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Abstract

Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-

matter fiber orientations from diffusion MRI data. However, while some of these methods

assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is

known to be non-Gaussian and to depend on many factors such as the number of coils and

the methodology used to combine multichannel MRI signals. Indeed, the two prevailing

methods for multichannel signal combination lead to noise patterns better described by

Rician and noncentral Chi distributions. Here we develop a Robust and Unbiased Model-

BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI

noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi

likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was

compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian

noise. Another aim of the study was to quantify the impact of including a total variation (TV)

spatial regularization term in the estimation framework. To do this, we developed TV spa-

tially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was
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performed by comparing various quality metrics on 132 three-dimensional synthetic phan-

toms involving different inter-fiber angles and volume fractions, which were contaminated

with noise mimicking patterns generated by data processing in multichannel scanners. The

results demonstrate that the inclusion of proper likelihood models leads to an increased abil-

ity to resolve fiber crossings with smaller inter-fiber angles and to better detect non-domi-

nant fibers. The inclusion of TV regularization dramatically improved the resolution power of

both techniques. The above findings were also verified in human brain data.

Introduction

After decades of developments in diffusion Magnetic Resonance Imaging (MRI), the successful

implementation of a variety of advanced methods has shed light on the complex patterns of

brain organization present at micro [1] and macroscopic scales [2–4]. Among these methods,

Diffusion Tensor Imaging (DTI) [5] has become a classic in both clinical and research studies.

DTI can deliver quantitative results, it may be easily implemented in any clinical MRI system

and, thanks to its short acquisition time, it may be suitable for studying a wide range of brain

diseases. Unfortunately, it is now well recognized that due to its simplistic assumptions, the

DTI model does not adequately describe diffusion processes in areas of complex tissue organi-

zation, like in areas with kissing, branching or crossing fibers [6].

Such limitations in the DTI approach have prompted the recent development of numerous

sampling protocols, diffusion models and reconstruction techniques (e.g., see [7–9] and refer-

ences therein). While some of these techniques have been based on model-free methods,

including q-ball imaging [10] and its extensions [11–17], diffusion orientation transforms [18,

19], diffusion spectrum imaging [20] and related q-space techniques [21–26], other approaches

have relied on parametric diffusion models using higher-order tensors [27–29] and multiple

second-order diffusion tensors [6]. In the later group, different numerical techniques involving

gradient descent [6], Bayesian inference [30–32] and algorithms inspired from compressed

sensing theory [33–35] have been applied to solve the resulting inverse problems.

Spherical Deconvolution (SD) is a class of multi-compartment reconstruction technique

that can be implemented using both parametric and nonparametric signal models [36–49]. SD

methods have become very popular owing to their ability to resolve fiber crossings with small

inter-fiber angles in datasets acquired within a clinically feasible scan time. This resolving

power is driven by the fact that, as opposed to model-free techniques that estimate the diffusion

Orientational Distribution Function (ODF), the output from SD is directly the fiber ODF itself.

Among the different SD algorithms, Constrained Spherical Deconvolution (CSD) [39, 40]

has been received with special interest due to its good performance and short computational

time. In CSD, the average signal profile from white-matter regions of parallel fibers is first esti-

mated, and afterwards, the fiber ODF is estimated by deconvolving the measured diffusion data

in each voxel with this signal profile, which is also known as the single-fiber ‘response function’.

More recently and as an alternative to CSD, a new SD method based on a damped Richard-

son-Lucy algorithm adapted to Gaussian noise (dRL-SD) has been proposed [37, 42]. An

extensive evaluation of both CSD and dRL-SD algorithms has revealed a superior ability to

resolve low anisotropy crossing-fibers by CSD but a lower percentage of spurious fiber orienta-

tions and a lower over-all sensitivity to the selection of the response function by the dRL-SD

approach [50]. This later feature is of great relevance since the assumption of a common
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response function for all brain tracts is a clear over-simplification of both methods, with the

consequences of it minimized by the dRL-SD.

From an algorithmic perspective dRL-SD inherits the benefits of the standard RL deconvo-

lution method applied with great success in diverse fields ranging from microscopy [51] to

astronomy [52]. Remarkably, RL deconvolution is robust to the experimental noise and the

obtained solution can be constrained to be non-negative without the need for including addi-

tional penalization functions in the estimation process. Moreover, from a modeling point of

view, dRL-SD is implemented using an extended multi-compartment model that allows con-

sidering the partial volume effect in brain voxels with mixture of white matter (WM), gray mat-

ter (GM) and cerebrospinal fluid (CSF), a strategy that has been shown to be effective in

reducing the occurrence of spurious fiber orientations [37].

However, in spite of the good properties of dRL-SD and other SD methods some methodo-

logical issues remain. These methods, to some extent, assume additivity and zero mean Gaus-

sianity for the underlying noise and are potentially vulnerable to significant departures from

such an assumption. Indeed, it is well known that the MRI noise is non-Gaussian and depends

on many factors, including the number of coils in the scanner and the multichannel image

combination method. Real experiments have shown that noise follows Rician [53] and noncen-

tral Chi (nc-χ) distributions [54] evidencing the inappropriateness of the Gaussian model. This

issue is especially relevant in diffusion MRI data where the high b-values required to enhance

the angular contrast lead to extremely low signal-to-noise (SNR) ratios. A recent study [55] has

shown that different multichannel image combination methods can changes the properties of

the signal and can have an effect on fiber orientation estimation.

On the other hand, the standard reconstruction in SD, based on a voxel-by-voxel fiber ODF

estimation, although reasonable it may not be optimal in a global sense as it does not take into

account the underlying spatial continuity of the image. Recent research on the inclusion of spa-

tial continuity into SD methods via regularization has yielded promising results [9, 56, 57].

Among these, spatially regularized SD methods based on Total Variation (TV) [9] are very

appealing due to their outstanding ability to simultaneously smooth away noise in flat regions

whilst preserving edges, and due to their robustness to high levels of noise [58].

This work has two main aims: (1) the study and quantification of the benefits of the ade-

quate modelling of the noise distribution in the context of spherical deconvolution, and (2) the

study and quantification of the effects of including a TV spatial regularization term in the pro-

posed estimation framework.

To address the first objective we developed a new SD methodology which, following a

more realistic view, deals with non-Gaussian noise models. Specifically, the estimation

framework is based on a natural extension to the RL algorithm for Rician and nc-χ likelihood

distributions. We had chosen the RL algorithm as a starting point for our work because this

algorithm has proven to be highly efficient in diverse applications, and because the perfor-

mance of the resulting method can be directly compared to the state-of-the-art dRL-SD

method, which employs a nearly-equivalent SD estimation algorithm but based on a Gauss-

ian noise model. The second aim was addressed by including TV regularization to the devel-

oped formulation. Moreover, for completeness we have extended also the dRL-SD method

via the spatially-regularized proposed estimation.

To compare the relative performance between the SD methods based on Gaussian and non-

Gaussian noise models, and their respective implementations including the TV regularization,

the different algorithms were applied to several synthetic phantom datasets which had been

contaminated with noise patterns mimicking the Rician and nc-χ noise distributions produced

in multichannel scanners. To the best of our knowledge, this is the first evaluation of such

methods in a scenario where Rician and nc-χ noise are explicitly created as a function of the
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number of coils, their spatial sensitivity maps, the correlation between coils, and the recon-

struction methodology used to combine the multichannel signals. As a final analysis, the new

method is also applied to real multichannel diffusion MRI data from a healthy subject.

