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ABSTRACT The objective of this article is to explore and generalize the notions of soft set and rough
set along with spherical fuzzy set and to introduce the novel concept called spherical fuzzy soft rough
set that is free from all those complications faced by many modern concepts like intuitionistic fuzzy soft
rough set, Pythagorean fuzzy soft rough set, and q-rung orthopair fuzzy soft rough set. Since aggregation
operators are the fundamental tools to translate the complete information into a distinct number, so some
spherical fuzzy soft rough new average aggregation operators are introduced, such as spherical fuzzy soft
rough weighted average, spherical fuzzy soft rough ordered weighted average, and spherical fuzzy soft rough
hybrid average aggregation operators. Also, the basic characteristics of these introduced operators have been
elaborated in detail. Furthermore, a multi-criteria decision-making (MCDM) technique has been developed
and a descriptive example is given to support newly presented work. At the end of this article, a comparative
study of the introduced technique has been established that shows how our work ismore superior and efficient
compared to the picture fuzzy soft set.

INDEX TERMS Spherical fuzzy soft rough set, aggregation operators, multi-criteria decision making.

I. INTRODUCTION
Fuzzy set theory is the extension of the crisp set theory intro-
duced by Zadeh [1] and the idea of the fuzzy set was presented
that considers only positive grade. Atanassov [2] introduced
the notion of an intuitionistic fuzzy set (IFS) as an extension
of fuzzy set in which we consider the positive grade as well as
negative gradewith the condition that the sum (positive grade,
negative grade) is less than or equal to 1. IFS has attained
more importance since its appearance and it has been widely
used in decision-making problems, such as some intuition-
istic fuzzy frank power aggregation operators are conceived
by Zhang et al. [3]. Also, Seikh and Mandal [4] introduced
some intuitionistic fuzzy Dombi aggregation operators and
applied them to MCDM problems. Moreover, Zeng et al. [5]
conceived the MCDM based on intuitionistic fuzzy hybrid
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confident aggregation operator and social network analy-
sis. Note that in IFS, the restriction sum (f, h) ∈ [0, 1]
limits the possibility of positive grade ‘‘f’’ and negative
grade ‘‘h’’. To avoid this condition, Yager [6] presented the
design of Pythagorean fuzzy set (PyFS) as a generalization
of IFS in which we use the necessary condition given as
0 ≤ f2 + h2 ≤ 1.
PyFS is more strong apparatus and it provides more space

for decision-makers (DMs) to tackle the data in fuzzy set
theory. After the invention of PyFS, many researchers have
tried to develop new aggregation operators (AOs) based on
PyFS, therefore some Pythagorean Dombi fuzzy AOs are
introduced by Akram et al. [7]. Moreover, some confidence
level-based PyF aggregation operators and their application
to DM problems have been discussed in [8]. Also, an algo-
rithm for MADM using the interactive Archimedean norm
operations under the notion of PyFS has been developed by
Wang and Garg [9]. Moreover, Wu et al. [10] presented the
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MAGDM flexibility based on the information fusion tech-
nique and hesitant Pythagorean fuzzy sets. PyFS is a limited
notion noticed by researchers because when DMs provide
0.8 as positive grade (PG) and 0.7 as negative grade (NG)
then sum

(
0.82, 0.72

)
6∈ [0, 1], so in this situation, PyFS

is unsuccessful to solve this fact. To lower this difficulty,
Yager [11] established the concept of q-rung orthopair fuzzy
set (q-ROFS) as a generalization of IFS and PyFS. Later,
Xing et al. [12] presented some point-weighted AOs for
q-ROFSs and provide their application for MCDM problems.
Furthermore, some AOs based on q-ROFSs and their appli-
cation to MADM problems have been presented by Liu and
Wang [13]. Notice that all the above theories discuss only PG
and NG but the abstinence grade (AG) is ignored by all the
above-given concepts while in many real-life situations we
have to discuss the AG. This issue was pointed out by Cuong
and Kreinovich [14] and he developed a new idea known as
picture fuzzy set (PFS) in literature. PFS is a stronger toll in
handling the vagueness and hesitancy of MCDM problems.
Note that PFS uses the condition that sum (f, g, h) ∈ [0, 1]
and this characteristic distinguishes PFS from all other theo-
ries to make it more general. Moreover, based on PFS, some
PFHamacher AOs are discussed byWei [15]. Notice that PFS
is a restricted formation because when DMs come up with
0.5 as PG, 0.4 as NG, and 0.2 as AG, then the main condition
of PFS fails to hold because 0.5+0.2+0.46∈[0, 1]. To control
this issue, the notion of a spherical fuzzy set (SFS) has been
presented byMahmood et al. [16]. SFS attains more attention
from the researchers since its appearance. Also, some theories
for spherical fuzzy numbers and the MCDM approach have
been developed by Deli and Cagman [17]. Furthermore, some
cosine similarity measures based on SFS and their application
to DM problems have been introduced by Rafiq et al. [18].
Also, some symmetric-based AOs for SF data are proposed
by Ashraf et al. [19].

Soft set (SftS) theory introduced by Molodtsov [20] is
a common mathematical structure to handle the uncertain
and vague data that other traditional tolls cannot handle.
The notion of SftS has been proved useful in different fields
like DM [21] data analysis [22] and optimization [23].
Maji et al. [24] introduced the study of compound struc-
ture concerning both FS and SftS and the idea of fuzzy
SftS

(
FSftS

)
was initiated as a fuzzy generalization of clas-

sical SftS. After the invention of FSftS, many researchers
have started working on the hybrid structure and many
extended versions have been invented, such as IF soft set [25](
IFSftS

)
, PyF soft set [26]

(
PyFSftS

)
and q-ROF soft set [27](

q− ROFSftS
)
. Moreover, some Bonferroni mean aggrega-

tion operators based on IFSftS have been developed by Garg
and Arora [28]. Also, Arora and Garg [29] established several
robust AOs for IFSftNsnn and presented their application to
MCDM problems. Naeem et al. [30] developed TOPSIS and
VIKORmethods based onPyFSftSnnn and provided its appli-
cation to MCGDM problems. Furthermore, some q−ROFSft
average and geometric AOs are discussed in [27] and [31],
respectively.

A rough set (RS) initiated by Pawlak [34], [35] is another
apparatus to deal the vagueness and it seems to be a
well-suited mathematical model for vagueness and uncer-
tainty. RS is an extension of classical set theory (CST) in
which the basic tool is relation that is representative of infor-
mation systems. It is noticed that equivalence relation in
Pawlak RS theory is restricted in many practical fields so
many authors have extended the Pawlak RS theory by using
non-equivalence relation and similarity relations are given
in [36] and [37]. In recent literature, many new theories have
been established by the combination of FS theories along
with SftS and RS to develop SftFRS [38], IF soft rough set(
IFSftRS

)
[39], PyF soft rough set

(
PyFSftRSn

)
[40], q-rung

orthopair fuzzy soft rough set [41], Neutrosophic N-Soft
Set [42].

No doubt intuitionistic fuzzy set, Pythagorean fuzzy set,
and q-rung orthopair fuzzy have their importance in their
structures, but these theories can consider only two types of
aspects like yes or no, on the other hand human opinion can
never be restricted to yes or no type of aspects, for example,
consider the occurrence of voting where one can vote in favor
of someone or vote against someone or refuse to vote or
abstinence to vote. In this situation, all prevailing theories fail
to handle this situation. Also, note that nevertheless picture
fuzzy set can cope with these circumstances but it has limi-
tations in its structure. But the spherical fuzzy set is a more
dominant structure for coping with these types of situations.

Also, note that the prevailing theories have to face some
sort of hurdles either in their structures or their necessary
conditions, given as follows

1. When a decision-maker has to handle the data involv-
ing positive grade, abstinence grade, and negative
grade then prevailing theories like IFSftRS [39],
PyFSftRS [40] and q−ROFSftRS [41] can never handle
such type of information and has deficiencies in their
structure.

2. Although the idea of the picture fuzzy soft rough set(
PFSftRS

)
CAN consider the phenomenon of voting

but it has limited conditions in the form of lower and
upper approximation operators like 0 ≤ f ( i) +

g ( i)+h ( i) ≤ 1 and 0 ≤ f ( i)+g ( i)+h ( i) ≤

1 but when decision-makers take their information in
the form of spherical fuzzy soft rough set

(
SFSftRS

)
consisting of lower and upper approximations like{
(0.5, 0.6, 0.3) ,
(0.6, 0.4, 0.3)

}
then note that the sum of lower

and upper approximation values exceeds [0, 1] that is
06≤0.5+0.6+0.36≤1 and 06≤0.6+0.4+0.36≤1 that can
never be handled by PFSftRS that restrict the notion of
PFSftRS.

So motivated by the dominant feature of spherical fuzzy
set, in this article, we have combined soft set, rough set,
and spherical fuzzy set to present spherical fuzzy soft rough
set. Hence the main contribution of this study is to invent a
beneficiary decision-making strategy under the environment
of the spherical fuzzy soft rough set.
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Moreover, as AOs are the structural tools to deal the fuzzy
information, so based on the invented work, some new spheri-
cal fuzzy soft rough weighted average (SFSftRWA), spherical
fuzzy soft rough ordered weighted average

(
SFSftROWA

)
,

and spherical fuzzy soft rough hybrid average (SFSftRHA)
aggregation operators have been proposed. Also, the basic
characteristics of these invented operators are debated. Fur-
thermore, a critical analysis of the established work has been
given through MCDM and an illustrative example is given to
support our work.

For more convenience, we have illustrated the presented
work by frame diagram given in Figure 1.

FIGURE 1. Frame diagram for proposed work.

