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SPHERICAL DESIGNS AND MODULAR FORMS OF THE D4 LATTICE

MASATAKE HIRAO, NOZAKI HIROSHI, AND KOJI TASAKA

Abstract. In this paper, we study shells of the D4 lattice with a slightly general concept of
spherical t-designs due to Delsarte-Goethals-Seidel, namely, the spherical design of harmonic
index T (spherical T -design for short) introduced by Delsarte-Seidel. We first observe that the
2m-shell of D4 is an antipodal spherical {10, 4, 2}-design on the three dimensional sphere. We
then prove that the 2-shell, which is the D4 root system, is a tight {10, 4, 2}-design, using the
linear programming method. The uniqueness of the D4 root system as an antipodal spherical
{10, 4, 2}-design with 24 points is shown. We give two applications of the uniqueness: a
decomposition of the shells of the D4 lattice in terms of orthogonal transformations of the
D4 root system: and the uniqueness of the D4 lattice as an even integral lattice of level 2
in the four dimensional Euclidean space. We also reveal a connection between the harmonic
strength of the shells of theD4 lattice and non-vanishing of the Fourier coefficients of a certain
newform of level 2. Motivated by this, congruence relations for the Fourier coefficients are
discussed.

1. Introduction

The m-shell of a lattice is the set of lattice points on the sphere with
√
m radius. These

finite sets have been studied from the design theoretical viewpoint in connection with modular
forms, in particular, weighted theta functions. In this paper, we wish to explicate shells
of the D4 lattice, an even integral lattice in the four dimensional Euclidean space, with a
slightly general concept of spherical t-designs due to Delsarte-Goethals-Seidel [21], namely,
the spherical design of harmonic index T (spherical T -design for short) introduced by Delsarte-
Seidel [22] as a spherical analogue of the design in association schemes [16, §3.4]. A prototype
of our work is due to Venkov [40]; one of his results shows that any non-empty (normalized)
2m-shell of an extremal even unimodular lattice in R24n (n ≥ 1), including the Leech lattice,
is a spherical 11-design. In his study, the theory of modular forms for the full modular group
plays an important role. Similar investigations are then made for several types of lattices (see
e.g., [2, 18, 19, 35]).

The 2m-shell of the D4 lattice, denoted by (D4)2m, becomes the set of integer solutions
to the equation x21 + · · · + x24 = 2m. A starting point of our study is to prove that the
normalized set 1√

2m
(D4)2m on the unit sphere S3 is a spherical {10, 4, 2}-design for all m ≥ 1

(Proposition 4.2). We indicate two proofs; the first proof is based on the fact that the Weyl
group W (F4) of the F4 root system acts on the D4 lattice, together with the formula for the
harmonic Molien series of W (F4); the second proof uses the theory of modular forms of level
2 with weighted theta functions of the D4 lattice. As a special case, we see that the D4 root
system, which is the 2-shell (D4)2, is an antipodal spherical {10, 4, 2}-design of S3 with 24
points. A crucial discovery due to linear programming method is that the lower bound of
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the cardinality of such design is 24 (Theorem 3.2). Namely, the D4 root system gives a tight
antipodal spherical {10, 4, 2}-design, while it is not a tight spherical 5-design on S3.

The classification of tight spherical T -designs has only recently begun (see e.g., [8, 34, 41]).
In this direction, we prove the uniqueness of the D4 root system (Theorem 5.1). It means that
every antipodal spherical {10, 4, 2}-design of S3 with 24 points is an orthogonal transformation
of the D4 root system. It seems that the normalized D4 root system is the first example such
that it is not unique as a spherical t-design, but unique as an antipodal spherical T -design
(see Remark 5.2). This result not only contributes to the study of classification of spherical
designs, but also has two striking applications: a decomposition of the shell of the D4 lattice
in terms of the disjoint union of orthogonal transformations of the D4 root system (Theorem
6.1), and the uniqueness of the D4 lattice as an even integral lattice of level 2 in R4 (Theorem
7.2).

In connection with modular forms, we reveal a relationship between the harmonic strength
of the shells of the D4 lattice and non-vanishing of the τ2-function, where

∑
m≥1 τ2(m)qm =

η(z)8η(2z)8 is the unique cusp form of weight 8 and level 2 (Theorem 8.1). This is analogy
to the study of Venkov, Pache and de la Harpe [18, 19] in the case of the E8 lattice, where
they pointed out that the Ramanujan τ -function τ(m) vanishes if and only if the 2m-shell
of E8 is a spherical 8-design (see also [3, §3.2]). In our case, we may believe that τ2(m)
would never be 0 (similar to Lehmer’s conjecture), namely, that the harmonic strength of
the 2m-shell of the D4 lattice is {10, 4, 2} for all m ≥ 1. For evidence, we prove congruence
relations τ2(p) ≡ p(p + 1) mod ℓ for ℓ ∈ {3, 5} (Theorem 8.2) which shows τ2(p) 6= 0 for all
prime p 6≡ −1 mod 15. This congruence might not be new and can be deduced from results
in the literature, e.g., [10, 17, 26, 28, 32], but our proof may shed new light on this study.

2. Spherical code and design

The concepts of spherical codes and spherical designs introduced by Delsarte-Goethals-
Seidel [21] apply for finite subsets of the unit sphere Sd−1 = {x = (x1, . . . , xd) ∈ Rd | ‖x‖ = 1}
in d-dimensional Euclidean space Rd, where ‖x‖2 = 〈x,x〉 =

∑d
i=1 x

2
i . We recall their

definitions, thereby also fixing some of our notation.
For a subset X of Sd−1, let us denote the set of inner products of two distinct points in X

by

A(X) = {〈x,y〉 | x,y ∈ X, x 6= y} ⊂ [−1, 1).

