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Abstract

Quasi-Monte Carlo (QMC) methods exhibit a faster convergence rate than that of classic Monte Carlo methods.

This feature has made QMC prevalent in image synthesis, where it is frequently used for approximating the value

of spherical integrals (e.g., illumination integral). The common approach for generating QMC sampling patterns

for spherical integration is to resort to unit square low discrepancy sequences and map them to the hemisphere.

However such an approach is suboptimal as these sequences do not account for the spherical topology and their

discrepancy properties on the unit square are impaired by the spherical projection. In this article we present a

strategy for producing high quality QMC sampling patterns for spherical integration by resorting to spherical

Fibonacci point sets. We show that these patterns, when applied to illumination integrals, are very simple to

generate and consistently outperform existing approaches, both in terms of Root Mean Square Error (RMSE) and

image quality. Furthermore, only a single pattern is required to produce an image, thanks to a scrambling scheme

performed directly in the spherical domain.

1. Introduction

Among all the methods which have been proposed to speed

up Monte Carlo integration for rendering, Quasi-Monte

Carlo (QMC) methods play an important role as they allow

improving the convergence rate as well as controlling the er-

ror noise perception. The principle is to use more regularly

distributed sample sets (i.e., with some determinism) than

the crude random sample sets associated with Monte Carlo

integration.

QMC integration is now extensively used in computer

graphics (see e.g., [SEB08]). Keller has shown in [Kel12]

that QMC techniques can be applied in a consistent way

to deal with a wide range of problems (anti-aliasing, depth

of field, motion blur, spectral rendering,. . . ). However, few

applications have been reported in the literature specifically

addressing hemispherical sampling with a view of comput-

ing the illumination integral. Unlike the unit square sampling

case, no explicit construction of optimal point sets for spher-

ical sampling is known and generally the spherical point sets

are generated by lifting point sets from the unit square to

the unit sphere through an equal-area transform. Although

such point constructions are not proved to be optimal, re-

cent results from the numerical analysis literature suggest

that both (0,2)-sequences and Fibonacci lattices lifted to

the sphere are quite close to optimality in terms of discrep-

ancy [ABD12,BD11]. Nevertheless their performance is not

exactly equivalent: several authors have shown that spher-

ical Fibonacci lattices are particularly well-suited to sphere

sampling compared to other low-discrepancy point sets. Fur-

thermore, similar point structures arise spontaneously in na-

ture so as to implement a best packing strategy on the sphere

(e.g., packing of seeds in the sunflowers head [Vog79]), a

clear indication that these structures have intrinsically good

spherical uniformity properties.

In this paper, we introduce theoretical aspects on QMC

spherical integration that, to the authors knowledge, have

never been used in the graphics community. In concrete

terms, we define worst case integration error (w.c.e.), spher-

ical cap discrepancy (s.c.d.) and an inter-samples distance-

based energy metric EN , which allows to assess the quality

of a spherical samples set for spherical integration.

The second and major contribution of this work is the in-

troduction of the Fibonacci point sets for spherical quadra-

ture, based on previous works [HN04, SJP06]. We com-

pare the quality of Fibonacci point sets for estimating the

illumination integral with that of state-of-the-art QMC-

compliant point set distributions such as blue noise [dG-

BOD12], Larcher-Pillichshammer point sets [LP01] and the
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Spherical Fibonacci (SF) SF Ref L-P Larcher-Pillichshammer (L-P)

Figure 1: This figure shows how spherical Fibonacci (SF) point sets behave for an incident radiance function covering a wide

range of frequencies and materials of different glossinesses. Direct lighting of different plates with light sources of varying

size using SF (left) and Larcher-Pillichshammer (L-P, right) point sets. The L-P point sets have been projected using the

Lambert cylindrical projection. The Phong shininess coefficient n of each of the plates is 10, 50, 80 and 200 from bottom to top

respectively, while the background is perfectly diffuse. The RMSE of the image rendered using the L-P points is 7.55% higher.

The maximum quadratic error per pixel is 0.39 for SF and 0.71 for L-P.

popular Sobol (0,2)-sequence [Sob67]. We show that the Fi-

bonacci point sets consistently outperform those methods

and that the improvement is, in general, remarkable in terms

of RMSE value and percentage of rays saved for the same

RMSE quality. The noise perception in the resulting images

is also reduced. Furthermore, the generation of the Fibonacci

point sets is much simpler than the other tested methods, and

a single sequence is needed to synthesize an image.