The remainder of the article is categorized as follows:
In the second phase of this article we have over-viewed
some basic definitions of FS, SftS, SFS, SFSftS and RS.
Section 3 presents the basic interpretation of SFSftRS and
some operational laws for SFSftRNs. Section 4 carry out the
principal structure of SFSftRWA, SFSftROWA and SFSftRHA
aggregation operators and their properties. In section 5,
an algorithm along with an illustrative example is given to
show how these operators work. In section 6, we have given
a comparative analysis of established work. Finally, section 7
summarizes the conclusion remarks.

II. PRELIMINARIES
In this phase of the article, we present some basic notions of
fuzzy set, soft set, spherical fuzzy set, spherical fuzzy soft set,
and rough set that will help us in further discussion.
Definition 1 [1]: Fuzzy set on a general set Ž is an expres-

sion of the form:

F =
{
ž, f

(
ž
)
: ž ∈ Ž

}
(1)

where f : Ž→ [0, 1] denotes the PG.
Definition 2 [20]: Let Ž be a universal set and E be

parameters set, the pair (B, ◦C) is called soft set over Ž,
if B : ◦C → P

(
Ž
)
is a set-valued mapping where P

(
Ž
)

denote power set of Ž.
Definition 3 [16]: Let Ž be a universal set. Spherical fuzzy

set over Ž is of the shape

SF =
{〈
ž, f(ž), g(ž), h(ž)

〉
: ž ∈ Ž

}
(2)

where f : Ž → [0, 1] is the PG, g :Ž → [0, 1] is the AG
and h :Ž → [0, 1] is NG using condition 0 ≤

(
f
(
ž
))2
+(

g
(
ž
))2
+
(
h(ž)

)2
≤ 1.

Definition 4 [32]: For a fixed set Ž, ◦C a parameter set
and Y⊆◦C, the pair (M , Y ) is called spherical fuzzy soft set

over Ž, where M is the mapping form Y to SFS

(
Ž
)
, where

SFS

(
Ž
)
is the family of all SFS over Ž given as

M
(
S
)
=

{
ži, f

(
ži
)
, g

(
ži
)
, h

(
ži
)
|ž ∈ Ž

}
(3)

with condition that 0 ≤
(
f
(
ži
))2
+
(
g
(
ži
))2
+
(
h
(
ži
))2
≤

1 where S is the notation for parameters.
Definition 5 [33]: Let SFS

i
= (fi , gi , hi ), SF

′

S
i
=

(f ′
i
, g′

i
, h′

i
) be two SFSftNs where Si represent the

parameters for i = 1, 2, . . . , n and = 1, 2, . . . ,m and
L > 0. Some fundamental laws for SFSftNs are defined by:

1. SFS
i
⊆SF ′S

i
iff fi ≤ f

′

i
, gi ≤ g′

i
and hi ≥h

′

i
.

2. SFS
i
= SF ′S

i
iff SFS

i
⊆SF ′S

i
and SF ′S

i
⊆SFS

i
.

3. SFS
i
∪SF ′S

i
=

〈
max

(
fi , f

′

i

)
, min

(
gi , g

′

i

)
,

min
(
hi , h

′

i

)〉
.

4. SFS
i

⋂
SF ′S

i
=

〈
min

(
fi , f

′

i

)
, min

(
gi , g

′

i

)
,

max
(
hi , h

′

i

)〉
.

5. SFS
i

c
= (hi , gi , fi ).

6. SFS
i
⊕SF ′S

i
=

(√(
fi
)2
+

(
f ′
i

)2
−
(
fi
)2(f ′

i

)2
,

gi g
′

i
, hi h

′

i

)
.

7. SFS
i

⊗ SF ′S
i

=(
fi f
′

i
, gi g

′

i
,

√(
hi
)2
+

(
h′
i

)2
−
(
hi
)2(

h′
i

)2)
.

8. LSFS
i
= (

√
1−

(
1− fi

2)L , gi L , hi L).
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TABLE 1. SFSft relation from Ž to ◦C.

9. SFS
i

L
= (fi

L , gi
L ,

√
1−

(
1− hi

2)L).
Definition 6 [36]: For a universal set Ž and Re⊆Ž ×

Ž an arbitrary relation on Ž. Let Re
∗ is a set-valued

map Re
∗
: Ž → P

(
Ž
)

defined as Re
∗
(
ž
)
={

y ∈ Ž :
(
ž, y

)
∈ Re and ž ∈ Ž

}
, then the pair

(
Ž, Re

)
is crisp approximation space. Now let G⊆Ž, then the
lower (LR) and upper (UR) approximations of G w.r.t(
Ž, Re

)
are given by

Re (G) =
{〈(

ž ∈ Ž : Re
∗
(
ž
)
⊆G

)〉}
(4)

Re (G) =
{〈(

ž ∈ Ž : Re
∗
(
ž
)
∩G6 = ∅

)〉}
(5)

The pair
(
Re (G) , Re (G)

)
is a rough set (RS), where

Re (G) 6 = Re (G). Also,Re (G) , Re (G) : P
(
Ž
)
→ P

(
Ž
)

is called lower and upper approximation operators according
to
(
Ž, Re

)
.

III. SPHERICAL FUZZY SOFT ROUGH SET
Notion of SftS is the generalization of CST that is free from
all issues faced by some contemporary theories.We note from
the existing theories that SftS and RS are influential mathe-
matical apparatuses to deal with the vagueness and uncertain
data. Motivated from the combined structure of the soft rough
set, this section is devoted to presenting the hybrid structure of
SFS, SftS and RS to get a new idea called SFSftRS. Moreover,
some basic operational laws for this developed structure has
been introduced. We use these fundamental operations to
discuss some new AOs and their fundamental properties in
detail.
Definition 7: Suppose (◦F, ◦C) denote the SFSftS over Ž.

Any subsetRe of Ž× ◦C is called a SFSft relation from Ž to
◦C and defined by

Re =
{{
( i, Si) , f ( i, Si) , g ( i, Si) , h ( i, Si)

}
|

( i, Si) ∈ Ž× ◦C
}
,

where f : Ž × ◦C → [0, 1] , g : Ž × ◦C →

[0, 1] and h : Ž × ◦C → [0, 1] represent the PG, AG,
and NG respectively with condition 0 ≤ f ( i, Si)

2
+

g ( i, Si)
2
+ h ( i, Si)

2
≤ 1 for all ( i, Si) ∈ Ž× ◦C.

If Ž = { 1, 2, 3, . . . , m} and ◦C = {S1, S2, S3, . . . ,

Sn}, then SFSft relationRe from Ž to ◦C is given in Table 1.
Now we can define the definition of SFSftRS as follows:
Definition 8: For a universal set Ž, ◦C being parameter

set and (◦F, ◦C) be a SFSftS. SupposeRe be arbitrary SFSft
relation from Ž to ◦C. Then the triplet

(
Ž, ◦C, Re

)
is called

SFSft approximation space. Now for any elementG ∈SFS
◦C,

then LR and UR approximation space of G w.r.t approxima-
tion space

(
Ž, ◦C, Re

)
are presented and given as

Re (G) =
{(

i, f ( i) , g ( i) , h ( i)
)
| i ∈ Ž

}
(6)

Re (G) =
{(

i, f ( i) , g ( i) , h ( i)
)
| i ∈ Ž

}
(7)

where

f ( i) = ∧S ∈◦C
{
fRe

(
i, S

)
∧fG

(
S
)}
,

g ( i) = ∨S ∈◦C
{
gRe

(
i, S

)
∨gG

(
S
)}

and

h ( i) = ∨S ∈◦C
{
hRe

(
i, S

)
∨hG

(
S
)}

f ( i) = ∨S ∈◦C
{
fRe

(
i, S

)
∨fG

(
S
)}
,

g ( i) = ∧S ∈◦C
{
gRe

(
i, S

)
∧gG

(
S
)}

and

h ( i) = ∧S ∈◦C
{
hRe

(
i, S

)
∧hG

(
S
)}

Such that

0 ≤
(
f ( i)

)2
+

(
g ( i)

)2
+

(
h ( i)

)2
≤ 1 and

0 ≤
(
f ( i)

)2
+
(
g ( i)

)2
+

(
h ( i)

)2
≤ 1

It is clear that Re (G) and Re (G) are two SFSs in
Ž and the operators Re (G) , Re (G) : SFSft

◦C
→

SFSft Ž are respectively called LR and UR SFSftR approx-
imation operators. Hence spherical fuzzy soft rough set(
SFSftRS

)
is a pair Re (G) =

(
Re (G) , Re (G)

)
=(

i,
(
f ( i) , g ( i) , h ( i)

)
,
(
f ( i) , g ( i) , h ( i)

))
.

We note that decision-makers can give SFSftRS in the form
of lower and upper approximation operators that satisfy the

necessary condition 0 ≤
(
f ( i)

)2
+

(
g ( i)

)2
+

(
h ( i)

)2
≤

1 and 0 ≤
(
f ( i)

)2
+
(
g ( i)

)2
+

(
h ( i)

)2
≤ 1 in which all

three aspects can be involved like positive grade, abstinence
grade, and negative grade.
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For simplicity, we write Re (G) =
(
Re (G) , Re (G)

)
=(

i,
(
f ( i) , g ( i) , h ( i)

)
,
(
f ( i) , g ( i) , h ( i)

))
as ReS (Gi) =

(
ReS (Gi) , ReS (Gi)

)
=((

fi , gi , hi
)
,
(
fi , gi , hi

))
and call this expression a

spherical fuzzy soft rough number
(
SFSftSRN

)
.

Remark 1:
a) If we ignore the AG in Eqs. (6) and (7), then the

developed SFSftR approximation operators reduce to
Pythagorean fuzzy soft rough approximation operators.

b) If only one soft parameterS1 i.e. (n = 1) is used, then
the developed SFSftR approximation operators will
degenerate into spherical fuzzy rough approximation
operators.

