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SPHERICAL FUNCTIONS ON CARTAN MOTION GROUPS

CARY RADER

ABSTRACT. This paper gives a reasonably complete treatment of harmonic
analysis on Cartan motion groups. Included is an explicit parameterization
of irreducible spherical functions of general if-type, and of the nonunitary
dual (and its topology). Also included is the explicit Plancherel measure, the
Paley Wiener theorem, and an asymptotic expansion of general matrix entries.
(These are generalized Bessel functions.) However the main result is Theorem
19, a technical result which measures the size of the centralizer of K in the
universal enveloping algebra of the corresponding reductive group.

Introduction. This paper gives a reasonably complete treatment of the har-
monic analysis of Cartan motion groups. We recall the definition. Let G be a
connected semisimple Lie group and let K C G be a maximal compact subgroup.
Let g = t + s be the orthogonal (Cartan) decomposition of the Lie algebra of 67.
Then the Cartan motion group associated to G is the semidirect product H = Kxs
using the adjoint representation of K on 5.

In §4 of this paper we obtain an explicit parameterization of the nonunitary
dual of the Cartan motion group H (Lemma 22), and of the Fell topology on
it (Theorem 24). (Lemma 25 is an interesting general result on Fell topologies.)
Mackey's theory of unitary induction is ideally suited to Cartan motion groups,
making the computation of the unitary dual easy. It turns out that the nonunitary
dual is just about what you might expect if Mackey's machine worked for nonunitary
representations (but of course it does not). In Theorem 28 we find an explicit
expression for the Plancherel measure of H, including the normalizing constant.

In §5, Theorem 35, and its corollary, is the Paley-Wiener theorem for these
groups. Lemma 30 and Corollary 33 give a result on the asymptotic growth of
the matrix entries of these representations. They use a variation on the method
of stationary phase, with complex parameters. (The matrix entries are essentially
generalized Bessel functions.) I wish to thank the referee for suggesting this greatly
improved version of the result.

Actually most of this paper is concerned with parameterizing these matrix en-
tries, or spherical functions. In the first section, we gather the notation and def-
initions and some abstract nonsense used in the rest of the paper. These should
be more or less familiar to anyone who knows semisimple theory, so no proofs are
included.

§§2 and 3 are devoted to the proof of Theorem 19, a sort of Chevalley restriction
theorem.  (This is related to Kostant's J and Q matrices.) Let V, r be a unitary
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2 CARY RADER

double representation of K and let S(s, r) be the space of polynomial functions
/: s —> V satisfying

f(Adk-X)=Ty(k)f(X)T2(k~1) (kEK,   XES).
Let as be a Cartan subspace ofs. Then the restriction / h-► /|o6 takes S(s,r) onto
a space of polynomial functions on as. Theorem 19 gives a characterization of the
image of this restriction map. Now a spherical function is an "eigenfunction" for an
algebra of differential operators isomorphic to S(s,t) for an appropriate V, r (see
Proposition 7). Thus the problem of parameterizing the spherical functions becomes
the problem of parameterizing the irreducible representations of the algebra of
"restrictions" of these differential operators. This is a solvable problem.

1. Notation and definitions. This section reviews the basic definitions and
abstract nonsense propositions having to do with spherical functions and large
compact subgroups. This material should be familiar to people conversant with
semisimple theory. The basic references are [G, Wl, pp. 304-359 and W2, pp.
1-43].

Let G be a locally compact, separable topological group and let K be a compact
subgroup. Let K be the set of equivalence classes of irreducible unitary represen-
tations of K. For py. K — 2"(Ex,) in 0 E K, let

ax,(k) =d(o)trp0(k-1)

be the normalized character (where d(t>) is the degree of D). If tt: G —+ 2(E) is
a (continuous) representation on the complete, locally convex, topological vector
space E, let P(0) = ir(ax,) and

[tt : 0] = dimUomK(Ei),E) = d(D)_1rankP(D),

the multiplicity of 0 in ir.
As it turns out, all of the representations considered in this paper are admissible

(Harish-Chandra), that is [ir : o] < Md(o) for some constant M > 0. In fact we will
assume that K is large in 67, that is M is independent of tt for it TCI, since this
holds for Cartan motion groups [Wl, pp. 228, 305, 314].

DEFINITION. Let 7Ti: 67 -» 2(Ey) and ir2: G -* 2(E2) be admissible repre-
sentations. A Naimark intertwining operator Q: Ey —► E2 is a linear operator with
dense domain and closed graph such that if rn is a compactly supported measure on
G, then the domain and range of Q are stable under iry(m) and ir2(m) respectively,
and Qiry(m) = ir2(m)Q. If in addition Q is one-to-one and has dense range, we
say that iry and ix2 are Naimark equivalent and write [iry] = [ir2]. Let [G] denote
the set of Naimark equivalence classes of TCI representations.

PROPOSITION 1. The collection of admissible representations and Naimark in-
tertwining operators forms an abelian category.

(This comes from the fact that a linear map, defined on the K-hnite vectors and
which intertwines the actions by /(-finite functions, admits a unique closure [Wl,
p. 326].) Next we describe the algebras with which we will be concerned.

DEFINITION. For f E CC(G) (or any other reasonable function space on G)
define f° by

f°(x)= f a0*f(kxk~l)dk.
Jk
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SPHERICAL FUNCTIONS ON CARTAN MOTION GROUPS 3

Let Ico(G) = {f E Cc(G)]f° = /}, a convolution algebra with the subspace topology.
DEFINITION.   // G is a connected Lie group, let 0 be its universal enveloping

algebra. Let X be the centralizer of K in <&, so we have a projection

D^DK= j AdkDdk:<S^X.
Jk

Essentially, a spherical function is a continuous representation <£: Icx,(G) —*
2(F) on a finite dimensional space F satisfying <D(u) = 1 E 2(F) for some
u E Icx>(G).    Such a representation is given by integration against a function
$:G^2(F). Namely

*(/)= f f(x)*(x)dx        (fElc,(G))
Jg

where $ is given by

$(z) = $((x • u)°)    where x ■ u(y) = u(x~1y).

Since the main interest is in irreducible representations of Ic0(G), we include that
in the definition [W2, p. 14].

DEFINITION. A spherical function of type o E K is a continuous function
$: G —►2(F) (where F is a finite dimensional complex vector space) satisfying

(1) $ is quasi-bounded [W2, p. 6],
(2) $(kxk~x) = $(x) for allkEK and xEG,
(3) 57„ * $ = $ (where ao is the complex conjugate),
(4) / i-» <D(/) = JG f(x)$(x) dx is an irreducible representation of Icx,(G) on F.

Two spherical functions are equivalent, written [<J>i] = [$2], if there is a linear
isomorphism Q: Fy  —* F2 such that Q$y(x) = $2(x)Q for all x E G (iff the
corresponding representations of Icx,(G) are equivalent).  Let [Icx,(G)] be the set of
equivalence classes of spherical functions of type o.

See [W2, around p. 14] for the general properties of spherical functions. We
recall that spherical functions come from representations of G.

DEFINITION. Let ir, E be a representation ofG with [ir : o] < oo (where o E K).
Define

Fn\i=HomK(Ei,E)    and    $(tt,£>) : G - 2(F^d)
by

$(tt, 0, x) ■ I = /  7r(fcxrc_1) o Idk       (lEF^x,)-
Jk

PROPOSITION 2. $(it,0) satisfies (2) and (3) in the definition of spherical func-
tion, and defines a representation of Icx,(G) which is irreducible when it is TCI and
quasi-bounded when E is a Banach space. Conversely «/$: G —> 2(F) satisfies
(2), (3) and (4) except for the irreducibility, then there exists an FDS [Wl, p. 231]
representation ir,E of G such that $(7r,0) is equivalent to $. Moreover ir,E sat-
isfies the following universal property: If iry, Ey is any FDS representation with
[iry: o] < oo and Ey is cyclic with respect to P(d) ■ Ey and Qy. F„l^g —► F inter-
twines $>(iry,o) and $, then there exists a unique Naimark intertwining operator
Q: Ey —> E extending Qx,. When $ is irreducible then ir,E is TCI and when $ is
quasi-bounded we may take E to be a Banach space.

Let [G] (o) be the set of Naimark equivalence classes [ir] of TCI (Banach) repre-
sentations of G such that [tt: 0] > 0 (finite). Then [W2, p. 13].
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4 CARY RADER

COROLLARY 3. M •—► [$(n, D)] is well defined and gives a one-to-one corre-
spondence between [G] (o) and [Ic0(G)].

REMARK. The proposition remains true when you eliminate references to Ba-
nach spaces and the quasi-boundedness assumption from the definition of spherical
function. We will show below that quasi-boundedness is a consequence of the other
properties of spherical functions when G is a Cartan motion group (or a semisimple
group). This will answer affirmatively a conjecture of Fell: that any TCI representa-
tion of G on a locally convex space is Naimark equivalence to a TCI representation
on a Banach space.

Let us state explicitly the following

COROLLARY 4. Let iry: G —* 2(Ey) be an admissible representation and let
it: G —* 2(E) be TCI. Suppose [it : D] > 0. Suppose that the (irreducible) spherical
function <b(ir,o) is equivalent to an irreducible factor in the Jordan-Holder series
for the representation f t-> $(iry,U, /). Then ir,E is Naimark equivalent to an
irreducible factor in the Jordan-Holder series for iry,Ey. (See [Wl, p. 333].)

Next, we recall the definition of the Fell topology on [G] and [Icts(G)]. For
[ir] E [G], let S^ (ir) be the space of functions of the form X(x) = tr(T7r(a;)) where
T E 2(E) is left and right K-finite. Then a net [7rn] converges to [7r] in [G] if and
only if for all A E S^ (ir) there exist A„ E srf(irn) such that An(/) converges to A(/)
for all / E CC(G). Since ir is TCI, it is the same to say there exists A E stf(ir),
A i=- 0, and An E s/(irn) such that An converges to A uniformly on compacta. The
Fell topology on [7ci)(67)] is defined analogously. The following is easy.

PROPOSITION 5. The [G] (D) form an open covering of [G] and the map [ir] i->
[$(7r,0)] defines a homeomorphism of[G] (D) onto [7cD(G)].

A similar result holds for the space G of unitary equivalence classes of irreducible
unitary representations of G. Recall that 67 C [67] [Wl, p. 245] and that the Fell
topology on G agrees with the hull-kernel topology. Let [/»0(67)] be the closure of
[/cS(G)] in the G* algebra ofG, and let 7*0(G)A be the space of unitary equivalence
classes of irreducible continuous ^representations with the hull-kernel topology.
Then again 7,0(G)A is naturally a subspace of [J»D(G)], see [Wl, p. 245].

PROPOSITION 6. The 67(D) form an open covering ofG and ir i-> $(tt,D) gives
a homeomorphism ofG(o) onto 7»0(G)A. Moreover the Plancherel measures (which
exist for abstract reasons) are mutually determined by

dpx, =d(o)dp]G(o).

This is folklore except for the surjectivity of 7r i-> $(ir,D); use [S, p. 17] and [D,
pp. 22, 25].

Now assume that G is a connected Lie group and A" is a maximal compact
subgroup which is large in G. Let Q be its Lie algebra and 0 be its (complex)
universal enveloping algebra. If D E <3 and / E C°°(G), let f(x; D) denote the left
invariant derivative Df evaluated at x E G. Let X be the centralizer of K in <S,
and recall the projection D >—► Dr.

The next proposition, essentially due to Godement [G, p. 540], is the main tool
used for analyzing spherical functions. The proof can be obtained by jiggling [W2,
p. 19] a little, or in [R] in exactly this form.
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SPHERICAL FUNCTIONS ON CARTAN MOTION GROUPS 5

PROPOSITION 7. Let F be a finite dimensional complex vector space and let
$: G —> 2(F) be real analytic. Suppose that $(1) = 1 and $(1;D) = $(1;DK)
for D E 0. Suppose that §(x;DK) = $(i)$(1;Dk-) for all DK E X and that
Dk *-* $(I',Dk): X —> 2(F) is an irreducible representation of the algebra X.
Then, if $ is quasi-bounded, then $ is a spherical function of type D for some
D € K. Conversely, a spherical function of type D has these properties. (The
proposition remains true if all references to quasi-boundedness are eliminated.)

REMARK 8. Let us record the form that <J>(7r,D) takes for induced representations
ir. Let P be a closed subgroup of G such that G = KP and set Kp = K n
P. Let 8q and 6p be the left modular functions for G and P respectively (so
if dx is left invariant Haar measure on G then d(x_1) = Sa(x)dx). Let P+ be
the set of continuous group homomorphisms A: P —> C (the additive group of
complex numbers). In the compact-open topology, P+ is a Frechet vector space,
which is locally compact, hence finite dimensional, if P is compactly generated
modfj{ker A|A E P+}. Define p E P+ by p(p) = §log(6>(p)/<5G(p))-

Now let c: P —► 2(Ea) be a representation of P on a Hilbert space Ea which
is admissible with respect to Kp. Let ir = ir(P,a,A) be the induced representation
of G, realized by left translation on the space E of L2 functions e: K —> Ea which
extend to G so that

e(kp) = e-(A+")(p)CT(p-1) • e(k)        (e E E).

From [Wl, 5.5.1.4] it follows that the ir(f) are realized as integral operators

■K(f)-e(ky)=  f ir(f)(ky,k2)e(k2l)dk2,
Jk

»(/)(*!, *a) =   /   f(kypk2)e^-»^<j(P)dp

for / 6 CC(G). By Frobenius reciprocity

F^x, = RomK(Ex,,E) ~ EomKp(Ei,E<T).

For k E K and p E P, define an endomorphism of this last space by

b-»  /     a(mp) ol o ti!)(km~1)dm        (I EHomnP(Er,,E(7)).
J KP

Abusing notation, write this as cr(p) o / o px,(k). For x E G choose k(x) E K and
p(x) E P so that x = k(x)p(x). (Usually n(mxm~l) = mrz(x)m~l and similarly
for p(x), so the integration over Kp above is unnecessary.) Then the induced
(reducible) spherical function is given by

$>(ir,o,x)-l= [ a(p(k~1xk)) o I o pt>(K(k-1xk))e''A-p)p{xk) dk.
Jk

(You can see this by integrating against / € 7c0(G), using the integral operator
above.) Note that the integrand does not depend on the choice k(x) and p(x).

When G is a Lie group, the derivatives of these induced spherical functions can
also be computed.   Let 0, £, ^3 and &p be the respective universal enveloping
algebras, so 0 = M.®np *p. For DK E X write

DK = ^2 DknDpn        (Dkn E 0, Dpn E V)-
n
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We may assume

^ Ad m • Dkn <g> Ad m • Dpn = ^ Dkn <g> Dpn
n n

for mE KP. Then

(9) 4>(w, D, 1; Z?K) ■ I = £(eA-'CT)(l; Dpn) o I o ̂ (1; £>fcn).
n

(This is well defined by the assumed /£p-invariance.)
Finally we shall also require the analogue of Harish-Chandra's Eisenstein in-

tegrals in the context of Cartan motion groups, so let us review the definition.
Let r = (ri,r2) be a double unitary representation of K on the finite dimensional
Hilbert space V; that is

(ky,k2),V>-+ Ty(ky)vT2(k21): K X K -> 2(V)

defines a unitary representation of K x K. Let ir = ir(P,a,A) be the induced
representation on E as above. Then 2(E) becomes a double /{"-module by left and
right composition. Let T: 2(E) —► V be a homomorphism of double /(-modules.
Since 2(E) densely contains the K x /(-module induced from the Kp x Kp-
module 2(Ea) (and V is finite dimensional), we have the Frobenius reciprocity
isomorphism T i—► tpr = T(l, 1) between the space of double Zf-homomorphisms
T: 2(E) —> V and the space of double /Cp-homomorphisms ipT'- 2(Ea) —> V.
Now chasing through the identifications gives

T(ir(x)) = E(P,<T,A,ipT,x)

= f ry(rz(xk))xljT(a(p(xk)))T2(k-l)e^-p^xkUk
Jk

(Use [Wl, p. 448] again and T(fci,fc2) = Ty(ky)%jjTr2(k2), the inverse of the Frobe-
nius reciprocity isomorphism.) This is Harish-Chandra's Eisenstein integral [H-CI,
p. 150]. (Note that the integrand is independent of the arbitrary choice made in
writing x = K,(x)p(x).)

