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Summary. Spherical harmonic expansions are derived to represent arbitrary 
current densities and magnetic fields in a spherical region. The expansions can 
be viewed as a generalization of the spherical-harmonic, scalar-potential 
theory to include regions where spatially distributed current densities exist. 
The new expansions are found in terms of the eigenfunctions of the curl curl 
operator. It is found that four basic field forms may be present ; one of these 
is the well-known scalar potential expansion originated by Gauss. Electric and 
magnetic field boundary conditions appropriate to a conducting spherical 
shell including the case of anisotropic conductivity are presented. They are 
discussed in terms of their ability to couple the four field forms. It is pointed 
out that the four field forms can be expressed in five other orthogonal 
curvilinear coordinate systems. 

1 Introduction 

Mathematical analysis of coexisting magnetic fields and current densities is of interest to 
investigators in several technical disciplines. Some of these are : the electromagnetism of the 
Earth’s interior (Rikitake 1966), electromagnetism as used in geophysical exploration (Wait 
1979), studies of thc nuclear electromagnetic pulse (Vance 1978), studies of astrophysical 
field and studies of the magnetosphere (Stern 1979; Potemra 1979, 1980; Bostrom 1964; 
Sugiura 1975; Kisabeth & Rostoker 1977; Kisabeth 1979). 

In a source-free (current density equals zero) region, a static magnetic field can be 
expressed as a gradient of a scalar potential. The scalar potential (solution of Laplace’s 
equation) can be expressed as a sum of orthogonal harmonic functions in many curvilinear 
orthogonal coordinate systems; these are developed in various electromagnetic treatises. 
Not as well known is the fact that orthogonal vector functions exist in which magnetic fields 
in the presence of current densities can be expanded. 

Such functions are developed in this paper in terms of the eigenfunctions of the curl curl 
operator. These eigenfunctions can be expressed in curvilinear vector components in a total 
of six orthogonal curvilinear coordinate systems (Morse & Feshbach 1953, section 13.1). 
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490 K. D. Granzow 

The six appropriate coordinate systems are rectangular, circular cylinder, elliptic cylinder, 
parabolic cylinder, spherical and conical coordinate systems (see Morse & Feshbach 1953, 
pp. 655-659, for coordinate system definitions). 

The vector functions are developed in this paper in spherical coordinates; the vector 
spherical harmonic as defined by Jackson (1975), is used in the derivation. Inclusion of the 
vector functions in the representation of a magnetic field can be regarded as a generalization 
of the scalar potential theory to include regions where a current density exists. 

Scalar spherical harmonic analysis has been used extensively to model the geomagnetic 
field; this method was originated by Gauss (his field representation is defined as field FORM 
I in this paper). It is currently used to analyse the main field, the secular variation, and the 
diurnal variations S ,  and L (Chapman & Bartels 1962; Cain et al. 1967; Fougere 1969). The 
generalization involves deriving three additional spherical harmonic expansions. The first 
expansion extends the magnetic field representation to include fields in regions where j # 0, 
but V . j  = 0 and V x j = 0 (defined as FORM 11). The second and third expansions extend 
the representation to regions where V .  j = 0, but V x  j # 0; one such expansion is for trans- 
verse magnetic (TM) fields (FORM IV), the other is for transverse current density (TJ) fields 
(FORM 111, analogous to transverse electric fields). 

The three new expansions are reduced to their real-variable form suitable for numerical 
fitting procedures. The form is similar to that of the scalar potential expansions extensively 
used in geomagnetic field analysis. The author anticipates using the new expansions in an 
effort to model the field-aligned current above the ionosphere in the Earth's polar regions. 
Primarily because of this possible application, a section is included discussing the mathe- 
matical treatment of an anisotropic conducting spherical shell. Such a shell could be used to 
represent the ionosphere. Another application could be found in studying the shielding of a 
sphere constructed of an anistropic composite material in an ionized-gas or other conducting 
environment. The effect of the shell is to couple fields of the various FORMS. The 
permeability p is assumed to be that of free space throughout the paper. 

2 The magnetic field in the absence of currents 

For the sake of completeness, the expansion for the magnetic field in a source-free (j = 0) 
region is given. Such a magnetic field can be expressed as the gradient of a scalar potential V ,  
where the scalar potential satisfies Laplace's equation (V2 V = 0).  I f  the source currents are 
contained in a sphere interior to the domain of the field, the potential is given (in complex 
form) by 

is the spherical harmonic function (Jackson 1975, p. 99), (r,  0 ,  @) are spherical coordinates, 
ah, are complex constants, and superscript i means sources interior to the domain of the 
field. V' is a singular at r = 0 and finite as r + CQ. 