We denote by Harmℓ(R
d) the R-vector space of real homogeneous harmonic polynomials of

degree exactly ℓ in d variables, namely, a polynomial in R[x1, . . . , xd] of homogeneous degree

ℓ annihilated by the Laplace operator
∑d

j=1 ∂
2/∂x2j .

Definition 2.1. 1) A set X of N points on Sd−1 is called a (d,N, a) spherical code if every
element in A(X) is less than or equal to a ∈ R.
2) Let T be a subset of N. A non-empty finite subset X of Sd−1 is called a spherical design
of harmonic index T (spherical T -design for short) if it holds that

∑

x∈X
P (x) = 0, ∀P ∈ Harmℓ(R

d), ∀ℓ ∈ T.

For t ∈ N, a spherical {t, t − 1, . . . , 2, 1}-design is called a spherical t-design (see [21] for
the original definition and its equivalence [21, Theorem 5.2]). The spherical T -design, which
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is a generalization of spherical t-designs, is first introduced by Delsarte-Seidel [22] and its
classification has recently been studied by Bannai-Okuda-Tagami [8].

For a subset X of Rd and a scalar c ∈ R, we write cX = {cx ∈ Rd | x ∈ X}. A set X is
said to be antipodal, if we have −X = X. For an antipodal subset X of Rd, a subset X ′ ⊂ X
is said to be a half set of X if X is a disjoint union of X ′ and −X ′; X ′ ⊔ (−X ′) = X. For
any antipodal set, its half set always exists, but not unique.

Lemma 2.2. Let X ′ be a half set of an antipodal subset X ⊂ Sd−1. If X ′ is a spherical
T -design, then X is an antipodal spherical T -design. On the other hand, if X is an antipodal
spherical T -design, then X ′ is a spherical T ′-design with T ′ = {2ℓ ∈ Z>0 | 2ℓ ∈ T}.
Proof. Suppose that X ′ is a spherical T -design. Then, for ℓ ∈ T and P ∈ Harmℓ(R

d), one has
∑

x∈X
P (x) =

∑

x∈X′

P (x) +
∑

x∈−X′

P (x) = (1 + (−1)ℓ)
∑

x∈X′

P (x) = 0.

Hence, X is an antipodal spherical T -design. Now suppose that X is an antipodal spherical T -
design. Then, for ℓ ∈ T even and P ∈ Harmℓ(R

d), we have 0 =
∑

x∈X P (x) = 2
∑

x∈X′ P (x),
so X ′ is a spherical T ′-design. We complete the proof. �

We also notice that if X is an antipodal spherical T -design, then T contains all positive
odd integers. Since in this paper we only consider antipodal spherical T -designs, we may omit
to write positive odd integers lying in T .

3. Linear programming bounds

The principal problem on a (d,N, a) spherical code (resp. a spherical T -design) is to maxi-
mize the cardinality N for a given value of a (resp. to minimize the cardinality for a given set
T ). The linear programming method, established by Delsarte-Goethals-Seidel [21], is a useful
tool to provide upper (resp. lower) bounds on the cardinality of a spherical code (resp. de-
sign). In this section, we describe and apply it for our cases: a spherical {10, 4, 2}-design on
S3 and a (4, N, 1/2) spherical code.

Let Qℓ(x) := Qd,ℓ(x) = d+2ℓ−2
d−2 C

((d−2)/2)
ℓ (x) be the (scaled) Gegenbauer polynomial of

degree ℓ in one variable x as introduced in [21, Definition 2.1]: The Gegenbauer polynomials
Qℓ(x) are orthogonal polynomials on the closed interval [−1, 1] with respect to the inner

product of the weight function (1 − x2)(d−3)/2, and to any real polynomial F (x) ∈ R[x] of
degree r one can associate its Gegenbauer expansion

(1) F (x) =

r∑

ℓ=0

fℓQℓ(x).

Let {ϕℓ,i}Nℓ

i=1 be an orthonormal basis of Harmℓ(S
d−1) which is the restriction of Harmℓ(R

d)

to Sd−1, where Nℓ := Nd,ℓ = dimHarmℓ(S
d−1) =

(d+ℓ−1
ℓ

)
−

(d+ℓ−3
ℓ−2

)
. For a finite subset X of

Sd−1, we write
Hℓ = Hℓ(X) =

(
ϕℓ,i(ξ)

)
ξ∈X

1≤i≤Nℓ

for the |X| × Nℓ matrix whose rows and columns are indexed by ξ ∈ X and 1 ≤ i ≤ Nℓ,
respectivelyi. H0 is of size |X| × 1 whose entries are all 1. For ℓ ≥ 1, one has tHℓH0 =(∑

ξ∈X ϕℓ,i(ξ)
)
1≤i≤Nℓ

. From this, we see that X is a spherical T -design if and only if

‖tHℓH0‖ = 0 holds for all ℓ ∈ T , where for a real matrix M = (aij), we write ‖M‖ =
∑

i,j a
2
ij .
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A key lemma for the linear programming method is as follows (cf. [21, Corollary 3.8]).

Lemma 3.1. For a real polynomial F (x) ∈ R[x] with the Gegenbauer expansion (1), we have

(2) f0|X|2 +
r∑

ℓ=1

fℓ‖tHℓH0‖ = F (1)|X| +
∑

α∈A(X)

F (α)dα.

where dα = ♯{(ξ, η) ∈ X ×X | 〈ξ, η〉 = α}.
Proof. Recall the additive formula (cf. [21, Theorem 3.3]); for any ξ, η ∈ Sd−1 we have

Nℓ∑

i=1

ϕℓ,i(ξ)ϕℓ,i(η) = Qℓ(〈ξ, η〉).