Following this introduction there is a ‘Theory’ section providing an overview of the different

topics relevant to the study and the derivation of the new SD reconstruction algorithm. Descrip-

tion about computer simulations, image acquisition strategies and metrics designed to evaluate

the performance of the reconstructions is provided in the Materials and Methods section. Rele-

vant findings are succinctly described in the Results section. Finally, main results, contributions

and limitations of this work are addressed in the Discussion and Conclusions section.

Theory

This section contains a description of the forward/generative model used to relate the local dif-

fusion process with the measured diffusion MRI data. It also provides a brief review of MRI

noise models. Finally, the diffusion and MRI noise models are used to derive the new SD recon-

struction algorithms.

1 Generative signal and fiber ODF model
The diffusion MRI signal measured for a given voxel can be expressed as the sum of the signals

from each intra-voxel compartment. The term ‘compartment’ is defined as a homogeneous

region in which the diffusion process possesses identical properties in magnitude and orienta-

tion throughout, and which is different to the diffusion processes occurring in other compart-

ments. One example of this approach is the multi-tensor model that allows considering

multiple WM parallel-fiber populations within the voxel. In this model the diffusion process

taking place inside each compartment of parallel fibers is described by a second-order self-dif-

fusion tensor [6].

In real brain data, in addition to the different WM compartments, voxels might also contain

GM and CSF components. This issue was considered by [37], who extended the multi-tensor

model by incorporating the possible contribution from these compartments. This is the genera-

tive multi-tissue signal model that will be used in the present study. In the absence of any

source of noise, the resulting expression for the signal is:

Si ¼ S
0

XM

j¼1
f jexp �biv

T
i Djvi

� �

þ fGMexpð�biDGMÞ þ fCSFexpð�biDCSFÞ
� �

; ð1Þ

whereM is the total number of WM parallel fiber bundles; fj denotes the volume fraction of the

j th fiber-bundle compartment; fGM and fCSF are the volume fractions of the GM and CSF com-

partments respectively, so that
XM

j¼1
f j þ fGM þ fCSF ¼ 1; bi is the diffusion-sensitization factor

(i.e., b-value) used in the acquisition scheme to measure the diffusion signal Si along the diffu-

sion-sensitizing gradient unit vector vi, i = 1, . . ., N; DGM and DCSF are respectively the mean

diffusivity coefficients in GM and CSF; S0 is the signal amplitude in the absence of diffusion-

sensitization gradients (bi = 0);Dj ¼ RT
j ARj denotes the anisotropic diffusion tensor of the j

th fiber-bundle, where Rj is the rotation matrix that rotates a unit vector initially oriented along

the x-axis toward the j th fiber orientation (θj, ϕj) and A is a diagonal matrix containing infor-

mation about the magnitude and anisotropy of the diffusion process inside that compartment:

A ¼

l
1

0 0

0 l
2

0

0 0 l
3

0

B

@

1

C

A
; ð2Þ
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where λ1 is the diffusivity along the j th fiber orientation, λ2 and λ3 are the diffusivities in the

plane perpendicular to it. It is assumed that λ1>λ2�λ3.

At each voxel, the measured diffusion signals Si for N different sampling parameters (i.e., vi
and bi, i�[1, . . ., N]) can be recast in matrix form as:

S ¼ Hf ; ð3Þ

where S = [S1. . .Si. . .SN]
T andH = [HWM|HISO] comprises two sub-matrices.HWM is an N xM

matrix where every column of length N contains the values of the signal generated by the

model given in Eq (1) for a single fiber-bundle compartment oriented along one of theM-

directions, i.e., the (i, j) th element of HWM is equal toHWM
ij ¼ S

0
expð�biv

T
i DjviÞ Likewise,

HISO is an N x 2matrix where each of the two columns of length N contains the values of the

signal for each isotropic compartment, i.e.,HISO
i1 ¼ S

0
expð�biDGMÞ and

HISO
i2 ¼ S

0
expð�biDCSFÞ. Finally, the column-vector f of lengthM+2 includes the volume frac-

tions of each compartment within the voxel.

In the framework of model-based spherical deconvolution,H is created by specifying the

diffusivities, which are chosen according to prior information, and by providing a dense dis-

crete set of equidistantM-orientations O ¼ fðyj; �jÞ; j 2 ½1; . . .;M�g uniformly distributed

on the unit sphere. Previous studies have used different sets of orientations, ranging from

M = 129 [43] toM = 752 [42]. Then, the goal is to infer the volume fraction of all predefined

oriented fibers, f, from the vector of measurements S and the ‘dictionary’H of oriented basis

signals. Under this reconstruction model, f can be interpreted to as the fiber ODF evaluated on

the set OMatrixH is also known as the ‘diffusion basis functions’ [43], or the ‘point spread

function’ [37–39] that blurs the fiber ODF to produce the observed measurements.

It should be noticed that solving the deconvolution problem given by Eq (3) is not simple

because the resulting system of linear equations is ill-conditioned and ill-posed (i.e., there are

more unknowns than measurements and some of the columns ofH are highly correlated),

which can lead to numerical instabilities and physically meaningless results (e.g., volume frac-

tions with negative values). A common strategy to avoid such instabilities is to use robust algo-

rithms that search for solutions compatible with the observed data but which also satisfy some

additional constraints. Thus, in SD it is typical to estimate the fiber ODF by constraining it to

be non-negative and symmetric around the origin (i.e., antipodal symmetry). As mentioned in

the introduction, though, all these reconstruction algorithms may not be necessarily optimal

when dealing with non-Gaussian noise, as it is the case for MRI noise.

2 MRI noise models
In conventional MRI systems, the data are measured using a single quadrature detector (i.e.,

coil with two orthogonal elements) that gives two signals which, for convenience, are treated as

the real and imaginary parts of a complex number. The magnitude of this complex number

(i.e. the square root of the sum of their squares) is commonly used because it avoids different

kinds of MRI artifacts [53]. Given that the noise in the real and imaginary components follows

a Gaussian distribution, the magnitude signal Si will follow a Rician distribution [53] with a

probability function given by

PðSij�Si; s
2Þ ¼

Si
s2

exp �
1

2s2
½Si

2 þ �S2

i �

� �

I
0

Si�S i

s2

� �

uðSiÞ; ð4Þ

where �S i denotes the true magnitude signal intensity in the absence of noise, σ2 is the variance

of the Gaussian noise in the real and imaginary components, I0 is the modified Bessel function
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of first kind of order zero and u is the Heaviside step function that is equal to 0 for negative

arguments and to 1 for non-negative arguments.

Modern clinical scanners are usually equipped with a set of 4 to 32 multiple phased-array

coils, the signals of which can be combined following different strategies that, in turn, will give

rise to different statistical properties for the noise [54]. One frequent strategy uses the spatial

matched filter (SMF) approach linearly combining the complex signals of each coil and pro-

ducing voxelwise complex signals [59]. Since the noise in the resulting real and imaginary com-

ponents remains Gaussian a Rician distribution is expected in the final combined magnitude

image. An alternative to the SMF is to create the composite magnitude image as the root of the

sum-of-squares (SoS) of the complex signals of each coil. Under this approach the combined

image follows a nc-χ distribution [60] given by,

PðSij�S i; s
2; nÞ ¼

�S i

s2

Si
�Si

� �n

exp �
1

2s2
½Si

2 þ �S2

i �

� �

In�1

Si�S i

s2

� �

uðSiÞ; ð5Þ

where n is the number of coils and In-1 is the modified Bessel function of first kind of order n-1.

This expression is strictly valid when the different coils produce uncorrelated noise with equal

variance, and when noise correlation cannot be neglected it provides a good approximation if

effective neff and s
2

eff values are considered [61], with neff being a non-integer number lower

than the real number of coils and s2

eff is higher than the real noise variance in each coil.