The rest of this paper is structured as follows. In the next

section, we introduce theoretical concepts regarding spheri-

cal integration using QMC and present the related work. It

is followed by a detailed description of the Fibonacci spher-

ical point sets. In section 4, we specify how we have im-

plemented BRDF sampling in the context of QMC integra-

tion and make explicit the interest in generating high quality

spherical distributions for this particular case. Sections 5 and

6 present the benefits of using Fibonacci point sets compared

to a Sobol sequence, blue noise point sets and the Larcher-

Pillichshammer points. We finish with a conclusion and fu-

ture work.

2. Background

2.1. QMC spherical integration

The goal of QMC integration is to find sampling patterns

that yield a better order of convergence than the O(N−1/2)

rate obtained with purely random distributions. In the case

of QMC integration over the unit square [0,1]2, it is well-

known that the best theoretical rate of convergence of the

worst case error is O(N−1
√

log N) (see e.g., [BD11]). To

find point set constructions that approximate this optimal

rate of convergence, the star-discrepancy is often used as

a criterion to characterize the uniformity of the point dis-

tribution (the connection between this criterion and the

worst case error is given by the Koksma-Hlawka inequality

[Nie88, BD11]). Moreover, a point set construction is called

a low-discrepancy sequence when its unit square discrep-

ancy convergence rate towards 0 is of order O(N−1(log N)2).

Unlike the unit square case, QMC rules for numerical in-

tegration over the unit sphere S2 in R3 are less known to the

graphics community. Therefore, a brief presentation of im-

portant results on this subject will be given in the following

of this section.

A set of sampling directions {ω1,N , . . . ,ωN,N } defined as

points on the unit sphere S2 is appropriate for Monte Carlo

integration if it is asymptotically uniformly distributed, that

is if

lim
N→∞

1

N

N
∑

j=1

f (ω j,N ) =
1

4π

∫

S2

f (ω)dΩ(ω) (1)

is true for every function f (ω) on the sphere S2, Ω being the

surface measure on S2. Similarly to the unit square case, this

property is equivalent to:

lim
N→∞

Card{ j : ω j,N ∈ C}
N

=
Ω(C)

4π
(2)

for every spherical cap Cwith areaΩ(C) [KN06]. Informally

speaking, Eq (2) means that a spherical cap of any area has

its fair share of points as N →∞. Among all sampling pat-

terns complying with this definition, we are interested in

point sets Ps = {ω1,N , . . . ,ωN,N } ⊆ S2 such that the worst case

integration error (w.c.e.)

w.c.e. := e(Ps) = sup
f
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achieves the best rate of convergence as N → ∞. This is

equivalent to finding the point sets Ps which minimize the
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spherical cap discrepancy (s.c.d.) defined as follows:

s.c.d. := D(Ps;C) = sup
C⊆S2

∣

∣

∣
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∣

∣

Card{ j : ω j,N ∈ C}
N

− Ω(C)

4π

∣

∣

∣

∣

∣

∣

where the supremum is extended over all spherical caps

C ∈ S2. The mathematical relationship between w.c.e. and

s.c.d. is more complex than in the unit square case as ex-

plained in [BD11, BSSW12]. Minimizing the s.c.d. is still

equivalent to minimizing the w.c.e. However, both criteria

only follow the same O(N−3/4) rate of convergence towards

0 if f fulfills a specific smoothness criterion. Roughly speak-

ing, it must be at least a C0 continuous function. In such a

case, in application of the Stolarsky’s invariance principle,

the w.c.e. is proportional to the distance-based energy met-

ric EN [BD11, BSSW12] given by

EN (Ps) =



















4

3
− 1

N2

N
∑

j=1

N
∑

i=1

|ωi −ω j|



















1
2

, (3)

which means that minimizing the w.c.e. is equivalent to max-

imizing the sum of distances term
∑N

j=1

∑N
i=1
|ωi −ω j| while

keeping the property of asymptotically uniform distribution.

EN can also be interpreted as an optimal spherical packing

criterion [SK97].

The order of convergence of the w.c.e. can be higher than

O(N−3/4) if the order of continuity of the integrand is higher

than C0, but this depends on the points construction algo-

rithm since some are more capable of taking advantage of

smooth functions than others as explained in [BSSW12].

The s.c.d. order of convergence cannot be better than

O(N−3/4) but there surely exist point sets for which the or-

der of convergence is better than O(N−3/4
√

log N) [Bec84],

in which case these configurations are said to be low-

discrepancy sequences. Note that this order of convergence

is lower than the O(N−1(log N)2) rate of low-discrepancy se-

quences in the [0,1]2 unit square.