2. Prelude to the main result. Let G be a connected reductive Lie group,
let Q be its Lie algebra and let G be the analytic subgroup corresponding to [£),£)]■
Assume G has finite center. Let K be a maximal compact subgroup of G and
let g = t + s be the corresponding Cartan decomposition. Then K acts on s by
k ■ x = Adk ■ x. The Cartan motion group H (associated to G) is the semidirect
product H = K xs; thus

(ky,Xy)(k2,X2) = (kyk2,Adk2x ■ Xy +x2).

According to a theorem of Godement [Wl, p. 314], K is large in H, and in fact
if ir is a TCI representation of H and 0 E K, then D occurs in ir no more than d(o)
times (i.e. dim(F7r|0) < d(o)). Thus the abstractions of the first section apply to
H. First we wish to parameterize [7c0 (//)]. Proposition 7 indicates that it will be
helpful to find the irreducible representations of X, and so, in this section and the
next, we will derive results on the structure of X.

Let h be the Lie algebra of the Cartan motion group H and let os be a Cartan
subspace of s.   If py. K —» 2(Ex,) (D in K) is an irreducible representation, let
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SPHERICAL FUNCTIONS ON CARTAN MOTION GROUPS 7

&x> be the kernel of the corresponding representation of the universal enveloping
algebra 8. (so &/>%, is isomorphic to 2(Ex,) as a ^-module). If $ is a spherical
function of type D, then <&(DkD) = <t>(l;DkD) = 0 (for Dk E i% and D E ff).
Hence $ kills {DK]D E 3%f)} = &x,f) n X, which is a two sided ideal in X. As an
Ad /(-module, we may identify

Skf)\$ = &s\£® S(s) = 2(Ex,) ® S(s)
(where S(s) is the symmetric algebra of s). Then X/&x,F) fl X is identified with the
space of /(-invariants:

Y^,Ln®Dsn = ^2pi>(k)Lnpx,(k~1) ®Adk-Dan
n n

(kEK, LnE2(Ex>), DsnES(s)).
More generally, let r = (ri, t2) be a unitary double representation of /( on a finite

dimensional complex Hilbert space V. Let S(s,r) be the space of /(-invariants in
V®S(s),

^fn ®5sn = ^7"i(fc)unr2(A:"1) ig) Ad fc -Ds„
n n

(fc G tf, w„ G V, Dsn E S(s)).
Fix a Cartan-Killing form B which is positive definite on s and negative definite on
6. Use B to identify elements of S(s) with polynomial functions on s. Thus S(s,r)
becomes the space of polynomial functions / : sc —> V satisfying

(0) /(Adfc-x)=r1(fc)/(x)r2(fc-1)        (a? Esc,k E K).
Let 3 be the orthogonal complement of as in s.

DEFINITION. Define the linear map (3(r, ■): S(s, r) -» V ® S(as) by

0(t, Y,vn ® Dsn) = Y,vn ® Dan    where Dsn - Dan E S(s)i.

In terms of polynomial functions this is just the operation of restriction, f i—► f]a5.
Also define /?0: X —* 2(Ex,) ® 5(os) as the composition of the natural map

X-+X/&x,S!)r)X=S(s,T)    and    0(r): S(s,t) -► 2(Ex>) ® S(as).
(Here V = 2(Ex,) with its obvious double K-module structure.)

Let I^s = M* /M be the Weyl group of (g, as), where M* is the normalizer of as
in K and M is the centralizer. Also fix an Iwasawa decomposition g = t + aB +n,
and let E+ be the corresponding set of positive (restricted) roots of the pair (g, as).
Define

ir = If{A|A G £+ and |A ^ E+}
so ir2 E S(as) is invariant under WB. Let a6c be the complexification of as.

DEFINITION. Let S(aec,r) be the space of polynomial functions f:asc^>V
satisfying

(1) If A E aBC and kEK and Adfc • A = A then ry(k)f(A)r2(k~1) = /(A)
(2) If A E o8c and w EWS then f(w ■ A) = r1(m)/(A)r2(w-1)

(where m E M* is a representative of w).
(Note that by condition 1 the right-hand side in (2) is independent of the choice

of ra G M* representing w.) We now have the following (very weak) version of
Chevalley's restriction theorem [H, p. 430].
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8 CARY RADER

LEMMA 11. /3(r): S(s,r) —> y®5(os) is one-to-one and preserves degrees, and
its image satisfies S(asc ,r) D (3(t,S(s,t)) 3 S(asc ,r) ■ ir2n (for some sufficiently
large integer n). Moreover /?„: X —> 2(Exf) ® S(as) is an algebra antihomomor-
phism.

PROOF. Since s = {Adfc • H\k E K and H E as}, and by analyticity, it is clear
that /?(r) is one to one and preserves degrees and its image lies in S(aBC ,r). Let
Dk E X and E E Sj and write

DK = ^2DklDal + D2    and    E = Y,EknEan +Ez
where Dkl, Ekn E 8. and Dai, Ean E S(at) and Dz and Ez E % Then

DkE = 2_^ EknDKEan + DKEZ
n

= ^2 EknDklDalEan      (mod Sji).
l,n

Thus
P,(DKE) = Y,Hs(Ekn)p*(Dkl)®EanDal = fo(E)/3x,(DK)

(,n

(where of course the multiplication on 2(Ex,) <S>S(as) is the tensor product of that
on 2(Ex,) with that on S(as)).

In order to prove the second inclusion, we complexify everything in sight. Let
Hc 2 K be a connected complex Lie group with Lie algebra fcc, and let sc and
aec be the complexifications of s and as respectively. Extend (ry,r2) and Ad to
holomorphic (hence algebraic) representations of Kc. If Mc and M* denote the
centralizer and normalizer of asc in Kc, and M° is the identity component of Mc,
then Mc = MM° and M* = M*M° (by [H, p. 244] and [Wl, p. 86]). Thus if
/ E 5(a6c,r) and A G asc and ra G Af*, then

/(Adm-A) = r1(ra)/(A)r2(ra-1)-

Let 7r2: sc —► C be the Ad(/(c)-invariant polynomial function corresponding to
the W6-invariant polynomial ir2 on a6C [H, p. 430]. Let s'c be the Zariski open set of
nonzeros of ir2 in sc and set a^ = osc fl s'c. Then s'c is the set of s-regular elements
in sc and hence each element of s'c is conjugate by Kc to an element of a'sc [K&R,
p. 764]. Thus we have an algebraic morphism (fc, A) i-» Adfc -A: Kc/Mc x a'sc —► s'c
where two points have the same image exactly when they are conjugate under the
(free) action of WB by right translation on Kc/Mc and the usual action on a'sc.

As observed above, any / G S(aac ,r) is equivariant under M*, and hence can
be extended to a rational morphism /: s'c —► V by the formula

/(Ad fc • A) = r1(fc)/(A)r2(fc-1) (Ad fc • A G s'c).
Thus, clearing denominators, we may extend ir2nf E S(asc,r) to a polynomial
function ir2nf E S(sc, r) (n depending on /). But since S(asc,r) is a finitely
generated module over the (Noetherian) ring of IVs-invariants in S(asc) [Wl, p.
147], we can choose one integer n such that ir2n clears all denominators. For this
n,/3(r,S(s,T))Dir2n-S(aec,r).    D

The proof of this lemma shows that every element of S(asc,r) extends to a
rational function s'c —► V; the point of the second inclusion is that it gives us some
hold on the denominators (since ir is a product of distinct primes).
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SPHERICAL FUNCTIONS ON CARTAN MOTION GROUPS 9

COROLLARY 12. The kernel of'the algebra antihomomorphism(fly. X —<• 2'(Ex,)
®S(as) is precisely £„fjn£. Also «/<£: H —► 2(F) is a spherical function of type D
then there is a unique irreducible anti-representation $1: (ix,(X) —► 2(F) such that

$(l;DK) = $yopx,(DK)    (for all DK EX).

This is clear from the definition of /3D and Lemma 11 and Proposition 7.
Let I(s) be the algebra of Ad/(-invariants in S(s), so I(s) is a (Noetherian)

subalgebra of the center of X (in fact it is central in fj.) By Chevalley's restriction
theorem, /38 takes I(s) isomorphically onto 1 <g> I(as), where I(as) C S(as) is the
subalgebra of ^-invariants. If $ is an (irreducible) spherical function of type D
then I($) is represented by scalars, say

$(l;DK) = n(DK)l    iorDKEl(s).

Thus to parameterize the spherical functions of type D, we must parameterize the
irreducible anti-representations of [3<>(X) which represent 1 <g> /(as) by scalars. But
the one dimensional representations of I(a6) are of the form Da >-+ eA(Da) where
A: as —► C is real linear and eA is the corresponding representation of S(as).

Let A also denote the extension to s so that 3 C ker A, and let K\ = {fc G
K]Ad fc ■ A = A}. Let V = 2(Ex,) and r be as in the definition of /?B. Then by the
definition of S(asc, r) 3 /?d(3Q we have

(1 0 eA) o /?,(£) C {L E 2(Ex,)\px,(k) oL = Lo pB(k) for fc G KA}.

LEMMA 13. Let <J> be a spherical function of type 0 G K, and suppose the
corresponding representation $: X —* 2(F) satisfies $(/)) = n(D) ■ 1 for all D E
I(s). Let A: a6 —* C be a real-linear function such that n = (1 <8> eA) o j3x, on I(s).
Then there exists an e G Ka such that $ is equivalent to an irreducible factor in the
Jordan-Holder series for

$(z,A,V):X-^2(Filt)    (where File=EomKA(Ev,Ee))

given by
$(e,A,D,L>)-/ = ^(/oLn)eA(/Ja„)

n

where I E F0|c and D E X and

fa(D) = J2Ln®DanE 2(Ex,) ® 5(0.).
n

Moreover, 9>(ei,Aj,D) and <P(e2, A2,D) are disjoint (i.e., their Jordan-Holder series
contain no common factors) unless Ai = wA2 for some w EWS.

PROOF. First note that by the remarks preceding the statement of the lemma,
$(e,A,D) is well defined. We seek the irreducible anti-representations of (3x,(X)
(Corollary 12). From [Wl, p. 147], 2(E0) ® S(at) is finitely generated as a 1 <g>
I(as) module, so the hypotheses of the first three lemmas in the appendix hold
for 1 ® I (at) C Px,(X) C 2(E0) ® S(as). (These are easily translated for anti-
representations.)

Now the irreducible anti-representations of 2(EB) ® S(as) are of the form

$x(L®Da)-l = loL-ex(Da)        (I € E0).
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



10 CARY RADER

From Lemma 11, the image of Px,(X) under (1 ® eA) is contained in the centralizer
of po(Kjy) in 2(Ex>), so we may further decompose $a|A>(3-)- m particular, every
irreducible factor in the Jordan-Holder series for $a| &,(-£) appears in the Jordan-
Holder series for $(e, A,D) for some e G Ka- The first statement of the lemma now
follows from the third lemma of the appendix, and the last statement from [H, p.
433].    □

It will turn out that the $(e, A,D) are already irreducible, so Lemma 13 gives a
parametrization of [Ic0 (//)]. However, we will need a much better description of
the images of (3(t) and /?D in order to show this. For now, using Lemma 13, we can
prove a subquotient theorem for H (analogous to a theorem of Harish-Chandra for
semisimple groups [Wl, p. 452]). This lemma also answers in the affirmative, for
Cartan motion groups, a conjecture of Fell [F2, p. 287].

LEMMA 14. Let ir: H —» 2(E) be a TCI representation of H on a complete
locally convex space E. Then there is a quasi-character eA: s —» Cx such that
3 C ker A and an e G Ka such that ir is Naimark equivalent to an irreducible
factor in the Jordan-Holder series of the representation ir(t, A) of H induced from
(k,x) i-> pe(k)eAx: Ka x s —> 2(Ee). In particular ir is Naimark equivalent to a
TCI representation on a Hilbert space.

PROOF. First, as to notation, Ka x s is to be taken as a subgroup of H. Then,
since Ad fc • A = A for fc G Ka, we see that the formula above really does define a
representation of Ka x s.

Choose o E K which occurs in ir with (finite) positive multiplicity, and let
<P(-7r, D) be the corresponding spherical function (without the quasi-boundedness
assumption). Then Lemma 13 says that 9>(7r,0) occurs in the Jordan-Holder series
of $(e, A, D) for some A and e. Compare the formula in Lemma 13 for 3>(e, A,D, D)
with formula (9) for an induced spherical function (here ct = peeA and the modular
functions are trivial). We see that <I>(e, A,D) is just the (reducible) spherical function
of type D occurring in the representation induced from peeA. Since H is connected,
X is dense in the compactly supported /C-central distributions (with respect to the
weak topology generated by the real analytic functions). Thus we see that $(7t,D)
occurs in the Jordan-Holder series for the representation $(7t(e, A),D) of Icx,(H). So
now Corollary 4 tells us that ir is Naimark equivalent to an irreducible subquotient
of 7r(c, A) (a subquotient of the Hilbert space L2(K, Ee)).    □

All of the results we have obtained so far (and their proofs) go through for
connected semisimple Lie groups too (see [L or R]). However, for Cartan motion
groups we can actually say much more. We can actually parameterize [/c0 (//)],
which is to say, we can decompose the $(e, A, 0) and find the equivalences among the
factors. In order to do this, however, we will need much more precise information
on the image of /3(r) (see Lemma 11), and this is the objective of the next section.

3. The main result. The goal of this section is to compute the image Pr,(X) C
2(Ex,) <g> S(as) and more generally the image of 0(r). This is an extension of
Chevalley's restriction theorem. First we will obtain the result for Cartan motion
groups corresponding to rank one semisimple groups. For this we will need the next
result on the radial component of the Laplace operator ujb (see [W2, p. 277]).

Let G be a reductive group with Lie algebra g and fix an Iwasawa decomposition
g = 1 + as + n.  Let n = £^A nA + n2A be an eigenspace decomposition under the
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adjoint action of as and put ra(A) = dim nA and ra(2A) = dim n2A. Ii X En, write
X = Y + Z where Y Et and Z Es, and set nA = {Y]X E nA} and n2A = {Y\X E
n2A}. Defining tx = m + rj* + r)2\ and t2\ = m + tya (where m is the Lie algebra of
M, the centralizer of as in K), we see that tx and t2\ are subalgebras of t.

Let ac be a ^-stable Cartan subalgebra of the complexification gc containing as.
Let <S>+ be the set of positive roots of (gc, ac) with respect to an ordering compatible
with the given Iwasawa decomposition, and let P+ be the set of a € $+ such that
a|a6 ^ 0. Let X±a be the corresponding Weyl basis [Wl, p. 4]. For a E P+,
write X±a = Y±a + Z±a where Y±a E tc and Z±a E sc. Define H\ E a6 by
B(H\,h) = \(h) = a(h) (where h E as and cv|o6 = A, and B is a nondegenerate
Killing form on g). Define the Ad(/()-invariant differential operator ws E S(sc) by

ujs = J2Hi+2 Yl z°z-<*
i a€P+

(where //, is an orthonormal basis for aB with respect to B). Define

<^=    2    YaY-a + Y-aYa
a\a,=\

and define ui2\ similarly. Set

wx=wm+WA+ Cj2\    and   u2\ =uim + Co2\

where ujm is the Casimir operator of m computed relative to B. Also note that
when G is semisimple,

£/f2=£(2m(A) + 8m(2A))//A2
i A

(because the two sides agree on homogeneous quadratics on os).
Let V, r = (ry,r2) be a unitary double representation of K, and define the

unitary (single) representation p: K —► 2(V) by p(k) ■ v = Ty(k) ■ v ■ r2(fc_1).
Extend p to fi. as usual. Let s' be the set of s-regular elements of s.