Example 1: Suppose Mr. X wants to buy the best mobile
phone brands from a set of five alternatives Ž = { 1 =
APPLE, 2 = ACER, 3 = VIVO, 4 = HTC, 5 =

LG} under consideration having the set of parameters
as ◦C = {S1 = Long − lasting battry, S2 =

Crystle − clear d isplay,S3 = Reasonable pr ice,S4 =

Plenty of storage space}. Let Mr. X presents the attractive-
ness of mobile phone brands in the form of SFSft relationRe

from Ž to ◦C as presented in Table 2.

TABLE 2. SFSft relation from Ž to ◦C.

Now suppose that Mr. X established the decision object in
the form of spherical fuzzy subset over a parameter ser ◦C as
given below

G =

{
(S1, 0.4, 0.5, 0.2) , (S2, 0.3, 0.4, 0.5) ,
(S3, 0.5, 0.3, 0.2) , (S4, 0.4, 0.2, 0.4)

}
.

Now we use Eqs. (6) and (7) to get:

f1 ( 1) = 0.1, f2 ( 2) = 0.2, f3 ( 3) = 0.1,

f4 ( 4) = 0.1, f5 ( 5) = 0.3

g1 ( 1) = 0.5, g2 ( 2) = 0.5, g3 ( 3) = 0.6,

g4 ( 4) = 0.6, g5 ( 5) = 0.6

h1 ( 1) = 0.6, h2 ( 2) = 0.6, h3 ( 3) = 0.5,

h4 ( 4) = 0.6, h5 ( 5) = 0.5 and

f1 ( 1) = 0.6, f2 ( 2) = 0.6, f3 ( 3) = 0.5,

f4 ( 4) = 0.5, f5 ( 5) = 0.6

g1 ( 1) = 0.1, g2 ( 2) = 0.1, g3 ( 3) = 0.1,

g4 ( 4) = 0.2, g5 ( 5) = 0.1

h1 ( 1) = 0.2, h2 ( 2) = 0.2, h3 ( 3) = 0.1,

h4 ( 4) = 0.2, h5 ( 5) = 0.1.

Now lower and upper SFSftR approximation operators are
given as

Re (G) =


( 1, 0.1, 0.5, 0.6) ,
( 2, 0.2, 0.5, 0.6) ,
( 3, 0.1, 0.6, 0.5) ,
( 4, 0.1, 0.6, 0.6) ,
( 5, 0.3, 0.6, 0.5)


Re (G) =


( 1, 0.6, 0.1, 0.2) ,
( 2, 0.6, 0.1, 0.2) ,
( 3, 0.5, 0.1, 0.1) ,
( 4, 0.5, 0.2, 0.2) ,
( 5, 0.6, 0.1, 0.1)

 .
Hence

Re (G) =


( 1, (0.1, 0.5, 0.6) , (0.6, 0.1, 0.2)) ,
( 2, (0.2, 0.5, 0.6) , (0.6, 0.1, 0.2)) ,
( 3, (0.1, 0.6, 0.5) , (0.5, 0.1, 0.1)) ,
( 4, (0.1, 0.6, 0.6) , (0.5, 0.2, 0.2)) ,
( 5, (0.3, 0.6, 0.5) , (0.6, 0.1, 0.1))

 .
Definition 9: For two SFSftRNs ReS (G1) =(
ReS (G1) , ReS (G1)

)
for ( = 1, 2). The following

operations can be defined:
1.

ReS1 (G1)∪ReS2 (G1)

=


(
ReS1 (G1)∪ReS2 (G1)

)
,(

ReS1 (G1)∪ReS2 (G1)
)  ;

2.

ReS1 (G1)
⋂

ReS2 (G1)

=


(
ReS1 (G1)

⋂
ReS2 (G1)

)
,(

ReS1 (G1)
⋂

ReS2 (G1)
)  ;

3.

ReS1 (G1)⊕ReS2 (G1)

=


(
ReS1 (G1)⊕ReS2 (G1)

)
,(

ReS1 (G1)⊕ReS2 (G1)
)  ;

4.

ReS1 (G1)⊗ReS2 (G1)

=


(
ReS1 (G1)⊗ReS2 (G 1)

)
,(

ReS1 (G1)⊗ReS2 (G1)
)  ;

5.

ReS1 (G1)⊆ReS2 (G1)

=

(
ReS1 (G1)⊆ReS2 (G1)

)
and

(
ReS1 (G1)⊆ReS2 (G1)

)
;
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6.

τ
(
ReS1 (G1)

)
=

(
τReS1 (G1) , τReS1 (G1)

)
for τ≥1;

7. (
ReS1 (G1)

)τ
=

((
ReS1 (G1)

)τ
,
(
ReS1 (G1)

)τ)
for τ≥1.

8. (
ReS1 (G1)

)c
=

((
ReS1 (G1)

)c
,
(
ReS1 (G1)

)c)
where

(
ReS1 (G1)

)c
and

(
ReS1 (G1)

)c
are the com-

plement of SFSftR approximation operators
ReS1 (G1) and ReS1 (G1).

9.

Re (G1) = Re (G2) iff Re (G1) = Re (G2)

and Re (G1) = Re (G2) .

Definition 10: For a SFSftRN ReS1 (G1) =(
ReS1 (G1) , ReS1 (G1)

)
=

((
f11, g11, h11

)
,(

f11, g11, h11
))

, then the score function forReS1 (G1) can
be defined as

Sc
(
ReS1 (G1)

)
=

1
3

 2+
(
f112 + f11

2
)

−

(
g11

2
+ g11

2
)
−

(
h11

2
+ h11

2
) .

Note that Sc
(
ReS1 (G1)

)
∈ [−1, 1].

IV. SPHERICAL FUZZY SOFT ROUGH AVERAGE (SFSft RA)
AGGREGATION OPERATORS
This phase of the article deals with the notions of spheri-
cal fuzzy soft rough weighted average, spherical fuzzy soft
rough ordered weighted average, and spherical fuzzy soft
rough hybrid average aggregation operators. Moreover, the
properties of these developed AOs are discussed in detail. The
overall discussion is given below.

A. SPHERICAL FUZZY SOFT ROUGH WEIGHTED AVERAGE
(SFSft RWA) OPERATOR
Definition 11: For a family of SFSftRNs ReS (Gi) =(
ReS (Gi) , ReS (Gi)

)
for i = 1, 2, . . . ,m and =

1, 2, . . . , n and let = ( 1, 2, 3, . . . , m)
Ž, (˜̇ =(˜̇

1,
˜̇
2,
˜̇
3, . . . ,

˜̇
n

)Ž
be the weight vectors (WVs) of

i experts and S parameters using the condition that∑m
i=1 i = 1,

∑n
=1
˜̇
i = 1 and 0 ≤ i,

˜̇
≤ 1 respec-

tively. Then SFSftRWA aggregation operator is defined as:

SFSftRWA
(
ReS1 (G1) , . . . ,ReSn (Gm)

)
=

⊕n=1˜̇
(
⊕
m
=1 iReS (Gi)

)
,

⊕
n
=1
˜̇ (
⊕
m
=1 iReS (Gi)

)
 .

Theorem 1: Let ReS (Gi) =

(
ReS (Gi) , ReS (Gi)

)
be a family of SFSftRNs. Also, suppose that =

( 1, 2, 3, . . . , m)
Ž,
˜̇
=

(˜̇
1,
˜̇
2,
˜̇
3, . . . ,

˜̇
n

)Ž
are

the WVs of i experts and S parameters using the situation
that

∑m
i=1 i = 1,

∑n
=1
˜̇
i = 1 and 0 ≤ i,

˜̇
≤

1 respectively. Then SFSftRWA aggregation operator is given
as:

SFSftRWA
(
ReS1 (G1) , . . . ,ReSn (Gm)

)
=

⊕n=1˜̇
(
⊕
m
=1 iReS (Gi)

)
,

⊕
n
=1
˜̇ (
⊕
m
=1 iReS (Gi)

)


=





√√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

)˜̇
,

n∏
=1

(
m∏
=1

(
gi

)
i
)˜̇

,

n∏
=1

(
m∏
=1

(
hi

)
i
)˜̇


,



√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

)˜̇
,

n∏
=1

(
m∏
=1

(
gi
)

i

)˜̇
,

n∏
=1

(
m∏
=1

(
hi

)
i
)˜̇





.

Proof: We use the mathematical induction method to
prove the theorem as follows.

By using operational laws:

ReS1 (G1)⊕ReS1 (G2)

=

 {(
f11, g11, h11

)
⊕

(
f12, g12, h12

)}
,{((

f11, g11, h11
)
⊕

(
f12, g12, h12

))}

=




√(

f11
)2
+

(
f12
)2
−

(
f11
)2(

f12
)2
,(

g11

) (
g12

)
,
(
h11

) (
h12

)
 ,

√(
f11
)2
+
(
f12
)2
−
(
f11
)2(

f12
)2
,

(g11) (g12) ,
(
h11

) (
h12

)



and

τReS1 (G1)

=


{√

1−
(
1−

(
f11
)2)τ

, g11
τ , h11

τ

}
,{√

1−
(
1−

(
f11
)2)τ

, g11
τ , h11

τ
}
 for τ≥1.
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Suppose that outcome is valid for n = 2 and m = 2,

SFSftRWA
(
ReS (Gi) , ReS (Gi)

)
=

⊕2
=1
˜̇ (
⊕

2
=1 iReS (Gi)

)
,

⊕
2
=1
˜̇ (
⊕

2
=1 iReS (Gi)

)


=




˙̃
1

(
1ReS1 (G1)⊕ 2ReS1 (G2)

)
⊕
˜̇
2

(
1ReS2 (G1)⊕ 2ReS2 (G2)

) ,{
˙̃
1
(

1ReS1 (G1)⊕ 2ReS1 (G2)
)

⊕
˜̇
2
(

1ReS2 (G1)⊕ 2ReS2 (G2)
)}


and

SFSftRWA
(
ReS (Gi) , ReS (Gi)

)

=





√√√√√√1−
2∏
=1

(
2∏

i=1

(
1− fi

2
)

i

)˜̇
,

2∏
=1

(
2∏

i=1

gi
i

)˜̇
,

2∏
=1

(
2∏

i=1

hi i

)˜̇


,



√√√√√√1−
2∏
=1

(
2∏

i=1

(
1− fi

2
)

i

)˜̇
,

2∏
=1

(
2∏

i=1

gi i

)˜̇
,

2∏
=1

(
2∏

i=1

hi i

)˜̇




Hence the statement is valid for n = 2 and m = 2.
Next, suppose that statement is valid for n = K1 and

m= K2.