In contrast with the unit square case, no explicit di-

rect construction of low-discrepancy sequences on the unit

sphere is known. That is why QMC sequences on S2 are

generally produced by lifting a [0,1]2 low discrepancy point

set to S2 through an equal-area transform. An alternative to

this approach consists in generating the patterns directly on

the sphere according to an extremal energy criterion [SK97].

Among the patterns with good EN properties, spherical Fi-

bonacci point sets (or equivalently generalized spiral points)

are particularly well-suited to QMC integration over the

sphere as shown in [HN04], hence our interest in applying

them for illumination integral computation.

2.2. Related work

The use of low discrepancy sequences is widespread in

computer graphics [KPR12]. Their goal is to improve the

convergence rate of the integral estimate by using sam-

ple sets which minimize a discrepancy criterion. Among

the most popular low-discrepancy sequences is the Sobol’s

(0,2)-sequence [Sob67] which guarantees both minimum

distance and stratification criteria in each successive set of

bm samples, where b is the base of the sequence. Lower

unit square discrepancy values can be obtained using the

Larcher-Pillichshammer point sets [LP01], however these

points cannot be generated by an (infinite) sequence. More-

over, Kollig et al. [KK02] showed that both sequences can

be easily scrambled to decorrelate directions for neighbor-

ing pixels, thus avoiding artifacts without sacrificing the dis-

crepancy and stratification properties.

An alternative approach for producing uniform point set

distributions on a unit square is to use a blue noise gen-

erator [LD08]. This class of point set generators produces

high quality uniform (yet unstructured) distributions which

try to approach the spectral characteristics of Poisson disk

distributions. The goal is to concentrate the noise in high

frequencies where it is less visible. The resulting distribu-

tions exhibit better uniformity properties when compared

to (0,2)-sequences, but this is achieved at a higher compu-

tational cost. Recent works have focused on efficient gen-

eration of high quality blue noise patterns [CYC∗12, dG-

BOD12, EPM∗11, Fat11], among which the state-of-the-art

is currently given in [dGBOD12].

The unit square-based distributions generated by the

methods described above must be lifted to the S2 sphere

using an equal-area projection so as to be used for

(hemi)spherical integration. Such projections preserve the

property of asymptotic distribution uniformity, but not the

samples distance. As discrepancy and w.c.e. directly depend

on the distance between samples (see Eq. (3)), the resulting

sets become suboptimal for (hemi)spherical sampling.

An explicit spherical construction of point sets with small

s.c.d. has been proposed in [LPS86], but recently a bet-

ter order of convergence has been reported by lifting (0,2)-

sequences and Fibonacci lattices from the unit square [0,1]2

to the S2 sphere [ABD12, BD11]. Both resulting sampling

patterns exhibit good discrepancy properties in the spheri-

cal domain. Nevertheless their performance is not exactly

equivalent as shown by other authors [Nye03,Gon10] which

conclude that Fibonacci lattices are more efficient.

Throughout this paper, we will use a spherical Fibonacci

lattice implementation based on [SJP06]. We will show that

this algorithm is simpler and more efficient than the Sobol

(0,2)-sequence [Sob67], the state of the art blue noise [dG-

BOD12] and the Larcher-Pillichshammer point sets [LP01]

when the goal is spherical sampling.

3. Spherical Fibonacci point sets

Our goal in this section is to explain how Fibonacci lat-

tices are generated and why such point constructions are

well-suited to spherical sampling. In the following, we in-

troduce spherical Fibonacci point sets through a lifting pro-

c© 2013 The Author(s)
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cedure from the unit square to the unit sphere. We have cho-

sen this procedure since it allows establishing a connection

with traditional QMC point constructions defined over the

unit square. However the same point sets can be equiva-

lently derived on the sphere or on a disk as shown in [SK97]

or [Vog79] respectively.