LEMMA 15. Let f: s1 —► V be a differentiable function and suppose for all
kEK and xEs' EH that f(kxk~l) = Ty(k)f(x)T2(k~1). Let a E a's = as Ds'.
Then

f(a;uje) = f (a-J^Hf) + f (a-^irnW +m(2X))X(a)-1Hx\

-£A(a)-2(M^)-fM"2A))-/(a)
A

(where the sum is over the positive short restricted roots E^j. of(g,aB)). Write S(u>s)
for the differential operator appearing on the right in the above equation.

PROOF. If a e as C H then

(Ado"1 - l)Y±a = -i [a,X±a+9X±a] = +a(a)Z±a.

Thus we have

p(Y±a)f(a) = ry(Y±a)f(a) - f(a)r2(Y±a) = f(a;+a(a)Z±a)
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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and

li(Y.aYa)f(a) = f(a;Ada-1Y_a(-a(a)Za) - (-a(a)Za)Y.a)

= f(a; -a(a)2Z_aZa - a(a) [Y-a,Za])

n(YaY-a)f(a) = f(a; -a(a)2ZaZ-a + a(a) [Ya, Z-a]).

Now H0 = [Ya,Z-a] + [Za,Y-a] G as C f) satisfies B(H0,h) = 0(h) (for all h E as)
where /? = a\as = A or 2A for some A. Thus we obtain

f(a;ujt) = f(a;J2Hf+2 £  ZaZ_A
\ aeP+ /

= f(a;J2 H? + ^(a)"1/^ ) ~ E 0(ar*n(YaY-a + Y_aYa) ■ f(a).
\ p+ J      p+

The result now follows from the remarks preceding the lemma, and the observation
that p(uim) ■ f(a) = 0 so that

(p(ux) + jm(w2a)) • f(a) = (jt{ux) - \p(u2x)) ■ f(a).        D

Now, retaining the above notation, let K2x be the smallest subgroup of K
containing Af and with Lie algebra t2x, and define Kx similarly. If Da G Kx,
let P(Dx): V —► V be the orthogonal projection onto the space of vectors in V
which transform according to Dx under p, and define |Da|2 G R by the equation
p(ojx)P(ox) = |J>a|2P(Da). Define P(D2A) and |D2A|2 similarly, for D2A G K2X. Note
that the space Vm of p(M)-invariant vectors in V is stable under P(ox) and P(D2A).
In the next lemma we assume that the reductive group corresponding to H is of
rank = 1 (i.e., dim a5 = 1), so /CA = K.

LEMMA 16. Let H be a Cartan motion group such that dim a6 = 1. Let DA G
Kx and D2A G K2x and suppose P(Da)P(D2A)|Vm 7^ 0. Then there is a (unique)
nonnegative integer solution to the equation

fc2 + (ra(A) + ra(2A) - l)fc = (2m(A) + 8ra(2A))(|DA|2 - ||D2A|2)

(where |D2A|2 = 0 if ra(2A) = 0). Writing k = fc(DA,D2A) for this solution, define
the endomorphism R ofVM ® S(as) by

/? = ^P(DA)P(D2A)®Afc

(where the sum is over those DA G Kx and D2A G K2x such that P(Da)P(D2A)|Vm ^
0, and Xk is the operator of multiplication by Xk in S(as)). Then the image of
/3(r): S(s,r) —> V ® S(as) is precisely equal to the space of Ws-invariants in the
image R(Vm 0 5(o6)). In fact R is an isomorphism of I(as)-algebras from Vm <8>c
I(aB) onto the image of /3(t).

PROOF. (1) Let us observe that for a polynomial function /g5(s, r), f(a;6(tJt)n)
= w" • f(a) defined on a's extends to an element of S(as,r) and for n > ^ deg / =
^deg(/|as) we have f(a;6(u>e)n) = 0 (for all a E a's). But we also have a converse
statement. Let /: s' —> V be a rational function on s which is everywhere defined on
s' and satisfies f(kxk~l) = r1(k)f(x)r2(k~1) for fc G K and x E s' C H. Suppose

'   that /|os G S(as,r) and that /(•; <5(ws)n) is locally bounded on as for every positive
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integer n. Then I claim that / is actually a polynomial function and / G S(s,t).
Let us first prove this.

(2) Clearly f(-;6(uj,)n) has a rational extension to s', namely w" • /. We show
that the assumption that /(•; S(w$)n) is locally bounded implies that us-f is locally
bounded on s. Thus let x E s and select a compact neighborhood U of x in s which
is invariant under Ad(K). Then the set of values assumed by w™ • / on U Pis' has
the same bound as the set of values assumed on U fl a's by w" • /|as = f(-;6(ujt)n)
(because w™ commutes with the p(k) and p is unitary). Moreover, this bound is
finite since U C\ as is compact. Thus w™ • / (defined on s') is locally bounded on s.

(3) Next we show that f(-;6(ue)n) = 0 for n > ±deg(/|a5). Recall the poly-
nomial function ir2 = \\X2 (product over A G E+) used in the proof of Lemma
11. From the formula for o(ws) given in Lemma 15 we see that ir26(us) is a dif-
ferential operator with polynomial coefficients defined on as. Thus f(-;ir26(oJt)) is
a polynomial function on a8. But by assumption f(-;6(u>B)) = f(-;ir26(u)B))/ir2 is
locally bounded on as, and this implies that the numerator is divisible by 7r2 (since
7t2 is a product of real valued linear functions). Thus /(-;<5(ws)) is a polynomial
function on os, and it clearly has degree < deg(/|as) - 2. By induction, /(•; 6(ojs)n)
is a polynomial function of degree < deg(/|a6) - 2n, and so if n > \ deg(/|as) then
f(-;6(ujt)n) = 0. (Induction is valid here because we only use the facts that f\a$ is
a polynomial function and /(•; 6(ujs)n) is locally bounded; we do not need the fact
that/|a6G5(os,r).)

(4) From steps (2) and (3) we see that for sufficiently large n, <j" • / = 0 on s
in the sense of distributions. But w™ is an elliptic differential operator and so / is
actually a real-analytic function defined on all of s. Next we compute its Taylor
series at the origin.

(5) Choose any element X E s Ct) and let n be an integer n > deg(/|as). Choose
fc G K and H E a6 C fj such that Ad fc • H = X. But then

/(0;X") = p(k) ■ /(0; Hn) = p(k) • (/|o,)(0; Hn) = 0.

Since the Xn (as X varies in s) span the space of homogeneous differential operators
of degree n, we see that the homogeneous terms in the Taylor series of / of degree
> deg(/|a9) all vanish. This implies that / is a polynomial function, / G S(s,r).

(6) Let wx E Ws be the reflection in the root plane corresponding to A, and
assume ra(2A) ^ 0. Then it is not hard to see that /C2A contains a representative
of wx ■ (Consider the reductive analytic group G2A C G corresponding to m + ae +
n2X + n-2X,soK°x = KnG2X.)

(7) So far we have not invoked the rank one assumption; we do so now. Let
Ox E Kx and D2A G /T2A and suppose P(ox)P(o2x)\Vm / 0. Select a nonzero
v E Vm such that P(DA)P(D2A) • v = v. By step (6), since w E K2x, we may
also assume that p(w) ■ v = ±v for w E Ws- Call v even if p(w) ■ v = v and
odd if p(w) ■ v = —v (where w is the nontrivial element of Ws). Let us show
that v <S> S(as) intersects the image of /?(r). Clearly the IVs-invariant polynomial
functions in v ® S(as) are exactly those of the form u ■ ̂ 2cmXm where cm = 0
unless the parity of m agrees with the parity of v. Also if fc G K and a E as
and Ad fc • a = a then either k E M or a = 0. Thus if the polynomial function
/' = v ■ X]cmAm has no constant term, or if DA is the trivial representation, then
f(a) = ri(fc)/(a)r2(fc_1) whenever Adfca = a. Thus by Lemma 11 we may choose
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a sufficiently large integer n such that v ■ A2n ̂ cmXm lies in the image of f3(r)
whenever v ■ ̂2cmXm satisfies both of the above conditions.

The classical Chevalley restriction theorem [H, p. 430] says that the restriction of
I(s), the /(-invariants in S(s), consists of the even polynomials on os. Since S(s,r)
is a module over I(s), the image of fi(r) is a module over the even polynomials.
Thus there is a nonnegative integer fc = fc(DA, D2A) such that v 0 S(as) Pl image l3(t)
consists precisely of the polynomial functions v ■ ̂ cmXm where the sum is over
a finite set of integers ra > fc(DA,D2A) with the parity of ra equal to the parity of
v. Note that fc(DA,D2A) is zero if DA is trivial, and is greater than zero when DA is
nontrivial (because then i> is not /i(/f)-invariant so v ■ cr, $L S(as,r)).

(8) We have yet to show that the nonnegative integer fc = fc(DA, D2A) found in step
(7) satisfies the quadratic equation in the statement of the lemma. We note here a
few properties of this quadratic. Observe that the coefficient of fc, ra(A) -|-m(2A) —1,
is nonnegative, so the quadratic has at most one nonnegative root. Also we show
that the right-hand side is nonnegative, and positive if DA is nontrivial, so that the
quadratic does have a nonnegative root which is positive if DA is nontrivial.

To see this, observe that

|DA|2 = B(A + 2pA,A)    and    |D2A|2 = P(A2 + 2p2A, A2)

where A is the highest weight of DA G K and 2pA is the sum of the positive roots
of K, and similarly for A2 and 2p2x on /C2A (and B is the fixed Killing form on g).
In particular |DA|2 > 0 if DA is nontrivial, so we are done if ra(2A) = 0.

So suppose ra(2A) ^ 0; then ra(2A) is odd so there is a real root a of (gc,ac)
(where ac D a6) such that a]aB = 2A [Wl, p. 33], and /C2A contains a Cartan
subgroup of G and of K. Let A, A2, px and p2A of the preceding paragraph refer to
this Cartan subalgebra (with a fixed ordering). Assuming that P(Da)P(D2A)|Vm /
0, it follows that D2A occurs in 0A with positive multiplicity, and so A2 is also a
weight of DA. This implies that B(A2,A2) < B(A, A) and that A—A2 is a nonnegative
integral linear combination of positive roots of K. Also px is a highest weight of t,
hence of £2A, so px is dominant integral for E2A. We may assume that the ordering
is chosen so that a simple root a of t2A is positive for t. Then B(px,a) > 0 so

2B(Px - p2X,a)/B(a,a) = 2B(px,a)/B(a,a) - 1 > 0.

Hence px — p2x is dominant on t2A and so

B(A2 + 2p2X,A2) < B(A2, A2) + B(2Px, A2) < B(A, A) + B(2Px,A).

Thus we see that |D2A|2 < |DA|2 and so |DA|2-||D2A|2 > ±|DA|2 > 0 if DA is nontrivial.
(9) Let us now show that the nonnegative integer fc = fc(0A,D2A) found in step

(7) satisfies the quadratic equation in the statement of the lemma. So let v E Vm,
v ^ 0, and suppose that P(DA)P(D2A) -w = v and p(w) -v = ±v (w E Ws nontrivial).
Let f = v-YrcmAm be any polynomial function in vS>S(as). Step (1) suggests that
it might be helpful to look for the condition that /(•;<5(ws)m) be locally bounded
on a, for arbitrarily large ra, and by step (3), this is the same as requesting that it
be a polynomial function. So let us compute f(-;6(ujs)m).

First note that A(;//A) is the constant function, X(-;Hx) = (2ra(A) + 8ra(2A))_1.
Define the quadratic (in /)

<7(Da,D2a,0 = (2ra(A) + 8ra(2A))-1(/2 + (ra(A) + ra(2A) - 1)/) - |DA|2 + ||D2A|2.
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Using the formula for 6(us) derived in Lemma 15, we find, after a small computa-
tion, that

f(-,6(u,)) = v ■ Y, c„o(DA,D2A,n)A"-2.
n>0

Now the necessary and sufficient condition that f(-;S(ujs)) be locally bounded is
that the coefficients of A-1 and A-2 in this expression be zero. Thus f(-;6(uJB))
is locally bounded if and only if cy = c0 = 0, or c0 = 0 and Z = 1 is a root of
o(Da,D2A,/) = 0, or Ci = 0 and DA is trivial.

Proceeding by induction, assume that /(•; 8(u>B)1) is locally bounded for all Z < m.
Then (as we will see) we have

TO — 1

(*) f(-,6(u*)m)=v-  J2 c„ n<?(5A,D2A,n-2/)A"-2m.
n>2m        1=0

Applying S(ujb) once more to / gives
m

f(-,6(w,)m+1)=v    Y,    cnJ]^A,D2A,n-2/)A"-2m-2
n>2m + 2       (=0

m

+ v ■ c2m+1 JJ 9(Da,D2A, 2ra + 1 - 2Z)A~\
(=0

m

+ v ■ c2m JJ o(DA,D2A, 2ra - 2Z)A"2.
1=0

Thus again in order for /(•;<!>(ws)m+1) to be locally bounded (assuming f(-;6(ujB)1)
is, for Z < ra) it is necessary and sufficient that the coefficients of A-1 and A-2
should vanish (which gives formula (*) by induction). Hence, assuming f(-;6(ujB)1)
is locally bounded for Z < ra, we find that /(•; o(w6)m+1) is locally bounded if and
only if c2m+i = 0 and c2m = 0, or

m

"odd" c2m=0and ]^9(Da,D2A,2/+ 1) = 0, or
1=0

m

"even" c2m+1 = 0 and J^[ g(DA,D2A, 2/) = 0.
(=o

This inductive calculation shows that if / is a nonzero polynomial function of
the form / = v ■ Yln>k C"A" (with ck ^ 0), then /(•; 6(coB)m) is locally bounded for
all ra if and only if either cn = 0 for all even n and the product "odd" vanishes for
all ra with 2ra + 1 > fc, or c„ = 0 for all odd n and the product "even" vanishes
for all ra with 2ra > fc. This is equivalent to requiring that cn = 0 unless the
parity of n is the same as the parity of fc and o(Da,D2A,/) = 0 for some Z < fc of
the same parity as fc. Note that the quadratic g(DA,D2A,) is essentially the same
as the quadratic which appears in the statement of the lemma. Thus by step (8),
q{ox,o2x,) has exactly one nonnegative root, which is positive if DA is nontrivial.
(This justifies the implicit assertion above that at most one of the products "even"
or "odd" vanishes for large n.)
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Now according to step (7), v 0 S(aB) intersects the image (3(t) in the set of
polynomial functions of the form / = v ■ ̂ Zn>kcnXn, where if cn ^ 0 then the
parity of n is the same as that of v and of fc = fc(DA,D2A). Moreover, by the first
sentence of step (1), for such an / in the intersection, /(•; 6(ujs)m) is locally bounded
for all positive integers ra. Thus Z < fc and the parity of fc is the same as that of
Z (since the intersection is not zero). On the other hand, let /' = v ■ Sn>;CnAn
where if cn ^ 0 then the parities of n, Z and v are all the same, and Z is a root of
the quadratic q. Then /' G S(as,r) (since Z > 0 if DA is nontrivial by step (8)),
and also f'(-;6(uja)m) is locally bounded for all positive integers ra. Thus /' lies in
the image of f3(r) (by Lemma 11 and the converse statement in step (1)) and so
I > k(ox,o2x) (by definition in step (7)).

We have shown that the nonnegative integer fc(DA,D2A) is a root of the quadratic
equation given in the statement of the present lemma and that

v ® S(aB) n image/?(r) = (v ® S(aB))w- n R(VM 0 S(aB)).

(10) In order to complete the proof, we must put together the various pieces
«®S(a6)n image/?(r). First note that we have the direct sum decomposition

S(s,t)= J2 P(*x) ■ S(s,t)
*x€K

(where P{0x) is the projection on the DA-isotypic component under p). Since re-
striction clearly respects this direct sum decomposition,

image 0(t) =  ^ P(DA) • image/3(r).
*x€K

A theorem of Kostant states that the trivial representation of Af occurs no more
than once in any DA G K. Thus given DA G K such that P(ox) • Vm # 0, there is
exactly one D2A G K2X such that P(DA)P(D2A)|UM 7^ 0, and then P(Da)P(D2A)|Vm =
P(Da)|Vm- Also if v E Vm and P(ox) ■ v = v then already p(w) ■ v = ±v (where w
is the nontrivial element of WB). Examining the definition of the endomorphism R
given in the statement of the lemma, we see that on P{px) • Vm 0 S(aB), R is just
the multiplication operator

P(DA)P = PP(DA) = P(DA)0Afc

(where fc = fc(DA,D2A) and D2A is determined by DA). Step (9) proves that the Weyl
group invariants in the image R(P(ox) • Vm 0 5(a5)) coincides with the space of
/ G P(ox) ■ S(as,r) such that /(-;6(w,)m) is locally bounded for all m, and by step
(1), this space is just P(ox) • image f3(r). Thus the space of iys-invariants in

R(VM 0 5(0,)) = J2 ^a)P(Vm ® S(aB))
coincides with the space

^P(DA) • image (J(r) = image 0(r).