SFSftRWA
(
ReS1 (G1) , . . . ,ReSK1

(
GK2

))

=





√√√√√√1−
K1∏
=1

 K2∏
i=1

(
1−

(
fi
)2) i


˜̇
,

K1∏
=1

 K2∏
i=1

(
gi

)
i


˜̇
,

K1∏
=1

 K2∏
i=1

(
hi

)
i


˜̇


,



√√√√√√1−
K1∏
=1

 K2∏
i=1

(
1−

(
fi
)2) i


˜̇
,

K1∏
=1

 K2∏
i=1

(
gi
)

i


˜̇
,

K1∏
=1

 K2∏
i=1

(
hi

)
i


˜̇




Further, we have to prove that statement is valid for n =

K1 + 1 and m = K2 + 1.

SFSftRWA

(
ReS1 (G1) , . . . ,ReSK1

(
GK2

)
,

ReSK1+1

(
GK2+1

) )

TABLE 3. Tabular presentation of ReS (Gi) = (ReS (Gi),ReS (Gi)).

=




⊕

K1
=1
˜̇ (
⊕

K2
=1 iReS (Gi)

)
⊕
˜̇
K1+1

(
K2+1ReSK1+1

(
GK2+1

))
 , ⊕

K1
=1
˜̇ (
⊕

K2
=1 iReS (Gi)

)
⊕
˜̇
K1+1

(
K2+1ReSK1+1

(
GK2+1

))




=





√√√√√√1−
K1+1∏
=1

K2+1∏
i=1

(
1−

(
fi
)2) i


˜̇
,

K1+1∏
=1

K2+1∏
i=1

(
gi

)
i


˜̇

,

K1+1∏
=1

K2+1∏
i=1

(
hi

)
i


˜̇


,



√√√√√√1−
K1+1∏
=1

K2+1∏
i=1

(
1−

(
fi
)2) i


˜̇
,

K1+1∏
=1

K2+1∏
i=1

(
gi
)

i


˜̇
,

K1+1∏
=1

K2+1∏
i=1

(
hi

)
i


˜̇




Hence the result is true for n = K1 + 1 and m = K2 + 1.
Hence it is true for all m, n≥1.

As it is clear that ReS (Gi) and ReS (Gi) are
SFSftNs. So, by using the definition 9, we have that

⊕
n
=1
˜̇ (
⊕
m
=1 iReS (Gi)

)
and ⊕

n
=1
˜̇(

⊕
m
=1 iReS (Gi)

)
are also SFSftNs. Hence, SFSftRWA(

ReS1 (G1) , . . . ,ReSn (Gm)
)
is also SFSftRN in approxi-

mation space
(
Ž, ◦C, Re

)
.

Example 2: Suppose Ž = { 1, 2, 3} , G =

{S1, S2}⊆
◦C denote alternatives set and set of parameter

respectively having WVs i = {0.35, 0.26, 0.39} for i =

(i = 1, 2, 3) and ˜̇ = {0.65, 0.35} for ( = 1, 2). The data
given in Table 3. consists of SFSftRNs

SFSftRWA
(
ReS1 (G1) , . . . ,ReSn (Gm)

)
=

⊕2
=1
˜̇ (
⊕

3
=1 iReS (Gi)

)
,

⊕
2
=1
˜̇ (
⊕

3
=1 iReS (Gi)

)

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=





√√√√√√√√√√√√√√
1−




(
1− 0.52

)0.35(
1− 0.42

)0.26(
1− 0.32

)0.39

0.65


(
1− 0.62

)0.35(
1− 0.32

)0.26(
1− 0.12

)0.39

0.35


,


[(

0.60.35
) (

0.10.26
) (

0.30.39
)]0.65[(

0.30.35
) (

0.10.26
) (

0.10.39
)]0.35

 ,
[(

0.30.35
) (

0.20.26
) (

0.10.39
)]0.65[(

0.50.35
) (

0.60.26
) (

0.50.39
)]0.35





,



√√√√√√√√√√√√√√
1−




(
1− 0.62

)0.35(
1− 0.32

)0.26(
1− 0.22

)0.39

0.65


(
1− 0.22

)0.35(
1− 0.52

)0.26(
1− 0.62

)0.39

0.35


,


[(

0.20.35
) (

0.30.26
) (

0.50.39
)]0.65[(

0.60.35
) (

0.30.26
) (

0.10.39
)]0.35

 ,
[(

0.10.35
) (

0.40.26
) (

0.30.39
)]0.65[(

0.10.35
) (

0.20.26
) (

0.10.39
)]0.35






=

{
(0.4093, 0.2272, 0.2577) ,
(0.4443, 0.2917, 0.1778)

}
.

Next we will elaborate that SFSftRWA operator has the
following properties.

Theorem 2:SupposeReS (Gi)=

(
ReS (Gi) ,ReS (Gi)

)
for i = 1, 2, . . . ,m and = 1, 2, . . . , n
is a set of SFSftRNs. Also assume that ( =

( 1, 2, 3, . . . , m)Ž, ˜̇ = (˜̇1,
˜̇
2,
˜̇
3, . . . ,

˜̇
n

)Ž
are

WVs of i experts and S parameters with the situation
that

∑m
i=1 i = 1,

∑n
=1
˜̇
i = 1 and 0 ≤ i,˜̇

≤ 1 respectively. Then SFSftRWA operator holds the
following properties:

i. (Idempotency): Let ReS (Gi) = R′eS (G) for all i =
1, 2, . . . ,m and = 1, 2, . . . , n, where

R′eS (G) =
{
R′eS (G) , R

′
eS (G)

}
=

{(
p, q, r

)
,
(
p, q, r

)}
then SFSftRWA

(
ReS1 (G1) , . . . ,ReSn (Gm)

)
= R′eS (G).

Proof: If ReS (Gi) = R′eS (G) for all i =

1, 2, . . . ,m and = 1, 2, . . . , n where R′eS (G) =

{
R′eS (G) , R

′
eS (G)

}
=

{(
p, q, r

)
,
(
p, q, r

)}
then

SFSftRWA
(
ReS1 (G1) , . . . ,ReSn (Gm)

)

=





√√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

)˜̇
,

n∏
=1

(
m∏
=1

(
gi

)
i

)˜̇
,

n∏
=1

(
m∏
=1

(
hi

)
i

)˜̇


,



√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

)˜̇
,

n∏
=1

(
m∏
=1

(
gi
)

i

)˜̇
,

n∏
=1

(
m∏
=1

(
hi

)
i

)˜̇



For all i, ReS (Gi)=R

′
eS (G)=

{
R′eS (G) ,R

′
eS (G)

}
=

{(
p, q, r

)
,
(
p, q, r

)}
. Therefore

=





√√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
pi

)2) i
)˜̇

,

n∏
=1

(
m∏
i=1

(
qi

)
i

)˜̇
,

n∏
=1

(
m∏
i=1

(
ri

)
i

)˜̇




√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
pi
)2) i

)˜̇
,

n∏
=1

(
m∏
i=1

(
qi
)

i

)˜̇
,

n∏
=1

(
m∏
i=1

(
ri
)

i

)˜̇




=


(√

1−
(
1−

(
p
)2)

, q, r

)
,(√

1−
(
1−

(
p
)2)
, q, r

)


=

{(
p, q, r

)
,(

p, q, r
) } = R′eS (G) .

Hence SFSftRWA
(
ReS1 (G1) , . . . ,ReSn (Gm)

)
=

R′eS (G).
ii. (Boundedness): If(

ReS (Gi)
)−
=

(
min miniReS (Gi) ,

max maxiReS (Gi)

)
And(

ReS (Gi)
)+
=

(
max maxiReS (Gi) ,

min miniReS (Gi)

)
,
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Then(
ReS (Gi)

)−
≤ SFSftRWA

(
ReS1 (G1) ,ReS2 (G2) , . . . ,ReSn (Gm)

)
≤

(
ReS (Gi)

)+
.

Proof: As

(
ReS (Gi)

)−
=



min mini {fi } , max maxi {gi } ,
max maxi

{
hi

}  ,(
min mini

{
fi
}
, max maxi

{
gi
}
,

max maxi
{
hi

} )


And

(
ReS (Gi)

)+
=



max maxi {fi } , min mini {gi } ,
min mini

{
hi

}  ,(
max maxi

{
fi
}
, min mini

{
gi
}
,

min mini
{
hi

} )


Now we have to show that(
ReS (Gi)

)−
≤ SFSftRWA

(
ReS1 (G1) ,ReS2 (G2) , . . . ,ReSn (Gm)

)
≤

(
ReS (Gi)

)+
.

As for each i = 1, 2, . . . ,m and = 1, 2, . . . , n

min mini
{
fi
}
≤

{
fi
}

≤ max maxi
{
fi
}

⇔ 1− max maxi
{
fi

2
}

≤ 1− fi
2
≤ 1− min mini

{
fi

2
}

⇔

n∏
=1

(
m∏
i=1

(
1− max maxi

(
fi
)2) i

)˜̇

≤

n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

)˜̇

≤

n∏
=1

(
m∏
i=1

(
1− min mini

(
fi
)2) i

)˜̇

⇔

((
1− max maxi

(
fi
)2)∑m

i=1 i
)∑n

=1
˙

≤

n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

)˜̇

≤

((
1− min mini

(
fi
)2)∑m

i=1 i
)∑n

=1

˜̇

⇔ 1− max maxi
(
fi
)2

≤

n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

)˜̇

≤ 1− min mini
(
fi
)2

⇔ 1−
(
1− min mini

(
fi
)2)

≤ 1−
n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

)˜̇

≤ 1−
(
1− max max

(
fi
)2)

.