Using this, one computes

‖tHℓH0‖ =
∑

1≤i≤Nℓ

(∑

ξ∈X
ϕℓ,i(ξ)

)2

=
∑

ξ,η∈X
Qℓ(〈ξ, η〉) =

∑

α∈A(X)∪{1}
Qℓ(α)dα.

By linearity, it holds that
r∑

ℓ=0

fℓ‖tHℓH0‖ =
∑

α∈A(X)∪{1}
F (α)dα.

Now the desired result follows from ‖tH0H0‖ = |X|2 and d1 = |X|. �

We now apply the formula (2) to the lower bound of the cardinality of a spherical {10, 4, 2}-
design on S3.

Theorem 3.2. Let X be a spherical {10, 4, 2}-design on S3. Then |X| ≥ 12. Moreover,
X attains the lower bound if and only if X is a (4, 12, 1/2) spherical code with A(X) ⊂
{−1/2, 0, 1/2}.
Proof. Consider the real polynomial

(3)
FT (x) :=

1

11264
Q10(x) +

1

2560
Q4(x) +

1

768
Q2(x) +

3

1024

=
1

16
x2(x+

1

2
)2(x− 1

2
)2(16x4 − 28x2 + 13).

We write FT (x) =
∑10

ℓ=0 fℓQℓ(x). One can easily check the inequality FT (x) ≥ 0 for all
x ∈ [−1, 1), and hence, by (2), we get the inequality

(4) f0|X|2 − FT (1)|X| =
∑

α∈A(X)

FT (α)dα ≥ 0.

Since FT (1) =
9

256 , the desired inequality |X| ≥ FT (1)/f0 = 12 follows. The equality holds
if FT (α) = 0 (∀α ∈ A(X)). We complete the proof, because {α ∈ R | FT (α) = 0} =
{−1/2, 0, 1/2}. �

An antipodal spherical {10, 4, 2}-design X ⊂ S3 is said to be tight when |X| = 24. It
should be noted that our definition of the tightness depends on the test function (3) and
its induced linear programming bound, so is different from the classical definition of tight
spherical t-designs (see e.g., [3, Definition 2.13] for the definition). A similar context can be
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found in [8], where the existence and non-existence of tight spherical T -designs are studied.
Several investigations have been conducted in this direction; see e.g., [34, 41].

Theorem 3.2 says that every half set of a tight antipodal spherical {10, 4, 2}-design on S3

is a (4, 12, 1/2) spherical code. The natural question to ask is the upper bound of N for a
(4, N, 1/2) spherical code.

Theorem 3.3. Let X be a (4, N, 1/2) spherical code with A(X) ⊂ [−1/2, 1/2]. Then N ≤ 12.
Furthermore, X attains the upper bound if and only if X is a spherical {10, 4, 2}-design and
A(X) ⊆ {−1

2 , 0,
1
2}.

Proof. For a1 ≥ 0, let us consider the function

(5)

FC(x) :=
1

11264
Q10(x) +

64a1 + 15

5120
Q4(x) +

64a1 + 15

1536
Q2(x) +

4a1 + 1

64

= x2
(
x+

1

2

)(
x− 1

2

)(
x6 − 2x4 +

5

4
x2 + a1

)
.

For this, one can show the inequality FC(α) ≤ 0 (∀α ∈ [−1/2, 1/2]). From (2) and the
assumption A(X) ⊂ [−1/2, 1/2], we get the inequality

(6) FC(1)|X| − f0|X|2 = −
∑

α∈A(X)

FC(α)dα +
10∑

ℓ=1

fℓ‖tHℓH0‖ ≥ 0,

where fℓ denotes the coefficient of FC in Qℓ. Since FC(1) = 3(4a1+1)
16 > 0, we obtain

FC(1)/f0 = 12 ≥ |X| = N . The equality in (6) holds if and only if FC(α) = 0 (∀α ∈ A(X))
and ‖tHℓH0‖ = 0 for all ℓ ∈ {10, 4, 2}. The desired result then follows from {α ∈ R | FC(α) =
0} = {−1/2, 0, 1/2}. �

4. The D4 lattice and spherical {10, 4, 2}-designs
This section gives the construction of a tight antipodal spherical {10, 4, 2}-design on S3

from the shells of the D4 lattice.
Following [24, §1.4], we define the D4 lattice by

D4 = {x = (x1, x2, x3, x4) ∈ Z4 | x1 + x2 + x3 + x4 ≡ 0 mod 2}.
For m ∈ Z≥0, the m-shell of the D4 lattice is denoted by

(
D4

)
m

= {x ∈ D4 | x21 + x22 + x23 + x24 = m}.
It follows that

(
D4

)
m

= ∅, if m is odd. When m is even,
(
D4

)
m

is not the empty set because
of Jacobi’s four-square theorem

(7) |(D4)2m| = 24
∑

d|2m
d:odd

d.

For instance, the 2-shell (D4)2 (the set of minimal vectors of D4) consists of 24 points; all
permutations of (±1,±1, 0, 0). Note that the 2-shell (D4)2, which is called the D4 root system,
generates the D4 lattice.

We now prove that the normalized set

1√
2m

(
D4

)
2m

=

{
1√
2m

x

∣∣∣∣ x ∈
(
D4

)
2m

}
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on S3 is an example of antipodal spherical {10, 4, 2}-designs. There are at least two proofs of
this. One is based on some spherical design properties on group orbits. The other uses the
theory of modular forms, which will be mentioned in Remark 7.3. Here we give a proof of the
former.