The proof is finished.    □
REMARK 17. Lemma 16 is peculiar in that its statement lies in algebraic geom-

etry but the proof seems to require some analysis (at least in step (4)). It would
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seem desirable to have a proof in algebraic geometry, but I do not see how to con-
coct it. As for Kostant's multiplicity one theorem, I will here give a simple proof
along the lines of [H, p. 408, Theorem 4.1].

First note that since M contains the center of G, we may assume that G is
faithfully embedded in a complexification Gc- Then (K2\,M) and (K, /f2A) are
rank one compact symmetric pairs; the Cartan involutions are #2A = Ada and
6x = Ada2 respectively, where a = exp(ir\f—lH/2X(H)) computed in Gc (H E aB,
X(H) ^ 0). If ra(2A) = 0 we are done (zonal case). If ra(2A) > 1 then according
to another theorem of Kostant [W, Theorem 8.11.3], for each Y E t)x +1)2\ there
exists an ra G M such that AdmY = -Y. Thus for any / G C°°(K) such that / is
bi-invariant under Af, /(fc) = /(fc-1) for all kEK, and again we are done. Finally
if ra(2A) = 1, then a surreptitious peek at the classification shows that 62A = m-l-
center of t, which implies the result.

If ra(2A) = 0,1 this fact also follows from the general multiplicity one result: if
ir is a principal series representation of G and D G K then [ir: D] < 1. Thus for
any irreducible representation ir of G, we have [ir: D] < [D : e] for an appropriate
choice t E M (by subquotient). But now K = SO(n) and Af = SO(n — 1), or
K = SU(n)x center and Af = S(U(n - 1) x U(l)). So we analytically continue
D to K = SO(n — 1,1) or K = SU(n — 1,1), and use induction on dimension to
obtain [D : e] < 1. Thus [ir : D] < 1.    □

We are now ready to proceed to the statement of the main result of this paper.
Let G be a reductive group of arbitrary rank (satisfying the assumptions at the
beginning of §2) and let H be the corresponding Cartan motion group. Let £+ be
the system of positive short (restricted) roots of the pair (g, aB). For A G E+ define

gA = m + o6 + nA + n2A + n_A + n_2A.

Then gA is a 0-stable reductive subalgebra of g which is rank one modulo its center,
and gA = fiA + sA = (t f) gx) + (s fl gA) is a Cartan decomposition. Let GA be the
analytic subgroup of G corresponding to gA, and set Kx = K fl GA and AfA =
Af fl Gx, and let Hx = Kx x sA be the corresponding Cartan motion group. It is
not difficult to extend the result of Lemma 16 to Hx, but for this it is convenient
to introduce the following definition.

Definition. For DA g Kx define

\ox\20 = B(Ax + 2px,Ax)/B(X,X)
where AA is the highest weight of DA and px is the half sum of the positive roots of
Kx with respect to a convenient Cartan subalgebra, and B is the Killing form ofG.
Similarly i/D2A G K2x (K2x corresponding to t n (m + aB + n2A + n_2A)) set

|D2a|q = B(A2X + 2p2x,A2X)/B(X, A).
The point is that any compact factor of GA lies in AfA, so |DA|n and |D2A|n do not

depend on the normalization of B coming from the ambient group G (when DA and
D2A contain the trivial representation of MA). Let sA = [gA,gA] C\Sx and aA = sA f)aB
and aA = ker(A: aB —► R). Then oA lies in the center of Hx and sA = aA + sA and
Lemma 16 applies to Kx x sA. Thus if V, r is a double unitary representation of K
and rA is its restriction to /CA then

5(sA,rA) = 5(sA,rA)-S(aA).
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By Lemma 16 the image of the restriction map /3(rA) is

/(a6,rA,A) - imagep(rx) = J2P^)V^®S(ax)XkC [X2]

where fc = fc(DA,D2A) is the nonnegative solution of

(18) fc2 + (ra(A) + ra(2A) - l)fc = |DA|2 - ||D2A|2.

(Note that if SA is the Killing form of GA then PA(A,A)_1 = 2ra(A) + 8ra(2A).)
Now we can describe the image of /?(r).

DEFINITION. Define I(aB,r) c V 0 S(aB) by

I(aB,T) = f]{I(aB,rx,X)]XEE\}

where /(as,rA, A) is described in the preceding paragraph.

THEOREM 19.   Let f: aB —* V.  Then the following are equivalent:
(a) / lies in the image of the restriction map (3(r): S(s, r) —► V 0 S(aB).
(b)fEl(aB,r).
(c) / G S(aB,r) and f(-;6(u)B)m) is locally bounded for all positive integers m.
(d) /(Adra • h) = ry(m)f(h)r2(m~l) for all ra G Af* (= the normalizer of aB in

K) and f Ef\{I(aB,rx,X)]XEY,\,X simple).
PROOF, (a) implies (c) follows from Lemma 11 and 15 and the converse comes

from the first five steps of Lemma 16 (together with the last part of Lemma 11).
To show (a) implies (d), let / G S(s, r) be such that f]aB = f, and let Hx Q H be
the Cartan motion group described above (used to define /(a6,rA,A)). Assume A
is a simple root. The Af*-invariance in (d) follows from the fact that / G S(as,r)
(the second condition in the definition). That / G /(as,rA, A) can be seen by noting
that /|sA G S(sx,t\) and / is simply the restriction of /|sA to aB.

To show that (d) implies (b), recall that every short root is conjugate under Ws
to a simple root. It is easy to see that

Adw-/(a6,rA,A) = I(aB,Tw.x, w ■ A).

Since in (d) we assume that / G /(o6,rA,A) for A simple, we have f = w ■ f E
f)I(aB,rx,X), intersection over all short roots. So now it only remains to show that
(b) implies (a).

(1) The first job is to show that I(aB,r) C S(aB,r). For this we will show that
M is generated by (J{-^a|^ G E+}. So let M1 be the subgroup of M generated by
(J AfA. Of course M1 contains the identity component of Af. Next let us show that
Kf) center of G lies in Af1.

Let gc = ac + ]T g£" (a E $) be a root space decomposition, where the Cartan
subalgebra ac D aB and $ is the set of roots gc, ac. Let r C $ be a maximal strongly
orthogonal system of real roots [Wl, pp. 93-97]. "Real" means that we can find
Xa E g" n g and AT_Q G g~a n g such that Xa, AT_a and Ha = [Xa,X-a] E aB
form a Chevalley basis (over R) for a subalgebra s[(2, a) C g which is isomorphic
to s((2, R). "Strongly orthogonal" implies that the elements oi sl(2,a) commute
with those of s[(2, /?) for a ^ j3 (a, f3 E T). Let sl(2,r) be the subalgebra of g
spanned by aB and the si(2,a) for a ET. Let Sl(2,T) be the analytic subgroup
of G generated by si (2, T). "Maximal" implies that t — tnsl(2, T) is a Cartan
subalgebra of t and T = K f) Sl(2, T) is a Cartan subgroup of K.
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Now /CD center of G lies in T and clearly it also lies in the center of Sl(2,T).
On the other hand, since aB C sl(2, T), /Cn center of Sl(2,T) lies in Af. But /Cn
center of Sl(2,T) is generated by exp(ac (It) (contained in the identity component
of Af) and the various centers of sl(2, a) (a E T), and these are contained in MA
for A = a\ae (or A = 5a|as). Thus Af1 contains /Cn center of G.

So now we may as well assume that G is a semisimple adjoint group. Let G be
a covering group of G which is contained in a simply connected complexification
Gc, and let M be the centralizer of aB in K. According to [Wl, pp. 28, 213], Af
is generated by its identity component and the mA = exp(ir^/f-lHx), where exp
is computed in Gc and PA G aB satisfies B(h,Hx) = cX(h) (for all h E aB) and
A(/7A) = 2. Now the covering map G —> G takes M onto M, so Af is generated by
its identity component and the images raA of the raA. On the other hand, applying
the same construction and lemmas in [Wl] to GA, we see that raA can be computed
relative to GA, and raA G GA. So we see that Af is generated by (j MA, A G £+.

(2) If / G I(aB, r) then / G /(a6,rA, A) for each A. Thus f(h) = ry(m)f(h)r2(m-1)
for all h E aB and ra G AfA, and since this holds for any A G E+, we find that f(h)
is Af-invariant. Now we can ask whether f(w ■ h) = p(w) ■ f(h) for w EWB. But
since / G /(os,rA, A) this holds for the simple reflections, hence for all WB. Thus /
satisfies the second condition in the definition of S(aB,r). (Note that this gives (b)
implies (d).)

(3) Now we verify that each / G I(aB,r) satisfies the first condition in the defi-
nition of S(aB,r). Such an / lies in /(a6,rA,A) = image/?(rA) for all A (Lemma 16),
so if h E aB and k E Kx and Ad fc ■ h = h then f(h) = p(k) ■ f(h). Note that this
equation holds for all k E Kx if h E oA, and if h £ aA then Adk ■ h = h implies
kEMx.

Let A: a8 —+ C be real linear and let /Ca = {fc G /C|Adfc • A = A} (this has
nothing to do with the notation /CA). In the reductive group G associated to H,
there is a standard construction of a parabolic subgroup Pa of G corresponding
to A. Namely Pa = LaN where La is the centralizer of A in G and N is from
the Iwasawa decomposition. It is easy to see that /Ca = K n La = K n Pa- On
the other hand, if K\ and LA denote the identity components, then La = LA ■ M
[Wl, p. 74] so Ka = K°a- M. Define Z7A G aBC by B(h,HA) = A(h) for all h E aB.
Then 6a — tn + X){^a|A(Pa) = 0} is the Lie algebra of Ka, so /Ca is generated
by M and the /CA such that X(Ha) = 0 (i.e., the /CA C /Ca). Hence to show that
p(k) ■ /(//a) = /(Pa) for all fc G /Ca, it suffices to show this for fc G Af (which was
done in step (2)) and for k E Kx when X(Ha) = 0 (which we noted above).

(4) Now we complexify everything as in the last part of the proof of Lemma 11. If
/ G /(a6, r) then / G S(aB,r) so / extends to a rational function /: s'c —> V defined
everywhere on s'c. If we show that / is actually a polynomial function defined on
sc we will be done.

Define cta and ct in S(aBC) by

cta = f|{/i2|/iG £+and/i ^ A}    and    ct = ^{cta|A G £+}.
It is clear that ct is WVinvariant, so it extends to a polynomial function ct on sc
which is Ad /Cc-invariant. Let s" be the set of non-zeros of ct. Also cta is invariant by
Wx (the Weyl group of (gA,as)) and so extends to an Ad/CAc-invariant polynomial
cta on sAc. Let sAc be the set of x E sAc such that a(x) ^ 0 and cta(x) ^ 0.
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If x E s" write x = xs + xn where xs is semisimple and xn is nilpotent and
[xs,xn] = 0 (this relative to the Lie algebra structure of gc). By [K&R, p. 772],
after conjugating by Kc, we may assume that xs E aBC and then ct(x) = cr(xs) ^ 0.
From the form of ct, either xs is regular or exactly one short root vanishes on xs.
If xs is regular then x = xsE a'BC and ct(x) ^ 0 and cta(x) ^ 0 so x E s^ for every
A G £+. If exactly one root, say A, vanishes on xs then xn E sAc (gA is the centralizer
of xs in g) and cta(x„) = 0 [K&R, p. 772] and cta(x) = cta(xs) = ct(xs) ^ 0 so
x E sAc for this A G Yf\. Thus each point ofs" is conjugate under Kc to an element
of sAc for some A.

We have to do a bit better. Let G be a compact subset ofs". Then I claim that
there are compact sets GA C sAc such that every point of C is conjugate under Kc
to a point of GA for some A (depending on the point of C). For £ > 0 define

Uxe = {xEsXc: |ct(x)| > e, |cta(x)| > e and ]x\ < 1/e}.

Then the PA£ have compact closure in sAc and form a nested open covering of sAc (as
e-»0). Moreover, the orbit map (fc, x) •—► Ad fc • x: Kcx Uxe —> s^' is a submersion.
(The Jacobian determinant of adx: 6cngAc —♦ scngAc divides an appropriate power
of cta(x) ^ 0, where g^ is the perpendicular complement of gAc in gc.) Thus the
Ad Kc ■ Uxe form an open covering of s" as A and e vary. Choosing e > 0 such that
C C (Jx AdKc ■ Uxe, we can take CA to be the closure of Uxe-

Let / G I(aB,r) and let /: s'c —> V be its extension to a rational function.
But also, by definition, / G /(asc,rA,A), so / extends to a polynomial function
/a : sAc —» V by Lemma 16, and fx = fon sAc r\s'c. If C is any compact set in s"
and Cx are as above, then

sup |/| < max sup  |/A| < oo.
cns'c >>   cxns'c

Thus / is locally bounded on s", and the complement of s'c in s" is a thin set (the
zeros of ir2) so / extends to a rational function defined on all oi s'c Us" [G&R, p.
19].

(5) In order to complete the proof, all that remains is to show that the comple-
ment of s'c U s" in sc, that is the algebraic set of common zeros of 7f2 and a, has
codimension two in sc [G&R, p. 247]. For this it suffices to show that 7f2 and ct are
relatively prime in S(sc). Let p be the greatest common divisor of 7r2 and ct. Since
ff2 and ct are Ad /Cc-invariant, for any fc G Kc, Ad fc ■ p is also a g.c.d. for ir2 and ct.
Thus Ad fc ■ p = c(k)p where c is a character of Kc. Hence p|asc is a common factor
of 7r2 = 7f2|asc and ct = CT|a6c of the same degree as p. But from their definitions it
is clear that 7t2 and ct are relatively prime, so p|asc is constant, and 7f2 and fr are
relatively prime.

This completes the proof of the theorem.    □
In fact it can be shown that the g.c.d. of any two elements of I(s) is actually

Ad/Cc-invariant (i.e. c(fc) = 1 in the preceding paragraph).
Unfortunately, Theorem 19 is difficult to use for two reasons. First, the numbers

fc(DA,D2A) and the projections P(Dx) are hard to calculate. Also this theorem ex-
presses the image of fi(r) as an intersection which is again hard to compute (partly
because the P(ox) do not commute as A varies). This is especially bad since we will
be interested in the image of this intersection under certain maps. In this case, an
approximate answer is more useful than the exact solution.
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Let ra be the largest of the numbers 5|Ai + A21 as Ai and A2 vary over the highest
weights of the representations fc y-> Ty(k) and fc t-+ r2(fc_1), respectively, of K on
V, and

|AX + A2|2 = B(Ai + A2 + 2pk, Ai + A2)
(where pk is the half sum of the positive roots of t). Let P be a semistandard
parabolic subgroup of the reductive group G associated to H [Wl, p. 69]. Set
KP = K n P and put

C(KP) = {vE V\ry(k) ■ v • r2(fc_1) = v for all fc G KP}.

Let u be the Lie algebra of the unipotent radical of P and let 7r(P) G S(aB) be the
polynomial function h t—► det(ad Zi|u). Set 7r(P) = 1 if P = G.

DEFINITION. Put

J'(at,r) = Y,C(KP) 0 S(at)ir(P)m
p

where the vector space sum is over all semistandard parabolics ofG. Then J'(aB,r)
is stable under the action of WB. Let J(aB,r) be the space of WB-invariants in
J'(as,r).

COROLLARY 20.   Image0(r) = I(aB,r) contains J(aB,r). Moreover in the case

V=2(Ex,)    and   Ty(k)vr2(l) = px>(k) o v o px,(l),

J(aB,r) is a subalgebra of the image of /3y. X—>2(Ex,) ® S(aB).