Hence

min mini
(
fi
)

≤

√√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

) ˜̇

≤ max maxi
(
fi
)

(8)

Now for each i = 1, 2, . . . ,m and = 1, 2, . . . , n,
we have

min mini
(
gi

)
≤

(
gi

)
≤ max maxi

(
gi

)
⇔

n∏
=1

(
m∏
i=1

(
min mini

(
gi

))
i

)˜̇

≤

n∏
=1

(
m∏
i=1

((
gi

))
i

)˜̇

≤

n∏
=1

(
m∏
i=1

(
max maxi

(
gi

))
i

)˜̇

⇔

(min mini (gi ))
m∑
i=1

i


∑n
=1

˜̇

≤

n∏
=1

(
m∏
i=1

(
gi

)
i

)˜̇

≤

((
max maxi

(
gi

))∑m
i=1 i

)∑n
=1
˙

⇒ min mini
(
gi

)
≤

∏n

=1

(∏m

i=1

(
gi

)
i
)˜̇

≤ max maxi
(
gi

)
(9)
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Also for each i = 1, 2, . . . , n and = 1, 2, . . . ,m, we get

min mini
(
hi

)
≤

(
hi

)
≤ max maxi

(
hi

)
⇔

n∏
=1

(
m∏
i=1

(
min mini

(
hi

))
i

) ˜̇

≤

n∏
=1

(
m∏
i=1

(
hi

)
i

)˜̇

≤

n∏
=1

(
m∏
i=1

(
max maxi

(
hi

))
i

)˜̇

⇔

((
min mini

(
hi

))∑m
i=1 i

)∑n
=1

˜̇

≤

n∏
=1

(
m∏
i=1

(
hi

)
i

)˜̇

≤

((
max max

(
hi

))∑m
i=1 i

)∑n
=1

˜̇

⇒ min mini
(
hi

)
≤

n∏
=1

(∏
=1

(
hi

)
i

)˜̇

≤ max maxi
(
hi

)
(10)

Similarly, we can prove that

min mini
(
fi
)
≤

√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

)˜̇
≤ max maxi

(
fi
)

(11)

min mini
(
gi
)
≤

n∏
=1

(
m∏
i=1

(
gi
)

i

)˜̇

≤ max maxi
(
gi

)
(12)

min mini
(
hi

)
≤

n∏
=1

(
m∏
=1

(
hi

)
i

)˜̇

≤ max maxi
(
hi

)
(13)

Therefore from Eqs. (8), (9), (10), (11), (12), and (13), it is
clear that

min mini
(
fi
)
≤

√√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

) ˜̇

≤ max maxi
(
fi
)
;

min mini
(
gi

)
≤

n∏
=1

(
m∏
i=1

(
gi

)
i

) ˜̇

≤ max maxi
(
gi

)
;

min mini
(
hi

)
≤

∏
=1

(∏
=1

(
hi

)
i

) ˜̇

≤ max maxi
(
hi

)
And

min mini
(
fi
)
≤

√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

) ˜̇
≤ max maxi

(
fi
)
;

min mini
(
gi
)
≤

n∏
=1

(
m∏
i=1

(
gi
)

i

) ˜̇

≤ max maxi
(
gi

)
;

min mini
(
hi

)
≤

n∏
=1

(
m∏
=1

(
hi

)
i

) ˜̇

≤ max maxi
(
hi

)
That implies that(
ReS (Gi)

)−
≤ SFSftRWA

(
ReS1 (G1) ,ReS2 (G2) , . . . ,ReSn (Gm)

)
≤

(
ReS (Gi)

)+
.

iii. (Monotonicity): Let

R′eS (Gi) =

(
R′eS (Gi) ,

R′eS (Gi)

)
be any other collection of SFSftRNs for all i = 1, 2, . . . ,m
and = 1, 2, . . . , n such that R′eS (Gi) ≤ ReS (Gi), and

R′eS (Gi) ≤ ReS (Gi).
Then

SFSftRWA
(

R′eS1
(G1) ,

R′eS2
(G2) , . . . ,R

′
eSn

(Gm)

)
≤ SFSftRWA

(
ReS1 (G1) ,

ReS2 (G2) , . . . ,ReSn (Gm)

)
.

Proof. As R′eS (Gi) =

(
R′eS (Gi) , R′eS (Gi)

)
={(

pi , qi , ri

)
,
(
pi , qi , ri

)}
and

ReS (Gi) =

(
ReS (Gi) , ReS (Gi)

)
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=

((
fi , gi , hi

)
,
(
fi , gi , hi

))
.

Now we have to show that for R′eS (Gi) ≤ ReS (Gi),

and R′eS (Gi) ≤ ReS (Gi) for i = 1, 2, . . . ,m and =

1, 2, . . . , n, so

pi ≤ fi ⇒ 1− fi ≤ 1− pi

⇒ 1− fi
2
≤ 1− pi

2

⇒

n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

) ˜̇

≤

n∏
=1

(
m∏
i=1

(
1−

(
pi

)2) i
) ˜̇

⇒ 1−
n∏
=1

(
m∏
i=1

(
1−

(
pi

)2) i
) ˜̇

≤ 1−
n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

) ˜̇

⇒

√√√√√1−
∏n

=1

(∏m

i=1

(
1−

(
pi

)2) i
) ˜̇

≤

√√√√√1−
∏n

=1

(∏m

i=1

(
1−

(
fi
)2) i

) ˜̇
(14)

And

qi ≥ gi ⇒

m∏
i=1

(
qi

)
i
≥

m∏
i=1

(
gi

)
i

⇒

∏n

=1

(∏m

i=1

(
qi

)
i
) ˜̇

≥

∏n

=1

(∏m

i=1

(
gi

)
i
) ˜̇

(15)

And

ri ≥ hi ⇒
∏m

i=1

(
ri

)
i
≥

∏m

i=1

(
hi

)
i

⇒

∏n

=1

(∏m

i=1

(
ri

)
i
)
˜̇

≥

∏n

=1

(∏m

i=1

(
hi

)
i

)˜̇
(16)

Similarly√√√√
1−

∏n

=1

(∏m

i=1

(
1−

(
pi
)2) i

) ˜̇

≤

√√√√
1−

∏n

=1

(∏m

i=1

(
1−

(
fi
)2) i

) ˜̇
(17)

And

qi ≥ gi ⇒
∏m

i=1

(
qi
)

i
≥

∏m

i=1

(
gi
)

i

⇒

∏n

=1

(∏m

i=1

(
qi
)

i
) ˜̇

≥

∏n

=1

(∏m

i=1

(
gi
)

i
) ˜̇

(18)

And

ri ≥ hi ⇒
∏m

i=1

(
ri
)

i
≥

∏m

i=1

(
hi

)
i

⇒

∏n

=1

(∏m

i=1

(
ri
)

i
) ˜̇

≥

∏n

=1

(∏m

i=1

(
hi

)
i
) ˜̇

(19)

Therefore from Eq. (14), (15), (16), (17), (18) and (19),
we getR′eS (Gi) ≤ ReS (Gi) andR′eS (Gi)≥ReS (Gi)

Therefore

SFSftRWA
(
R′eS1

(G1) , R
′
eS2

(G2) , . . . ,R
′
eS (Gm)

)
≤ SFSftRWA

(
ReS1 (G1) , ReS2 (G2) , . . . ,ReSn (Gm)

)
.

iv. (Shift Invariance): IfR′eS(G)=
{
R′eS (G) ,R

′
eS (G)

}
={(

p, q, r
)
,
(
p, q, r

)}
is another family of SFSftRNs, then

SFSftRWA
(

ReS1 (G1)⊕R′eS (G) , ReS2 (G2)

⊕R′eS (G) , . . . ,ReSn (Gm)⊕R′eS (G)

)
= SFSftRWA

(
ReS1 (G1) , ReS2 (G2) , . . . ,

ReSn (Gm)

)
⊕R′eS (G) .

Proof: Let R′eS (G) =
{
R′eS (G) , R

′
eS (G)

}
={(

p, q, r
)
,
(
p, q, r

)}
is any SFSftRN and ReS (Gi) =(

ReS (Gi) , ReS (Gi)

)
=

((
fi , gi , hi

)
,(

fi , gi , hi
))

be family of SFSftRNs, then

ReS1 (G1)⊕R′eS (G) =

{ReS1 (G1)⊕R′eS (G)
}
,{

ReS1 (G1)⊕R′eS (G)
} 

As

ReS1 (G1)⊕R′eS (G)

=


√1−

(
1− f112

) (
1− p2

)
,

g11q, h11r


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Therefore,

SFSftRWA

ReS1 (G1)⊕R′eS (G) ,
ReS2 (G2)

⊕R′eS (G) , . . . ,
ReSn (Gm)⊕R′eS (G)


=

⊕
n
=1
˜̇ (
⊕
m
i=1 i

(
ReS (Gi)⊕R′eS (G)

))
,

⊕
n
=1
˜̇ (
⊕
m
i=1 i

(
ReS (Gi)⊕R

′
eS (G)

))


=





√√√√√√√√√√1−
n∏
=1


m∏
i=1

(
1−

(
fi
)2)

(
1−

(
p
)2) i


˜̇

,

n∏
=1

(
m∏
i=1

(
gi

)
i
(
q i

)) ˜̇
,

n∏
=1

(
m∏
i=1

(
hi

)
i (
r i

)) ˜̇



,



√√√√√√√√√1−
n∏
=1


m∏
i=1

(
1−

(
fi
)2)