A related SoS image combination method that increases the validity of Eq (5) is the covari-

ance-weighted SoS. This method is equivalent to pre-whitening (i.e., decorrelate) the measured

signals before applying the standard SoS image combination. The covariance-weighted SoS

approach requires the estimation of the noise covariance matrix of the system which, in prac-

tice, may be carried out by digitizing noise from the coils in the absence of excitations [62].

It is important to note that there are additional factors that can change the noise characteris-

tics described above, including the use of accelerated techniques based on under-sampling

approaches such as those used in parallel MRI (pMRI) and partial Fourier, certain reconstruction

filters in k-space, and some of the preprocessing steps conducted after image reconstruction.

Empirical data suggest that some of these factors do not substantially change the type of dis-

tribution of the noise. On the one hand, [54] investigated the effects of the type of filter in k-

space, the number of receiving channels and the use of pMRI reconstruction techniques, and

found that noise distributions always followed Rician and nc-χ distributions with a reasonable

accuracy—although their standard deviations and effective number of receiver channels were

altered when fast pMRI and subsequent SoS reconstructions were used. On the other hand,

[55] showed real diffusion MRI data noise to also follow Rician and nc-χ noise distributions

after a preprocessing that included motion and eddy currents corrections. Unfortunately, the

combined effect of all factors has not, to the best of our knowledge, being studied. In this

regard, a complete evaluation should include the study of the effects of additional data manipu-

lation processes routinely applied in many clinical research studies, such as B0-unwarping due

to magnetic field inhomogeneity and partial Fourier reconstructions. Although the latter has

been investigated in terms of signal-to-noise ratio, its influence on the shape of the noise distri-

bution remains unknown.

However, while it is impossible to ensure that Rician and nc-χ distributions are the optimal

noise models for all possible strategies used for sampling, reconstructing and preprocessing dif-

fusion MRI data, such models are flexible enough to adapt to deviations from the initial theo-

retical assumptions. Their parameterization in terms of spatial-dependent effective parameters

(i.e., neff ðx; y; zÞ; s2

eff ðx; y; zÞ, as in [61, 63, 64]) allows characterizing the spatially varying

nature of the noise observed in accelerated MRI reconstructed data, as well as the spatial

Spherical Deconvolution of Multichannel Diffusion MRI Data
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correlation introduced by reconstruction algorithms, whilst preserving the good theoretical

properties of the models with standard parameters, i.e. the null probability to obtain negative

signals and the ability to characterize the signal-dependent non-linear bias of the data.

3 Spherical deconvolution of diffusion MRI data
Eq (5) based on either conventional (i.e., n, σ2) or effective (i.e., neff, s

2

eff ) parameters provides a

very general MRI noise model, which includes the Rician distribution (given in Eq (4)) as a spe-

cial case with n = 1. Consequently, if we derive the spherical deconvolution reconstruction cor-

responding to Eq (6) any particular solution of interest will become available.

Specifically, if we assume the linear model given by Eqs (1)–(3) the likelihood model for the

vector of measurements S under a nc-χ distribution is

PðSjH; f ; s2; nÞ ¼
Y

N

i¼1

�S i

s2

Si
�Si

� �n

exp �
1

2s2
½Si

2 þ �S2

i �

� �

In�1

Si�S i

s2

� �

uðSiÞ; ð6Þ

where Si and �Si ¼ ðHfÞi are the measured and expected signal intensities for ith sampling

parameters, respectively.

3.1 Unbiased and positive recovery: the multiplicative Richardson-Lucy algorithm for

nc-χ noise. The maximum likelihood (ML) estimate in Eq (6) is obtained by differentiating

its negative log-likelihood J(f) = −log p(S|H,f,σ2, n) with respect to f and equating the derivative

to zero, which after some algebraic manipulations becomes

f ¼ f �
HT S � InðS�Hf=s2Þ

In�1ðS�Hf=s2Þ

h i

HTHf
; ð7Þ

where ‘�’ stands for the Hadamard component-wise product, and the division operators are

applied component-wise to the vector’s elements.

Eq (7) is nonlinear in f and its solution can be obtained through a modified version of the

expectation maximization technique, originally developed by Richardson and Lucy for a Pois-

son noise model [65, 66] and known as the RL algorithm. When we applied this technique to

nc-χ and Rician distributed noise it naturally led to the following iterative estimation formula:

f
kþ1 ¼ f

k �
HT S � InðS�Hfk=s2Þ

In�1ðS�Hfk=s2Þ

h i

HTHf
k

; ð8Þ

in which the solution calculated at the k th iteration step (f k) gradually improves (i.e. its likeli-

hood increases after each step) until a final, stationary solution fkþ1

fk
¼ 1, is reached. As shown

Appendix A in S1 File, this formula can also be related to the RL algorithm for Gaussian noise,

employed in the undamped RL-SD technique [42].

Under the absence of any prior knowledge about f, the initial estimate (f °) can be fixed to a

non-negative constant density distribution [42]. In that case, the algorithm transforms a per-

fectly smooth initial estimate into sharper estimates, with sharpness increasing with the num-

ber of iterations. So, roughly speaking, the number of iterations can be considered as a

regularization parameter controlling the angular smoothness of the final estimate. Notably, if

f° is non-negative, the successive estimates remain non-negative as well, and the algorithm

always produces reconstructions with positive elements. Moreover, as in [37, 42] the estimation

does not involve any matrix inversion, thus avoiding related numerical instabilities.

In order to evaluate Eq (8) an estimate ~s2 of σ2 is required. Although obtaining it from a

region-of-interest (ROI) is feasible [67] its accuracy may be compromised by systematic
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experimental issues such as ghosting artifacts, signal suppression by the scanner outside the

brain, zero padding and by filters applied in the k-space. Moreover, with the use of fast parallel

MRI sequences, where each coil records signals with partial coverage in the k-space, properties

of the noise become spatially heterogeneous (i.e. they change from voxel to voxel across the

image). While some authors have proposed alternatives to overcome these limitations [68]

here we have estimated the noise variance at each voxel from the same data used to infer the

fiber ODF.

Specifically, by minimizing the negative log-likelihood with respect to σ2 we have obtained

an iterative scheme analogous to Eq (8):

akþ1 ¼
1

nN

S
T
Sþ f

T
H

T
Hf

2
� 1T

N ðS �HfÞ �
InðS �Hf=akÞ

In�1
ðS �Hf=akÞ

� 	� �

; ð9Þ

where αk is the estimate of σ2 at the k th iteration (starting with an arbitrarily initial estimate α

°) and 1N is a N×1 vector of ones. The resulting algorithm based on Eqs (8) and (9) is termed

RUMBA-SD, which is the abbreviation of ‘Robust and UnbiasedModel-Based Spherical

Deconvolution’. The spatially-regularized extension to this algorithm is described in the fol-

lowing section.

3.2 Towards a robust recovery: Total variation regularization. When considering the

TV model [58] the maximum a posteriori (MAP) solution at voxel (x, y, z) is obtained by mini-

mizing the augmented functional:

JðfÞ ¼ �logPðSjH; f ; s2; nÞ þ aTVTVðfÞ; ð10Þ

where the first term is the negative log-likelihood defined in previous sections and the second

term is the TV energy, defined as the sum of the absolute values of the first-order spatial deriva-

tive (i.e., gradient “r”) of the fiber ODF components over the entire brain image,

TVðfÞ ¼
X

j

jr½f
3D�jj, evaluated at voxel (x, y, z); [f3D]j is a 3D image created in a way that

each voxel contains the element at position j of their corresponding estimate vector f, and αTV
is a parameter controlling the level of spatial regularization. Importantly, and in contrast to the

previous ML estimate, now the solution at a given voxel is not independent from the solutions

in other voxels. The spatial dependence introduced by the TV functional promotes smooth

solutions in homogeneous regions (discourages the solution from having oscillations), yet it

does allow the solution to have sharp discontinuities [58]. This property is highly relevant for

SD because, while it promotes continuity and smoothness along individual tracts, it prevents

partial volume contamination from adjacent tracts.