If the sources are exterior to the domain of the field, the potential is 
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Representation of magnetic fields 49 1 

where superscript e means exterior sources. V e  is analytic at r = 0, but diverges as r + 00. The 
sum (V' + V " )  is the general solution of Laplace's equation in spherical polar coordinates. 
Equation (1) is often written in real form (e.g. for geomagnetic analysis) as 

N n + l  
(&' cos mct, + h: sin m@) Pr: (cos Q) 

n = 1  m = O  

where 

a = a constant radius, 

P," (cos 0) = associated Legendre's function, 

and /zr are constants. 

The field is given by 

H = - V V  

( 3  ) 

(4) 

for either V =  V e  or V =  V ' .  

the potential inside the sphere due to  the same current distribution is given by 
If the currents yielding the potential of equation (3) are in a spherical surface of radiusR, 

so that the radial component of the magnetic field is continuous across the surface, i.e 

-__ a v e  

In practice, a spherical shell with thickness much less than R is often approximated by such 
a spherical surface. 

The surface current associated with the fields of equations (3) and (5) is given by 
(assuming SI units) 

j S = k x  (He - H I )  (7) 

where He and Hi are just exterior to and interior to the spherical surface, respectively, and i 
is the unit vector r / lr l .  Substituting into (7) using (3) and (5) yields the components 

and 

The surface current given by (8) and (9) simply circulates on the spherical surface - no current 
flow into or out of the surface is implied by this current; mathematically, this is expressed 
by the equation 
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492 K.  D. Granzow 

where 

The magnetic field implied by the form of the potentials given by ( 3 )  and (5) and the 
surface current given by the form of (8) and (9) will be referred to as fields and surface 
currents of FORM I .  For the fields, FORMS Ie or I' will designate exterior or interior type, 
respectively. Obviously, the Earth's main field is of FORM ?. Near the Earth's surface, j = 0, 
and all geomagnetic field components can be represented as a sum of fields of FORMS Ie 
and I' if proper time variations are added to the representations. In the following section, 
expansions will be derived to represent a magnetic field in the presence of a current density. 
These can be employed in and above the ionosphere, in the interior of the Earth, or in other 
current-carrying media. 

3 Magnetic fields in the presence of currents 

In the previous section, magnetic fields that obey V X  H = 0 were discussed and designated 
as FORM I .  In this section, expansions are derived to  represent fields such that 

V x H = j ,  j # 0. (1 1) 
If V x  j = 0, j is irrotational and the resulting current density-field structure will be 
designated FORM 11. For this case, H is found to be transverse; i.e. H ,  = 0. If V x j # 0, two 
current density-field structures exist. One of these has a transverse current density (TJ) 
(analogous to transverse electric modes) and will be designated FORM 111. The other has a 
transverse magnetic field (TM) and will be designated FORM IV. FORM I is a degenerate 
case of FORM 111 and FORM I1 is a degenerate case of FORM IV. (This is discussed below 
equation 3 1 .) 

The magnetic field satisfying (1 I )  for a given current density j is not unique unless 
sufficient boundary conditions are applied to H. That is, if H, is a particular solution of 
(1 1), then (H, + HI) is also a solution (where HI is any magnetic field of FORM I). If j is 
specified and a solution for H is desired, one must find any particular solution H, that 
satisfies (1 1). Then HI must be chosen such that (H, + HI) satisfies the desired boundary 
conditions. The types of boundary conditions that may be applied are, therefore, identical 
to those that may be applied to FORM I fields. These are discussed in many standard texts 
and will not be discussed here. In the remainder of this section, particular solutions will be 
found that satisfy (11). In Section 4, it will be shown that these solutions are complete 
for the representation of non-divergent current densities. 

I 

3.1 M O D E S  W I T H  I R R O T A T I O N A L  C U R R E N T  D E N S I T Y  ( F O R M  11) 

The equations satisfied by j that define FORM 11 fields, V X  j = 0 and V . j  = 0 are identical 
to the equations satisfied by H I .  Therefore, the general form of the current density j for 
FORM I1 is identical to that of H for FORM I. That is, it is the gradient of a scalar that 
satisfies Laplace's equation; in spherical coordinates the scalar can be written as the internal 
type (equations 1 or 3) or as the external type (equations 2 or 5) or as a linear combination 
of both. To show that a magnetic field H is a particular solution of equation (11) for a 
general FORM I1 current density, one need merely show that its curl yields the general form 
of j. The FORM I1 magnetic fields given below are superscripted i or e to indicate that their 
curl yields a current density that is the gradient of the form of V' or V e ,  respectively. These 
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Representation of magnetic fields 493 

forms for Hi and He were derived by taking limits as described below (equation 31). How- 
ever, because they are non-unique, particular solutions, there derivation is of little 
importance. 

