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Spherical functions and uniformly bounded
representations of free groups

by

TADEUSZ PYTLIK (Wroclaw)

Abstract. We give a construction of an analytic series of uniformly bounded rep-
resentations of a free group G, through the action of G on its Poisson boundary. These
representations are irreducible and give as their coefficients all the spherical functions on
G which tend to zero at infinity. The principal and the complementary series of unitary
representations are included. We also prove that this construction and the other known
constructions lead to equivalent representations.

§1. Introduction. Let 7 be a free group with r generators. In this
paper we stidy an analytic series of uniformly bounded representations of
(@ defined through the action of ¢ on its Poisson boundary with respect
to the simple random walk., These representations are indexed by complex
numbers from the ellipse

E:{zGC: z-~————-—-'2:__ll+

z+-—-——-——-2:_~1‘<2}

and give as their coefficients all the sphericai functions which tend to zero
at infinity. In particular, for real indices we obtain the principal and the
complementary series of unitary representations of . Moreover, all these
representations are irreducible and two different representations are inequiv-
alent,

The principal and complementary series of unitary representations were
studied by Cartier [1], [2], Figd-Talamanca and Picardello [3], [4], Pytlik {9]
and Sawyer [12]. Later Mantero and Zappa [6] constructed for any spherical
function in Cp(@) a uniformly bounded representation of G on a Hilbert

-space such that the spherical function was one of its coefficients. This con-

struction was improved in {7]. Quite another series of representations of
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G was constructed in [11]. Later Szwarc [13] extracted from them irre-
ducible subrepresentations as direct factors and obtained the same spherical
functions as in [6] as coefficients. An important part of the constructions
presented in both [7] and [13] is a transfer of the obtained representations
as analytic series on a fixed Hilbert space. However, in both cases the
final formulas become rather complicated. It turns out that the construc-
tions mentioned abovelead to equivalent representations, This was recently
shown in [5].

The idea of our construction bases on an unpublished paper [10] where
a transfer of representations alternative to that in [13] was obtained. We
repeat here the definition of these representations but give a direct, very
short proof of the two major properties: uniform boundedness and irre-
ducibility. There is an additional profit when using our construction. First
of all the formula (4) for any complex z, also for those outside E, produces
representations in bounded operators (perhaps not uniformly bounded or
not irreducible). These representations give all the spherical functions as
coefficients. The second advantage is that our construction is very much in
the spirit of cocycle representations in the sense of Pimsner [8] and following
Valette [15] one can repeat the construction with minor changes for some
other groups which act isometrically on a tree.

§2. Notations. We denote by |z| the length of the word z € G, i.e.
the number of letters of the word = in its reduced form. A complex-valued
function f on G will be called radialif it depends only on the length of the
word, that is, f(z) = f(y) whenever |2| = |y|. Any radial function ¢ can be
uniquely expressed in the form

= Zamﬂms

m=0
where py = 6, is the Dirac function at e and u,, the probability measure
uniformly distributed on all words of length m.
Let us consider the operator of convolution with zy. For the free group
it plays a role analogous to that of the Laplace~Beltrami operator on semi-
simple Lie groups. The formula

1 2r—1
(1) ' M1 ¥ oy = "2-1':!11;—1 + Tﬂnc-l-l

implies that radial functions can also be expressed in terms of convolution
powers of y1. Thus convolution of radial functions is a commutative opera-
tion (whenever it makes sense) and it gives a radial function.

A radial function ¢ on G will be called spherical if p(e) = 1 and ¢
is an eigenfunction of the operator of convolution with p;. Tt is an easy
consequence of (1) that to any complex number z there corresponds exactly
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one spherical function @, such that py * ¢, = 2¢,. It can be given by the
formula

o0
Pz = E Qm(z)Xm )
me:0
where Xm = 2r(2r — 1)™14,, is the characteristic function of the set of all

words of length m and Qo(2),Q:1(2),... are polynomials in z satisfying the
recurrence formula Qo(2) = 1, Q1(z) = 2 and

2Qum(2) = Qm+1(z)

To have a more handy reahzatlon of the polynowials @,,(z) choose a
nonzero complex number ¢ so that

e= Yl o).