PROOF. Because of Theorem 19(d), it suffices to show that

C(KP) 0 S(aB)ir(P)m C f) j X]f(°a) ■ VM 0 5(a5)Afc|A is simple \

(fc = fc(DA,D2A)) for each semistandard PEG, and this amounts to verifying that
Afc divides 7r(P)m when P(ox) - VM D C(KP) # {0}.

Let ( + u be the Levi decomposition of the Lie algebra of P, and let Sp =
E[ + Eu C E be the set of roots for the adjoint action of aB on I + u [Wl, pp. 14,
72]. Then

7r(P) = f]{Am(A)(2A)m(2A)|A G Eu}

and n(P)5 is divisible by
A2m(A) + 8m(2A) (A g vjj

(since m(2A) < ra(A) - 1).
If A G Ei n T,\ then /CA C KP and P(dx) ■ Vm n C(KP) ^ {0} implies that DA is

the trivial representation of /CA. Thus fc = fc(DA,D2A) = 0 and Xk divides 7t(P)m.
So suppose A G ±EU n Yf\. From equation (18) it is clear that fc < |DA|0 (since

|£>2a|8 > 0). Now

|DA|o = (2m(A) + 8ra(2A))BA(AA + 2pA, AA)
< (2ra(A) + 8ra(2A))B(AA + 2Px, AA).

(The last inequality follows from the fact that SA is computed via a trace on the
subspace gA C g).   Now let wA be the Casimir operator /CA computed relative

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



22 CARY RADER

to B\tx x tx and let u>k be the Casimir operator of K relative to B.   Then for
veP(ox)-Vm,

p(ux) ■ v = B(AX + 2px, Ax) ■ v
and

rt(^k)\VM = Y,li(^)\VM        (AGE1.).
Since this is a sum of positive operators, the largest eigenvalue of any of the
p(uix)]Vm does not exceed ra/5, the largest eigenvalue of p(ujk). Thus fc(DA,D2A) <
(2ra(A) + 8ra(2A))ra/5 and A* divides 7r(P)m (where A G ±EU).

In order to prove the last statement it suffices to show that J(aB,r) is a subalgebra
of 2(Exj) 0 S(aB). But this follows from the observation that if P and Q are
standard parabolic subgroups ofG, then C(Kp)-C(Kq) = C(KPr)Q) and 7r(PnQ)
is the least common multiple of 7r(P) and ir(Q).    D

4. Applications to harmonic analysis. We now return to the problem of pa-
rameterizing [/cS(P)]; the solution was initiated in Lemmas 13 and 14. We showed
there that any spherical function of type D was equivalent to an irreducible factor
in the Jordan-Holder series of certain induced spherical functions. To complete the
parameterization we will show that in fact these induced spherical functions are
irreducible. First we need to expand the notation a bit.

Let H = K x s be a Cartan motion group and let s = aB + 3 be the orthogonal
decomposition described at the beginning of §2. If x G H, write uniquely x =
(k(x),H(x) + z) where k(x) E K, H(x) E aB and z G 3. If A: aB —► C is real-
linear, then x t—> A o P(x) gives a linear extension to s with 3 contained in the
kernel. As in Lemma 13, let /Ca be the centralizer of A o H, and let e G Ka- Let
ir = ir(e, A) be the representation of H induced from (fc,X) i-> pe(k)eAH^ : Ka x
s —> 2(Ee). Formula (9) gives a formula for the corresponding induced spherical
function $(e, A,D).

Lemma 21. Let $ be a spherical function of type D G K. Then there exists
a real-linear function A : aB —► C and an e G Ka with [D: e] > 0 such that $ is
equivalent to the spherical function $(e, A,D) realized on

PD|e =rIomKA(Er,,Ee)

by the formula

$(e,A,D,x)-Z= / eAH{xk) I o px,(K(k~1xk))dk.
Jk

On the other hand the 3>(e,A, D) are spherical functions of type D (that is the corre-
sponding representation of Icr,(H) is irreducible). Finally $(ei,Ai,D) is equivalent
to $(e2, A2,D) if and only if there is a w E WB such that Ai = w- A2 and ty =w-t2.

PROOF. To show irreducibility of 3>(e, A,D), it suffices to show that the corre-
sponding representation of X is irreducible (because H is connected so X is dense
in the space of /C-central compactly supported distributions in the weak topology
induced by real-analytic functions, such as $(e, A, D)). Recalling the formula

$(e, A,D,1;DK) ■ I = I o (pa ® eA)(pB(DK))

(Dk g X and Z G F0|e) for this representation of X, we see that it will suffice to show
that DK h(1® eA) o 0x,(DK) takes X onto the centralizer of Px,(Ka) in 2(Er,).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SPHERICAL FUNCTIONS ON CARTAN MOTION GROUPS 23

More generally, we show that if r = (ry,r2): K x K —► 2(V) is a double
representation of K and A G asc, then

(1 0 eA) o /3(r, S(s, r)) = C(KA) = {v E V\T1(k)vr2(k-1) = v for all fc G KK}-

Recall then in the proof of Theorem 19, step (3), it was observed that /Ca =
K n Pa where Pa = LaN is a semistandard parabolic subgroup of G and La
is the centralizer of A in G. Now the roots of the unipotent radical of Pa are
precisely the roots which are positive on A, so, in the notation around Corollary
20, eA(7r(PA)m) # 0. Choose D E S(aB) such that

eA(L>7r(PA)m) = 1    and    ewA(D) = 0   if w • A ± A

(w E WB). Then by Corollary 20, if L G C(Kk) and [Wa] is the order of the
centralizer of A in WB, we have that

[Wa]_1  JZ Ty(w-l)Lr2(w)o3>Adw-1(Dir(PA)m)
wew,

lies in the image f3(r, S(s,r)) and is mapped to L by 1 0 eA. This proves the
irreduciblity.

As for the equivalences, Lemma 13 tells us that $(ei,Ai,D) and $(e2,A2,D)
are disjoint unless Ay = w ■ A2 for some w E WB. If ra G Af* represents w
then Kwa2 = ra/CA2ra_1 and w ■ t2 is the equivalence class of fc i-> pt2(m~1km).
Clearly Z »-► Z o /zD(ra_1): PD|t2 —» Fj,\w.,2 defines an equivalence of $(e2, A2,D) and
<I>(w -e2, w • A2,D). Thus we may as well assume Ai = A2, so assuming $(ei, A,D) is
equivalent to $(e2,A,D) we are to show ty =i2. But this follows from

Px,(ati)EC(KA) = (l®eA)opi(X).

Now if $: G —► 2(F) is any spherical function, then Lemma 13 says that there
exists A and c G Ka and an isomorphism Q: F —► P0|e which gives an equivalence
of the representations of X deduced from $ and $(e, A, D). But then by Proposition
7, the real-analytic function on H (connected) x y-* $(e, A,D,x) - Q$(x)Q~l has
zero Taylor series at 1 G H, so [$] = [$(e, A, D)].    □

We are now able to parameterize the nonunitary dual [H] of H (up to Naimark
equivalence). The result is already suggested by Lemma 14.

LEMMA 22. Let A: aB —► C be real-linear and let e G Ka- Let ir(t,A) be the
representation of H induced from (fc,X) *-> pe(k)eAH(-x^: Ka x s —» 2(Et). Then
7t(e, A) is TCI. Also 7r(ei,Ai) and ir(e2,A2) are Naimark equivalent if and only if
Ai = w ■ A2 and ey = w ■ e2 for some w EWB. Finally any TCI representation of H
is Naimark equivalent to ir(e,A) for some e, A.

PROOF. If we could show that ir(t, A) is TCI, then the statement about equiva-
lence would follow from Corollary 3 and Lemma 21, and the final assertion would be
a consequence of Lemma 14. To see that ir = ir(e,A) is TCI, note first that ir(Cc(G))
is a K x /C-submodule of 2(E) (where E is the representation space of ir). Ii ir
were not TCI, that is 7r(Gc(G)) were not dense in 2(E) (simple convergence), then
there would exist a double /C-module V and a nonzero double /C-homomorphism
T: 2(E) -♦ V such that T(tt(/)) = 0 for all / G CC(G). Thus to prove ir is
TCI, it suffices to show that given a unitary double /C-module V, r and a double
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/C-homomorphism T: 2(E) -> V, if T(tt(x)) = 0 for all x G H then T = 0 (see
[H-CIII, p. 130]).

But T(7r(x)) is given by an Eisenstein integral of Harish-Chandra. Using the no-
tation of Remark 8, formula (10) simplifies substantially for Cartan motion groups.
For x = (fc, X) write k(x) = k and p(x) = X. Set v = ipT(l) E V (where 1 G 2(Ea)
is the unity), so v is an arbitrary vector in V satisfying

Ty(m)v = vr2(m)    (ttieKa)       and       Ty(ae) ■ v = v.

Define p(k) ■ v = Ty(k)vr2(k~1). Then the Eisenstein integral is given by

(23) E(P, e, A, rpr, x) = t(k(x)) [ p(k) ■ v eAH{xk) dk
Jk

(where P = Ka xs and v = ^r(l))-
Now P(P, e, A, V>r) defines a linear functional on S(s,r) given by

(E(P,c,A,ijT)\Y,Vn®Dsn) =Y,{E(P,t,A,ipT,l;Dsn)]vn)

= Y,(v\vn)eAoH(l;Dsn)

= (w|(l ® eA) o/? (r, £\n ® L>sn))

(where (|) is the inner product on V). Thus to show that T ^ 0 implies T(7r(x)) ^
0 (and so that ir = ir(t,A) is TCI), it suffices to show that (v|(10eA)o/3(r,D)) ^ 0
for some D E S(s,t) (for any given v ^ 0 in C(Ka))- But the existence of such a
D follows from

(l®eA)o/3(r,S(s,r)) = G(/CA)

which was shown in the proof of Lemma 21.    □
Next we describe the Fell topology on [H]. For A, v E a£ define

|A + yf-iv]2 = B(X, X) + B(v, v).

Let J^ be the set of all pairs (e,A) where A: aB —> C is real-linear and e G Ka-
Given (e, A) G f^, if e > 0 is sufficiently small then |A — A'| < e implies Ka' Q Ka-
Then

f7 = {(e',A')€^: |A-A'| < e and [e\KA.:t!] > 0}

defines a basis for the neighborhoods of (e, A) in the topology we give !FC. If D G K,
let 9^(0) = {(e, A) G J^|[D : e] > 0}, so J^(D) is open in 9^. Now WB acts on 9~c and
9^(o) by w ■ (e, A) = (w ■ e, w ■ A). Let 9rc/WB and f?~c(o)/WB be the quotient spaces
by this action of WB, with the quotient topologies.

THEOREM 24. The map (e, A) i-> br(e,A)] : 9'C/WB -» [H] defines a homeomor-
phism of^c/WB ivith the above topology onto the Banach dual [H] of H with the Fell
topology. Similarly (e, A) i-> [$(e, A,D)] : .%(o)/WB —> [Icx,(H)] is a homeomorphism.

PROOF. Lemmas 21 and 22 say that the maps in the statement of the theorem
are one to one and onto. Also by Proposition 5, it suffices to show that the second
map is a homeomorphism (since ,f^(d) is open in &~c).
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Let (ea,Aa) be a net converging to (e, A) in 9^(D)/WB, so we may as well as-
sume that Aa converges to A. First suppose that Ka0 and ea = e' are constant,
independent of a. Then the formula in Lemma 21 implies

limtr$(e', Aa,D, x)

= limd(e')-1 f tr{P(e')px,(K(k-1xk))}eA°H(xkUk
Jk

= £{[e" : e']tr$(e",A,D, x)|e" G KA and [D : e"] > 0}

uniformly on compacta. Using the Chinese remainder theorem, choose ft E Icd(H)
such that $(e", A, D, ft) is the identity matrix if e" = e and is zero otherwise. Then

AQ(/) = [e:e']-1tr$(e',AQ,D, / */«)

converges to tr$(e, A,D,/) for all / G Icx,(H). Now in general there are only a
finite number of choices for /Ca« and ea, so considering in turn each of the cofinal
subnets on which these are constant, we find that the map f^(())/WB —* [Icx,(H)] is
continuous.

Let (ea, AQ) be a net in !?c(d)/WB, set $a = $(ea,AQ,D) and suppose that [$Q]
converges to [$] = [$(e,A,D)] in [IcS(H)]. Recall that this means given any A G
j/($) we can choose A^ G J/($Q) such that lim A^(/) = A(/) for all / G Ice(H).
Fix / such that $(/) = 1 and set Xa(D) = X'a(f * D) (where D E X is thought of as
a distribution with support at {1}). Then lim Xa(D) = A(D) for all D EX. This
is to say that the identity map from [Icx,(H)] onto [A>(£)] is continuous. So now it
is sufficient to show that the obvious map [A>(£)] —► 9Q(o)/Ws is continuous.

Now if D E 1 01(aB), a subalgebra of the center of /3x,(X), then D is represented
by scalars, so if A(l) ^ 0 we have

lim eA"(D) = lim AQ(D)/Aa(l) = eA(L>).

Thus we may as well assume that AQ converges to A and, as above, we may suppose
eQ = c' is independent of a. But then

lirntr$(e',AQ,D,l;D) = ^{[e,e']tr^(t,A,o,l;D)]tEKfA and [o : e] > 0}

for all D EX. Now the rest of the proof, the continuity of [/?o(£)] —> &c(?)/WB, is
a consequence of the following lemma.

LEMMA 25. Let A be an associative algebra with 1 over C and suppose every
TCI representation of A is finite dimensional. Let [$a] be a net in [A] such that
lim tr$Q(a) exists for all a E A.  Then

lim tr$Q(a) = Y^ra($)tr$(a)

(finite sum) where ra($) ^ 0 if and only if{$a] converges to [$] in the Fell topology
on [A].

PROOF. Define the linear map t: A —► C by t(a) = lim tr$a(a). Set d =
lim tr$a(l) and put

I ={bE A\t(ab) = 0 for all a E A}.
Then t(ab) = t(ba) (for a, b E A) and / is a two sided ideal.
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(1) dim(A//) < d2. To see this, suppose that by,..., bn have linearly independent
images in A/1. If V = Cn then we have a linear map A: A —* Vv defined by

(A(a)|c) = t ((X>60 a) (c = (cy,...,cn) E C")

and c /0 implies (A(a)|c) / 0 for some a E A (by definition of /). Thus A is
surjective, so we can choose ay,..., an E A such that t(biOj) = 6,j. (In particular
the bilinear form (a, b) *—> t(ab) is nondegenerate on A/I.) But then the linear maps
6 i—► tr$a(baj) (where j = 1,... ,n) are linearly independent for a sufficiently large.
Thus

n < dim $Q(A) = d2    (a large).

(2) Let $i,..., $fc be the various inequivalent irreducible representations of A
which factor through A/1. Then a i—► tr$,(a) defines a linear functional on A/I,
so by step (1) we may choose ai E A such that

tr$,(a) = t(aai) = lim tr<J>Q(aaj).

Thus [$Q] converges to [$j] for each i.
(3) Now we show that if [$Q] converges to [$] in [A] then $ factors through A/1.

IIBE2(Cd),let
d

zd + Y,MB)zd-k
k=l

be its characteristic polynomial. Then there exist universal polynomials pk such
that

V^(B)=pfc(tr(B),...,tr(Bfc)).

(Upper triangulate B and apply [Weyl, p. 39].) In particular

<pk(a) =lim <Pk($a(a)) = lim pfc(tr$Q(a),... ,tr$a(ak)) = pk(t(a),... ,t(ak))

exists. Now a matrix satisfies its own characteristic polynomial, so
d

*«(ad) + Yl <Pk(*a(a))*a(ad-k) = 0
fc=i

for all large a. If A G sf($) choose AQ G £/($a) such that lim Xa(a) = X(a) for
all aEA. Then

0 = lim Xa (ad + Y <pk(*a(a))ad-k)

= lim [Xa(ad) + Y M$c,(a))\a(ad-k)}

= X(ad) + YM°-)Ho-d-k)

= x{ad + YMa)ad-k).