(
1−

(
p
)2) i


˜̇

,

n∏
=1

(
m∏
i=1

(
gi
)

i
(
q i

)) ˜̇
,

n∏
=1

(
m∏
i=1

(
hi

)
i
(
r i

)) ˜̇





=





√√√√√√1−
(
1−

(
p
)2) n∏

=1

(
m∏
i=1

(
1−

(
fi
)2) i

) ˜̇
,

q

n∏
=1

(
m∏
i=1

(
gi

)
i

) ˜̇
,

r

n∏
=1

(
m∏
i=1

(
hi

)
i

) ˜̇


,



√√√√√1−
(
1−

(
p
)2) n∏

=1

(
m∏
i=1

(
1−

(
fi
)2) i

) ˜̇
,

q

n∏
=1

(
m∏
i=1

(
gi
)

i

) ˜̇
,

r

n∏
=1

(
m∏
i=1

(
hi

)
i

) ˜̇





=





√√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

) ˜̇
,

n∏
=1

(
m∏
i=1

(
gi

)
i

) ˜̇
,

n∏
=1

(
m∏
i=1

(
hi

)
i

) ˜̇


⊕

(
p, q, r

)

√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

) ˜̇
,

n∏
=1

(
m∏
i=1

(
gi
)

i

) ˜̇
,

n∏
=1

(
m∏
i=1

(
hi

)
i

) ˜̇


⊕
(
p, q, r

)



=





√√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

) ˜̇
,

n∏
=1

(
m∏
i=1

(
gi

)
i

) ˜̇
,

n∏
=1

(
m∏
i=1

(
hi

)
i

) ˜̇



√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

) ˜̇
,

n∏
=1

(
m∏
i=1

(
gi
)

i

) ˜̇
,

n∏
=1

(
m∏
i=1

(
hi

)
i

) ˜̇




⊕

((
p, q, r

)
,
(
p, q, r

))
= SFSftRWA

(
ReS1 (G1) , ReS2 (G2) ,

. . . ,ReSn (Gm)

)
⊕R′eS (G) .

Hence the required result is proved.
v. (Homogeneity): For any k≥0

SFSftRWA
(
kReS1 (G1) , kReS2 (G2) , . . . , kReSn (Gm)

)
≤ kSFSftRWA

(
ReS1 (G1) ,ReS2 (G2) , . . . ,ReSn (Gm)

)
.

Proof: Let k≥0 and ReS (Gi) =

{
k

(
ReS (Gi)

)
,

k
(
ReS (Gi)

)}
be a collection of SFSftRNs.
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As

kReS1 (G1) =


(√(

1−
(
1− f112

)k)
, g11

k, h11
k

)
,(√(

1−
(
1− f11

2
)k)

, g11
k, h11

k

)
 .

Now

SFSftRWA
(
kReS1 (G1) , kReS2 (G2) , . . . , kReSn (Gm)

)

=





√√√√√√1−
n∏
=1

 m∏
i=1

(
1−

(
fi
)2)k i


˜̇

,

n∏
=1

(
m∏
i=1

(
gi

)k i

) ˜̇
,

n∏
=1

(
m∏
i=1

(
hi

)k i

) ˜̇


,



√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
fi
)2)

k i

) ˜̇
,

n∏
=1

(
m∏
i=1

(
gi
)k i

) ˜̇
,

n∏
=1

(
m∏
i=1

(
hi

)k i

) ˜̇





=





√√√√√√√1−

 n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

) ˜̇ 
k

,

 n∏
=1

(
m∏
i=1

(
gi

)
i

) ˜̇ 
k

,

 n∏
=1

(
m∏
i=1

(
hi

)
i

) ˜̇ 
k




√√√√√√√1−

 n∏
=1

(
m∏
i=1

(
1−

(
fi
)2) i

) ˜̇ 
k

,

 n∏
=1

(
m∏
i=1

(
gi
)

i

) ˜̇ 
k

,

 n∏
=1

(
m∏
i=1

(
hi

)
i

) ˜̇ 
k





TABLE 4. Tabular representation of
Re∇S (Gi) = (Re∇S (Gi),Re∇S (Gi)).

= kSFSftRWA
(
ReS1 (G1) ,ReS2 (G2) , . . . ,ReSn (Gm)

)
.

Thus prove is completed.
Remark 2:

a) If we ignore the AG, then the developed SFSftRWA
operator will degenerate into Pythagorean fuzzy soft
rough weighted average (PyFSftRWA) operator.

b) If only one soft parameterS1 i.e. (n = 1) is used, then
the developed SFSftRWA will degenerate into a spheri-
cal fuzzy rough weighted average (SFRWA) operator.

B. SPHERICAL FUZZY SOFT ROUGH ORDERED WEIGHTED
AVERAGE (SFSft ROWA) OPERATOR
In this subsection, we will introduce a spherical fuzzy soft
rough ordered weighted average aggregation operator and its
fundamental characteristics.

Definition 12: Suppose ReS (Gi) =

(
ReS (Gi) ,

ReS (Gi)
)
is a family of SFSftRNs. Also, assume that =

( 1, 2, 3, . . . , m)
Ž, ˜̇ = ( ˙̃1, ˜̇2,

˜̇
3, . . . ,

˜̇
n

)Ž
are

the WVs of i experts andS parameters using the condition
that

∑m
i=1 i = 1,

∑n
=1
˜̇
i = 1 and 0 ≤ i,

˜̇
≤

1 respectively.
Then SFSftROWA aggregation operator is given as

SFSftROWA
(
ReS1 (G1) , . . . ,ReSn (Gm)

)
=

⊕n=1˜̇
(
⊕
m
=1 iRe∇S (Gi)

)
,

⊕
n
=1
˜̇ (
⊕
m
=1 iRe∇S (Gi)

)
 .

Theorem 3: Let ReS (Gi) =

(
ReS (Gi) , ReS (Gi)

)
be a family of SFSftRNs. Also, suppose that =

( 1, 2, 3, . . . , m)
Ž, ˜̇ = (˜̇1,

˜̇
2,
˜̇
3, . . . ,

˜̇
n

)Ž
are

WVs of i experts andS parameters using the condition that∑m
i=1 i = 1,

∑n
=1
˜̇
i = 1 and 0 ≤ i,

˜̇
≤ 1 respec-

tively. Then SFSftROWA aggregation operator is given as:

SFSftROWA
(
ReS1 (G1) , . . . ,ReSn (Gm)

)
=

⊕n=1˜̇
(
⊕
m
=1 iRe∇S (Gi)

)
,

⊕
n
=1
˜̇ (
⊕
m
=1 iRe∇S (Gi)

)

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=





√√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
f∇i

)2) i
) ˜̇

,

n∏
=1

(
m∏
=1

(
g∇i

)
i

) ˜̇
,

n∏
=1

(
m∏
=1

(
h∇i

)
i

) ˜̇



,



√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
f∇i

)2) i

) ˜̇
,

n∏
=1

(
m∏
=1

(
g∇i

)
i

) ˜̇
,

n∏
=1

(
m∏
=1

(
h∇i

)
i

) ˜̇




where Re∇S (Gi) =

(
Re∇S (Gi) , Re∇S (Gi)

)
repre-

sents the largest value of the permutation from ith row and th
column of the family i×

SFSftRNs ReS (Gi) =

(
ReS (Gi) , ReS (Gi)

)
.

Example 3: Consider the above Table 3 in Exam-
ple (2) for the family of SFSftRNs ReS (Gi) =(
ReS (Gi) , ReS (Gi)

)
. Then new order of tabular pre-

sentation of ReS (Gi) =

(
ReS (Gi) , ReS (Gi)

)
through score function is given in Table 4.

On the basis of the definition 12, we have:

SFSftROWA
(
ReS1 (G1) , . . . ,ReSn (Gm)

)
= {(0.4082, 0.2077, 0.2517) , (0.4195, 0.3063, 0.1928)} .

From the analysis of the above theorem, we observe that
SFSftROWA operator has the following properties:

i. (Idempotency): Let Re∇S (Gi) = R′eS (G) for all
i = 1, 2, . . . ,m and = 1, 2, . . . , n where R′eS (G) ={
R′eS (G) , R

′
eS (G)

}
=

{(
p, q, r

)
,
(
p, q, r

)}
,

then SFSftROWA(ReS1 (G1) , ReS2 (G2) , . . . ,ReSn

(Gm)) = R′eS (G).
ii. (Boundedness): If(
Re∇S (Gi)

)−
=

(
min miniRe∇S (Gi) , max maxiRe∇S (Gi)

)
and(

Re∇S (Gi)
)+

=

(
max maxiRe∇S (Gi) , min miniRe∇S (Gi)

)
, then

(
Re∇S (Gi)

)−
≤ SFSftROWA

(
ReS1 (G1) , ReS2 (G2) , . . . ,ReSn (Gm)

)
≤

(
Re∇S (Gi)

)+
.

iii. (Monotonicity): Let R′eS (Gi) =

(
R′eS (Gi) ,

R′eS (Gi)
)
be any other collection of SFSftRNs for all i =

1, 2, . . . ,m and = 1, 2, . . . , n such that R′eS (Gi) ≤

ReS (Gi), and R′eS (Gi) ≤ ReS (Gi), then

SFSftROWA
(
R′eS1

(G1) , R
′
eS2

(G2) , . . . ,R
′
eSn

(Gm)
)

≤ SFSftROWA
(
ReS1 (G1) , ReS2 (G2) , . . . ,

ReSn (Gm)

)
.

iv. (Shift Invariance): IfR′eS (G)=
{
R′eS (G) ,R

′
eS (G)

}
=

{(
p, q, r

)
,
(
p, q, r

)}
is another collection of

SFSftRNs, then

SFSftROWA
(

ReS1 (G1)⊕R′eS (G) , ReS2 (G2)

⊕R′eS (G) , . . . ,ReSn (Gm)⊕R′eS (G)

)
= SFSftROWA

(
ReS1 (G1) , ReS2 (G2) , . . . ,ReSn (Gm)

)
⊕R′eS (G) .

v. (Homogeneity): For any k≥0,

SFSftROWA
(
kReS1 (G1) , kReS2 (G2) , . . . , kReSn (Gm)

)
≤ kSFSftROWA

(
ReS1 (G1) , ReS2 (G2) , . . . ,

ReSn (Gm)

)
.