2r
Then (cf. [9], Theorem 2.1}

an-l +

@) Q,,,(z)_,(,%l“_:_.;)lf_._/w[cm f'“+§£—%(§¢”‘)¢“”‘],

k=0
which for ¢ # 1 gives

1 m —typ—m
@Qm(z) = WM(C)C + ACTN™]
with
2 —'1 C—l
2 " or
A(C) - (: _ c— -1

We are only concerned with those spherical functions which vanish at
infinity. Clearly it is the case of lim,—c0o @ (2) = 0. By (2) this is equiva-
lent to (2r — 1)~1/2 < |¢] < (2r — 1)1/2, which means that z belongs to the
ellipse .

For any # € E we want to construct a uniformly bounded representation
of G for which ¢, will be a matrix coefficient. The common Iilbert space
for the action ofall these representations will be L2(12,4), where (2, u) is
the Poisson boundary relative to j defined helow.

Let §2 be the space of all infinite reduced words in the generators of G.
The group G acts on 2 in a nataral way by multiplication on the left. For a
word w in {2 and a natural pumber n let w, be the word in & which consists
of the first n letters of w. Fora given z € G with |z| = n, let 25 denote the
set of those w € £ for which wy, = . By the usual topology in 2 we mean
the compact topology with {2z}zec a8 the base of open sets: Take z € G
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with |z| = n > 0 and put

p($2;:) = 5;(2"—‘{-1—)“—'1

(note that 2r(2r — 1)*~! is the cardinality of the set of all words of length
n). Then p extends uniquely to a Borel probability measure on f2. This
measure is quasi-invariant for the action of G. Namely,

[ faw)dpw) = [ Flw)P(s,w)dp(w),
1 n

where P(z,w) = (2r - 1)“”'”_1"’“!, with n = |z], is the so-called Poisson
kernel (see [3] for details). The regular representation A of G on 2 is the
unitary representation of G on L({2, i) defined by

AMz)flw) = f(:c—lw)Plﬂ(z,w) .

§3. The main result. Let z be a word in G of length 1. Consider
the two-dimensional subspace H, in L?({2, u) spanned by the characteristic
function y, of the set £2,, and the constant function 1. The vectors £, =1
and £, = (2r — 1)71/%(2rx, — 1) form an orthogonal basis for H,. Let a be

a free generator (or its inverse) in G. Then the operator A(a) maps H,-
onto H,. Namely, we have

(3) )\(a')‘fe = 2?;‘-“1&_'_ T;_lfcn
‘)‘(a’)‘fa.—l = r; lfe - 2:‘— lfa .

For a complex number z € E we define a representation T, of G on
L*(R2, 1) by changing slightly the representation A. Put

(4) TI'Z(CL)EE = Zfe + V 1-22 as Wz(a)ga'-l = 1—22 e ™ ng

instead of (3) but 7.(a) = A(a) on the orthogonal complement HL, of

a—1-

THEOREM 1. Let G be a free group on r generators, The representations
Tz 2 € E, defined above form an analytic Jamily of wniformly bounded
representations of G on the Hilbert space L3102, p). Moreover:

(i) Each 7, is irreducible (i.e. has no nontrivial closed invariant sub-
spaces) and two different 7, ’s are topologically inequivalent,

(il) 73(z) = 7u(x). In particular, 7, is a unitary representation if z
is real.

(iii) 72(z) — A(z) is a finite rank operator.