The FORM I1 magnetic fields are given in complex form by 

and 

H~ = 1 a:m rn Xnm (0 ,  $4 (13) 
n,m 

where X,, (0, @) is the vector spherical harmonic defined by Jackson (1975, section 16.2), 
as 

1 

i 
L = - ( ( r x V ) ,  i = J - I .  

In real-variable component form, (12) can be written 

The real-variable component form of (13) is 

H," = 0 

By direct application of the curl operator to (16), the current density corresponding to 
the field Hi can be written 
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494 K. D. Granzow 
The curl of (1 7 )  is 

(1 9a) 

The fact that j" and j' are irrotational is shown by simply observing that j" is the gradient of 
a scalar of the form of V e  (equation 5 )  and ji is the gradient of a scalar of the form of V' 
(equation 3) .  

This mathematical form for je and j' gives one a great deal of physical insight into the 
structure of FORM I1 currents and fields. That is, current j' circulates out from a region near 
the origin of the coordinate system (Y = 0) and returns to a region near the origin. It has the 
same mathematical form as the main geomagnetic field. The current j" originates from a 
region far from the origin and circulates back to a distant region. It has the rnathernatical 
form of magnetic fields (in free space) interior to their source distribution. 

Suppose FORM I1 currents are assumed to exist exterior to a sphere (of radius R )  and 
terminate on it (e.g. the sphere may be a model of the ionosphere). No current is assumed 
to flow on to the spherical surface from inside the sphere. The resulting surface current 
distribution in the spherical surface is 

j, = jz + jk 
where 

j: = i x  H: = (-H$d + H$$),)r = R 

j: = i x  H: = (- ~ $ 6  + H ; # ) ~  = R .  

(21) 

(22 )  

f? and 6 are unit vectors in their respective spherical-polar coordinate directions. Note that, 
for either surface current 

v . j ,  = v . ( i x  PI,) 
- - - f . V  x H, 

That is, the surface divergence of the surface current is minus the current density flowing 
from the surface, a statement of continuity of current. Further discussion of conducting 
spherical surfaces is in a separate section. 

3.2 M O D E S  A D M I T T I N G  R O T A T I O N A L  C U K K E N T  D E N S I T I E S  ( F O R M S  I11 A N D  I V )  

For fields of  FORMS I and 11, Vx j = 0, hence, V x V x H = 0. If 

V x V x H = G # O  (24) 

thcn the vectors H and G can be expanded in series of the eigenvectors of the operator curl 
curl. Strictly speaking, the magnetic field terms of FORMS I and I1 are eigenvectors of this 
operator with eigenvalue Lero. FORMS 111 and IV are defined as field expansions in eigen- 
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Representation of magnetic fields 49 5 

vectors of curl curl with eigenvalues greater than zero. As one might expect, if the domain of  
the variable r extends t o  infinity, the spectiurn o f  interest is continuous in the eigenvalues 
and the  expansion has the form of an integral. If the domain is finite in r ,  say r ,  < r < r2, 
the spectrum of  the expansion is discrete, but contains an infinite number of  eigenvalues. 
The discrete form, suitable for numerical fitting, is developed here; sums over eigenvalues 
can be changed t o  integrals if that form is desired. 

It should be noted at  the  onset that expansions of  fields of  FORMS 111 and IV involve 
three indices (rather than two): n, m and the eigenvalue index. For numerical analysis, the 
added index could result in a much greater requirement for computer storage and com- 
putation time (than two-index expansions), unless careful thought is given to  the minimum 
required set of  terms. 