In this work, the MAP estimate from Eq(10) is obtained using an iterative scheme similar to

that proposed in [51], where the estimate at each iteration is calculated by the multiplication of

two terms: the standardML estimate, and the regularization term derived from the TV functional

f
kþ1 ¼ f

k �
HT S � InðS�Hfk=s2Þ

In�1ðS�Hfk=s2Þ

h i

H
T
Hf

k
�Rk; ð11Þ

with the TV regularization vector Rk at voxel (x, y, z), and at the k th iteration, computed ele-

ment-by-element as

ðRkÞj ¼
1

1� aTVdiv
r fk

3D½ �
j

r fk
3D½ �

j



















0

@

1

Aj
ðx;y;zÞ

; ð12Þ
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where (Rk)j is the element j of vector Rk and div is the divergence operator. In practice, to correct

for potential singularities at r f
k
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 ¼ 0, the term r f
k
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 is replaced by its approximated

value

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r f
k
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� �

j



















2

þ ε

r

, where ε is a small positive constant. Moreover, any negative value inRk

is replaced by its absolute value to preserve the non-negativity of the estimated fiber ODF. Notice

that by setting αTV = 0 the estimator in Eq (11) becomes equal to the unregularized version in Eq

(8).

In the current implementation the simultaneous estimation of all the parameters is carried

out via an alternating iterative scheme summarized in Table 1. Briefly, it minimizes the func-

tional in Eq (10) with respect to the fiber ODF while assuming that σ2 is known and fixed, and

then it updates the noise variance using the new fiber ODF estimate. While for SMF-based data

all the equations are evaluated using n = 1, for SoS-based data n is fixed to the real number of

coils, or to the effective value neff if provided. (But see Appendix B in S1 File)

The regularization parameter αTV is adaptively adjusted at each iteration following the dis-

crepancy principle. Specifically, it is selected to match the estimated variance [69] using two

alternative strategies: (i) assuming a constant mean parameter over the entire brain image, αTV
= E{αk+1} (see Table 1), potentially increasing the precision and robustness of the estimator; or

(ii) assuming a spatial dependent parameter, αTV(x, y, z) = α
k+1(x, y, z), which may be more

appropriate in situations where a differential variance across the image is expected, like in

accelerated pMRI based-data.

It should be remembered that the accuracy of the reconstruction for the SoS case depends

on the variant used to combine the images. In this work it is assumed that the data is combined

using the covariance-weighted SoS method. However, even if the available data were combined

using the conventional SoS approach (i.e., without taking into account the noise correlation

matrix among coil elements), the method could still provide a reasonable approximation (for

more details see Appendix B in S1 File).

Table 1. General pseudocode MAP algorithm.

Initialize f° and α°

if SMF, then

n = 1

else if SOS, then

n = number of coils (or neff)

end

for k = 1,2,. . ., repeat the following steps, until a termination criterion is satisfied

compute fk+1 via Eqs (11) and (12), assuming σ
2 = α

k

fk+1 = fk+1 /sum(fk+1) (
*
)

compute αk+1 via Eq (9) assuming f = fk+1

update αTV
end

(
*
) Optionally, the ODF vector may be scaled to unity, thus preserving the physical definition of the j th

element in f as the volume fraction of the j th compartment of the voxel (see Eqs (1)–(3)). This step would

make sense when the fiber response signal used to create the dictionary matches the real signal from the

compartments, whereas it may be omitted when the latter cannot be guaranteed. Notice that the original

implementation of dRL-SD did not include this step.

doi:10.1371/journal.pone.0138910.t001
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The evaluation of the ratio of modified Bessel functions of first kind involved in the updates

of Eqs (11) and (9) is best computed by considering the ratio as a new composite function, and

not by means of the simple evaluation of the ratio of the individual functions. Specifically, this

ratio is computed here in terms of Perron continued fraction [70]. All the details are provided

in Appendix C in S1 File.

Following a similar estimation framework, the TV regularization was also included into the

dRL-SD method. All the relevant equations are provided in Appendix D in S1 File.

Materials and Methods

1 Synthetic fiber bundles with different inter-fiber angles
In order to test the resolving power of the methods as a function of the underlying inter-fiber

angle, various synthetic phantoms including two fiber bundles were generated. The inter-fiber

angles were gradually modified from 1 to 90 degrees applying one degree increases, eventually

yielding 90 different phantoms with 50 x 50 x 50 voxels. The volume fractions of the two fiber

bundles were assumed to be equal (f1 = f2 = 0.5) in the fiber crossing region.

The intra-voxel diffusion MRI signal was generated via the multi-tensor model [6] using

N = 70 sampling orientations with constant b = 3000 s/mm2 plus one additional image with

b = 0 (i.e., S0 = 1 was assumed in all voxels). The diffusion tensor diffusivities of both fiber

groups were assumed to be identical and equal to λ1 = 1.7 10−3 mm2/s and λ2 = λ3 = 0.3 10−3

mm2/s respectively.

2 Synthetic fiber bundles with different volume fractions
To test the ability of the different methods to detect non-dominant fibers, various synthetic

phantoms containing two fiber bundles were generated. In these phantoms the inter-fiber

angle was fixed to 70 degrees (an angle presumably detectable by all the methods) and the vol-

ume fraction of the non-dominant fiber bundle was gradually changed from 0.1 to 0.5 in

0.01steps, generating 41 different phantoms with 50 x 50 x 50 voxels each. The intra-voxel dif-

fusion MRI signal was created using the same generative multi-tensor model, b-value and sam-

pling orientations as in the previous section.

3 Synthetic “HARDI reconstruction challenge 2013” phantom
The reconstruction algorithms were also tested on the synthetic diffusion MRI phantom devel-

oped for the “HARDI Reconstruction Challenge 2013”Workshop, within the IEEE Interna-

tional Symposium on Biomedical Imaging (ISBI 2013). This phantom comprises a set of 27

fiber bundles with fibers of varying radii and geometry which connect different areas of a 3D

image with 50 x 50 x 50 voxels. It contains a wide range of configurations including branching,

crossing and kissing fibers, together with the presence of isotropic compartments mimicking

the CSF contamination effects occurring near ventricles in real brain images.

The intra-voxel diffusion MRI signal was generated using N = 64 sampling points on a

sphere in q-space with constant b = 3000 s/mm2, plus one additional image with b = 0. For

pure GM and CSF voxels, signals were generated using two mono-exponential models: exp

(−DGMb) and exp(−DCSFb) with DGM = 0.2 10−3 mm2/s and DCSF = 1.7 10−3 mm2/s. In voxels

belonging to single-fiber WM bundles, the signal measured along the q-space unit direction

q̂ ¼ q=jqj was generated by a mixture of signals from intra- and extra-axonal compartments:

f intsintðq;v; t; L;RÞ þ f extsextðq̂;v; b; l1
; l

2
Þ; where v denotes the local fiber orientation. Signal

from the intra-axonal compartment Sint was created following the theoretical model of a

restricted diffusion process inside a cylinder of length L = 5mm and radius R = 5 μm at the
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diffusion time τ = 20.8 s [19, 71]. The extra-axonal signal Sext was generated using a diffusion

tensor model with cylindrical symmetry (i.e., λ1 = 1.7 10−3 mm2/s, λ2 = λ3 = 0.2 10−3 mm2/s).