We recall that the orthogonal transformation group

O(Rd) = {σ : Rd → Rd | 〈σ(x), σ(y)〉 = 〈x,y〉 for all x,y ∈ Rd}

of Rd acts on Harmℓ(R
d) by

(
σ∗P

)
(x) = P (σ(x)) for P ∈ Harmℓ(R

d) and σ ∈ O(Rd). For a

subgroup G of O(Rd), the G-invariant subspace of Harmℓ(R
d) is denoted by Harmℓ(R

d)G =
{P ∈ Harmℓ(R

d) | σ∗P = P for all σ ∈ G}.

Lemma 4.1. For any finite subgroup G of O(Rd) and x ∈ Sd−1, the G-orbit xG = {σ(x) ∈
Sd−1 | σ ∈ G} is a spherical T -design with T = {ℓ ∈ N | dimHarmℓ(R

d)G = 0}. Moreover, if
G has −I, which sends y to −y for y ∈ Rd, then x

G is antipodal, and every its half set is a
spherical T ′-design with T ′ = {2ℓ ∈ 2Z>0 | dimHarm2ℓ(R

d)G = 0}.

Proof. Let Gx denote the stabilizer subgroup of x. For P ∈ Harmℓ(R
d), we have

∑

y∈xG

P (y) =
1

|Gx|
∑

σ∈G
(σ∗P )(x).

The first statement follows from the fact that the map Harmℓ(R
d) → Harmℓ(R

d)G, P 7→∑
σ∈G(σ

∗P ) is surjective.

Suppose that −I ∈ G. Then, −y ∈ x
G for any y ∈ x

G, so x
G is antipodal. Therefore, the

latter statement follows from Lemma 2.2. �

We note that for spherical T -designs X1 and X2 on Sd−1, the union X1 ∪X2 is a spherical
T -design if X1 ∩X2 = ∅.

Proposition 4.2. For any m ≥ 1, the subset 1√
2m

(
D4

)
2m

of S3 is an antipodal spherical

{10, 4, 2}-design. In particular, for any n ≥ 1 the set 1√
2n+1

(
D4

)
2n

is a tight antipodal spher-

ical {10, 4, 2}-design on S3.

Proof. We use the fact that the D4 root system D4 = (D4)2 is invariant under the action of
the Weyl group W (F4), a discrete subgroup of O(R4) (this fact is already pointed out in [35,
Proposition 2.7]). Since the D4 lattice is generated by the set D4, the set 1√

2m

(
D4

)
2m

is also

invariant under the action of W (F4), so it has a W (F4)-orbit decomposition. The harmonic
Molien series for W (F4) (see e.g., [14]) is given by

(8)

∑

ℓ≥0

dimHarmℓ(R
4)W (F4)tℓ =

1

(1− t6)(1− t8)(1 − t12)

= 1 + t6 + t8 + 2t12 + t14 + t16 + 2t18 + · · · .

With this, the result follows from Lemma 4.1. The “in particular” part follows from (7),
namely, |(D4)2n | = 24. �

Combining Proposition 4.2 with Lemma 2.2, we see that every half set of 1√
2m

(
D4

)
2m

is a

spherical {10, 4, 2}-design. In particular, it follows from Theorem 3.2 that every half set X
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of 1√
2n+1

(
D4

)
2n

is a (4, 12, 1/2) spherical code with A(X) ⊂ {−1/2, 0, 1/2}. Indeed, one can

check that the inner product set of the normalized D4 root system 1√
2
D4 is given by

A

(
1√
2
D4

)
=

{
−1,−1

2
, 0,

1

2

}
.

Remark 4.3. According to [7, Proposition 2], there exists a half set of 1√
2
D4 such that it is a

spherical {10, 4, 2, 1}-design.

5. Uniqueness of the antipodal spherical {10, 4, 2}-design
For a spherical T -design X on Sd−1, the orthogonal transformation σ(X) = {σ(x) | x ∈ X}

of X is a spherical T -design for any σ ∈ O(Rd). Thus, the orthogonal transformation of 1√
2
D4

is still a tight antipodal spherical {10, 4, 2}-design on S3. The goal of this section is to prove
the opposite statement, namely, any antipodal spherical {10, 4, 2}-design with 24 points is
obtained from an orthogonal transformation of 1√

2
D4, which is referred as the uniqueness

theorem in the study of the classification of spherical designs.
Our proof is along the line of the proof of the uniqueness of the 600-cell C600 ⊂ S3 as a

spherical 11-design with 120 points, given by Boyvalenkov-Danev [13]. Let us first recall some
relevant materials from it.

For y ∈ Sd−1 and a finite set X ⊂ Sd−1, we let

Ay(X) = {α ∈ [−1, 1] | there exists x ∈ X such that 〈x,y〉 = α},
and for α ∈ [−1, 1], we write X̃y

α = {x ∈ X | 〈x,y〉 = α}. Note that if y ∈ X, then 1 ∈
Ay(X) ⊂ A(X)∪{1}. The sequence of positive integers (Ay

α(X))α∈Ay(X) with Ay

α(X) = |X̃y

α |
is called the distance distribution of X with respect to y. When X is a spherical t-design
on Sd−1 with |Ay(X)| ≤ t + 1, the distance distribution of X with respect to y ∈ Sd−1 is
obtained as the unique solution to the Vandermonde system

(9)
∑

α∈Ay(X)

Ay

α(X)αj = aj |X|, j = 0, 1, . . . , t,

where we set a0 = 1, a2j =
(2j−1)!!

d(d+2)···(d+2j−2) and a2j+1 = 0 for j ≥ 1 (the proof can be done by

taking F (x) = xj, j = 0, 1, . . . , t, in the following equivalent definition of a spherical t-design
[21, Corollary 3.8, Theorem 5.5]; for a finite set X ⊂ Sd−1, X is a spherical t-design if and
only if for any y ∈ Sd−1 the equality

∑
x∈X F (〈x,y〉) = |X|f0 holds for all F (x) ∈ R[x] of

degree at most t, where f0 is the constant term of the Gegenbauer expansion of F as in (1):
See also [12, §2]).