The eigenvectors and eigenvalues of  the operator curl curl, expressed in spherical 
coordinates, are easily deduced from the  work o f  Jackson (1975, section 16.2). Let 

Fn-n x = f n  (4) Xnm (0 > $1 (25) 

where f, is any spherical Bessel function. Then, F,, satisfies 

V x V x Fnmh = hF,,h. (26) 
This is shown in the following way. Jackson has shown that B = f n  (kr)X, ,  (with E = iV x B/k) 
is a solution of Maxwell’s equations in the form V x  E = ikB and V X  B = - ikE (see 
Jackson’s equations 16.31 and 16.46). Combining the two curl equations, one obtains 
V x V x B = k2 B. Setting h equal t o  k2  and F,, 

satisfies the same equation, that  is 

= B = f n  ( d X )  X,, yields (26). 
By taking the curl of  both sides of  (26), it becomes obvious that the function V x F,, 

V x V x (V x Fnmh) = hV x Fnmh. (27) 

Hence, there are two linearly independent (and orthogonal) sets of  eigenfunctions. The 
functions Fnmh are transverse; a current density that can be expressed as a linear combination 
of the functions F,, is transverse and therefore of  FORM 111 or identified as TJ (transverse 
j), 

TJ jTJ = C anmi Fnm hi. 

Then, the corresponding magnetic field is 

n,m, i  

HTJ = (~iAi /hi)  V X F n m x j .  
n ,  m,i  

Transverse magnetic (TM) or FORM IV magnetic fields are written as 

HTM = C b L 5 F n r n h i  (30)  
n , m , i  

they correspond t o  the current density 

jTM = 2 b:zi V x  Fnmhi .  
n , m , i  

If Xi is allowed t o  approach zero for a term of (30) and (3  l) ,  and b,’,Mi is also scaled with hi 
such that a finite limit is approached, the Iimiting expressions are of FORM 11. Similarly, 
(28) and (29) approach fields of  FORM I .  Letting the spherical Bessell function f ,  = j ,  (the 
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496 K. D. Granzow 

spherical Bessel function of the first kind), the fields approach exterior solution forms; 
lettingf, = n, (the spherical Bessel function of the second kind), the fields approach interior 
solution forms. 

3.2.1 FORM 111 - TJ modes 

The transverse current density of (28), written in terms of real functions, has a form similar 
to the transverse magnetic vector for FORM I1 fields: 

jTS r o  = (32a) 

The spherical Bessel function of the first kind (j,) has been written in the expansion, 
because it is well known that arbitrary functions can be expressed as sums (or integrals) of it 
(Watson 1966). For the definition of spherical Bessel functions in terms of Bessel functions, 
see Jackson (1975, equation 16.9) or Abromowitz & Stegun 1964, p. 437, A term of (32) 
has eigenvalue 

A. = -- 

If the maximum radius (r)  of the expansion (32) is rmax,  then 

(33) 
1 

' p ; '  

P i  = rmax /xi  (34) 

where the x i  are the positive roots of j , ( x )  = 0. (This selection of roots yields a Fourier- 
Bessel series in r for each index pair (n ,  m )  in the expansion. The Fourier-Bessel series will 
converge to any suitably well-behaved function over an interval (a, b )  contained in (0, rmax) ;  
see Watson 1966, chapter XVIII.) 

The real-function expansion (corresponding to 29) for the magnetic field associated with 
the current density of (32) is 

(35c) 
where j ;  (x) = dj, (x ) /dx .  

If a current density of FORM 111 is assumed to flow above (r  > R )  a conducting spherical 
surface and no current exists inside the sphere, a magnetic field of FORM I must exist inside 
the sphere such that H,. is continuous across the spherical surface. 
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Representation of magnetic fields 497 

3.2.2 FORMIV-  TMmodes 

The magnetic field HTM has the same form as jTJ (see 28 and 30). In terms of real functions, 
HTM has the form of (32): 

Comparing (29) and (31), the form is the same except for a factor of Xi; thus, the curl of 
(36) yields the form of (35) with each term multiplied by hi = l / p q :  

4 Completeness and linear dependence 

The completeness arguments presented in this section depend on the completeness of the 
spherical harmonic functions over a spherical surface and the completeness of the Bessel 
function of the first kind (and, hence, of the spherical Bessel function of the first kind) over 
finite intervals (i.e. for r in the interval (a,  b) ,  where 0 < a < b < rmax) .  The completeness of 
the spherical harmonic function is discussed in many standard references. Your attention 
is called to Watson (1966, chapter XVIII), for a discussion of the completeness of the Bessel 
functions. It will be assumed that the functions to be expanded are sufficiently well behaved 
for the expansions to converge. 