Mixture fractions were fixed to fint = 0.6 and fext = 0.4. The noiseless dataset can be freely down-

loaded from the Webpage of the site: http://hardi.epfl.ch/static/events/2013_ISBI/.

4 Multichannel noise generation
The synthetic diffusion images from the above phantoms were contaminated with noise mim-

icking the SoS and SMF strategies used in scanners in order to combine multiple-coils signals.

To that aim, the noisy complex-valued image measured from the kth coil was assumed to be

equal to

Sk ¼ SCk þ eRk þ ieIk; ð13Þ

where Ck is the relative sensitivity map [72] of kth coil, eRk � Nð0;SÞ and eIk � Nð0;SÞ are two

different Gaussian noise realizations simulating the noise in the real and imaginary compo-

nents with zero-mean value and covariance matrix S. For simplicity S was assumed to be

given by

S ¼ s2

1 r � � � r

r 1 � � � r

.

.

.
.
.
.

.
.

.
.
.
.

r r � � � 1

0

B

B

B

B

B

@

1

C

C

C

C

C

A

; ð14Þ

where σ2 is the noise variance of each coil and ρ indicates the correlation coefficient between

any two coils.

For the SoS reconstruction, magnitude images were generated as:

SSoS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

k¼1
jSkj

2

q

; ð15Þ

where |Sk| stands for the magnitude of Sk. Notice that Eq (15) is the conventional SoS image

combination and not the covariance-weighted variant. We have followed this approach in

order to simulate the effect of any remaining residual correlation ρ present in real systems (we

have assumed a ρ = 0.05) [63].

In the SMF reconstruction, magnitude images were generated as:

SSMF ¼
Xn

k¼1
SkCk

















; ð16Þ

with simulated sensitivity maps depicted in Fig A in S2 File satisfying the relationship
Xn

k¼1
C2

k ¼ 1; which holds in practice when the relative sensitivity maps are calculated as Ck =

|Sk|/SSOS [72]. These sensitivity maps have been previously used in [73].

It should be noted that different scanner vendors can implement different SMF and SoS var-

iants. In this work we have used the variants given in [55] for datasets acquired without under-

sampling in the k-space, i.e., R = 1, where R is the acceleration factor of the acquisition defined

as the ratio of the total k-space phase-encoding lines over the number of k-space lines actually

acquired. Notice that in the absence of noise SSOS = SSMF. Besides, for the particular case of a

single coil with uniform sensitivity, i.e., n = 1 and C = 1, Eq (15) and Eq (16) become identical.

The 132 3D phantoms resulting from the procedures described in the three previous sec-

tions were contaminated with noise using a range of clinical signal-to-noise ratios (SNR) of 10,

15, 20 and 30, where SNR = S0/σ. In order to generate signals under equivalent conditions, for
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each value of σ the same noise realizations feRkg and fe
I
kg were used to generate the final images

SSOS and SSMF. All datasets were created simulating a scanner with 8 coils (see Figs A and B in

S2 File).

5 Evaluation metrics
The performance of the algorithms was quantified by comparing the obtained reconstructions

against the ground-truth via three main criteria: (i) the angular error in the orientation of fiber

populations, (ii) the proper estimation of the number of fiber populations present in every

voxel and (iii) the volume fraction error.

For the analyses, local peaks from the reconstructed fiber ODFs were identified as those ver-

tices in the grid with higher values than their adjacent neighbors, considering only cases where

magnitudes exceeded at least one tenth of the amplitude of the highest peak (i.e., 0.1�fmax) [50].

From all identified peaks, the highest four where finally retained.

Next, we adopted some of the evaluation metrics widely used in the literature [9]. Specifi-

cally, we used the angular error, defined as the average minimum angle between the extracted

peaks and the true fiber directions [74]:

y ¼
1

Mtrue

XMtrue

k¼1
minm arccosð eT

mvk











Þ
� �

; ð17Þ

where Mtrue is the true number of fiber populations, em is the unitary vector along with themth

detected fiber peak and vk is the unitary vector along the kth true fiber direction. The volume

fraction error of the estimated fiber compartments was assessed by means of the average abso-

lute error between the estimated and the actual peak amplitudes:

Df ¼
1

Mtrue

XMtrue

k¼1
jfm � f kj; ð18Þ

where fm is the normalized height of themth detected fiber peak and fk is the volume fraction

of the kth true fiber. As usual, the angular and volume fraction errors between each pair of

fibers were measured by comparing the true fiber with the closest estimated fiber.

Finally, the success rate (SR) was employed to quantify the estimation of the number of

fiber compartments. The SR is defined as the proportion of voxels in which the algorithms esti-

mate the right number of fiber compartments. To discriminate the different factors leading to

an erroneous estimation, the mean number of over-estimated n+ and under-estimated n− fiber

populations were computed over the whole image [9].

6 Settings for the evaluation algorithms
Both RUMBA-SD and dRL-SD methods were implemented using in-house developedMatlab

code, applying the same dictionariesH created from the signal generative model given in Eqs

(1)–(3). These used M = 724 fiber orientations distributed on the unit sphere, with a mean

angular separation between adjacent neighbor vertices of 8.36 degrees, and a standard devia-

tion of 1.18 degrees.

To assess the effect of using dictionaries with optimal and non-optimal diffusivities, two dif-

ferent dictionaries were created and applied to the datasets described in subsections 1 (i.e., fiber

bundles with different inter-fiber angles) and 2 (i.e., fiber bundles with different volume frac-

tions). The first dictionary was generated by using the same diffusivities employed in the syn-

thetic data, whereas the second dictionary was created from diffusivities estimated in regions of

parallel fibers (outside the fiber crossing area) by means of a standard diffusion tensor fitting

on the noisy data (i.e., dtifit tool in FSL package).
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Similarly, two dictionaries were created to test the reconstructions on the data described in

subsection 3 (i.e., “HARDI Reconstruction Challenge 2013” phantom data). In this case the

model diffusivities and the ‘true’ diffusivities were deliberately set to different values in order to

consider the possibility of model misspecification. The first dictionary was created with tensor

diffusivities equal to λ1 = 1.4 10−3mm2/s and λ2 = λ3 = 0.4 10−3mm2/s. Two isotropic compart-

ments with diffusivities equal to 0.2 10−3 mm2/s and 1.4 10−3 mm2/s were also included. In the

second dictionary the diffusivities were assumed to be equal to λ1 = 1.6 10−3 mm2/s and λ2 = λ3

= 0.3 10−3 mm2/s, and the isotropic diffusivities were equal to 0.2 10−3 mm2/s and 1.6 10−3

mm2/s respectively.

The starting condition f° in all cases was set as a non-negative iso-probable spherical func-

tion [37]. The accuracy and convergence of both methods as a function of the number of itera-

tions was investigated by repeating the calculations using 200 and 400 iterations, which is

within the optimal range as suggested in [37] and [50]. The extended algorithms with TV regu-

larization were also tested using 600 and 1000 iterations. The geometric damping and threshold

parameters for dRL-SD were set to v = 8 and η = 0.06 respectively [37], see Appendix D in S1

File. For SoS-based data, n was fixed to the real number of coils in RUMBA-SD.

To differentiate the standard RUMBA-SD and dRL-SD algorithms from their regularized

versions, we have added the term ‘+TV’ to their names, i.e., RUMBA-SD+TV and dRL-SD

+TV.

7 Real brain data
Diffusion MRI data were acquired from a healthy subject on a 3T Siemens scanner (Erlangen)

located at the University of Oxford (UK). The subject provided informed written consent

before participating in the study, which was approved by the Institutional Review Board of the

University of Oxford. Whole brain diffusion images were acquired with a 32-channel head coil

along 256 different gradient directions on the sphere in q-space with constant b = 2500 s/mm2.