A Fibonacci lattice in the unit square is a set Qm of Fm

points (x,y) defined as follows [NH94]:

x j =
{

j
Fm−1

Fm

}

y j =
j

Fm















0 ≤ j < Fm,

where Fm−1 and Fm are the two last numbers of a sequence

of m+ 1 Fibonacci numbers [GKP94] given by the recur-

rence equation Fm = Fm−1+Fm−2 for m > 1. F0 = 0,F1 = 1,

and {x} = x−⌊x⌋ denotes the fractional part for non-negative

real numbers x. By directly lifting this lattice to the unit

sphere with the cylindrical Lambert map, we obtain the fol-

lowing point set [Sve94, HN04]:

θ j = arccos(1−2 j/Fm)

φ j = 2π

{

j
Fm−1

Fm

}

where θ j and φ j are the polar and azimuthal angles respec-

tively of a lattice node ω j. As the Fibonacci ratio Fm/Fm−1

quickly approaches the golden ratio Φ = (1+
√

5)/2 as m

increases [GKP94], we can write:

lim
m→∞

φ j = 2 jπΦ−1

due to the periodicity of the spherical coordinates. Hence,

setting Fm = N, the coordinates of an N-point spherical Fi-

bonacci set are given by:

θ j = arccos(1−2 j/N)

φ j = 2 jπΦ−1

}

0 ≤ j < N

Note that in this case, N needs not be a Fibonacci number

anymore, which allows generating point sets with an arbi-

trary number of points. The resulting point sets are no longer

lattices when projected back in the original (x,y) plane since

Φ is irrational. Therefore, from now on, these point sets will

be called spherical Fibonacci (SF) point sets. Letting z j de-

note the z coordinate of point j, we have:

z j = cosθ j = 1−2 j/N

which means that the z coordinates of the lattice nodes are

evenly spaced. Such an arrangement divides the sphere into

equal-area spherical “rings” due to the area-preserving prop-

erty of the Lambert map [Gon10], each “ring” containing

a single lattice node. Swinbank et al. [SJP06] slightly im-

proved the point set used in [HN04] by introducing an offset

of 1/N to the z j coordinates (i.e. half the z coordinate spac-

ing) to achieve a more uniform distribution near the poles.

Then we have:

θ j = arccos
(

1− 2 j+1
N

)

φ j = 2 jπΦ−1















0 ≤ j < N (4)

As observed in [Gon10], the same point set can be produced

using Φ−2 = (3−
√

5)/2 instead of Φ−1. The φ j angles will

then be multiples of the golden angle π(3−
√

5). More details

on the properties of the spherical Fibonacci point set can be

found in [SJP06,Gon10]. In particular, this point set can also

be generated by projecting a Fermat spiral on a sphere, also

known as the cyclotron spiral. This arrangement can also be

found in nature (e.g., the packing of seeds on the sunflow-

ers head [Vog79]), a clear indication of its near-optimality

w.r.t. the distance based energy metric EN (Eq. (3)). Other

theoretical approaches proposed in the literature lead to sim-

ilar arrangements (e.g., [SK97]).

In the case of illumination integrals (see Eq. (5)), the in-

tegration domain is not the sphere, but the hemisphere Ω2π,

where the vertical axis z is aligned with the surface normal.

By modifying Eq. (4), an N-point hemispherical SF point set

will then be defined as follows:

θ j = arccos(z j)

φ j = 2 jπΦ−1

}

0 ≤ j < N

where the z j =
(

1− 2 j+1
2N

)

are the z-coordinates of the points

on the hemisphere. Such a point set can be very easily gen-

erated using the pseudo-code presented in Alg. 1.

Algorithm 1 The spherical Fibonacci point set algorithm.

1: ∆φ← π(3−
√

5) ⊲ Golden angle (step on φ)

2: φ← 0 ⊲ Initialize φ

3: ∆z← 1/n ⊲ Compute the step on z

4: z← 1−∆z/2 ⊲ Initialize z with offset

5: for all j← [1 : n] do

6: z j← z

7: θ j← arccos(z j)

8: φ j← mod (φ,2π) ⊲Modulo of φ

9: z← z−∆z ⊲ Give a step on z

10: φ← φ+∆φ ⊲ Give a step on φ

11: end for

Image synthesis involves the computation of many illumi-

nation integrals. Using the same point set for computing all

illumination integrals results in visible patterns in the ren-

dered images. To avoid this problem the sample sets must

be scrambled at each illumination integral evaluation. We

used a scrambling strategy of the SF sampling pattern which

is made directly in the spherical domain by rotating them

about the z-axis with a random angle uniformly distributed

over [0,2π]. This method has proved to be efficient as will

be seen in the results, as no low frequency patterns can be

seen. This method has the advantage of preserving the inter-

samples distances and thus the energy EN . When using the

Lambert cylindrical projection, a rotation about the z axis on

the sphere is equivalent to a Cranley-Patterson [CP76] rota-

tion along the x axis in unit square.
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4. QMC for illumination integrals