(iv) {ra(2)1, 1) = p,(2) forz € G.
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Properties (ii} and (iil) are obvious. Also (iv) is ra..ther simple to show.
The major part of the proof is to show that 7,’s are uniformly bounded and
irreducible. The case when z is a real number is much simpler than the‘other
one. The representation . is unitary in this case and we can recognize
among known unitary representations by looking at thel spherical function
» which is positive definite if # is real. It was shown in [3] and [1()] that
if zis in the interval [—v/2r = 1/r,+/2r = 1/r] then i, is a coefficient of
an irreducible representation fromn the principal series. Since the copstant
function 1 is a cyclic vector for 7, ¢, determines 7, uniquely. Fn partlct}la.r,
this implies that 7, must be irreducible. The argument of sph.erlca.l functions
also shows thal one may use 7,'s instead of the representations of_[3] or of
[10] to get the decomposition formula for the m.gular Tepresentation of &
on *(@). A similar consideration can be made in the case when z is real
but outside the interval [—v/2r — 1/r,/2r = 1/r]. As was shcfwn in _[3],
Theorem 5, the spherical function ¢, is then a coefficient of an irreducible
representation from the complementary serics. g

The situation z ¢ R is much more complicated. Altho?gh there are
known uniforinly bounded representations having ¢, as coeﬂ_icmnts, we can-
not use arguments which we used before. The 1~epresenta,tlons_ 7, are not
wnitarizable and ,’s do not determine #,'s completely. For this Teason we
give the full proof here. However, it can be shown, and we do this in §6,
that the representalions are equivalent via [5] to those of [6], [7] and [13],
but the proof is complicated.

§4. r,’s are uniformly bounded. Given two words ,y in G.we write
z L y when there is no cancellation in the product Y. ‘We also Wl'ljtla 1<z
when ¥ is a left hand part of the reduced form of z, ie. when y L y~'z. For
the empty word ¢ it is always assumed that ¢ < . .

Let 2 € (7. Denote by H the finite-dimensional subspace of thl:': Hilhert
space L:(12, 1), generated by the functions xy,”zé < . Clearly chm. H,j,q:
|#] + 1. Note that all the functions A(y)l = P (y,-), ¥ < x, are in Ha.
Moreover, since they are linearly independent, they generate Hy.

LEMMA 1. Letw & (. If fe HE then my(272)f = Mz™")/.

Proof. Indeed, when 2] € 1 the statement is obvious just from_the
definition of 7, Otherwise write # = ye with |a| = 1 and [y| < 2] .Slm'.ce
the operator A(y) maps H, into H; (as was observed above), the adjoint
operator A(y)* = A(y~1) maps Hz into Hy. Therefore

M) f = M)Ay = ma(a TS

~ and the proof can go by induction on the length of 2. w

To prove that for each z € E the representation ¥, is uniformly bounded
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it suffices by Lemma 1 to consider the restrictions of 7,(z~?) to H; and to
find for each of these operators a norm estimate which will not depend on
the particular choice of  in G.

So let z € G. Put n = |z| and for k = 0,1,...,n denote by xx the word
in & which consists of the first k letters of z. In the space H, we consider
two natural bases of vectors. The first one is orthonormal and consists of
the vectors

(53') £mg =§, = 1,

as before and
. 1
(5b) £ou = Vr/(r=1)(2r - 1)*/? (Xz,, - ‘2“1;_'-_:"'1"){&-,._,)

for ¥ = 2,...,n. The second basis is convenient for the action of r, and
consists of the vectors 7,(zx)l, k = 0,1,...,n (a priori it is not obvious
that the m,(z,)1 are linearly independent or that they all belong to H ., but
both the facts will follow from the formula (6) below). The first basis can
be expressed in terms of the second in the following way:

(Ga’) 'f-'ﬂo =1= Wz(Io)l, fz‘;. =

bz = (2r — 1)V (2rx — 1)

__1 7,(21)1 Z T2{z0)1
1o 22 FARS ] ;—-—-————E—zz z\40

as follows directly from (4), and since for & > 2 the vector £,, is orthogonal
to H,,_, we have

€z,

I

Ta(we-1)m (o5l Yoy = ma(@i1) M5, ),

= D a2~ 16 46,1

where a;, = 31,24 is the kth letter of the word z. Applying (6a) we get

6b) &, = Vri(r-1) [(2r—1)

1
il R L CRIEE A B S |

Note here that the norm of the transition matrix A, from the first basis
to the second omne is dominated by the number

@ Dt

=2
which is independent of «.