Additionally, 36 b = 0 volumes were acquired with in-plane resolution = 2.0 x 2.0 mm2 and

slice thickness = 2 mm. The acquisition was carried out without undersampling in the k-space

(i.e., R = 1). Raw multichannel signals were combined using either the standard GRAPPA

approach or the GRAPPA approach with the adaptive combination of the SMF available in the

scanner, giving SoS and SMF-based datasets respectively. Then, the two resulting datasets were

separately corrected for eddy current distortions and head motion as implemented in FSL [75].

A subset of 64 directions with nearly uniform coverage on the sphere was selected from the

full set of 256 gradients directions, and measurements for this subset were used to ‘create’ an

under-sampled version of the data, which also included 3 b = 0 volumes. The resulting HARDI

sequence based on 64 directions is similar to those widely employed in clinical studies, thus

results from this dataset are useful to evaluate the impact of the new technique on standard

clinical data.

Results

1 Gaussian versus non-gaussian noise models
The angular and volume fraction errors from the dRL-SD and RUMBA-SD reconstructions in

the 90 synthetic phantoms with different inter-fiber angles are depicted in Fig 1, as well as in

Fig C in S2 File. Fig 1 shows results using a dictionary created with the same diffusivities

applied to generate the data (i.e., λ1 = 1.7 10−3 mm2/s and λ2 = λ3 = 0.3 10−3 mm2/s), whereas

Fig C in S2 File displays results using tensor diffusivities estimated from the noisy data (λ1 =

1.1 10−3 mm2/s and λ2 = λ3 = 0.35 10−3 mm2/s). In both dictionaries two isotropic compart-

ments with diffusivities equal to 0.1 10−3 mm2/s and 2.5 10−3 mm2/s were included. Average
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values of SR, n+ and n− are also reported in Figs D and E in S2 File. Results shown come from

the reconstructions employing 200 iterations and the datasets with a SNR = 15.

A set of patterns can be drawn from these results. First, RUMBA-SD was able to resolve

fiber crossings with smaller inter-fiber angles (around 5 degrees and 10 degrees for datasets

corrupted with Rician and nc-χ noise respectively). Second, RUMBA-SD produced volume

fraction estimates with a higher precision (lower variance), even in phantoms where the fiber

configuration was well-resolved by both methods. Third, although dRL-SD produced a rela-

tively lower proportion of spurious fibers (n+), RUMBA-SD produced a lower proportion of

undetected fibers (n−) leading to a higher success rate (SR). Finally, the performance of both

methods was inferior when the dictionary was created using diffusivities estimated from a

‘standard’DTI fitting in WM regions of parallel fibers. In line with previous findings on

dRL-SD [50], optimal results were obtained from the sharper fiber response model.

All these points also hold for results obtained with other SNRs and with a differing number

of algorithm iterations. Specifically, when a higher number of iterations was employed (i.e.,

400), a lower proportion of n− and a higher proportion of n+ was obtained with both methods.

Fig 1. Reconstruction accuracy for RUMBA-SD and dRL-SD using a dictionary based on original diffusivities. Reconstruction accuracy of
RUMBA-SD (blue color) and dRL-SD (red color) are shown in terms of the angular error (θ) (see Eq (17)) and the volume fraction error (Δf) (see Eq (18)), as a
function of the inter-fiber angle in the 90 synthetic phantoms. Continuous lines in each plot represent the mean values for each method. The semi-transparent
coloured bands symbolize values within one standard deviation from both sides of the mean. Analyses are based on a dictionary created with the same
diffusivities used to generate the data and with a SNR = 15.

doi:10.1371/journal.pone.0138910.g001
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Fig 2 shows the performance of dRL-SD and RUMBA-SD in the 41 phantoms with inter-

fiber angle equal to 70 degrees and using different volume fractions. Specifically, average values

and standard deviations for the estimated volume fractions of the smaller fiber group are

reported for the SNR = 15 datasets. Results are based on 200 iterations, using the dictionary

created with the sharper fiber response model. Additional results on n+ and n− are show in Fig

F in S2 File.

Fig 2. Reconstruction accuracy of RUMBA-SD and dRL-SDmeasured in phantoms with different volume fractions. Reconstruction accuracy of
RUMBA-SD (blue color) and dRL-SD (red color) is shown in terms of the volume fraction of the smaller fiber bundle (upper panel) and the success rate
(middle panel) in the 41 synthetic phantoms with inter-fiber angle equal to 70 degrees, using different volume fractions. The lower panel shows results similar
to those depicted in the upper panel but considering only voxels where the two fiber bundles were detected. The discontinuous diagonal black line in the
upper and lower panels represents the ideal result as a reference. The continuous coloured lines in each plot denote the mean values for each method. The
semi-transparent coloured bands represent the values within one standard deviation to both sides of the mean. Results refer to the datasets with SNR = 15
and dictionary created with the true diffusivities.

doi:10.1371/journal.pone.0138910.g002
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The performance of RUMBA-SD was better in terms of the estimated volume fractions and

the success rate, especially in the Rician noise case. In order to verify if the lower bias in the vol-

ume fractions estimated by RUMBA-SD could be explained only by its higher success rate, the

calculation was repeated by considering only those voxels in each phantom where the two fiber

populations were identified. After correcting for this factor, a noticeable advantage was still

observed for RUMBA-SD (see left lower panel of Fig 2).

2 Original versus TV-regularized algorithms
Fig 3 reports angular and volume fraction errors corresponding to the TV spatially-regularized

versions of both methods applied to the 90 phantoms characterizing the different inter-fiber

angles. Results are based on the same parameters and options used in Fig 1: dictionary created

using the sharper fiber response model; noisy datasets with a SNR = 15 and reconstructions

using 200 iterations. Average values of SR, n+ and n− are reported in Fig G in S2 File.

When comparing these results with those from Fig 1 (and Fig D in S2 File), it is clear that TV

regularization provides multiple benefits in both algorithms, including a superior ability to detect

Fig 3. Reconstruction accuracy levels of RUMBA-SD+TV and dRL-SD+TV. Reconstruction accuracy of RUMBA-SD+TV (blue color) and dRL-SD+TV
(red color) is shown in terms of the angular error (θ) (see Eq (17)) and the volume fraction error (Δf) (see Eq (18)) as a function of the inter-fiber angle in the 90
synthetic phantoms. Continuous lines are the mean values for each method, and semi-transparent coloured bands contain values within one standard
deviation on both sides of the mean. This analysis is based on a dictionary created with the same diffusivities used to generate the data with a SNR = 15.

doi:10.1371/journal.pone.0138910.g003
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fiber crossings with smaller inter-fiber angles and a higher success rate. The later is due to a lower

proportion of undetected fibers (n−) and of spurious fibers (n+). This pattern is evident in Fig 4,

which depicts the peaks extracted from the fiber ODFs estimated from the SMF-based phantom

with inter-fiber angle equal to 45 degrees and SNR = 15. Peaks are plotted as thin cylinders.

Fig 4. Main peaks in the 45-degrees phantom data.Main peaks extracted from the fiber ODFs estimated in the phantom data with inter-fiber angle equal to
45 degrees and Rician noise with a SNR = 15 are shown. Results are based on reconstructions using 200 iterations. Peaks are visualized as thin cylinders.

doi:10.1371/journal.pone.0138910.g004
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As before, the above patterns were also observed in the analyses obtained with datasets

based on other SNRs and with different number of iterations. In all cases RUMBA-SD+TV

detected fiber crossings at lower inter-fiber angles. Fig 5 shows an example of this in the phan-

tom with inter-fiber angle equal to 33 degrees corrupted with Rician noise and SNR = 15.

