T0) if u refines u′ and there exists

an edge contraction T → T ′ extending the surjection u → u′ associated to the refinement
property. It follows from Lemma 5.2 that this edge contraction is unique, so that we have
defined a partial order indeed. Notice that there is an obvious forgetful map of posets

p : T D(L) → D+(L). (1)

Proposition 5.4 The poset map p : T D(L) → D+(L) is a homotopy equivalence.

Proof For every u ∈ D+(L), p/u may be identified with T (u), hence is contractible. Now
apply Proposition (1.6) of [8].

123



Geom Dedicata

Proof (of Theorem 5.1) A simplex of Csep(S) is given by a closed one-dimensional subman-
ifold A ⊂ S such that every connected component of S− A has negative Euler characteristic
and the associated graph T (S, A) (having the set of connected components of S − A resp. A
as its set of vertices resp. edges) is a tree. Since a connected component of S−A of zero genus
has at least ≥ 3 boundary components, all vertices of degree ≤ 2 correspond with connected
components of S−A with nonzero genus, hence positive genus. Moreover, the first homology
groups of the connected components of positive genus define a decomposition of H1(S). This
gives T (S, A) the structure of a tree decomposition of H1(S). Another choice A′ for A yields
the same tree decomposition of H1(S) if and only if there exists an orientation preserving self-
homeomorphism of S that takes A to A′ and induces the identity map in H1(S). It is now easy to
identify the poset map p in Proposition 5.4 with the poset map T (S)\Csep(S) → D+(H1(S))

introduced at the beginning of this section. The theorem follows.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

Appendix

In this appendix we recall the proof of the theorem of Maazen on the Cohen-Macaulayness
of the poset O(n) of partial bases in a free module Rn over a Euclidean ring.

Given a partial basis w = (w1, . . . , wr ), we write O(n)w for the poset of partial bases
(v0, . . . , vs) so that (v0, . . . , vs, w1, . . . , wr ) is a partial basis of Rn . Observe that GL(n)

acts transitively on partial bases of a given length. We write pn : Rn → R for taking the last
coordinate. For a, b ∈ R with ‖b‖ > 0, let q(a, b) ∈ R be the scalar given by the Euclidean
structure, so that ‖a − q(a, b)b‖ < ‖b‖. For k ≥ 0 the subposet O(n, k) of O(n) consists of
the (v0, . . . , vs) with ‖pn(vi )‖ ≤ k for all i . So O(n, 0) ∼= O(n − 1).

If w = (w1, . . . , wr ) ∈ O(n) and ‖pn(wi )‖ = k for some i ≤ r , we define ρw,i :
Rn → Rn by ρw,i (v) = v − q(pn(v), pn(wi ))wi . This induces a retract from O(n)w to
O(n, k − 1)w := O(n, k − 1)∩O(n)w . The key observation is that if O(n)w is d-connected,
then so is O(n, k − 1)w . The other tools that Maazen uses have been published in [2] and
[10], to which we refer freely.

Theorem 6.1 (Maazen) Let R be a Euclidean ring and d ∈ Z.

(i) O(n) is d-connected if n ≥ d + 2,
(ii) O(n)w is d-connected for w ∈ O(n) if n ≥ d + |w| + 2,

(iii) O(n, k)w is d-connected for w ∈ O(n), if there is an i with ‖pn(wi )‖ = k + 1 ≥ 1
and n ≥ d + |w| + 2,

(iv) O(n, k) is d-connected if n ≥ d + 2 and k ≥ 1.

Proof By induction on d . For d < −1 there is nothing to prove. Let n ≥ d + 2. Choose
w ∈ O(n, 1)\O(n, 0) with |w| = 1. Then pn(w1) is a unit, so that the link of w in O(n, 0)

is all of O(n, 0). Apply [10, Lemma 2.13(ii)] to conclude that O(n, 1) is d-connected. By
induction on k it follows from [10, Lemma 2.13(i)] that O(n, k) is d-connected for k ≥ 1.
Taking the limit k →∞ we see that O(n) is d-connected. For case (ii) we may assume that
w consists of the last |w| elements of the standard basis. By [2, Corollary 1.7], with S equal
to the span of w and F = O(n − |w|), case (ii) follows. Then case (iii) follows by means of
the retract.
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From [2, Corollary 1.7] with n = |w| we see that O(m)>w is (m − |w| − 2)-connected
for w ∈ O(m). One concludes as in 1.2 that

Corollary 6.2 O(n) is Cohen-Macaulay.
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