To render an image of a scene, the illumination integral must

be computed at each point of visible surfaces. This integral

gives the reflected radiance Lo(ωo) at a given visible point

and can be expressed as follows:

Lo(ωo) =

∫

Ω2π

Li(ωi)ρ(ωi,ωo)(ωi ·n)dΩ(ωi) (5)

where ρ(ωi,ωo) is the BRDF, n is the surface normal at the

shading point and Ω2π is the hemisphere of unit radius, the

main axis of which is aligned with n. The incident direc-

tion ωi and the direction of observation ωo are considered

as points on the unit hemisphere Ω2π. A straightforward

application of Eq. (1) would consist in computing an esti-

mate of Lo(ωo) by averaging samples of the integrand of

Eq. (5) with uniformly-distributed sampling points on Ω2π.

Such an approach would be quite inefficient since the prod-

uct ρ(ωi,ωo)(ωi ·n) is generally close to zero in a large part

of the integration domain. In classic Monte Carlo method, a

common solution is to distribute the samples according to a

pdf proportional to ρ(ωi,ωo)(ωi ·n). In the QMC determin-

istic context, as probabilistic distributions cannot be used,

instead this function is moved into the integration variables

through an appropriate variable substitution. In the follow-

ing, we will show how to reformulate the problem of opti-

mally sampling ρ(ωi,ωo)(ωi ·n) in the context of QMC in-

tegration, starting from a uniform point set distribution.

Eq. (5) can be developed as follows:

Lo =

∫ 2π

0

dφ

∫ π/2

0

ρ(ωi,ωo)Li(θ,φ)cosθ sinθdθ (6)

where θ and φ are the spherical coordinates of the incident

direction ωi w.r.t. the z-axis.

In the case of Phong glossy BRDF:

ρ(ωi,ωo) = k
(max[0, (ωi ·ωr)])n

ωi ·n

where ωr = 2(ωo ·n)−ωo is the perfect mirror incident di-

rection. A diffuse BRDF can be seen as a special case for

which ωr = n and n = 1 (its albedo is then πk).

Considering that the incident radiance function is zero for

incident directions below the tangent plane (i.e. Li(ωi) = 0

if (ωi · n) < 0), we can take the hemisphere Ω
(r)

2π
centered

about ωr as the integration domain. Our coordinate frame

will then be rotated such that its z is axis aligned with ωr

and therefore, the polar angle θ of a point ω on Ω
(r)

2π
will be

defined by θ = arccos(z) with z = (ω ·ωr).

Consequently, by making the variable substitution

z = cosθ, Eq. (6) can be written as follows:

Lo(ωo) = k

∫ 2π

0

dφ

∫ 1

0

Li(z,φ)z
n dz

Making the substitution z′ = zn+1, we have:

Lo(ωo) =
k

n+1

∫ 2π

0

dφ

∫ 1

0

L′i (z
′,φ)dz′

where L′
i
(z′,φ) = Li(z

′1/(n+1),φ). As the integral bounds still

define an hemispherical integration domain, an estimate of

Lo(ωo) is obtained using Eq (1):

L̃o(ωo) =
2πk

N(n+1)

N
∑

j=1

Li(z
1/(n+1)
j

,φ j) (7)

where (z j,φ j) are the coordinates of a uniformly-distributed

samples set PN on Ω
(r)

2π
. Eq. (7) means that incident radiance

function Li() is sampled with a sampling pattern obtained by

morphing the z coordinates of the samples of the uniformly-

distributed set PN with the function f (z) = z1/(n+1).

To sum up, the above derivations show how to use a

spherical uniform point set to compute an approximation

of the illumination integral while taking into account the

BRDF shape. Although the original sample set PN under-

goes a morphing operation, the w.c.e. of the estimate given

by Eq. (7) is still strongly dependent on the characteristics

of PN (and in particular on the energy EN ), as will be seen

in the following sections.

5. Tested point sets

In this section, our goal is to compare the properties of the

presented spherical Fibonacci point sets with those of the

sample sets produced by the following algorithms:

• Sobol (0,2)-sequence with random digit scrambling as de-

scribed in [KK02];

• Periodic blue noise, generated with the state of the art al-

gorithm of de Goes et al. [dGBOD12];

• Larcher-Pillichshammer points [LP01] with random digit

scrambling as described in [KK02].