Now we want to compute the inverse matrix Ag-1.
LEMMA 2. Let 2. € G with [z = n > 0. I[ £,,...,£,, are defined by (5)
then '

(8) ()l = Qe + 3 o k(D) = Qnia(a)
kgl g V12t Lo
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2/rvr =1 .
where ¢, = 1 and ¢ = —l/;T—-—-l—-u for k > 1. In particular,

(ma(z)1, 1) = Qn(z) = palz).

Proof. Taking the scalar product of ¢, and £, = 1 in (6) we observe
that the numbers {r.(zx)1,1}, & = 0,1,...,n, satisfy exactly the same
recurrence formula as the Qi(z) do. Thus {m,(z4)1,1) = Q4(2). This
proves the second part of the lemma. Now we have

n

1’(‘,(1‘)1 = E(Trz(m)l;fm)fm* .

k=1
If we express £y, in ferms of my(z;) = w;‘(a:jl) via (6) and use the fact that
{ro(27'2)1,1) = Qn-;(2) we get (8). u
The norm of the inverse matrix A7! is easily estimated by
= 12 N Qu(2) = 2Q ey (2
(9 (X 1@uar) + 3| 22— Genla)]
k=0 k=1 -z

which is convergent for z € E (see (2)).
Now observe that

ra(z ) (ma(e)1) = w2 = ma((2™ )kl
fork = 0,1,...,n,le. w,;(z™!)}is just the reflection when both spaces H, and

H -1 are equipped with the second basis, Thus |lx,(z~ )| < |47 | Az-1]}
which by (7) and (9) is uniformly bounded in z € G.

§5. =.’s are irreducible. We refer to [3] or [9] for the proof of ir-
reducibility of the representations n, from the principal series, i.e. when
z € [~/2r = 1/r,/2r — 1/r]. For all the other z in E we will show that
the Banach algebra generated by m,(z), # € G, contains a one-dimensional
projection on the cyclic vector t in L2(12, 1), This will imply irreducibility
by some general arguments from group representation theory.

On L*(£2, u) consider the lincar operator Q defined by

Qf(w) = f(@),

where the word @ is obtained from w by deleting the first letter. Observe

that
[ i@ apw) = [ f) du(w),
? o
which implies that @ is an isometry. The adjoint operator @* has the form

(10) @) =g 3 flaw),

alw,|a]=1
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where g L w means that there is no cancellation in the product aw.
As in §2, let g denote the probability measure on G uniformly dis-
tributed on all words of length 1. Then

A(‘ul)_f(.'_,_)) e _21_1' Z f(a”‘lw)(Qr—1)(1_'“—"*"')/2 = _____"2;‘—] (Q*+Q)f(w) )
|a]=1

Denote by E; the conditional expectation with respect the o-field gen-
erated by 2;, |z} < 1,16

Evfw)y=2r [ J()du")

(ww')21

where (w,w') = sup{|z] : w,w’ € 25} = liMproo(n — 3lwy'w)|) denotes the
number of common letters of w and w’. For a complex number ¢ let T be
the operator on L?({2, 1) defined by

Tc:(I—E1)+CE1.

LEMMA 3. Let 2 € E. Then the operator w,(u1) 1s normal, Moreover:

(i) If ¢ is a compler number in the annulus (2r — 1)71/? < [¢| <
(2r — 1)V/2 50 that z = 5@;_3(( + (1) then

v2r—1
Wz(ﬂl) = o (Q*T( + TC'”Q) .
(ii) If t is a nonzero complex number then
Vir—1 - ver—1
T (t+t W =) = o (¢ = Q*T¢) (¢ ~ Te—aQ) .

(iii) The spectrum in L*({2, 1) of the operator m.(y11) is contained in the
set {z} U [—/2r = 1/r,+/2r — 1/r]. The eigenspace corresponding to {z} is
one-dimensional and consists of constant functions.