Fig 5. Main peaks in the 33-degrees phantom data.Main peaks extracted from the fiber ODFs estimated in the phantom data with inter-fiber angle equal to
33 degrees and Rician noise with a SNR = 15 are shown. Results are based on reconstructions using 200 iterations. Peaks are visualized as thin cylinders.

doi:10.1371/journal.pone.0138910.g005
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3 “HARDI reconstruction challenge 2013” phantom data
Fig 6 depicts the peaks extracted from the fiber ODFs estimated in a complex region containing

various tracts from the SMF-based data generated with a SNR = 20. Results come from recon-

structions using 400 iterations and a dictionary with diffusivities equal to λ1 = 1.6 10−3 mm2/s

and λ2 = λ3 = 0.3 10−3 mm2/s. Figs H, I, J and K in S2 File show the results from both methods

Fig 6. Main peaks from the fiber ODFs estimated in the “HARDI Reconstruction Challenge 2013” phantom. Visualization of the main peaks extracted
from the fiber ODFs reconstructed from the SMF-based data generated with SNR = 20 in a complex region of the “HARDI Reconstruction Challenge 2013”
phantom. Results are based on reconstructions using 400 iterations. Peaks are visualized as thin cylinders.

doi:10.1371/journal.pone.0138910.g006
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and their regularized versions in the whole slice. Additionally, Fig L in S2 File shows the results

corresponding to the reconstructions using 1000 iterations on the same region of interest

depicted in Fig 6.

On the one hand, RUMBA-SD was able to resolve some fiber configurations that were not

detected by dRL-SD, especially in voxels involving small inter-fiber angles or fiber crossings

with a non-dominant tract. On the other hand, the spatially-regularized algorithms have sub-

stantially improved the performance of the original methods. Moreover, RUMBA-SD+TV was

the method providing better reconstructions. These findings are in line with results from previ-

ous sections and remained valid also when different dictionaries, number of iterations and

noise levels were employed.

Additional complementary results about the performance of RUMBA-SD in relation to sev-

eral other reconstruction methods can be found in the website of the ‘HARDI Reconstruction

Challenge 2013’: http://hardi.epfl.ch/static/events/2013_ISBI/workshop.html#results. An ear-

lier version of RUMBA-SD took part in that Challenge, ranking number one in the ‘HARDI-

like’ category (team name: ‘Capablanca’). In the discussion section we provide additional

information.

4 Real brain data
Fiber ODFs were estimated separately for each different SMF- and SoS-based dataset, including

the original measured data with the full set of 256 gradient directions and its reduced form

including a subset of 64 directions. In all cases, both RUMBA-SD and dRL-SD methods were

implemented using the same dictionary, which was created assuming a sharp fiber response

model with diffusivities equal to λ1 = 1.7 10−3 mm2/s and λ2 = λ3 = 0.3 10−3 mm2/s, and two

isotropic terms with diffusivities equal to 0.7 10−3 mm2/s and 2.5 10−3 mm2/s.

Fig 7 shows the fiber ODFs estimated from the reduced SMF- and SoS-based datasets (i.e.,

data containing the reduced set of 64 gradient directions) in a coronal ROI on the right brain

hemisphere. These results correspond to the reconstructions employing 200 iterations. Visual

inspection of Fig 7 reveals that RUMBA-SD has produced sharper fiber ODFs than dRL-SD in

both data. It has detected more clearly the fiber crossings. Interestingly, the fiber ODF profiles

estimated by dRL-SD from the SoS-based data are smoother than those estimated from the

SMF-based data. This behavior is less perceptible in the case of RUMBA-SD, suggesting that it

could be more robust to different multichannel combination methods.

Fig 8 depicts the fiber ODFs estimated with RUMBA-SD and RUMBA-SD+TV in a ROI of

both the full and reduced SMF-based datasets. This region contains complex fiber geometries,

including the mixture of the anterior limb of internal capsule (alic), the external capsule (ec)

and part of the superior longitudinal fasciculus (slf) on the left brain hemisphere. Although in

both cases multiple fibers were detected in the area of intersection, RUMBA-SD+TV has pro-

vided multi-directional fiber ODFs with a higher number of lobes, which may represent fiber

crossings as well as intra-voxel fiber dispersion. The similarity of the reconstructions from the

full and reduced datasets suggests that the method is robust with respect to the number of mea-

surements, with the regularized version being the most robust.

In a subsequent analysis we examined the statistical properties of inter-fiber angles as esti-

mated by all methods. Fig 9 depicts scatter plots of inter-fiber angles estimated by dRL-SD and

RUMBA-SD (panel A) and by dRL-SD+TV and RUMBA-SD+TV (panel B). These results are

based on reconstructions employing 300 iterations in the 64-direction SMF-based dataset.

Only white matter voxels where both methods detected one or two fibers are included in each

plot, with inter-fiber angles in single fiber voxels assumed to be zero. Points on the main diago-

nal line characterize voxels where both methods gave identical inter-fiber angle estimates,
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whereas points above and below the main diagonal correspond to voxels where the two meth-

ods detected two fibers with different inter-fiber angle. The high density of points forming two

secondary lines near the main diagonal indicates nearly similar reconstructions by both meth-

ods, with the angular differences being similar to the angular resolution of the reconstruction

grid (i.e., about 8 degrees). The higher number of points above the main diagonal in both pan-

els, especially for inter-fiber angles lower than 50 degrees, suggests that RUMBA-SD and

RUMBA-SD+TV provide higher inter-fiber angles than dRL-SD and dRL-SD+TV,

Fig 7. Fiber ODF profiles estimated from real data. Visualization of the fiber ODFs estimated in a region of interest on the right brain hemisphere. Results
from both SMF- and SoS-based multichannel diffusion datasets (i.e., with Rician and Noncentral Chi noise, respectively) are depicted. The background
images are the generalized fractional anisotropy images computed from each reconstruction.

doi:10.1371/journal.pone.0138910.g007
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respectively. Finally, points located on the X and Y axes are voxels where one method detected

two fibers while the other detected one. The very low density of points on the X axis of panel A

for inter-fiber angles lower than 50 degrees (see the blue bracket) indicates that in nearly all

voxels where dRL-SD detected two fibers, RUMBA-SD was also able to detect two fibers. In

contrast, the high density of points on the Y axis in the same range of inter-fiber angles indi-

cates that in many voxels RUMBA-SD detected two fibers whereas dRL-SD detected a single

one. A similar but attenuated effect can be noticed in panel B, suggesting that TV regularization

contributes to reduce the differences between both methods.

Discussion and Conclusions

In this study we propose a new model-based spherical deconvolution method, RUMBA-SD. In

contrast to previous methods, usually based on Gaussian noise with zero mean, RUMBA-SD

considers Rician and noncentral Chi noise models, which are more adequate for characterizing

the non-linear bias introduced in the diffusion images measured in current 1.5T and 3T multi-

channel MRI scanners. Although recent progress has been made in new SD methods adapted

to corrupted Rician data, e.g., see [41, 76] to the best of our knowledge, our study provides the

first SD extension to noncentral Chi noise. Furthermore, RUMBA-SD offers a very general esti-

mation framework applicable to different datasets, with its flexibility emanating from two

Fig 8. Fiber ODF profiles estimated from real data. Visualization of the fiber ODFs estimated from
RUMBA-SD and RUMBA-SD+TV in a region of interest on the left brain hemisphere. Results are based on
estimates employing 300 iterations. The upper and lower panels correspond to results from the full and
reduced SMF-based datasets, respectively. The following tracts are highlighted: alic (anterior limb of internal
capsule), ec (external capsule), and part of the slf (superior longitudinal fasciculus).

doi:10.1371/journal.pone.0138910.g008
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features: i) the explicit dependence between the likelihood model and the number of coils in

the scanner and ii) the specific methodology employed to combine multichannel signals. In

addition, the voxel-wise estimation of the noise variance adequately deals with potential devia-

tions in the noise distribution, due, for instance, to accelerated MRI techniques or to prepro-

cessing effects. We hope that the proposed technique will help extend SD methods to a wide

range of datasets taken from different scanners and using different protocols.