Since this holds for all A G s/ ($) we see that <t(a) satisfies the polynomial equation

$(a)d + YMa)*(a)d-k = 0

for all aEA.
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Now if a G / then <pk(ab) = pk(t(ab),... ,t((ab)k)) = pk(0,...,0) = 0 for all
b E A. Then we have $(a6)d = 0 for all b E A, which implies $(a) = 0 since $ is
irreducible. That is if [$Q] converges to [$] then $ factors through A/I.

(4) Next we show that the ring A/I is semisimple. Suppose, if possible, that
b 7^ 0 lies in the nilpotent radical of A/I. Replacing b by abn for suitable a E A
and n G N, we can suppose that t(b) = 1 and t(bl) = 0 for Z > 1. Now the universal
polynomials mentioned in the preceding paragraph are determined by solving the
recursion relation

fc
(fc + l)<pk+1(a) + Y <t>m(a)t(ak-m+1) = 0

m=0

(where </>o(a) = 1). Substituting t(b) = 1 and t(bl) = 0 for Z > 0, we obtain
<pk(b) = ( — l)k/k\. As in the previous paragraph, this gives

for any linear functional A: A/I —* C. In particular, if 1(b) denotes left multiplica-
tion by b on A/1, then 1(b) satisfies the polynomial equation

d     I     y\kyd-k

Y{ \     = o-^        fc!fc=0

But this is not divisible by the minimal polynomial of 1(b) (which is of the form
zm =0 since 1(b) is nilpotent). This contradiction shows that A/I is semisimple.

(5) So now write 1 = ey H-h ek as a sum of orthogonal central idempotents, so
a r~* t(aei) is a central linear functional on the simple ideal e^ • A/1. If 4>i,..., $k
are as in step (2), then we can suppose the enumeration is such that $i(ey) = % • 1.
Then t(aei) = ra,tr$»(a) with ra^ = Z(ei)/tr$i(ei) ^ 0 (because otherwise t(aei) =
0 for all a E A so e^ El). So now for any a E A

t(a) = t (aYei) = y^Wttr^i(a),

and, taking account of steps (2) and (3), the result is proved.    □
It is curious to observe that the parameterization we have obtained for the

Naimark dual of H is the same as one would get if Mackey's theory of induced
representations were applicable to these nonunitary representations. (It is not.)
Let

SF = {(e, A) G ̂ |A = \/-lA where A is real valued} .

Then Mackey's theory says that the unitary dual H of H is parameterized by SF/WB
exactly as in Theorem 24.

Next we turn to the Plancherel formula for H. It is shown in [Wl, p. 333] that
if ir is an admissible representation of H on a Hilbert space and if / G C£°(H) then
ir(f) is a trace class operator and

/^ew(/)=tr7r(/)        (feC?(H))
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is a central distribution depending only on the Naimark equivalence class of ir. In
fact for r > 0 let

Wr(H) = lfEC™(H): sup\f(Dy;(k,X);D2)]p(X)er\xUoo\

where Dy,D2 E $), and p is a polynomial function on s and |X|2 = B(X,X). If
ir = ir(e,A) and | Re A|2 = S(Re A, Re A) < r2, then clearly / i—► ir(f) is a trace
class operator for / G %.(H), and / i-> tr7r(/) is continuous with respect to the
obvious seminorms on Wr(H).

A standard computation, [Wl, p. 464], gives a formula for the characters Qn
of the irreducible (induced) representations ir = ir(e, A) we have parameterized.
Namely

(26) 67r(/) = /        j /(fcrafc-1, Adfc • X) trpt(m) eA{x) dkdmdX

for / G Wr(H). Note that 0,r is given by a measure, but not generally by a
locally integrable class function (because the support of Qn is {fcrafc-1 |fc G K and
ra G /Ca} x s which usually has empty interior). In particular these formulas hold
for Wo(H) (the Schwartz space) and unitary ir (the real part of A, £KA = 0).

Normalize the Lebesgue measures on subspaces of s and sv so that the measure
of the unit cube with respect to B is one, and normalize the Haar measures of closed
subgroups of K to have total mass one. Choose the Haar measure dx = dk dX on
H. Let E+ be the set of positive roots of (g,aB) and ra(A) be the multiplicity of
A G E+, with ra(iA) = 0 if \X is not in E+. Let ps = \ Y,{m(X)X]X G E+} and
set px = (pB,X)/(X,X). Define the constant

(27) 7(P0) = J] n\m(\X) + Px)(2ir/(X, X))m^'2 /T(±m(A) + \m(\\) + Px)
A

where the product is over all A G E+ and T is the classical gamma function.

THEOREM 28. With the above normalization of Haar measures, the Plancherel
formula for H is given by

i \ — dim s   /       \ -dim a,
/(l) = [IV,]-1 (v^tt) (s/2) 7(Po)

x /  n ](x,v)\mWYdW@«e^Wd»

for all f E Wo(H) (absolute convergence).

PROOF. The proof of this theorem appears in [K& L] except for the computation
of the normalizing constant. However, since the proof is so simple, I will reproduce
it. First, substituting formula (26) and applying the Plancherel formula for Af, we
have

Y dW©-(e,t,)(/) = / Jf(i,xy<Adk"WdXdk.
teM

It turns out that

/,   , /    ^N-dim(A7M)e-2p,H(n) dn =  ^J V0Z(/C/M).
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(Here, Haar measures on closed subgroups of G and on K/M are normalized to be
the Riemannian measures corresponding to the invariant Riemann metric induced
by B as in [H-CI, p. 106].) Substituting these formulas into the integral given in the
statement of the theorem and using [H, p. 381] and dim(/C/Af) = dim s — dim as
gives

vol(K/M) f    Yl  \(x>»)\ [   I f(I,X)ei^kuWdXdkdv
■'a> Ae£ + JkJs

= [WB]f Jf(l,X)el^x>dXda
= [WB](2ir)dim°f(l,0).    D

REMARK 29. The constant 7(Pn) appears in Harish-Chandra's Plancherel for-
mula [H-CIII, Theorem 27.3]. It can be computed, as in [W2, p. 324], using the
Gindikin Karpelevic technique. (Note that the Riemannian normalization of Haar
measures satisfies the precondition [W2, p. 320, t]. The rank one case can be hand-
led by noting that fcMA \-> Adfc • PA identifies /CA/AfA with the sphere of radius
1/(A|A) in Sx, where PA G a6 nsA and A(PA) = 1.) I may as well record the other
constants.

Let P = MAN be a standard parabolic subgroup of the reductive group G and
let E(P) be the set of roots of o in n (where a is the Lie algebra of A, etc.). For
a G E(P) define

E+(a) = {A G E+: A|a = ka with fc > 0},

pa = ~£{m(A)A:AGE+(a)},

E+=     (J    E+(a),
a€V(P)

T(X, u) = r(±m(±A) + vx)/T(±m(\) + >(±A) + ux),

where v E avc and v\ = (v, A)/(A, A) and A G £+. Then in the notation of [H-CIII,
p. 125]

-y(P) = !(G/A) = i(Po)h(*Po) = (V2) vol(/C//CP)

=   n  r(A,^)(27r/(A,A)r(A>/2.
ageJ

Similarly using the notation of [H-CIII, p. 139]

c(P)=C(G/A)=7p|p7(/r1=7Ur1    n    7(M«M)
a€X(P)

=   II     II   r(A,Pa)/r(A,p6)
a€Z(P)X€-E+(a)

(where Afa is the centralizer of ker a C a in G).    □

5. Asymptotics. Our next goal is to obtain a description of the asymptotic
behavior of spherical functions on Cartan motion groups, and of the Eisenstein
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integrals

E(A,x)-v= [ p(k-1)-veAH{Adkx)dk
Jk

for x G s C H and complex A G a)fc. The technique is a variation of the method of
stationary phase, but not like that in [M]. Here we conceive of the phase function
as being the real vector valued function fc i-> P(Adfc-): K —► 2(aB) and think
of A, h as several (complex) parameters replacing the usual real parameter t [BC,
Theorem 3.1]. A similar result in the zonal case and with regular A and h is given
in [BC, Theorems 3.9 and 4.3].

Fix an ordering on the roots of the reductive group G associated to H relative
to our choice of aB C s.   Let P = LU be a standard parabolic subgroup of G.
Reverting to the notation around Corollary 20, let E^ be the roots of aB in the Levi
component L of P, and let Ep be the roots in the unipotent radical U. Call h E aBC
dominant if d\X(h) > 0 and 3X(h) > 0 when OiX(h) = 0 (for all positive roots A).
(Here !H and 3 denote the real and imaginary parts respectively.)  For real a > 0
define the set

W(P, a) = {h E aBC: h is dominant, and X(h) = 0 for A G E^, and

\X(h)\ >a\h\ >0for AGE+}.

Then every point of o6C is conjugate by WB to a point of ^(P, a) for some (unique)
choice of P and some a > 0. Ii A: aB —> C is real linear, write A G W(P,a) if
PA G W(P, a). Also set %(P, a) = &(P, a) n os. Since

E(w ■ A, Ad fc • x) • v = p(k)E(A, x) • p(w~l)v,

it will suffice to obtain asymptotic estimates for x = h E W0(P, a) and A G %?(Q, b).
For fixed P and Q and for w E WQ\WB/WP define 6W = {X E Ej|w • A G ±E,£}.

LEMMA 30.   Let h E %(P,a) and A E &(Q,b) and let g E C°°(K). Recalling
the notation Kp = K fl P, define

V(k) = /      ( /     g(mkl)dm    dl.
Jkp \Jkq j

Then there is an asymptotic expansion

[ g(k)eAH^MkhUk
Jk

= Y c- e<A'""h>   II W) w-X(HA))-mW/2
w€Wq\w,/Wp \eew

sr   J -I      \ _L V^ Pl(g,A,h) I

in the sense that the difference is dominated by ct(o)(|A| \h\)~N~N",/2'1e(-mA^h'>
(where Nw = ^Zxes mW and ct is a seminorm on C°°(K) of order <
Z(N + Nw/2 + 1)), this for each integer N > 0. Here I is a multi-index de-
fined on Qw and the pi(g,A,h) are polynomials in A, h of degree < 2|/|/3. Each
Pi(g,A,h) is a sum of terms homogeneous of degree k (say) simultaneously in A
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and h with coefficients of the form Dkg(w) for some differential operators Dk of
order < 2|/| — 3fc. The square root is computed as the product of the branches of
the square roots (X(h)w ■ X(Ha))1^2 with arguments satisfying -ir/2 < arg < 7r/2.
Finally the constants cw are given by

(2ir)N™/2vol(Kp)vol(KQ)
Cw ~ vol(/C)vol(/Cp n w~lKQw)

where the volumes are computed relative to the Riemannian measures.

REMARK 31. Part of the assertion of the lemma is the uniformity in A and h of
the asymptotic approximation. If w E Wq\Wb/Wp does not lie in the double coset
of 1, then it may very well be that 91(A\wh — h) is negative, and if this is of the order
of magnitude of |A| \h\, then the part of the asymptotic expansion corresponding to
w will be of order (|A| \h\)'Ne^mA^ lor all N. That is, it will be swamped by the
error term. However, if you assume that

M(A\wh -h)> -G(log|A| \h\)k       (C > 0)
for some fc, then the part corresponding to w contributes significantly to the asymp-
totic expansion whenever N > fc. A straightforward application of the method of
stationary phase (as given in [M]) would not yield this result. It would force the
real part to go to infinity at the same rate as |A| ]h], and hence force to zero any
contribution corresponding to w with 91(A\wh) < 91(A\h). (See [BC, Theorem
4.3].) Divisibility problems prevent us from getting such a clean formula as in [BC,
Theorem 3.9]. The differential operators mentioned in the lemma are described
more fully in step (8) of the proof.

PROOF. We wish to estimate

I(g,A,h)= f g(k)eAH{Adkh)dk.
Jk

(1) First let us set up some notation. For the phase function, write

<p(A,k,h) =AH(Ad k-h).
Replace exp(x) = ex. Let t) be the orthogonal complement of m in t and let rj = ^ 9a
be the orthogonal decomposition as described at the beginning of §3. Writing
Y = Y^,Yx accordingly, set \Y\\ = -B(Yx,Yx). Define the quadratic form

q(h,A,Y)=   Y Hh)HHA)\Y\2x.
AGE +

(2) The structure of the critical set for the phase function fc h-» 0(A, fc, h) is given
in [DKV, p. 316]. The critical set is ]\{KQwKP]w E WQ\WB/WP} (where WP and
Wq are the centralizers of Wa(P,a) and W(Q,b) in WB respectively). The Hessian
on KqwI C KqwKp is given by -q(h, w_1A, AdZ ■ Y). (Notice that KP = KP ■ M
and the Lie algebra of Kp is spanned by m and the i)A such that X(h) = 0. Thus
Kp is the centralizer of any particular h E ^(P^). Also Wp is generated by the
reflections in the roots which vanish on h, so Wp is the Weyl group of the Levi
component of P. Similar facts hold for Kq and Wq . Thus the critical set depends
only on P and Q with h E Wa(P,a) and A G ^(Q, b), as the notation suggests.)

Similar results hold for ffA<p(A, fc, h) = <p(M, fc, h) (where Af is the real part of
A).   For the moment write Km and Wm for the centralizer of Af in K and WB
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respectively. Below we show that the Hessian of <p(M, fc, h) is negative semidefinite
on KmwKp if and only if w lies in the double coset of 1 in Wm\Wb/Wp. This
implies that the maximum of the real part of the phase function is e^h1 and occurs
precisely on KmIKp. As we will see, this accounts for the exponential factor in
the error term.

To see the assertion about negative semidefiniteness, it suffices to find a positive
root 0 such that (3(h) > 0 and /3(w~1M) < 0, assuming that w £ Wm • 1 ■ Wp.
Since h and Af lie in the closed positive Weyl chamber, this gives (3 > 0 and
w ■ (3 < 0. Suppose w has the shortest length of any element in its double coset
Wm • vj ■ Wp, and let w = wy... wi be a shortest word for w in terms of reflections
wk in the simple root ak. The positive roots which are made negative by w are
of the form f3k = wi... wk+y ■ ak. Now w is also the shortest element of its coset
w ■ Wp. If 0 = (3k(h) = ak(wk+y.. .W[-h) then Wk centralizes Wfc+i... w; • h and so
wy... Wk-yWk+y ...wi is a shorter element of w ■ Wp. This shows that j3k(h) ^ 0,
and so (3k(h) > 0 since h lies in the closed Weyl chamber. Similarly the equation
w ■ j3k(M) = -ak(wk-y.. .wy ■ M) = 0 yields a shorter element of Wm • w • Wp.
Thus any (3 > 0 with w ■ (3 < 0 fulfills our requirements.

(3) We generalize the statement we are trying to prove, eliminating extraneous
details. Let s be a parameter varying in a compact set S. Assume only that K
is a smooth manifold equipped with a measure dk which is locally a positive G°°
multiple of Lebesgue measure. Assume that the phase function is of the form

d>(A,s,k) = (A\A(s,k))
for some smooth function A: S x K —> o, where o is a real vector space and A: a —► C
is real linear. (Here A replaces A 0 h in the statement of the lemma.) Assume that
the critical set K$ is a manifold which is independent of s and A, and that the
Hessian is nondegenerate transversally to the critical set, for all s G S and all AeW,
where g7 C ov\{0} is a closed conical set. (Note that W = {A <g> h\A G ^(Q, b) and
h E %>b(P,a)} is a closed conical set in d£c <8> as\{0}.)

Let J^T be the set of components of K^, so the phase function fc >—> (A|A(s, fc))
is constant on each G G 3£. Then I claim that there is a measure dpc(A,s)
on each G, which is smooth in s and holomorphic and homogeneous of degree
—cZ/2 = —(dim K — dim C)/2 in A, such that we have the asymptotic expansion

r- r.       3N

/   g(k)e^A^k^ dk ^ Y eiAWS'C))       YD^^s^)9(u)dpc(A,s,u)
Jk Ce.T •'cm=0

for any g E C%°(K). This means that the difference is dominated by
CT(g)|A|"iv-d/2-1e^iHA)

where ct is a seminorm on C£°(K) (of order < 3(/V + d/2 + 1)) and 6(ffr\A) is the
supremum of (SHA|A(s, fc)) for s E S and fc in the support of g. The Dm(A, s, u) are
differential operators on K of degree 2ra which are rational functions of A, a sum
of operators homogeneous of degrees between —ra/3 and —ra (and smooth in s).