Proof. Let f € L*(£2, ) and let a € (¢ with |a| = 1. Then
mz(a)f = A(a)f = (f,4e)(ma(a) = Me))e + (S, €amr)(mala) - A(a))éa

Applying (4) to the average of the above over all words of length 1 and
remembering that Elal=1 £, =0 we get

m)f =2 = (2= YD) (4606~ 2 B (r6aenta).

2r 27
la|=1

On the other hand,

* 1 ’
Q"Xa = 5= (1~ Xam1)
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by (10). Thus

1) QEf=Q*(2r Y (i Xa)Xa) = {00 = -2-1; PRI AN
lal=1 fal=1
Furthermore,
m@f - 3@ = (- D)o,

But (11) shows that @* £y is a self-adjoint operator, so that Q*E; = F4Q.
All this together gives (i). It also proves that =,(gy) is a normal operator.

The identity (ii) is an immediate consequence of {i). To get (i) observe
that 7,(#1)1 = z-1 and that the subspace of constant functions reduces
the operators @, @*, T¢ and 7,(u1). The lemma will follow if we prove
that the operator ul — m,(p;) is invertible on (C - 1)* for any complex
number u outside the interval [—+/2r =1/r,/2r = 1/r]. This in view of (ii)
is satisfied when tI — @*T¢ is invertible on (C- 1)+ whenever |t} > 1 and
(2r — 1)1 < (| < (2r — 1)'/* since then tf — Tpr@Q = (I - Q*Tp-1)* is
also invertible and we can choose 1 € C, [¢] > 1, so that u = 3@(t+i“).
In other words, we require

sup [I(Q"T¢)"|1* = sup [[(@*Te)" (Te@)"|| < oo

According to (11) on (C-1)* we have Q*T¢Q = T¢ with ¢’ = 14 ({—1)
X (2r — 1)~%. Thus by induction (Q*T)™(T:Q)" = Ty, , where { is defined
by the recurrence
IClzCu»«l -1

=1,
o (ar—1)2
But the above formula gives a bounded sequence. w

(o= 14 forn=1,2,...

Now we are ready to complete the proof that m.'s are irreducible. Let 2
be in £ but outside the interval [~+/2r =T/r,+/2r = 1/7] and let P be the
orthogonal projection in L*(2, 1) which corresponds to {z} in the spectral
decomposition of the operator m,(j21)1. By Lemma 3, P has the form Pf =
(f, 1)1 and since 2 is an isolated point in the spectrum of 7, (uy )1 it belongs
to the Banach algebra generated by all r,(z), # € ¢. Suppose that M
is a closed subspace in L?(£2,4) invariant under the action of 7,. Then
PIMYC M. U{f,1)#0foran fin M, then 1€ M and so M = L2, p).
If not then since | is also a cyelic vector for the representation g, the only
function fin L*(#2, ) such that 0 = {r,(z)/, 1) = {f,ms(2~")1) for all z in
Gis f= 0,50 M = {0} in that case.

§6. Relation to other constructions. For a complex number v in
the open unit disc {u € C: |u| < 1} denote by I, the uniformly bounded
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representation of & on £*((¥) from [11], which on the space F(G) of finitely
supported functions has the form

(12) I (z) = T (T = uP) IM(2)(I — vP)T,.
Here A(z), Ty and P are the operators: A(z)}dy = gy, Tués = V1 — u?§,,
Pé, = 0 but T8, = §,, P§, = 6; when y # e and ¥ denotes the word in G

obtained from y by deleting the last letter.
When |u| > (2r — 1)~1/2 the space £(G) splits into a direct sum as

(13) (@) = Im Ty(I — uP*) @ Ker(] — uP)T,

and both subspaces are II,-invariant (see [L3]).