Remark 3:
a) If we ignore the AG, then the developed SFSftROWA

operator will degenerate into Pythagorean fuzzy
soft rough ordered weighted average (PyFSftROWA)
operator.

b) If only one soft parameterS1 i.e. (n = 1) is used, then
the developed SFSftROWAwill degenerate into a spher-
ical fuzzy rough ordered weighted average (SFROWA)
operator.

C. SPHERICAL FUZZY SOFT ROUGH HYBRID AVERAGE
(SFSft RHA) AGGREGATION OPERATOR

Definition 13: Suppose ReS (Gi) =

(
ReS (Gi) ,

ReS (Gi)
)

is a family of SFSftRNs. Let =

( 1, 2, 3, . . . , m)
Ž, =

(
1, 2, 3, . . . , n

)Ž
denote WVs of i experts and S parameters respectively
using the condition that

∑m
i=1 i = 1,

∑n
=1 = 1 and

0 ≤ i, i ≤ 1.
Also, assume that = ( 1, 2, 3, . . . , m)

Ž, ˜̇ =(˜̇
1,
˜̇
2,
˜̇
3, . . . ,

˜̇
n

)Ž
are the associated WVs of i experts

and S parameters using the condition that
∑m

i=1 i =
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1,
∑n
=1
˜̇
i = 1 and 0 ≤ i,

˜̇
≤ 1 respectively. Then,

SFSftRHA aggregation operator is given as

SFSftRHA
(
ReS1 (G1) , . . . ,ReSn (Gm)

)
=

⊕n=1˜̇
(
⊕
m
=1 iRe

∗
∇S (Gi)

)
,

⊕
n
=1
˜̇ (
⊕
m
=1 iRe

∗
∇S (Gi)

)


Theorem 4: Suppose ReS (Gi) =

(
ReS (Gi) ,

ReS (Gi)
)

is a family of SFSftRNs. Let =

( 1, 2, 3, . . . , m)
Ž and =

(
1, 2, 3, . . . , n

)Ž
are the WVs of i experts and S parameters respec-
tively using the condition that

∑m
i=1 i = 1,

∑n
=1 =

1 and 0 ≤ i, ≤ 1. Also, assume that =

( 1, 2, 3, . . . , m)
Ž, ˜̇ = (˜̇1,

˜̇
2,
˜̇
3, . . . ,

˜̇
n

)Ž
are

the associated WVs of i experts and S parameters using
the condition that

∑m
i=1 i = 1,

∑n
=1
˜̇
i = 1, and

0 ≤ i, ˜ ˙ ≤ 1, respectively. Then SFSftRHA aggregation
operator is given as;

SFSftRHA
(
ReS1 (G1) , . . . ,ReSn (Gm)

)
=

⊕n=1˜̇
(
⊕
m
=1 iRe

∗
∇S (Gi)

)
,

⊕
n
=1
˜̇ (
⊕
m
=1 iRe

∗
∇S (Gi)

)


=





√√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
f ∗∇i

)2) i
) ˜̇

,

n∏
=1

(
m∏
=1

(
g∗∇i

)
i

) ˜̇
,

n∏
=1

(
m∏
=1

(
h∗∇i

)
i

) ˜̇



,



√√√√√1−
n∏
=1

(
m∏
i=1

(
1−

(
f ∗∇i

)2) i

) ˜̇
,

n∏
=1

(
m∏
=1

(
g∗∇i

)
i

) ˜̇
,

n∏
=1

(
m∏
=1

(
h∗∇i

)
i

) ˜̇




where Re

∗
∇S (Gi) =

(
Re
∗
∇S (Gi) , Re

∗
∇S (Gi)

)
=

(
n i ReS (Gi) , n i ReS (Gi)

)
present the largest value of the permutation from ith row
and th column of the family i× SFSftRNs ReS (Gi) =

(
ReS (Gi) , ReS (Gi)

)
and ‘‘n’’ is the balancing

coefficient.
Example 4: Consider the above Table 3 of Exam-

ple (2) for the family of SFSftRNs ReS (Gi) =(
ReS (Gi) , ReS (Gi)

)
with = (0.33, 0.36, 0.31)Ž,

= (0.47, 0.53)Ž be the WVs of i experts and S param-
eters. Also, consider that = (0.37, 0.28, 0.35)Ž, ˜̇ =
(0.41, 0.59)Ž are the associated WVs of i experts and S
parameters. Then the tabular presentation of Re

∗
∇S (Gi)

through operational rules and score function is given in
Table 5. and Table 6. as

Re
∗
∇S (Gi) =

(
Re
∗
∇S (Gi) , Re

∗
∇S (Gi)

)
=

(
n iReS (Gi) , n iReS (Gi)

)
.

TABLE 5. Tabular representation by using operational laws for of
R?

e∇S (Gi) = (R?
e∇S (Gi),R?e∇S (Gi)).

TABLE 6. Tabular presentation by using score function for
R?

e∇S (Gi) = (R?
e∇S (Gi),R?e∇S (Gi)).

Based on the above information, we have:

SFSftRHA
(
ReS1 (G1) , . . . ,ReSn (Gm)

)
= {(0.3979, 0.1631, 0.3484) , (0.3343, 0.5213, 0.4048)} .

Moreover, similarity to the SFSftROWA operator, the
SFSftRHA operator has some important properties, such as
idempotency, boundedness, monotonicity, shift invariance

and homogeneity.
Remark 4:
a) If we ignore the AG, then the developed SFSftRHA

operator will degenerate into Pythagorean fuzzy soft
rough hybrid average (PyFSftRHA) operator.

b) If only one soft parameterS1 i.e. (n = 1) is used, then
the developed SFSftRHA will degenerate into a spheri-
cal fuzzy rough hybrid average (SFRHA) operator.
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V. A MULTI-CRITERIA DECISION-MAKING METHOD
BASED ON SPHERICAL FUZZY SOFT ROUGH AVERAGE
AGGREGATION OPERATORS
A. AN ALGORITHM FOR PROPOSED WORK
In this section, we will study a new MCDM method by
using SFSftRWA, SFSftROWA and SFSftRHA aggregation
operators to solve MCDM problems under the environment
of SFSftR information.

Let F = {F1, F2, F3, . . . , Fr} be the set of ‘‘r’’ alterna-
tive and S = {S1, S2, S3, . . . , Sn} be the corresponding
set of ‘‘n’’ parameters. Let = { 1, 2, 3, . . . , m} be the
family of ‘‘m’’ senior firewall software experts who provide
their expertise for each alternative Fl (l = 1, 2, 3, . . . , r).
Let = { 1, 2, . . . , } denote the WVs of ‘‘ i’’

experts and ˜̇ = {˜̇
1,
˜̇
2, . . . ,

˜̇
n

}
represent the WVs of

parameters ‘‘S ’’ with a condition that i,
˜̇
∈ [0, 1]

and
∑m

i=1 i = 1,
∑n
=1
˜̇
= 1. Suppose the assess-

ment data given by intellectual is in the form of SFSftRNs.
The overall information is given in SFSftR matrix M =[
ReS (Gi)

]
n×m

. The main steps based on the developed
operators for the MCDM method is gives as follows.
Step 1: All intellectual provide their assessment in the

shape of SFSftRNs for each alternative Fl corresponding to
their respective parameters S . Then, arrange the overall
assessment information in SFSftR decision matrix M =[
ReS (Gi)

]
n×m

.
Step 2: Normalize the SFSftR decision matrix given in

step 1 according to the following formula:

ReS (Gi) =


(
ReS (Gi)

)c
for cost type parameter

ReS (Gi) for a benefit type parameter

where (
ReS (Gi)

)c
=

(
ReS1 (G1) , ReS1 (G1)

)
=

((
h11, g11, f11

)
,
(
h11, g11, f11

))
denote the complement of

ReS (Gi) =
(
ReS1 (G1) , ReS1 (G1)

)
=

(f11, g11, h11) ,(
f11, g11, h11

)  .
Step 3: Apply the established operators of each deci-

sion matrix M =

[
ReS (Gi)

]
n×m

for each alterna-
tive Fl (l = 1, 2, 3, . . . , r) corresponding to their respective
parameters S and calculate the aggregated result Ql =((
f , g, h

)
,
(
f , g, h

))
.

Step 4: Utilize Definition 10 to calculate the score values
for each Ql .
Step 5:Rank the results and choose the best result.

B. APPLICATION OF THE PROPOSED METHOD
In this section, an explanatory example is given to view the
strength of the presented work.

A firewall is a web safety system to handle incoming or
outgoing network traffic by using a preset security rule. The
selection of the best firewall software is a key point for a
company to protect their data and secure their information.
So the proposed MCDM can handle successfully the eval-
uation process and the ability to detect and choose the best
firewall software among the given alternative.
Example 5: Suppose an organization X in America

wants to select the best firewall software for the secu-
rity and safety of their information. Let there are ini-
tially three firewall software that is to be considered
and set of these firewall software is given as F =

{F1 = Check point next generation firewall, F2 =

Glass wire firewall, F3 = Sophos XG firewall} based on the
following parameters {S1 = Wireless network protection,
S2 = Internet and network access, S3 = protection
against malware, S4 = Blokage against unauthori
žed access}. The family consisting of four highly
qualified and professional software experts are invited
by the organization for the selection of best firewall
software. Let = {0.28, 0.24, 0.23, 0.25} denote
the WVs of i (i = 1, 2, 3, 4) experts and ˜̇

=

{0.18, 0.29, 0.32, 0.21} represent the WVs of parameters
S . The professional experts provide their assessment data
for the alternatives Fl corresponding to parameters S in
the form of SFSftRNs. Now we apply the devised method
to select the suitable alternative Fl .