(4) Let g E C%°(K) and suppose that g vanishes to order 2TV on the critical set
K^ (i.e., all derivitives of order < 2A^^ — 1 of g are zero on K$). Then we show that

1/ g(k)e^A(s<k» dk  <a(g)]A]-Ne6^
\Jk
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where ct is a seminorm of order < ZN on C^°(K) and <S(9tA) is as in step (3).
To see this, let Xi be a finite collection of vector fields on K which span the

tangent space at each point of a neighborhood U of the support of g. Set

ai = Xi<p(A/\A\,s,k) = (A\XtA(s,k))/]A\,
and define a = Yl\ai\2- Then a vanishes to order two on K$ and nowhere else in
U. Define the vector field X on U\K^ by X = 52i(a~i/a)Xi (where bar is complex
conjugate). Then

X ■ exp(<^(A, s, fc)) = |A| exp(4>(A, s, fc)).
Let X* = Yi + fa be the formal adjoint of Xi with respect to dk, where Yx is a
vector field and /?; is a function, so

X*(alf/ap+l) = {aYtfaf) -(p+ l)aJYt(a) + ar3talf}/ap+2
where the numerator vanishes to order n + 2 on K$ if / vanishes to order n there.
Thus by induction, (X*)N ■ g = f/a2N off K$, where the numerator vanishes to
order 4/Y on K^ and involves derivatives of g of order < N.

Locally we can take K$ C K to be the inclusion Rm C Rm x Rn of Euclidean
spaces with standard coordinates (uy,... ,um,xy,..., xn). Replacing g by its 2iVth
order Taylor remainder

^^=(2^|/g/Vo1(1-ir"1^(U,^)^
and afi and a by their first and second order remainders, respectively, gives

(X*)N-9(u,x) = -~wl   Y   *'9i(u.x)\
\\I\=4N J

where the coefficients 0/ are G°° functions constructed from derivatives of g of order
<3W.

Still working locally, we may suppose the Xi are renumbered so that

where Cij for i, j = l,...,n is an invertible matrix of smooth functions on U.
Taking the first order Taylor expansion of ai gives

ai(u, x) = Y XkCij(u, 0)Hjk(u, 0) + Ri
j,k

where Hjk(u,0) is the Hessian matrix of <j>, assumed nonsingular on Rm (= K^)
and the remainder Ri vanishes to second order on Rm. This gives

n

a(u,x) > Y \cHHikXk? ~ R + Y la'!2
i=l i>n

> C\x]2       (C > 0)
for x near zero. But now if |/| = AN then |x7/a2Ar| < C~2N, so x'/a2N are
bounded near K^.
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Now choose a finite partition of unity on S x {AeW : ]A] = 1} xU which is fine
enough so that the above local calclations are valid. Then

|A|"   / g(k)e^A^k^dk   < f \(X*)N ■ g(k)]em^A^k^ dk
Jk Jk

<e«(iHA)    f   \(X*)N .g(k)]dk.
Jk

Breaking apart this final integral according to the partition of unity, and observing
that the coefficients of X and all of their derivatives with respect to fc can be
bounded uniformly in s and A when fc stays outside of a neighborhood of K^,
completes the proof of the assertion of step (4). This says that we can replace g by
its 2Arth order Taylor series, locally (times a cutoff function), to achieve an error
term of order N, and then subsequent analysis will not increase the order 37Y of ct.

(5) By step four, we can work locally near K$, and suppose we are dealing
with Rm C Rm x R". Write dk = J(u,x)dudx and let g E Cc°°(Rm x R") be
supported near zero. Factoring the constant e^A^a^u'°^'> out of the integral, it
suffices to obtain the asymptotic expansion of

I(g, A) = ff g(u, x)J(u, x)eWA(s,u,x)) du dx

where now we assume

A(s, u, x) = —q(s, u, x) + h(s, u, x)

and

-q(s,u,x) =-(A   ^ ZZij(s,m)i,ij|

is a nondegenerate quadratic form in x, and h vanishes to order three along Rm.
Suppressing variables and using a Taylor expansion on e^h\ we get

I(g,U)= YjffgJ(A\h)ke-"dudx
fc=0

+ f   -L(l-t)M ffgJ(A]h)M+1e-«+thdudxdt.

Take Af odd and set M+l = 2N. Now (A\h)M+1 is a polynomial in A homogeneous
of degree 2N with coefficients which vanish to order ON on Rm. Since the differen-
tial dq vanishes only on Rm to order one and dh vanishes to order two along Rm, we
may assume that the critical set of the new phase function, -q(s, u, x) + th(s, u, x),
intersects the support of g only in Rm. The Hessian along Rm is essentially -2q,
assumed nondegenerate. Thus step (4) implies that the remainder integral in this
Taylor expansion is dominated by

C]A\2N ■ a(g)\A\-3Ne6'(3U)    (some C > 0).

The contribution to the error in the entire integral is

C(J'gVA\-N e{V\A\A(s,u,0)) + 6,(<nA) _
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Here g may be assumed to be supported arbitrarily close to Rm, so we may take
61 (9tA) quadratically small in the distance from Rm. Moreover it is easy to check
that we may assume <5i(9tA.) < 0 when (9tA| -q + h) < 0. Thus the new error term
is of the same or smaller order of magnitude as that of step (4), so we can retain
the error term of step (4).

So now we may assume that the phase function is quadratic in x (and linear
in A). Also step (4) implies that we can replace the amplitudes gJ(A]h)k by their
Taylor series in x to order 2N (times a cutoff function in x). The point is that the
integrand may be extended holomorphically to a neighborhood of Rm in Rm x Cn.
Thus if Zy,..., zn are the coordinates on C™, we can compute our integral as the
integral of a differential form of type (n, 0)

/ a(z)p(s, u, z)e~q(s'u'z*> dzy A ■ • • A dzn du
J\\mxWn

where a E C£°(Cn) is identically one in a neighborhood of the origin and p is a
Taylor polynomial.

(6) Let Q(A) = Q(A, s, u) be the matrix of the quadratic form q. We show that
if Q(A,s,u) has a negative real eigenvalue at any point u of Rm in the support
of g, then the part of the integral coming from a neighborhood of (s, u) does not
contribute to the asymptotic expansion. If Q(A) has a negative real eigenvalue then
Q(A/|A|) = Q(A)/|A| does too; call it —p. Let x + iy E C" be the corresponding
eigenvector. Then

(Q(A)x|x) + (Q(A)y\y) = (Q(A)(x + iy)\x - iy) = -p\A\((x\x) + (y\y)).
This shows that we may choose x as close as we please to Rm and in the support of
g such that 9tg(A, s,u,x) < — C\A] for some constant G > 0. But then the original
phase function satisfies

6(mA) > 3ty(A, s, u, x) > 5R(A|A(s, u, 0)) + G|A|.

Thus the contribution to the asymptotic expansion near (s, u, 0) will be of order

e«(»A)e-C|A|/2 = ^(|A|-Af)e«(!RA)

for all N, hence can be ignored.
(7) So assume Q(A) has no negative real eigenvalues. We follow the proof in

[M, p. 152]. For 0 < t < 1 set Q(A, t) = t ■ 1 + (1 - Z)Q(A/|A|, s, u). Then Q(A, t)
is a nonsingular symmetric matrix with no negative real eigenvalues for all t. On
C slit along the negative real axis, let w1/2 be the branch of the square root with
argument satisfying -7r/2 < arg < 7r/2. Use the usual method, of integrating
(Q(A, t) —w ■ l)~1wx/2 around a large contour, to define the square root Q(A, Z)1/2
which is symmetric and continuous in u, s and A/|A|. I wish to make the change of
variable z h-> Q(A,0)_1/2 • z in the last integral in step (5). So let

ui(u, z) = p(s, u, z)e~q(-s,u^ dzy A • • • A dzn,

holomorphic in z.
Define a chain Tu = rA,s,u in C" by Tu(t, x) = Q(A, t)~l/2-x. Since Q(A, l)"1/2

= 1, the integral in (5) is ffrM)au>du, and since *g(A,0)-1/2Q(A)Q(A,0)-1/2
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= |A| ■ 1 we have

(*)      // au>du
JJru(o,-)

= det(Q~^2) ff a(Q-x'2 ■ x)p(s, u, Q'1'2 ■ x)e'^x^ dxdu

where Q~xl2 = Q(A/]A\)~1/2. (Here det(<3-1/2) is the constant Jacobian deter-
minant for the transformation x <-. Q(A,0)~1/2 ■ x.) On the other hand Stokes'
theorem gives

ff audu- ff aujdu =\ f f  (Ba)udu  < a(g)]A\'Mes^A^
JJru(i,) JJru(o,) \JJru

for all Af. The estimate follows as in step (4) from the fact that da vanishes in a
neighborhood of the critical set and as in step (5) from the fact that

5K(Q(A)Q(A, ty1'2 ■ x | Q(A, t)~1/2 ■ x) > 0   when 5R(Q(A) • x \ x) > 0.

So now it suffices to estimate the integral (*). But this is well known and easy.
First we will have a factor

\A\-XI2 det Q(A/|A|)-1/2 = det Q(A)-1'2

where the branch of the square root is determined as the product of the square
roots of the eigenvalues with argument between —7r/2 and 7r/2. The summands
will involve the Laplacian

= ^EW|A|)-//2Q(A/|A|)^2|-^P(S,.,,)|^

= (£W7^>(^4=0
where we have used the Cauchy-Riemann equations twice, and the symmetry of
Q~1/2. Let (Q(A)~1d/dx\d/dx) denote this last differential operator. Then the
asymptotic expansion of (*) is

deg p/2 . .  m
.codim^/2 j det Q(A)-l/2     £     ̂ (^(A)-1^   £)     P(S,U,X) du

m~ 1=0

+ o(e-*2lAl)

(where 6 > 0 is a constant depending on the size of the ball where a = 1).
Let us unwind all of this. Recall that p was a Taylor polynomial for gJ(A]h)k,

which in turn came from a Taylor series for gJe^hK Thus the derivatives above
can be computed as

(\Q{Arl'L  h)"* 9(u,x)J(u,x)e^h^x»        =Dm(A,s,u)g(u,0)
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(in the notation of step (3)). The Q(A)_1 contribute rational functions in A homo-
geneous of degree -ra and the derivatives contribute a polynomial in A of degree
< 2ra/3 (because h vanishes to order three along x = 0). One may define the
measure det Q(A, s, u)~1/2 du to be zero when Q(A) has a negative real eigenvalue,
or one can define det Q(A, s, u)-1/2 as the product of the square roots of the eigen-
values with arguments satisfying —7r/2 < arg < 7r/2, whichever is convenient. (It
does not matter since there will be no contribution to the asymptotic expansion.)
Looking back at the claim made in step (3), you will find it has been proved.

(8) We explicate the results of steps (3) and (7) in the context expressed in the
lemma, and consider the contribution to the asymptotic expansion coming from the
portion Cw = KqwKp of the critical set. Let r)w be the span of the t)A (defined
at the beginning of §3) for A G Qw = Ep n (±w~1T,q). Then at each point kmwl
of Cw, AdZ-1 • X)w is the orthogonal complement in t of the tangent space of the
manifold Cw. Thus we can choose 6 > 0 such that for —B(Y,Y) < 6 (Y Eftw) the
map

(fc,mw,l, Y) t-+ kmwl exp(AdZ_1 • V) = kmw exp(V")Z

defines a diffeomorphism of the bundle of balls of radius 8 in this normal bundle
onto a neighborhood U of Cw in K.

In these coordinates, Haar measure on K will be expressed

/ f(k)dk= f  J(Y)J(Y)dY
Jk J<,w

where / is supported in U and J(Y) is a Jacobian determinant and

J(Y)= I      f    f(kmwexp(Y)l)dkdl.
J K p •/ Kq

The phase function is given in these coordinates by

4>(A, kmw exp(F)Z, h) = (A\w Ad(exp Y) ■ h)

= (A|t»-ft)-|g(ft,iir1A,y) + /ur1A   Y —,(&dY)mh)
\ m>3 W" I

(expressed as in step (4)). Here

q(h,w~xA,Y)=  Y Kh) w-X(Ha)]Y]2x
Aee„

so the differential operator expressed in step (7) is

(lg(Arl^|^)=  £ (2A(Zi) ̂A(PA)r^A

where wA is the Laplacian on nA. Abbreviate

^T(/i,A,y) = exp/u;-1A  Y ~\ (ady)m ' h) ■
\ m>3      ' /
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Then by step (7), the contribution to the asymptotic expansion coming from Cw is

e(K\Wh),2lT)Nw/2    J|   (X(h)w ■ X(HA))-mW/2
\eew

3N
x Y ^ (E(2AWw ■ ̂(Pa))-1^)" • g(Y)J(Y)H(A, h, Y)

m=0 Y=0

The rest of the constant cw comes from computing the value of J(0). The volumes
can be computed from Remark 29 using

_ (27r)jV-"/2vol(w-1/CQw//Cp n w~lKQw)
°w ~ vol(/C//Cp)

This implies the lemma.    □
REMARK 32. Notice that A and h appear in a symmetric manner in

I(g,A,h)= ( g(k)e^AdkhUk,
Jk

so we could just as well have taken h to be complex in Lemma 30. Then, using the
Cauchy integral formula, the asymptotic expansion for the derivatives of I(g, A, h)
with respect to h can be computed by differentiating the asymptotic formula for
I(g, A, h). (This is not always the case for general asymptotic expansions.) Thus the
asymptotic expansion will formally satisfy the differential equations corresponding
to the radial components of the differential operators in X. This yields recursion
relations satisfied by the p/ in Lemma 30. For example, if G is semisimple and A
and h are regular (and setting po{g, A,h) = g(w)), then the Laplacian ojb on s yields

^(2ra(A)+8ra(2A))(P2+2(A|PA)PA)E(A(g(:;^))^

=  Y  T7^2E^((WA-iW2A + i(n(A)2-2n(A))(A|A))-s,A,/l)

xl/(X(h) w-X(Ha))1

where n(X) = m(X)+m(2X) (using Helgason's example below). However, as pointed
out in [H2, p. 298], the solution of these recursion relations is problematical, because
monomials in the reciprocals of roots fail to be linearly independent. (Helgason's
example is

Y ^WE"*2-* = °
A7^es+     M

where ir® = IlAe*+ A and ®+ 1S tne Positive roots of a semisimple root subsystem
$ C E1, so 7r$ is harmonic.)

Let us record the form taken by the asymptotic expansions for spherical functions
and Eisenstein integrals (but only the leading term since we know so little about
the pj).
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Corollary 33.  Let h g W0(P,a) and A E W(Q,b). Then we have the estimate
E(P,t,A,ijT,h)

Y        cw-iP(KQ)p(w)P(KP)-ve^AM
w£Wp\W,/Wq

x     Yl Wft) wA(Hx))-m^2 +&((\A\ H)-""-1)
.A6G„

(see (23)) where P(Kq) is the orthogonal projection onto the subspace which trans-
forms trivially under Kq and other notation is as in Lemma 30. Similarly

*(e, A,o,kh)-l=        Y        C™1° p™ (P* (*))e<A|w'fc>
w<EWq\Ws/Wp

x     Yl (AW ̂ A(PA))"m(A)/2 +^((|A| Wr"-"1)
.Aeeu,

where
PW(L) = I      I     px,(mwl) o Lo pD(rawZ)_1 dmdl.    D

J K p J Kq

We now turn to the Paley-Wiener Theorem.   Consider the double /C-module
structure r on G°°(/C x K) defined by

(Ti(fci)0r2(fc2))(fc3,fc4) = 4>(kzky,k2kA).
Given / G GC°°(P) define F: H -> C°°(K x K) by P(x)(fci,fc2) = f(kyxk2). Then
clearly

F(kyxk2) = ry(ky)F(x)r2(k2)
and conversely any weakly C£° map F: H —> C°°(K x K) satisfying this property
comes from some / G C%°(H), namely f(x) = P(x)(l, 1).