In this section we want to prove that for any complex number u in the
annulus E' = {u € C: (2r ~ 1)~'/2 < |u| < 1} there exists an isomorphism
Ry from L*(2, i) onto Ker (I —uP)T, which intertwines the representations
II, and r,, where

(2r—1utu?
PR i feafi M
2r
(then z € E). We refer to [5] for the proof that also other series of spherical
representations are equivalent to Ily{ker (7-upyr, » u € E.

The operator I, and the decomposition formula in Lemma 4 below can
be found in [7] but with a different parametrization, so we give the proof for
completeness.

For n = 0,1,2,... denote by M, the finite-dimensional subspace in
L*(£2, 1) generated by all £, with [z] = n (see (5) for definition). We then
have

(14) 2,0 =03 M.
n=0

Fix a complex number u in the annulus (2r —1)~1/2 < |u| < 1 and define
a bounded operator J, on L(£2, u) by

Lfw)= ff(w')uh"ﬂ(“’v“")dp(w’),
a

where, as in §4, (w,’) denotes the number of common letters of w and w'.

LEMMA 4. In the decomposition (14) of L* (£, u) the operator I, has the
diagonal form

o0
Li=8) d, id,

n=0 '
where idyy, denotes the identity operator on M, and dy,dy,..
quence of complez numbers given by

do=(1-v"a, dy=(1~uHa(v/u)",

. is the se-

n=1,2

yrw ey
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with v=1 = (2r — 1u and o' = 2rv(u —v).
Proof. We have
LEe(w) = fu-Z(w.w-') dp(w")
2

— - 2r -2 -
= 27‘2r 1 + 21‘%27‘ —21)1‘—2 + 2r(2r — l)zu o= do
Forz € G, z # ¢, put n = |&| and k = (z,w). Then
Loxa(w) = f w™ M) gy (w')
g
2r(2r — ]i)““l utk itk <m,
2r - 2 ifk=mn.

2r(2r — 1)n=1u27=2[(2r — 1)u? — 1]
This gives immediately that I,£; = dz€z and so the lemma follows. w

Let u be in the annulus (2r — 1)~1/2 < |u| < 1 as before. The operator
7Y% is well defined on the dense subspace lin{¢, : = € G} in L}(02, ). To
any function f in this subspace we associate the function f, on G defined
by

Fule)= [ I7'? f(w) du(w),
I
Fulz) = V1—wrull [ 1DV jw)dp(w), z#e.

24

(15)

LEMMA 5. The map f — ﬁ‘ extends uniquely to an isometric embedding
of L2(12, 1) into &(Q).
Proof. Let f,g €lin{f, := € G}. Then

Y R@)gu(z) = [ [ 1 1) (W)

cEd nao
X [1 ~(1-u)y u"‘“"”‘xm(w)xm(w')] dp(w) dp(w')
ze
- f l\];1/2f(w)[:'ljzg(wr)u-—z(ww') d,u(w) d‘”’(wl)
24

It

[ J 1P )12 Pg(wydp(w) = [ flw)glw) du().
a0 Ir)

If uis real then A commutes with complex conjugation. Thus t].m.a map
f - ﬁ. is an jsometry. For nonreal uw, f — f, is the composiiion of
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the isomorphism f — Ill,fl;' 12 f of L3($2,u) followed by the isometry
f— flul from L3*(£2,p) into £2(G) and finally the isomorphism A (say)
of £2(GR) defined by Aé, = 6., Ab; = (1 — w?)2(1 - Ju[?) 13 (wf |u )16,
forr#e m

Observe that since all the £, are eigenfunctions of Iy Y 2, we can write

J IV flw)e(w) du(w) = f F)ITPE(w) dp(w) = d;‘i/z(f,é“m).
7

7

This gives a formula for computing ﬁ,, simpler than {15). Namely,

Fule) = &g {0,
- V1= u? ~ r—
Ful@) - AT W F e = T g g

2ru 2r
for |z} = 1 and
1

Fulz) - mﬁx(f) = /(r = 1)[ra” 12 (},&,)

for all other z € G. Tt follows in particular that f, € Ker(J — uP)T,.
Moreover, we can write