Henceforth, we will refer to these three algorithms as

Sobol, BNOT and L-P respectively. Fig. 2 shows different

projections of sets of 512 samples generated using Sobol,

BNOT and L-P, as well as an example of a spherical Fi-

bonacci point set. We used two different techniques for pro-

jecting the unit square point sets to the unit hemisphere:

the well known Lambert cylindrical projection (e.g., see

[ABD12]) and the concentric map of Shirley and Chiu

[SC97]. Note that these projections do not apply to Fi-

bonacci point sets since they are generated directly in the

sphere. The pattern generated by the Sobol sequence is ap-

parently non-optimal in terms of discrepancy, since the dis-

tance of a sample to its closest neighbour is quite variable.

This can be observed both on the unit square and on the unit

hemisphere projections. On the other hand, the BNOT and

L-P sampling patterns (Fig. 2(b) and (c) respectively), seem

to be more uniformly distributed than the Sobol sequence.

c© 2013 The Author(s)
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Figure 2: Examples of point sets of size 512 produced by different algorithms. Top row: unit square projection. Second row:

Lambert cylindrical projection. Third row: Shirley-Chiu concentric maps projection. At the right is the Fibonacci point set

generated directly in the spherical domain.

Lambert Shirley-Chiu Lambert Shirley-Chiu

(a) Energy (b) Minimum inter-samples distance.

Figure 3: Properties of the tested point sets. For each metric (energy and minimum distance), the same point set was projected

using the Lambert (left) and Shirley-Chiu (right) projections, except for the Fibonacci point set which is generated directly in

the spherical domain.

As for the spherical Fibonacci point set (Fig. 2(d)), it ex-

hibits superior uniformity properties when compared to all

the other point sets projected on the hemisphere.

A quantitative analysis of these visual impressions can

be made by comparing the different sampling patterns in

terms of the energy metric defined in Eq. (3). Let us re-

call that, as stated in section 2.1, the w.c.e. is proportional

to energy under a C0 continuity assumption for the inte-

grand. Fig. 3(a) clearly illustrates that the Fibonacci point

set exhibits a lower energy (Eq. (3)) than the other tested al-

gorithms and is thus expected to yield a lower w.c.e. value.

In the same line of results, Fig. 3(b) shows that the mini-

mum inter-sample distance is consistently larger for the Fi-

bonacci point sets, which is an indication of better unifor-

mity properties. All the tested point sets (except for BNOT

using the Shirley-Chiu projection) yield approximately the

same O(N−3/4) rate of decay for EN , which corresponds to

the optimum rate of convergence for the w.c.e., as explained

in section 2.1. Recall that this convergence rate is obtained

under a C0 continuity assumption of the integrand, which

is in general not fulfilled for illumination integrals. Never-

theless, as will be seen in the next section, these inconsis-

tencies have marginal effects. In particular, we will show

experimentally that the accuracy of the estimates given by

Eq. (7) strongly depends on the energy EN of the uniformly-

distributed samples set PN .

6. Results

6.1. General considerations

The results presented in this section have been generated

with the Mitsuba raytracer [Jak10] on a 64-bit machine
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Figure 4: RMSE plots for the three test scenes as a function of the number of samples. The slopes of the RMSE line fits are

displayed in the legend in-between brackets.

equipped with a 2GHz Intel Core i7 processor and a 8-Gb

RAM. Three different scenes have been used: Cornell Box

(185K triangles), Room (540K triangles) and Cars (1500K

triangles). The illumination integral computation has been

performed in the context of final gathering for photon map-

ping, using the estimators given in section 4. We have com-

pared the results produced using the different point set con-

struction strategies which have been presented in section 5.

A reference image has been computed using a sampling pat-

tern produced by a Sobol sequence and a large number of

samples until convergence was achieved. This reference im-

age was then used to evaluate the RMSE of the images pro-

duced with the different point sets. For SF and BNOT scram-

bling is performed on the sphere (as described in section 3),

but for L-P and Sobol sampling patterns it is made on the

plane according to the random digit scrambling method pro-

posed in [KK02]. We generate two distinct fixed-size sample

sets for the diffuse and glossy components of the BRDF (see

section 4 for details on samples set generation).

6.2. RMSE analysis and convergence slope

Fig. 4 shows that for the same number of samples, the spher-

ical Fibonacci point sets yield consistently smaller RMSE

values than the other tested methods. Indeed, we have not

registered any case where the Fibonacci lattices have been

outperformed in terms of RMSE value.