This study adds to previous diffusion MRI studies trying to overcome the signal-dependent

bias introduced by Rician and noncentral Chi noise. Apart from the robust DTI estimation

methods in [77] and the earlier DTI study conducted by [78], the noise filtering techniques

recently described in [79, 80] are specially relevant. These techniques can be applied in the pre-

processing steps prior to HARDI data estimation.

The performance of RUMBA-SD has been evaluated exhaustively against the state-of-the-

art dRL-SD technique. For that, we have used 132 different 3D synthetic phantoms, including

90 phantoms simulating fiber crossings with different inter-fiber angle, 41 phantoms simulat-

ing fiber crossings with different volume fraction, and the complex phantom designed for the

“HARDI Reconstruction Challenge 2013”Workshop organized within the IEEE International

Symposium on Biomedical Imaging. The comparison of these two methods has allowed us to

weight the impact on the results of the Rician and noncentral Chi likelihood models included

in RUMBA-SD, in relation to the Gaussian model assumed in dRL-SD. Since both approaches

were implemented using the same dictionary of basis signals and similar reconstruction meth-

ods based on Richardson-Lucy algorithms adapted to Gaussian, Rician and noncentral Chi

noise models, results should be considered comparable.

Fig 9. Scatter plots of inter-fiber angles estimated in real data. Scatter plots of the inter-fiber angles estimated by dRL-SD and RUMBA-SD (panel A) and
by dRL-SD+TV and RUMBA-SD+TV (panel B) in the same voxels. Results are based on reconstructions in the 64-direction SMF dataset. Only voxels in
white matter where both methods detected one or two fibers are included. The inter-fiber angle in voxels with a single fiber was assumed to be equal to zero.
Points on the main diagonal line are those voxels where the inter-fiber angle estimated from both methods was identical, whereas points above and below the
main diagonal correspond to voxels where the two methods detected two fibers but with different inter-fiber angle. Points located on the X and Y axes are
voxels where one method detected two fibers whereas the other detected a single fiber.

doi:10.1371/journal.pone.0138910.g009
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Taken together, findings from all synthetic datasets demonstrate the benefits of an adequate

modelling of the noise distribution in the context of spherical deconvolution, and of the inclusion

of TV regularization. Interestingly, RUMBA-SD resolved fiber crossings with smaller inter-fiber

angles and smaller non-dominant fibers. Likewise, RUMBA-SD produced volume fraction esti-

mates with higher accuracies and precision and produced, as well, a lower proportion of unde-

tected fibers, resulting in a higher success rate (see Figs 1 and 2 in S2 File). On the other hand, the

TV spatially-regularized versions of both dRL-SD and RUMBA-SD have substantially improved

the performance of the original methods in all studied metrics (see Figs 3–6 in S2 File).

As previously mentioned, an earlier version of RUMBA-SD took part in the HARDI Recon-

struction Challenge 2013, ranking number one in the ‘HARDI-like’ category. Notably, this

position was shared with a reconstruction based on the CSD method included in Dipy software

[81] (http://nipy.org/dipy/), which had applied a Rician denoising algorithm [82] to the raw

diffusion MRI data prior to the actual CSD reconstruction. The superior performance of these

two approaches strengthens the importance of taking into account the non-Gaussian nature of

the noise. Moreover, it opens new questions on the optimal strategy to be followed. Should we

divide the deconvolution process into to two disjoint steps (first denoising and then estima-

tion) or it is more adequate to follow the unified approach proposed here?. The main advantage

of the former is that it may benefit from including state-of-art denoising algorithms like the

adaptative non-local means denoising method proposed in [82]. Conversely, the main advan-

tage of the unified approach is that it provides a precise model to distinguish real signals from

noise throughout all the 4D diffusion MRI data. Many of the advanced denoising algorithms

that are currently applied in isolation were developed to filter volumetric (3D) data. Since each

3D image is processed individually, their mutual dependence in terms of orientation is ignored.

In contrast, the unified approach described here provides a more general estimation framework

that may be extended to include advanced similarity measures like those employed in [82],

merging the benefits of both strategies. A new manuscript on the ‘Challenge’ phantom (cur-

rently under preparation) will provide additional information on the performance of RUM-

BA-SD in relation to several reconstruction methods and in terms of connectivity metrics

derived from fiber tracking analyses.

When applied to human brain data, RUMBA-SD has also achieved the best results, with its

reconstructions showing the highest ability to detect fiber crossings (see Figs 7–9). And

although any conclusion derived from real data is hampered by the unknown anatomy at the

voxel level, all previous results on synthetic data seem to support the validity of RUMBA-SD

for real data.

Our findings can also be contrasted with those reported in [55]. In that study, the authors

show that the SoS approach produces a signal-dependent bias that reduces the signal dynamic

range and may subsequently lead to decreased precision and accuracy in fiber orientation esti-

mates. Our study, however, suggests that the noncentral Chi noise in SoS-based data is not a

major concern for the SD methods considered. Thus, heavier squashing of fiber ODFs when

SoS reconstruction is used [55] is not that prominent with the SD if compared to diffusion

ODF estimation methods [11]. This result may have different explanations for each technique.

The robustness of dRL-SD may be explained, in part, by its lower over-all sensitivity to selec-

tion of the response function [50], which make it robust to the use of dictionaries estimated

from either biased or unbiased signals. This behaviour may be additionally boosted by the

inclusion of the damping factor in the RL algorithm. In contrast, the robustness of RUMBA-SD

can be explained by the use of proper likelihood models that explicitly consider the bias as a

function of the noise corrupting the data.

To finish, some limitations and future extensions of the study should be acknowledged.

First, we have not evaluated the proposed method in synthetic data simulating partial Fourier
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k-space acquisitions and with parallel imaging using various acceleration factors (i.e., R>1), yet

it may be interesting to consider it. Second, the RUMBA-SD estimation framework is based on

a discrete approximation of the fiber ODF, which may be potentially extended to continuous

functions on the sphere, like the spherical harmonics and the wavelets. Third, the TV regulari-

zation implemented in this study is based on a channel-by-channel first order scheme. New

studies may be designed to compare different regularization techniques such as higher order

TV, vectorial TV and the fiber continuity approach introduced in [56], to mention only a few

examples. Fourth, different strategies for creating the signal dictionary could be explored, like

using mixtures of intra-compartment models to capture different diffusion profiles, or applying

more appropriate models to fit multi-shell data [31, 83]. Fifth, the recursive calibration of the

single-fiber response function proposed by [84] may be another possible add-on. Finally, it is

worth mentioning that the inversion algorithm behind RUMBA-SD is not limited to fiber ODF

reconstructions, but it can be also applied to solve other linear mixture models from diffusion

MRI data. It was recently showed that some microstructure imaging methods such as ActiveAx

and NODDI can be reformulated as convenient linear systems, however, the deconvolution

methods proposed for them assume Gaussian noise and are performed on a voxel-by-voxel

basis [85]. Here the iterative scheme proposed in RUMBA-SD could be used to address both

limitations, potentially leading to improved reconstructions in microstructure imaging.
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