An N points set X on Sd−1 is called a (d,N, s, t) configuration [21], if X is a spherical t-
design such that s = |A(X)|. It follows that for y ∈ X and a (d,N, s, t) configuration X with
s ≤ t+ 1, the Vandermonde system (9) has the unique solution, because of |Ay(X)| ≤ s+ 1.
In this case, Ay

α(X) does not depend on the choices of y ∈ X and we write Aα(X) = Ay

α(X).

Theorem 5.1. For any antipodal spherical {10, 4, 2}-design X with 24 points, there exists an
orthogonal transformation σ ∈ O(R4) such that X = σ

(
1√
2
D4

)
.

Proof. By Lemma 2.2 and Theorem 3.2, a half set X ′ of X is a (4, 12, 1/2) spherical code with
A(X ′) ⊂ {−1/2, 0, 1/2}, so A(X) ⊂ {−1,−1/2, 0, 1/2}. Since X is a (4, 24, s, 5) configuration
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with s ≤ 4, the distance distribution (Ay

α(X))α∈Ay(X) of X does not depend on choices of
y ∈ X. Solving the equations (9), we get

A−1(X) = 1, A− 1
2
(X) = A 1

2
(X) = 8, A0(X) = 6,

which implies that X is a (4, 24, 4, 5) configuration.
For each α ∈ A(X) \ {−1}, we now recall a derived code Xα ⊂ S2 of X introduced in [21,

§8]. We may assume e = (0, 0, 0, 1) ∈ X (if not, one can take σ ∈ O(R4) such that e ∈ σ(X)).

For any x ∈ X̃e

α, it holds that

1√
1− α2

(x− αe) ∈ {y ∈ S3 | 〈y,e〉 = 0}.

Thus, the image of X̃e

α under the composition map

pα : R4 −→ R4 −→ R3,
x 7−→ 1√

1−α2
(x− αe) = (z1, z2, z3, z4) 7−→ (z1, z2, z3).

lies in S2. The image Xα = pα
(
X̃e

α

)
⊂ S2, called the derived code, is also a spherical design

with the strength weakened (see [21, Theorem 8.2] for more details). In our case, Xα becomes
a spherical 3-design on S2.

Let us consider the inner product set A(Xα) for each Xα. By definition, one easily finds

that A(Xα) ⊂
{

β−α2

1−α2

∣∣∣ β ∈ A(X)
}
. Computing the terms β−α2

1−α2 , we get

A(X± 1
2
) ⊂

{
−1,−1

3
,
1

3

}
and A(X0) ⊂

{
−1,−1

2
, 0,

1

2

}
.

Namely, the sets X± 1
2
and X0 are (3, 8, s1, 3) and (3, 6, s2, 3) configurations with s1 ≤ 3 and

s2 ≤ 4, respectively. For each Xα, one can compute the unique solution to the Vandermonde
system (9). Indeed,

A−1

(
X± 1

2

)
= 1, A± 1

3

(
X± 1

2

)
= 3,

A−1

(
X0

)
= 1, A± 1

2

(
X0

)
= 0, A0

(
X0

)
= 4,

so the sets X± 1
2

and X0 are (3, 8, 3, 3) and (3, 6, 2, 3) configurations, respectively. Both

A−1(Xα) = 1 and its independence of the choices of y ∈ Xα imply Xα being antipo-
dal. Remark that the antipodal (3, 6, 2, 3) configuration X0, which by [21, Theorem 6.8]
is an antipodal tight spherical 3-design on S2, is an orthogonal transformation of the set
C6 = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)} of vertices of the regular octahedron.

We now prove X− 1
2
= X 1

2
. It can be checked that the distance distribution of X− 1

2
with

respect to y ∈ X 1
2
satisfies

Ay
(
X− 1

2

)
⊂

{
−1,−1

3
,
1

3
, 1

}
,

because, by definition of the derived code, 〈x,y〉 ∈
{

α+ 1
4

1− 1
4

∣∣∣α ∈ A(X)
}
holds for all x ∈ X− 1

2
.

Thus, |Ay
(
X− 1

2

)
| ≤ 4, and hence, one can solve the Vandermonde system (9) to get

Ay

−1

(
X− 1

2

)
= 1, Ay

− 1
3

(
X− 1

2

)
= 3, Ay

1
3

(
X− 1

2

)
= 3, Ay

1

(
X− 1

2

)
= 1.
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The last equality implies y ∈ X− 1
2
. Since the above equation holds for any y ∈ X 1

2
, one finds

X 1
2
⊂ X− 1

2
and the desired equality X 1

2
= X− 1

2
follows.

What is left is to show that X± 1
2
is (up to orthogonal transformations) uniquely determined

from X0. For this, take σ ∈ O(R4) such that X0 = σ(C6) and set C8 = σ−1
(
X 1

2

)
. We prove

C8 =
{(

± 1√
3
,± 1√

3
,± 1√

3

)}
. Again one can compute the distance distribution of C6 with

respect to y ∈ C8 by the Vandermonde system (9) and it holds that

Ay
(
C6

)
=

{
− 1√

3
,
1√
3

}
and Ay

± 1√
3

(
C6

)
= 3.

Namely, y ∈ C8 satisfies 〈x,y〉 = ± 1√
3

for all x ∈ C6. This shows that C8 ⊂
{(

±
1√
3
,± 1√

3
,± 1√

3

)}
. Since |C8| = 8, the equality holds.