1) BY USING SFSft RWA OPERATOR
Step 1: All the experts provide their assessment in the
form of SFSftRNs for each alternative Fl corresponding to
their respective parameters S . Then arrange the overall
assessment information in SFSftR decision matrix M =[
ReS (Gi)

]
n×m

given in Table 7-9.
Step 2:Normalize the SFSftR decision matrix if necessary.
Step 3: Apply the devised SFSftRWA aggregation oper-

ators of each decision matrix M =

[
ReS (Gi)

]
n×m

for each alternative Fl (l = 1, 2, 3, . . . , r) corresponding to
their respective parameters S to get the aggregated result
Ql =

((
f , g, h

)
,
(
f , g, h

))
.

Q1 =

(
(0.4112, 0.5641, 0.3238) ,
(0.4250, 0.3827, 0.4479)

)
,

Q2 =

(
(0.4947, 0.3188, 0.3978) ,
(0.5410, 0.4655, 0.4591)

)
,

Q3 =

(
(0.3935, 0.3599, 0.4388) ,
(0.4937, 0.3869, 0.3646)

)
Step 4: Use Definition 10 to calculate the score values for

each Ql .

Sc (Q1) = 0.4477, Sc (Q2) = 0.5337,
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TABLE 7. SFSft matrix for alternative F1.

TABLE 8. SFSft matrix for alternative F2.

TABLE 9. SFSft matrix for the alternative F3.

Sc (Q3) = 0.5188

Step 5: Rank the results for each alternative
Ql (l = 1, 2, 3, . . . , r) i.e.,

Sc (Q2) > Sc (Q3) > Sc (Q1)

Hence F2 is the best firewall software.

2) By USING SFSft ROWA OPERATOR
Step 1: Same as above

Step 2: Same as above
Step 3: Apply the devised SFSftROWA aggregation oper-

ators of each decision matrix M =

[
ReS (Gi)

]
n×m

for each alternative Fl (l = 1, 2, 3, . . . , r) corresponding to
their respective parameters S to get the aggregated result

Ql =

((
f , g, h

)
,
(
f , g, h

))
.

Q1 =

(
(0.4164, 0.5621, 0.2999) ,
(0.3825, 0.3917, 0.4762)

)
,

Q2 =

(
(0.5022, 0.3169, 0.4031) ,
(0.5275, 0.4322, 0.4600)

)
,

Q3 =

(
(0.3925, 0.3638, 0.4359) ,
(0.4333, 0.39087, 0.3678)

)
Step 4: Use Definition 10 to calculate the score values for

each Ql .

Sc (Q1) = 0.4317, Sc (Q2) = 0.5412,

Sc (Q3) = 0.4977

Step 5: Rank the results for each alternative
Ql (l = 1, 2, 3, . . . , r) i.e,

Sc (Q2) > Sc (Q3) > Sc (Q1)

Hence F2 is the best firewall software.

3) BY USING SFSft RHA OPERATOR
Step 1: Same as above
Step 2: Same as above
Step 3: Apply the devised SFSftRHA aggregation oper-

ators of each decision matrix M =

[
Re
∗
∇S (Gi)

]
n×m

for each alternative Fl (l = 1, 2, 3, . . . , r) corresponding
to their respective parameters S to get the aggregated
result Ql =

((
f ∗
∇
, g∗
∇
, h∗
∇

)
,
(
f ∗
∇
, g∗
∇
, h∗
∇

))
with =

(0.28, 0.30, 0.17, 0.25)Ž, = (0.32, 0.26, 0.18, 0.24, )Ž

be the WVs of i experts and S parameters. The results are
given by

Q1 =

(
(0.3770, 0.5379, 0.3577) ,
(0.4701, 0.4143, 0.4418)

)
,

Q2 =

(
(0.4479, 0.3871, 0.4758) ,
(0.5767, 0.4181, 0.4219)

)
,

Q3 =

(
(0.3632, 0.4459, 0.4764) ,
(0.4855, 0.3926, 0.3686)

)
Step 4: Calculate the score values for each Ql .

Sc (Q1) = 0.4454, Sc (Q2) = 0.5202, Sc (Q3) = 0.4711

Step 5: Rank the results for each alternative
Ql (l = 1, 2, 3, . . . , r) i.e.

Sc (Q2) > Sc (Q3) > Sc (Q1)

Hence F2 is the best firewall software.

27848 VOLUME 10, 2022



L. Zheng et al.: Spherical Fuzzy Soft Rough Average AOs and Their Applications to MCDM

VI. COMPARATIVE ANALYSIS
In this section, we have to present the cooperative analy-
sis of the exposed work by comparing the presented work
with some other existing literature to show the useful-
ness and superiority of the proposed work. We compare
our work with picture fuzzy soft rough weighted average(
PFSftRWA

)
, PFSftROWA, PFSftRHA, Wang et al. [41]

method, Hussain et al. [40] method, and Zhang et al. [39]
method. The overall discussion is given below.
Example 6: In our daily life every person travels from one

place to another place. Suppose a person X wants to travel
through the best airline company to his desired destination.
He has a set of alternatives of four best airlines given as
% = {F1 = Air Canada, F2 = United Airline,F3 =

Emirates,F4 = American Airline} corresponding to
parameter set S = {S1 = Customer servise,S2 =

Great price with great deal,S3 = Inflight Meal,S4 =

Entertainment}. Let = {0.26, 0.21, 0.29, 0.24}
denote the WVs of i (i = 1, 2, 3, 4) experts and ˜̇ =
{0.30, 0.23, 021, 0.26} represent the WVs of parameters
S . Suppose these experts provide their assessment data for
the alternatives Fl (l = 1, 2, 3, 4) corresponding to param-
eters S ( = 1, 2, 3, 4) in the form of PFSftRNs as given
in Table 10. The overall results are also given in Table 11.

TABLE 10. PFSft R information.

From all the above calculations, we note that
Wang et al. [41] method, Hussain et al. [40] method and
Zhang et al. [39] method consists of q-ROF soft rough
numbers, PyF soft rough numbers and IF soft rough num-
bers respectively in which AG cannot be considered while
the data given in Table 10. Consist of picture fuzzy soft
rough numbers containing AG, so Wang et al. [41] method,
Hussain et al. [39] method, and Zhang et al. [40] method
cannot tackle this information. But the existing methods

TABLE 11. Results for data given in Table 10.

FIGURE 2. Pictorial presentation of data given in Table 11.

along with PFSftRWA, PFSftROWA and PFSftRHA can
consider this information, because:

If we replace power 2 by 1 in the basic definition of pre-
sented operators, then presented operators can be reduced to
PFSftRWA, PFSftROWA and PFSftRHA. The overall results
are given in Table 11.

When experts provide their information in the form of
PFSftRNs, then this data can be handled by the presented
operators because established operators are more general.
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TABLE 12. SFSft R information.

FIGURE 3. Pictorial presentation of data given in Table 13.

Also, note that the best alternative in all cases is the same,
i.e., F3 is the best alternative that shows the authenticity of
the introduced work. Moreover the pictorial presentation of
the data given in Table 11 and in Figure 2.

We can note that if the experts provide their assessment
information in the form of SFSftRNs as given in Table 12,
then all the existing literature cannot handle this kind of
information while initiated work can do so because existing
literature can only deal with MG and NMG while the data
given in Table 12 consists of MG, NMG, and AG as well.
So the proposed work is more superior to all given literature.
The overall results are given in Table 13. Also, note that

when decision-makers provide
{
(0.5, 0.5, 0.3) ,
(0.3, 0.5, 0.3)

}
as given

in Table 13, then this data is not a PFSftR data. Due to this
reason this data cannot be handled by PFSftRWA,
PFSftROWA and PFSftRHA aggregation operators and only
the presented work can deal with this information. Moreover,
note that the presented work fills up the flaws of the existing
literature and provides more space to decision-makers to
make their decisions in decision-making problems. Further-
more, a pictorial presentation of Table 13 results is given in
Figure 3.

TABLE 13. Results for data given in Table 13.

VII. CONCLUSION
In this paper, we have initiated a hybrid structure called
spherical fuzzy soft rough set that is the combination of
spherical fuzzy set, soft set, and rough set. Moreover,
some new aggregation operators like spherical fuzzy soft
rough weighted average, spherical fuzzy soft rough ordered
weighted average, and spherical fuzzy soft rough hybrid aver-
age aggregation operators are developed and their properties
are elaborated. An algorithm along with an illustrative exam-
ple is given to prove the validity of the developed work. Also,
a comparative study of the established work is given to show
the advantages of defined operators.

Note that the presented work is also limited notion because
when decision-makers present information in the form of
T-spherical fuzzy soft rough set by lower and upper approx-
imation operators like {(0.5, 0.6, 0.8) , (0.6, 0.7, 0, 8)},

then necessary condition 0 ≤
(
f ( i)

)2
+

(
g ( i)

)2
+(

h ( i)
)2
≤ 1 and 0 ≤

(
f ( i)

)2
+
(
g ( i)

)2
+

(
h ( i)

)2
≤

1 fail to tackle such sort of information, because (0.5)2 +
(0.6)2 + (0.8)2 6∈[0, 1] and (0.6)2 + (0.7)2 + (0.8)2 6∈[0, 1]
while the necessary condition for T-spherical fuzzy soft rough
set is more general that use the condition 0 ≤

(
f ( i)

)q
+
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(
g ( i)

)q
+

(
h ( i)

)q
≤ 1 and 0 ≤

(
f ( i)

)q
+
(
g ( i)

)q
+(

h ( i)
)q
≤ 1 for q≥1.

In the future directions, using the proposed definition and
operational laws, some methods can be developed as given
in [43]. Moreover, this work can be extended to T-spherical
fuzzy set, and real-life problems can be resolved given
in [44]–[46]. Furthermore, some new notions given in [47]
can be developed based on established work. Also, some new
methods like TODIM and VIKOR methods can be defined
for the proposed spherical fuzzy soft rough set as given
in [48], [49].
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