The convergence slope of QMC methods depends on the

smoothness properties of the integrands. Therefore, it is

not guaranteed that the theoretical convergence rate for the

w.c.e. (O(N−3/4) for C0 continuous functions) can be ob-

tained for highly discontinuous integrands, such as those

commonly met in illumination integrals. Nevertheless, in the

Cornell Box scene and in the glossy component of the Room

scene, it was possible to report convergence rates close to the

theoreticalO(N−3/4), which means that the integrand for that

scene fulfills the C0 smoothness condition most of the times.

A comparison between the convergence rates in Fig. 4

shows that the convergence slope of the SF point set is in

general as good or better than those of the other tested point

sets. Note that when the convergence slope is steeper for all

methods (e.g., diffuse component of the Cornell Box scene)

SF point sets clearly outperform the other tested point sets.

This can be explained by the fact that spherical Fibonacci

point sets are more able to take advantage of smooth inte-

grands. According to [BD11], a convergence rate as high as

O(N−2) is possible with SF point sets in the case of very

smooth integrands. On the other hand, when the rate of decay

is close to O(N−1/2) (e.g., the glossy component of the Cars

scene in Fig. 4), all the point sets yield similar performances

since QMC in general is inefficient for very discontinuous

integrands.
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Glossy Component Diffuse Component

Lambert Shirley-Chiu Lambert Shirley-Chiu

Point Same quality Same quality Same quality Same quality

Scene set RMSE rays needed RMSE rays needed RMSE rays needed RMSE rays needed

Cornell

Box

Sobol +19.2% 658(+28.5%) +18.1% 667(+30.2%) +24.9% 762(+48.8%) +24.2% 760(+48.5%)

BNOT +15.2% 610(+19.2%) +7.8% 601(+17.4%) +25.9% 785(+53.4%) +7.4% 605(+18.1%)

L-P +3.4% 544(+6.3%) +3.0% 541(+5.6%) +8.7% 603(+17.8%) +10.9% 614(+19.9%)

Sobol +38.7% 799(+56.0%) +30.0% 718(+40.3%) +14.6% 661(+29.1%) +14.8% 662(+29.2%)

Room BNOT +20.9% 665(+29.9%) +36.6% 763(+49.1%) +9.4% 601(+17.5%) +4.8% 569(+11.2%)

L-P +8.5% 557(+8.8%) +24.6% 665(+29.8%) +4.1% 555(+8.5%) +4.5% 558(+9.0%)

Sobol +2.2% 528(+3.1%) +2.1% 531(+3.7%) +14.7% 634(+23.9%) +12.2% 607(+18.5%)

Cars BNOT +2.5% 526(+2.7%) +1.2% 520(+1.6%) +7.3% 569(+11.0%) +6.4% 559(+9.3%)

L-P +0.6% 514(+0.4%) +1.1% 518(+0.5%) +3.5% 535(+4.5%) +4.4% 544(+6.3%)

Table 1: Comparison of the results obtained using a Sobol sequence, blue noise and the Larcher-Pillichshammer points,

relative to those obtained using spherical Fibonacci point sets. The glossy and diffuse components are presented separately,

as well as the used projection. For each projection, the first column states the relative RMSE w.r.t. that of spherical Fibonacci,

using 512 sample rays for all methods. The second column shows the number of rays required to achieve the same RMSE as

spherical Fibonacci with 512 rays. In-between brackets is the corresponding percentage.

Lambert Shirley-Chiu

Reference Sobol BNOT L-P Fibonacci L-P BNOT Sobol

Reference (×4) Close up views

Figure 5: Cornell Box scene (indirect radiance component only). The rabbit, the blue box and the back wall material contain

a glossy BRDF, while the rest of the objects have a perfectly diffuse BRDF. Left: reference image multiplied by a factor of 4.

Right: close up views for all the used methods with 128 and 256 sample rays for the glossy and diffuse components respectively.

6.3. Efficiency and image quality

The benefit of using spherical Fibonacci point sets is thor-

oughly assessed in Tab. 1. The results show that for 512

samples per shading point, the RMSE of L-P, BNOT and

Sobol point sets w.r.t. to that of SF can be up to +8.7%,

+36.6% and +38.7% respectively. Note that this results in

an even higher percentage of saved rays. As an example, for

the same cases pointed out above, L-P needs +17.8% sample

rays, BNOT +49.1% and Sobol +56% to achieve the same

RMSE as spherical Fibonacci with 512 sample rays.