(€8 = d31/? (se +

2r—-1 ——
r2 1_1"2(778‘65))1

,.
2r—-1 _ 2r
(fm)ﬁ = -—5’)“_& 1/2 (mnz —un, + uﬁe), |.7:| =1,
2r-1 -
(¢a)y = a2 (ny — une + ulz) , {z| > 1,

2y/r(r-1)

where #, = {I —vP*)"14, = Tyza vlv1=12l5, and v = 1/((2r — 1)u) . But
since Ty (I — uP*}ne = (uf/v)dz + (1 — u/v)n, for z # e we get immediately
LEMMA 6. Letu be in E' and let * denote the transformation defined by

(15). Denote by R the projection onto Ker (I — uP)T, in the decomposition
(13) of £(G). Then

V1= 22
()2 = T5—al*R(S,),
2r 1~ 4t
A - 1/2 _
(ba)u = 5« ‘R(ém e .se)

if |z} = 1 and

(€)u = mamn(aw o )

@r=TDu'"
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for other x € . Here o is the constant taken from Lemma 4. This implies
that
[L*(2,1)]] = Ker(f —uP)T,, . u

Let now a be a free generator in G. Then from (12)

(@) = ube + V1 = utby, My(a)far = V1~ u?fe — ud,

and IT.(a)8; = 84, for all other z € G. Since the projection R commutes
with I, using (4) and Lemma 6 one can easily prove that

(ma(@)6e) s = M) (€2),, -
All this together gives

THEOREM 2. Let u be a compler number in the annulus (27 — 1)~t?% <
jul < 1 and let

(2r — Du+ u~?
7 e
2r

be the corresponding number in the ellipse E. The transformation f — 1.
defined by (15) extends to an isomorphism from L*(12, u) onto the subspace
Ker(I — wP)Ty in £2(Q) and

Hu(m)fu = (Wz(x)f):
jorany f € L3 (2,p) endz €G. m
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Pseudocomplémentation dans les espaces de Banach
por

PATRICK RAUCIH (Paris)

Abstract, This paper introduces the folowing definition: a closed subspace Z of
a Banach space E is pseudocomplemented in E if for every linear continuous operator u
from Z to Z there is a linear continuous extension 4 of u from £ to F. For instance, every
subspace complemented in B is pseudocomplemented in E., First, the pseudocomple-
mented hilbertian subspaces of L! are characterized and, in LP with p in [1, +-00, classes
of closed subspaces in which the notions of complementation and pseudocomplementation
are equivalent are pointed out. Then, for Banach spaces with the uniform approximation
property, Dvoreteky’s theorem is strengthencd by proving that they comtain uniformly
psendocomplemented £2's. Finally, the study of Banach spaces in which every closed
subspace is pseudocomplemented is started.

Introduction. Cet article, qui a pour origine des notes non publiées de
8. Massonnet, introduit la notion, plus large que celle de complémentation,
de pseudocomplémentation d’un sous-espace fermé d’un espace de Banach.
Ainsi, un sous-espace fermé Z d’un espace de Banach E est dit pseudo-
complémenté dans E si et seulement si tout opérateur de Z s’étend en un
opérateur de E.

La question résolue suivante de J. Lindenstrauss sur la complémentation
a motivé Dintroduction de cette nouvelle notion : si E est un espace de
Banach de dimension infinie, existe-t-il p dans [1,+o0] tel que E contienne
une suite de sous-espaces uniformément isomorphe & la suite (£))nen- et
uniformément complémentée dans E? Dans [PIS 1], G. Pisier répond par
la négative en construisant un espace de Banach E qui ne contient aucune
telle suite,

En revanche, le probléme précédent posé dans le cadre plus général
de la pseudocomplémentation admet une réponse plus positive. Notons
d’abord que, si un espace de Banach E contient une suite de sous-espaces
uniformément isomorphe 3 une suite (€8 )nen-, avec p dans [1, +oc], et uni-
formément pseudocomplémentée dans E, alors E contient nécessairement
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