As a result, the whole set X is constructed with the help of only C6, which is unique up
to orthogonal transformations. Hence, we complete the proof. �

For comparison, we mention the other combinatorial structures on the D4 root system D4

without going into details. The set D4 has the structure of a Q-polynomial association scheme
[4] (this is verified because the inequality t ≥ 2s − 3 holds for D4, where s is the size of the
set of inner products between two distinct points and t is the strength). The set D4 also
has the structure of a kissing number configuration on S3 [1, 30]. The positive semidefinite
programming method is directly applicable for a proof of this kissing number [1]. On the
other hand, the set D4 is not universally optimal code [15]. Any set satisfying t ≥ 2s − 1
is universally optimal, so the strength of D4 is not strong enough to give the optimality by
itself. Compared to these results, our main result provides a new characterization of D4 for
the design aspect.

Remark 5.2. We briefly mention some of known uniqueness results. Each of the 600-cell
C600 ⊂ S3 [13], the normalized E8 root system 1√

2
E8 ⊂ S7 [6] and the set of minimal vectors

of the Leech lattice 1
2Λ24 ⊂ S23 [6] is known to be unique as a spherical t-design, where the

strength t ∈ N is indicated as follows.

X |X| t T

C600 120 11 {18, 16, 14, 10, 8, 6, 4, 2}
1√
2
E8 240 7 {10, 6, 4, 2}

1
2Λ24 196560 11 {14, 10, 8, 6, 4, 2}

They are also unique as an antipodal spherical T -design for the above T ⊂ N. In contrast,
our case, the D4 root system, is not unique as a spherical 5-design (which is a consequence
of the result from [15]) and is unique as an antipodal spherical {10, 4, 2}-design. The D4 root
system is the first example such that it is not unique as a spherical t-design, but unique as
an antipodal spherical T -design.

6. Application: orthogonal decompositions of shells

As an application of the uniqueness of the antipodal spherical {10, 4, 2}-design on S3 with
24 points, we now prove that every normalized shell of the D4 lattice is a disjoint union of
certain orthogonal transformations of the normalized D4 root system 1√

2
D4.
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Theorem 6.1. For any m ≥ 1, there exists a finite subset Sm ⊂ O(R4) such that

1√
2m

(
D4

)
2m

=
⊔

σ∈Sm

σ
( 1√

2
D4

)
.

Proof. Since the Weyl group W (F4) acts on each shells of the D4 lattice, we have a W (F4)-

orbit decomposition of (D4)2m. Thus, it suffices to show that each orbit x
W (F4) of x ∈

1√
2m

(
D4

)
2m

is a disjoint union of certain orthogonal transformations of 1√
2
D4. For this,

using Magma system [11], one can check that there exists a subgroup N of W (F4) such that

• |N | = 24;
• −I ∈ N ;
• the harmonic Molien series of N is given by

∑

ℓ≥0

dimHarmℓ(R
4)N tℓ = 1 + 7t6 + 9t8 + 26t12 + · · · .

Note that every W (F4)-orbit has an N -orbit decomposition. It follows from the above data
and Lemma 4.1 that every half set X of the N -orbit x

N is a spherical {10, 4, 2}-design on
S3 with |X| ≤ 12. In particular, we see from Theorem 3.2 that |X| = 12, and hence that
|xN | = 24. Thus, by Theorem 5.1, the N -orbit x

N is an orthogonal transformation of the
normalized D4 root system 1√

2
D4. We complete the proof. �

Remark that we have |(D4)2m| = 24|Sm|. Thus, the cardinality of Sm can be deduced from
Jacobi’s four-square theorem (7);

(10) |Sm| =
∑

d|2m
d:odd

d.

It might be interesting to ask if there is a similar decomposition of shells of other lattices.

7. Application: the uniqueness of the D4 lattice

The goal of this section is to give a new proof of the uniqueness of the D4 lattice as an
even integral lattice of level 2, which is also another application of the uniqueness of the
antipodal spherical {10, 4, 2}-design on S3 with 24 points. Since the theory of weighted theta
functions of a lattice is our key ingredient, we begin with some basic terminology for lattices
and weighted theta functions used in [24].

Let Λ ⊂ Rd be a full-ranked lattice. The lattice Λ is said to be integral (resp. even) if Λ
is a subset of the dual lattice Λ∗ = {y ∈ Rd | 〈x,y〉 ∈ Z for all x ∈ Λ} (resp. 〈x,x〉 ∈ 2Z
for all x ∈ Λ). Let B denote a basis matrix of Λ; Λ = {mB | m ∈ Zd}. The determinant
disc(Λ) = |detB|, which does not depend on the choices of a basis matrix, is called the
discriminant of the lattice Λ. The minimum of all N ∈ N with N〈x,x〉 ∈ 2Z for all x ∈ Λ∗

is called the level of Λ.
Let Λ be an even lattice in Rd and Λ2m = {x ∈ Λ | 〈x,x〉 = 2m} the 2m-shell of Λ. For

P ∈ Harmℓ(R
d) and m ≥ 0, we write aΛ,P (m) =

∑
x∈Λ2m

P (x) and define the weighted theta
function θΛ,P (z) by

θΛ,P (z) =
∑

m≥0

aΛ,P (m)qm (q = e2πiz),
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which is a holomorphic function on the complex upper half plane z ∈ H = {z ∈ C | Im z > 0}.
In particular, if P = 1 of degree 0, one gets the generating series of the cardinality of each
2m-shells of Λ. Namely θΛ,1(z) =

∑
m≥0 |Λ2m|qm.