Let A: s —> C be real-linear and consider ir = ind6 (e~A).    Recall that for
gGG(/C) and/GGC°°(P),

<f)-g(ky) = j jf(kypk2)e^M-g(k^)dpdk2.

That is ir(f) is given by the integral operator

F(A)(ky,k2)=  f f(kypk2)e^pUp   or
(34) h

F(A) = I F(p)e<A|p> dp.

Note that P(Adfc • A) = ry(k)F(A)r2(k~1) and F is (weakly) holomorphic in A.
Now let us do Fourier inversion on P(A).   Let q E s and let J(A) denote the

appropriate Jacobian. Then

F(q) = c f  F(iA)e~{lA^ dA
J$v

= cff  F(Adk-iA)e-{lAdkAMJ(A)dAdk
Jk Jay

= c f    f ry(k-1)F(iA)r2(k)e-{tAlAdk(l) dk J(A)dA.
Jay JK
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But now let x = (l,q) E H and let P(A) be a smooth integral operator on
indf(e-lA) with A real. Then tt(x)* = 7r(x_1) and

7r(x-1)P(A)(fc1,fc2) = P(A)(Zfc1,fc2)e-<tAlAdfc^-«>

as an integral operator. Thus the trace is given by

tr(ir(x)*F(iA)) = / r1(fc-1)P(/A)r2(fc)(Z,l)e-^AlAd'c^dfc.
Jk

Since the Plancherel measure and J (A) agree up to a constant, we see that the
operator valued Fourier transform and its inverse are given by

fr^F,        F(A)=  f F(p)eWp)dp,

F"f,        f(l,q)= f  F(iA)e-^"UA(l,l)
/sv

up to constant multiples.
Let S be a finite subset of K x K and let G£° (H, £) be the space of G£° functions

on H which transform according to 2) under left and right translation (i.e., / =
]T\0liD %€D a0l * / * ar,2).   Note that / transforms according to D if and only if
F does if and only if F does. Let V, r be the unitary double /C-submodule of
C°°(K x K) consisting of those functions which transform according to D under
(Ti,T2), equipped with the L2 norm. Then the ordinary Euclidean Paley-Wiener
theorem gives: The operator valued Fourier transform of Cjf°(H, D) is the space of
entire functions F: s^ —* V satisfying

FfAdfc • Z) = ry(k)F(Z)r2(k~1)

and F is rapidly decreasing and of exponential type r for some r > 0. (That is, for
each integer N > 0 there is a constant Cn such that

||F(Z)|| < CN(1 + ]Z\2)~Ner^z\        (Z E scv).)

Let G be the restriction of such an F to aBC. Then clearly G is entire and rapidly
decreasing and of exponential type r (same r and Cn but now Z E a^c). Also if we
write F = Y^m ^m as a Taylor series of homogeneous polynomials Fm of degree ra
and set Gm = Pm|avc, then G = Y^m Gm is the homogeneous Taylor series of G.
Moreover each Fm lies in S(s,r) so each Gm is in I(aB,r) (see Theorem 19). Thus
we have shown one direction in the following theorem.

THEOREM 35. Let G: a]fc —* V be an entire function. Then G is the operator
valued Fourier transform of a function f E G£°(P,D) if and only if G is rapidly
decreasing and of exponential type r (for some r > 0) and each Gm lies in I(as,r),
where G = J2m ^m is the Taylor series of G with each Gm homogeneous of degree
ra.

PROOF. A similar result, at least in the zonal case, appears in [H2, pp. 299,
313]. Using results from there, we prove it by showing that G extends to an entire
function F on sc satisfying the conditions listed before the lemma.

(1) First we show that an entire function G = J2m Gm: a£c —► V with each Gm
in /(as, t) extends to an entire function on sc. An argument similar to the proof of
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Lemma 11 shows that G extends to a holomorphic function on the set s'c of s-regular
elements. If H corresponds to a rank one group, then Lemma 16, and especially
step (10) in its proof, shows that I(aB,r) is a free module over the algebra I(aB) of
Weyl group invariants. Thus if Vi is a basis for VM with P(0ia)P(0;2a) ■ v« = w< and
if ki = k(dix,Vi2x) as in Lemma 16, then

G(X) = Yv'®xk'GiW

where each G^(A) is entire and Weyl group invariant. Each Vi 0 Afc' extends to a
polynomial function pi E S(sc,r) and by [H2, p. 299] each Gx extends to a /Cc-
invariant entire function Ft on sc. Then F = J2p,Fi provides an entire extension
of G to s^ satisfying P(Adfc ■ Z) = Ty(k)F(Z)r2(k~1) (rank one case). Now steps
(4) and (5) in the proof of Theorem 19 go through to show that G extends to a*
in any rank to an entire function satisfying the /Cc-equivariance condition.

(2) Next we show that the extension F is of exponential type r. Let (-|) be the
Hermitian inner product on V (conjugate linear in the second slot) making Ty and
r2 unitary. Extend to a pairing

(•!•): S(sc,r) x S(sc,t) - I(sc)    where (f]g)(Z) = (f(Z)]g(Z)).

(The /Cc-invariance comes from the fact that Ad fc commutes with complex conju-
gation Z h-» Z for fc G K, and (f]g) is holomorphic.)

Let vy,..., vn be an orthonormal basis for Vm and let p be a polynomial function
on a]fc such that p(p) = 1 and p(w ■ p) = 0 for w ^ 1 in WB. Define the polynomials
ft: C -> vm by

& (A) = Yl*(w)-vi P(w-1'A).

Then ft(w-A) = ri(w)ft(A)r2(io_1) and, replacing p by p7r2n for a sufficiently
large n, Lemma 11 implies that we may assume that each ft G I(aB,r). (If we
assume n > 1 then condition (1), there, is automatically satisfied since then ft
vanishes identically on the singular set.) Let ft: sc —► V be the /Cc-equivariant
extensions and define the matrix Af of /Cc-invariant polynomials by Mtj = (ft|ft).
Let ra = det Af and let Af1' be the adjoint matrix, so Af • Aft = m ■ 1. Define the
function

<S> = Y(F\~9i)Ml]~9].Sc^V
ij

so $ is entire and $(Adfc ■ Z) = Ty(k)^(Z)T2(k~1).
By construction, (ft|ft)(p) = (vi]vj) = 6ij, so there is a Zariski open set U, the

nonzeros of ra in a%c, such that the ft(/i) form a basis for Vm when h E U. Thus
for v E Vm and h E U we have

m(h)-v = Y(v\gi(h))M}j(h)gj(h).
ij

This implies that $]dffc = m]a£c ■ F\a%c and, since restriction is clearly one to one,
that $ = mF.

Suppose 2 6 scv is s-regular. The function fc i-> |fR(Adfc-Z)| (for fc G Kc) is
minimized when Adfc • Z E a^c, as is shown in [H2, p. 300] (using M(Z) = 3(iZ)).
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The functions ^(PlftjAP* are holomorphic and /(-invariant, hence /Cc-invariant,
and for Z = Ad fc ■ A

Y(F\~9i)Ml(Z)  = £(C(A)|ft(A))A4(A)
i i

< Y lft(A)| ]Ml(A)\CN(l + |A|2)-VI*AI
i

< C^^

(choosing N large enough so that J2 Iftl 1^,1(1 + | • \2)~N remains bounded). So
now

\\m(Z)F(Z)\\<Y\9j(Z)\CJer^
j

for any Z which is s-regular. By continuity, this holds for any Z Esyc and then [T,
p. 274] implies that F itself is slowly growing and of exponential type r.

(3) The last sentence implies, by the Euclidean Paley-Wiener theorem, that F is
the Fourier transform of a tempered distribution with compact support in the ball
of radius r. On the other hand if Z = iAd k ■ A lies in the unitary axis is (where
A G a/) then

]\F(Z)\] = \\G(iA)]\<CN(l + \A\2)-N
for all ZV, so F is also the Fourier transform of a G°° function all of whose derivatives
are L2. This implies the theorem.    □

Now drop the assumption that / is /(-finite, and let / G C£°(H) be supported
in K x Br, where Br is the ball of radius r in s. Then again we have the operator
valued Fourier transform G: a]fc —► L2(K x K) given by (34) with A G a)fc. The
easy direction of the proof of the ordinary Paley-Weiner theorem and [Wl, p. 261]
imply that G is (weakly) entire and for any N G N there is a constant Gjv > 0
such that

(36)      ||P(01)G(A)P(02)||2 < Gv(l + N2)-^ + \o2]2rN(l + ]A]2)~Ne^A\

where |0|2 is defined by px>(uk) ■ P(o) = |0|2P(0) and u/k is the Casimir operator
on t computed relative to the (negative definite) restriction of the Killing form
B. Moreover Theorem 35 tells us that the homogeneous Taylor components of
P(0i)G(-)P(02) lie in I(aB,r) for each 0i,02 (where V,t is the subspace of L2(KxK)
which transforms according to Di under rt and o2 under r2).

Conversely, if G: o^c —♦ L2(K x K) has the above properties, then Theorem
35 tells us that each P(oy)G(-)P(o2) is the operator valued Fourier transform of
a function /8l,o2 in C%°(H) supported in K x BT and satisfying /0i,d2 = Co, *
fo,,x>2 * ao2- Now the Sobolev norms generate the C£°(H) topology on the space
of functions supported in the fixed compact set K x BT [T, p. 64]: f}Hysoc = C°°
topologically). Thus the Fourier series

/ = 2-( /»i.»a
{Si,d2)€Kxk

is absolutely convergent in C£°(H) to a smooth function / with support in K x Br.
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Summarizing, we have shown

COROLLARY 37. Let G: a%c -* L2(K x K) be a (weakly) entire function. Then
G is the operator valued Fourier transform of a function f E C%°(H) if and only if
for each N E N, G satisfies an inequality of the form (36), and for each 0i,02 G K
the homogeneous Taylor components of P{0y)G(-)P(o2) lie in I(aB ,r) (where V =
P(oy)L2(K x /C)P(D2)).    D

APPENDIX. Some algebraic lemmas. Here we intend to state some general
algebraic lemmas which were used in the body of the paper. For the proofs, the
reader is referred to [R].

LEMMA. Let X C A be algebras with 1 over C and let Z be a Noetherian
subalgebra of X which is contained in the center of A with 1 E Z. Assume that the
vector space A/X is finite dimensional. Let n: Z —► C be a representation and let
M be the kernel of rj. If a: X —+ A is the inclusion, let a': X/MX —* A/MA be
the natural map induced by a. Then the kernel of a' is contained in the (nilpotent)
radical of X/MX.

The proof of this lemma is by localizing at Af. The finite dimensionality of A/X
is used only to guarantee that the Z-module A/X has a locally finite composition
series in which each factor is a semisimple Z-module.

LEMMA. Let B be a finite dimensional algebra over C, 1 G B, and let <pn: B —»
2(En) be finite dimensional representations of B such that Qker cf>n is a nilpotent
ideal in B. Then every irreducible representation of B occurs in the Jordan-Holder
series of one of the (pn.

The proof uses the Chinese remainder theorem.

LEMMA. Let the notation and assumptions be as in the previous two lemmas,
with B = X/MX. Assume in addition that A is a finite module over Z. Let <f> be
an irreducible representation of X such that 4>\Z = rj ■ 1. Let <jjn be the irreducible
representations of A such that 4>n\Z = n ■ 1. Then <fj occurs in the Jordan-Holder
series of one of the <jjn\X.

For the proof, note that <pn and <f> factor through the finite dimensional algebras
A/MA and B = X/MX, and A/X is finite dimensional. The <f>n are all of the
irreducible representations of A/MA, so f]ker <pn is a nilpotent ideal. But then
Ha'-1 (ker <j>n) is a nilpotent ideal in X/MX by the first lemma, and so the result
follows from the second.

LEMMA. Let A be a finite dimensional algebra over C and let W be a finite
group of automorphisms of A. Let B be the subalgebra of W-invariants in A. Let
<p: A —* 2(F) be an irreducible representation of A. Then <fj]B is a semisimple
representation of B. In particular if A is semisimple then so is B.

PROOF. For w e W define w<j>: A — 2(F) by w4>(a) = ^(w'1 -a), an irreducible
representation of A. Let Wq be the subgroup oi w EW such that w<p is equivalent
to <p, and for each w E Wq let Sw be an equivalence, cjj(a)Sw = Sww(jj(a). Then
w h-> Sw defines a projective representation of Wq on F.

Choose wy,..., wr E W, representatives of W /Wq and choose e, G A such that
Wi<j>(ej) = 6ij ■ 1.   Let 2 = £{C . Sw\w E Wq} and L G 2(F) and suppose
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L o S = S o L for all S E 2. Choose aj G A such that w'<p(ai) = L and put
a = Y eiai> so WiHa) = -£ f°r all i. Since L o S = S o L for all S E 2 we have
S„, o «"0(a) = w.0(a) o Sw = Sw o '"•"Xa) for all w G Wq, so

""0(a) = «'«0(o).
Thus

L=[W:Wq]-1YW'H<i)
i

= [W.Wq]-1[Wq]-1Y  Y  W'Wtta) = <t>(b)
i  weWj,

where
b=[W]~1 Y waEB.

wew

Thus <t>(B) is the commuting algebra of 2, say 2'. But now 2 is the image of the
group algebra of Wq under a projective representation, and since C is algebraically
closed and of characteristic zero, we have 2 = 2" = (f>(B)' which is semisimple.
This implies the result.     □

Note that by breaking the irreducible representations of A up into orbits under
W, one could determine the irreducible representations of B in terms of those of A.

Finally we have the following analogue of the Jacobson density theorem.

PROPOSITION. Let A be an associative algebra over C and letir: A —► 2(E) be
a representation, where E is a Frechet space (so the open mapping theorem holds).
Suppose ir is topologically irreducible and that 1 E 2(E) lies in the closure of ir(A)
in the topology of simple convergence. Suppose that the only continuous operators
which intertwine ir are scalar multiples of the identity. Then ir is TCI.

PROOF. Let En ~ Cn ®£be the direct sum of n copies of E with the product
topology. Let irn = 107r: A —> 2(En) be the diagonal representation of A deduced
form ir.

(1) Let F be a closed 7rn-invariant subspace of En. Then I claim that there is
another closed submodule F' C En such that En = F ffi F' (topologically). To see
this, write En = Ey ffi • • • ffi En where each E, ~ E. Let / = {1,..., n} and let J
be a maximal subset of / such that F + J2j<=j F3 is a direct sum. For each i E I,
Ei n (F + Y,j£j Fj) is a closed submodule of Ei, hence equal to Ei or zero. But if it
were zero we would get a contradiction to the maximality of J. Put F' = Yjej Fj
with the product topology. Then En = F®F' algebraically. Also with the product
topology on F ffi F', the obvious map of F ffi F' onto En is continuous, one-to-one
and onto. Thus by the open mapping theorem En ~ F ffi F' is an isomorphism of
topological vector spaces and of A-modules.

(2) Let M = 2(Cn) 0 1 C 2(En). Ii Q E 2(En) commutes with irn then
Q E M. Also S E 2(En) commutes with M if and only if there is a T G 2(E)
such that S = 1 0 T. This is easy to verify from the hypothesis of Schur's lemma
for bounded operators.

(3) Suppose S G 2(En) commutes with Af and let e E En. I claim that there
is a net ap E A such that 7rn(ap) • e converges to S ■ e. To see this, let F be the
closure of the subspace {7rn(a) ■ e|a G A}. Then F is 7rn-invariant so we can choose
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a 7rra-invariant closed subspace F' with En a F © F''. Let pr be the projection of
En onto F with kernel F'. Since the direct sum is topological, pr is continuous and
commutes with irn. Thus pr G Af and pr • e = e (since 1 is in the simple closure of
7tn(A) so e G F). Thus

Se = Sopre = pro5-eGP

so there is a net apE A such that 7Tn(ap) ■ e —* S ■ e.
(4) Combining (2) and (3) we have shown that if ey,... ,e„ E E and T E 2(E)

then there is a net ap E A such that ir(ap) ei converges to T-e;. This is one version
of the definition of TCI [Wl, p. 228].    □
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