The number of rays needed to close the gap between the

RMSE of SF with 512 rays and that of the other methods de-

pends on the rate of convergence for the given configuration:

scene, sampling method, spherical projection and radiance

component. This can be clearly seen in Tab. 1 for the Room

scene using the L-P points and a Lambert projection. In this

case, the relative RMSE of the glossy component (+8.5%)

is more than twice that of the diffuse component (+4.1%),

using 512 samples. However, both components require ap-

proximately the same number of samples (arround 556) to

achieve the same RMSE than SF with 512 samples. The rea-

son for this is that the glossy component converges faster

than the diffuse component (see legend Fig. 4).

The improvement brought by the use of spherical Fi-

bonacci point sets can be appreciated on the close-up views

c© 2013 The Author(s)
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Lambert Shirley-Chiu

Reference Sobol BNOT L-P Fibonacci L-P BNOT Sobol

Reference (×4) Close up views

Figure 6: Room scene (indirect radiance component only). The teapot, the teacup and the fruit-dish materials contain a glossy

BRDF, while the rest of the objects have a perfectly diffuse BRDF. Left: reference image multiplied by a factor of 4. Right: close

up views comparison of the error images for all the used methods using 32 and 128 sample rays for the glossy and diffuse

components respectively. The color encodes the error magnitude.

Lambert Shirley-Chiu

Reference Sobol BNOT L-P Fibonacci L-P BNOT Sobol

Reference (×4) Close up views

Figure 7: Cars scene. The materials associated with the glasses and the bodyworks of both cars contain a glossy BRDF, while

the rest of the objects have a perfectly diffuse BRDF. Left: reference image multiplied by a factor of 4. Right: close up views

comparison of the error images for all the used methods with 512 sample rays. The color encodes the error magnitude.

of Fig. 5 which show that SF yields less visual noise com-

pared to the other methods. As for the Room scene in Fig. 6,

the error images indicate that SF performs better in criti-

cal areas such as the specular highlights. In the Cars scene

(Fig. 7) on the other hand, the high discontinuity of the in-

cident radiance makes the performance of all methods be

roughly similar (as seen in Tab. 1). Nevertheless, it is still

possible to identify image regions where the incident radi-

ance is smoother, which favors SF point sets as shown on

the top row of the close up views of Fig. 7.

Fig. 1 shows images computed with the SF point sets and

L-P with a Lambert projection. We have compared SF with

L-P since they both provide the smallest RMSE. The scene

is made up of four plates, each one having a different shini-

ness coefficient. It contains seven light sources of variable

size and variable radiance producing a direct incident radi-

ance along the plates of variable frequency. With this scene,

our objective is to show how SF behaves compared to L-P

point sets when the incident light contains structured circu-

lar patterns and/or high frequencies that could interfere with

the regular sampling pattern of SF. Despite the regularity of

the SF point sets no regular patterns can be seen thanks to

the used spherical scrambling method.

7. Conclusions

In this paper, we have presented an algorithm for efficient

generation of high quality spherical QMC sequences for ap-

proximating illumination integrals. The advantages of our

approach can be summarized as follows:

Simplicity: The SF point sets algorithm is simpler to imple-

ment than the other tested QMC sample sets.

Compactness: A single sequence is needed to synthesize an

image. This is achieved by exploiting the axial symme-

try of the BRDF lobes, which allows scrambling the point

sets directly on the spherical domain using just a random

axial rotation. This feature might make SF point sets par-

ticularly well-suited to GPU implementations.
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Efficiency: SF point sets outperform L-P, Sobol and blue

noise-based QMC in all the test cases, allowing to save

a very significant amount of sampling rays for the same

image quality.

The main reason for the improvement brought by spheri-

cal Fibonacci point sets is that they better suit the spheri-

cal geometry. The other methods, in contrast, by focusing

on the unit square distribution, introduce boundaries that do

not exist on the sphere. Instead, our approach tries to obtain

the best samples distribution directly on the sphere and then

mask the effect of its regularity on the rendered image by an

appropriate scrambling method.

8. Future work

An obvious research line is to develop adaptive sampling

schemes while keeping the high quality of the energy cri-

terion exhibited by the spherical Fibonacci point sets. As for

increasing the quality of QMC BRDF-based sampling, we

consider that we are already quite close to optimality and

few margin for improvement exists. To go further, one could

resort to non-frequentist approaches, i.e. Bayesian Monte

Carlo [BBL∗09], which allow adapting the sampling pat-

terns according to a global covariance function of the inci-

dent radiance samples. Another research line is the reduc-

tion of the perceived error by introducing some correlation

between the random rotation angles assigned to sample sets

used in illumination integrals of neighbour pixels.
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