By Hecke and Schoenberg, for an even integral lattice Λ of level N in Rd, the function
θΛ,P (z) is known to be a modular form of weight d/2 + ℓ for Γ1(N) (see e.g., [24, Chap.3]),
where Γ1(N) = {γ ∈ SL2(Z) | γ ≡ ( 1 ∗

0 1 ) mod N} of Γ1(1) = SL2(Z). Let Mk(Γ1(N)) denote
the C-vector space of modular forms of weight k for the congruence subgroup Γ1(N). Then
we have the C-linear map

ϑΛ,ℓ : Harmℓ(R
d)⊗R C −→ Md/2+ℓ(Γ1(N)), P 7−→ θΛ,P (z),

where Harmℓ(R
d) ⊗R C is the C-vector space spanned by real harmonic polynomials. When

ℓ ≥ 1, the image

ImϑΛ,ℓ = 〈θΛ,P (z) | P ∈ Harmℓ(R
d)〉C

is a subspace of the C-vector space Sd/2+ℓ(Γ1(N)) of cusp forms of weight d/2 + ℓ for Γ1(N).
Fundamental results on the weighted theta functions for the D4 lattice are summarized as

follows.

Proposition 7.1. For ℓ ≥ 1, one has ImϑD4,ℓ ⊂ S2+ℓ(Γ1(2)). When ℓ = 0, we find that
θD4,1(z) = 2E2(2z) − E2(z) = 1 + 24q + 24q2 + 96q3 + 24q4 + · · · , where

E2(z) = 1− 24
∑

m≥1



∑

d|m
d


 qm = 1− 24q − 72q2 − 96q3 − 168q4 − 144q5 + · · · .

Proof. The D4 lattice is of level 2, so the first statement is a consequence of the classical
results by Hecke and Schoenberg. For the last statement, we note that the space M2(Γ1(2)) is
1-dimensional spanned by 2E2(2z) − E2(z). Since ImϑD4,0 ⊂ M2(Γ1(2)), θD4,1 is a constant
multiple of 2E2(2z)− E2(z). Comparing the constant term, we get the desired result. �

Let us prove the uniqueness of the D4 lattice.

Theorem 7.2. For any even integral lattice Λ ⊂ R4 of level 2, there exists an orthogonal
transformation σ ∈ O(R4) such that Λ = σ

(
D4

)
.

Proof. Since ImϑΛ,0 ⊂ M2(Γ1(2)) = 〈2E2(2z)−E2(z)〉C, we have θΛ,1(z) = 2E2(2z)−E2(z).
This implies |Λ2m| = |(D4)2m| for all m ≥ 0. We first consider the case Λ2. Since Λ is
integral, using the Cauchy-Schwarz inequality, we see that 〈x,y〉 ∈ {0,±1,±2} holds for any
x,y ∈ Λ2. Hence

A

(
1√
2
Λ2

)
⊂

{
−1,−1

2
, 0,

1

2

}
.

Since a half set X ′ of 1√
2
Λ2 is a (4, 12, 1/2) spherical code with A(X ′) ⊂ {−1/2, 0, 1/2}, by

Theorem 3.2 and Lemma 2.2, the normalized set 1√
2
Λ2 is an antipodal spherical {10, 4, 2}-

design on S3 with 24 points. By Theorem 5.1, there exists σ ∈ O(R4) such that Λ2 = σ
(
D4

)
.

Now let us consider the sublattice Λ′ of Λ generated by Λ2. Since the D4 lattice is generated
by D4, we have Λ′ = σ

(
D4

)
. The orthogonal transformation σ preserves the inner product,

so we get

|(D4)2m| = |Λ′
2m| ≤ |Λ2m| = |(D4)2m|

for all m ≥ 0. Thus, Λ′
2m = Λ2m and hence Λ′ = Λ, from which the desired result follows. �
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It should be noted that Theorem 7.2 can be shown by the same method with the one
described in Serre’s book [38, Chap. V]. In this direction, we shall use Aut(D4) = W (F4) and
a version of the Siegel mass formula [39].

Remark 7.3. We briefly mention another proof of Proposition 4.2, using weighted theta func-
tion θD4,P (z). For this, we first notice that if θD4,P (z) = 0 for all P ∈ Harmℓ(R

4), then every

normalized 2m-shell 1√
2m

(D4)2m is a spherical {ℓ}-design (this criterion was first used by

Venkov [40] in his design theoretical study on even unimodular lattices). Therefore, it suffices
to show that ImϑΛ,ℓ = 0 for ℓ ∈ {10, 4, 2}, but this can be checked by a computer due to the
fact that modular forms are determined by first several Fourier coefficients (also, we need a
list of harmonic polynomials of these degrees and the simple expression of the 2m-shell of D4).
Alternatively, the result would follow from the dimension formula for the space Snew

k (Γ1(2))
of newforms (see [23]), since we may have the equality ImϑD4,ℓ = Snew

2+ℓ (Γ1(2)) (this equality
is a folklore, but well known for the experts; consult [9, 25, 27] for relevant materials).

Combining the uniqueness of level 2 lattices (Theorem 7.2) and Waldspurger’s result [42,
Théorèm 2’], we can at least make sure that the inclusion ImϑD4,ℓ ⊃ Snew

2+ℓ (Γ1(2)) holds for
any ℓ ≥ 1. The first example of newforms for Γ1(2) exists in weight 8 of the form

η(z)8η(2z)8 = q − 8q2 + 12q3 + 64q4 − 210q5 + · · · ,
where η(z) = q1/24

∏
n≥1(1 − qn) is the Dedekind eta function. The above inclusion implies

that there exists a harmonic polynomial P ∈ Harm6(R
4) such that θD4,P (z) = η(z)8η(2z)8.

We will give applications of this expression in the next section.

8. Strength of spherical design

For a finite set X ⊂ Sd−1, we say T ⊂ N is the harmonic strength of X if X is not a
spherical T ′-design for any T ( T ′ ⊂ N. In this section, we will be interested in the harmonic
strength of the 2m-shell of the D4 lattice. We first indicate that this problem is intimately
connected to non-vanishing of the Fourier coefficients of the newform η(z)8η(2z)8.

Theorem 8.1. For m ≥ 1, the normalized 2m-shell 1√
2m

(
D4

)
2m

is an antipodal spherical

{10, 6, 4, 2}-design if and only if τ2(m) = 0, where
∑

m≥1 τ2(m)qm = η(z)8η(2z)8.

Proof. We have proved in Proposition 4.2 that the set 1√
2m

(
D4

)
2m

is an antipodal spherical

{10, 4, 2}-design. We only deal with whether 1√
2m

(
D4

)
2m

is a {6}-design or not. For this, we

first notice that by the representation theory, we have

Harmℓ(R
4) = Harmℓ(R

4)W (F4) ⊕ {(1− σ∗)P | P ∈ Harmℓ(R
4), σ ∈ W (F4)}.

Since θD4,P (z) = θD4,σ∗P (z) holds for all P ∈ Harmℓ(R
4) and σ ∈ W (F4), the latter space is

a subspace of ker ϑD4,ℓ, and hence, ImϑD4,ℓ = ImϑD4,ℓ

∣∣
Harmℓ(R4)W (F4)

.

By (8), the space Harm6(R
4)W (F4) is the 1-dimensional subspace of Harm6(R

4) and its
basis is given (see e.g., [33, §5.1]) by
(11)

P6(x) :=p6(x1, x2, x3, x4)

− 5
{
x41p2(x2, x3, x4) + x21p4(x2, x3, x4) + (x42 + x23x

2
4)p2(x3, x4) + x22p4(x3, x4)}

+ 30{x21(x22x23 + x22x
2
4 + x23x

2
4) + x22x

2
3x

2
4},
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where pk(x1, . . . , xd) = xk1 + · · · + xkd. From the above argument, we see that 1√
2m

(
D4

)
2m

is a {6}-design if and only if
∑

x∈(D4)2m
P6(x) = 0. Then, the result follows from the easily

checked identity

(12) θD4,P6(z) = −192η(z)8η(2z)8,

where again, we have used the fact that the modular forms are determined by first several
Fourier coefficients. �

We remark that Theorem 8.1 is an analogue to the one given by Venkov, Pache and de la
Harpe [18, 19]; They observed that the normalized 2m-shell of the E8 lattice is an antipodal
spherical 8-design if and only if τ(m) = 0, where τ(m) is the mth Fourier coefficient of
the discriminant function ∆(z) = η(z)24 =

∑
m≥0 τ(m)qm ∈ S12(SL2(Z)). The question of

whether τ(m) 6= 0 holds for all m ≥ 1, posed by Lehmer [29], is still far from being solved,
so it is a common understanding that determining the (harmonic) strength for all shells of a
given lattice is a hard problem. A similar attempt for other lattices can be found in [5, 35].
In particular, Miezaki [31] obtained the harmonic strength for any shells of the square lattice
Z2. His result is extended by Pandey [36] to rings of integers of imaginary quadratic fields
over Q with class number 1.

Using Pari-GP [37], we have checked that τ2(m) is non-zero up to m ≤ 108. One would
expect that the harmonic strength of the 2m-shell of D4 is given by {10, 4, 2} for all m ≥ 1.
To give partial evidence, we consider the congruences of τ2(m).

Theorem 8.2. Let ℓ ∈ {3, 5}. For any prime p ≥ 3, we have

(13) τ2(p) ≡ p(p+ 1) mod ℓ.

Proof. We use the harmonic polynomial P6 defined in (11). For the case ℓ = 3, using x4 ≡ x2

mod 3 for all x ∈ Z, we get

P6(x) ≡ x41 + x42 + x43 + x44 + x21p2(x2, x3, x4) + x21p2(x2, x3, x4)

+ (x22 + x23x
2
4)p2(x3, x4) + x22p2(x3, x4)

≡ (x21 + · · · + x24)
2 mod 3.

This shows that P6(x) ≡ (2p)2 mod 3 for all x ∈ (D4)2p. Since |(D4)2p| = 24(1+ p) (see (7))
is divisible by 3, from (12) one obtains

−64τ2(p) =
1

3

∑

x∈(D4)2p

P6(x) ≡
1

3
(2p)2|(D4)2p| = 32p2(1 + p) mod 3,

from which the case ℓ = 3 follows. For the case ℓ = 5, notice that x6 ≡ x2 mod 5 holds for
any x ∈ Z. We get

P6(x) ≡ x21 + x22 + x23 + x24 mod 5,

and hence,

−192τ2(p) =
∑

x∈(D4)2p

P6(x) ≡ 2p|(D4)2p| = 48p(1 + p) mod 5.

So we are done. �



14 M. HIRAO, N. HIROSHI, AND K. TASAKA

As a consequence of (13), we see that for any prime p 6≡ −1 mod 15, we have τ2(p) 6= 0.
Apart from non-vanishing of the τ2-function, we should mention that similar congruences

to (13) have been established by many people since the time of Ramanujan (see e.g., [10, 17,
26, 28, 32]). Our congruences could be a special case of them, but our proof is new.

Remark 8.3. In much the same way as [29, Theorem 2], we can prove the following statement:
If there exists the least value m0 of m for which τ2(m) = 0, then m0 is an odd prime number.

Deligne’s bound |τ2(p)| ≤ 2p
7
2 (see [20, Theorem 8.2]) is one of key ingredients of the proof.

The data that support the findings of this study are available from the corresponding
author, K.T. upon reasonable request.
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