Hence, it is assumed that an arbitrary scalar function of the spherical polar coordinates 
(r,  0 ,  @) can be expanded in the form of equations (35a) (or 37a) where the summation 
limits 1 and N are set to infinity. It is assumed that the domain is a spherical shell such that 
0 < a < r < b < rmax. To perform such an expansion, one could first expand the function in 
spherical harmonics for every value of r ,  then expand the resulting coefficients (functions of 
r )  in a Fourier-Bessel series. 

4.1 C O M P L E T E N E S S  O F  F O R M S  111  A N D  1V F O R  T H E  C U R R E N T  D E N S I T Y  

Suppose one is given a current density j ( r ,  8 , @ )  such that V . j  = 0. It will be demonstrated 
that j can be expanded as a sum of current densities of FORMS III and IV (equations 32 and 
37). To perform such an expansion, one first expands the r-component of j in the form of 
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498 K. D. Granzow 
equation (37a). This yields the coefficients p z  and u z  and the other TM current-density 
components given by (37b) and (37c). Let the  remaining current density be 
jR = j  .-jTM 

The divergence of  jK is zero because it is assumed that V .  j = 0 and V .  jTM = 0 because jTM 
is the curl o f  a vector (3 1). Note that  j p  = 0, hence, 

v .jR = vs . jR = 0.  

Define the vector jo orthogonal to  jR o n  each spherical surface 

(39) 

The curl of jo  in the f-direction is zero; by direct computation one obtains 

( v  x jo),. = v s  . j R  = 0 .  (41) 

Hence, jo  is conservative on each spherical surface and can be written as the surface gradient 
of a scalar U on each spherical surface: 

The scalar U can be expressed as a line integral of  jO, where the path of integration is 
confined to a spherical surface (for each r )  

where Po is a fixed spherical coordinate (O0, @o) and P is the  point (0 ,  @) on each sphere. The 
current density j K  is given in terms of  U by [equate components of  (40) and (42)] 

The next step is t o  expand U in the form o f  (35a). Substitution of  that expansion into (44)  
yields expansions for and j $  of the forms o f  (32b) and (32c); equating coefficients yields 
the cz and q z  of  (32). Hence, j R  = jTJ and j can be expressed as the s u d  of  jTJ and jTM for 
any j with 0.j = 0. 

4.2 C O M P L E T t N t S S  01: F O R M S  111 A N D  IV F O R  v X J  

Suppose one is given the curl of  j ,  say 

V x j = G  (45) 

or 

V x  V x H = G .  

It will be shown that for any vector G ,  such that V . G  = 0, a corresponding H satisfying (46) 
can be found in terms of a sum of  FORMS 111 and I V  (35 and 36). One can demonstrate this 
by  repeating the same steps that were taken in the previous subsection. The curl curl 
operator does not change the forms of  the expansions for HTJ and HTM, it merely intro- 
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Representation of magnetic fields 499 
duces as a multiplier the  eigenvalue of  each term. Hence, the form of  V x V x HTJ is the 
same as that of  HTJ and is also the  same as the form ofj'rM. Likewise, the form of  V x V x HTM 
is the same as that of HTM and is the same as the form of  jTJ. Hence, one carries out the 
same procedure as described above for j ,  to expand G .  To obtain the  expansion for H ,  from 
the expansion for G ,  one must merely divide each term by its eigenvalue (for FORMS I l l  and 
IV the eigenvalues are all greater than zero). 

Note that  j is not completely determined by  its curl. In fact, if j satisfies (45), then 
(j + j") also satisfies ( 49 ,  where j" is any FORM 11 current density. Therefore, if one is 
given V x j as the source function for H,  an appropriate FORM TI field should be included 
that  is determined by  boundary conditions on j. (Also a FORM I field should be included 
that  is determined by boundary conditions on  H as described in Section 3. )  

4.3 L I N E A R  D E P E N D E N C E  

It has been shown that FORMS 111 and IV can be used to represent current densities in a 
domain such that r satisfies 0 < a < r < b < r,,,. The current densities must have zero 
divergence, but otherwise have only the mathematical limitations required for the con- 
vergence of  the expansions; these requirements are normally obeyed by physical quantities. 
Therefore, one can expand current densities that are zero o r  have zero curl over some interior 
domain, say over the domain where r satisfies d i r < 6, where 0 < a < 51 < 6 < b < I,,, . If 
the current density is non-zero outside of  this interior domain [i.e. for r in the interval (a, 2) 
and/or (5, b)]  , the  magnetic field inside the interior domain will, in general, be nonzero.  It 
will be of  FORM 1 if j = 0 in the interior domain; it will be of FORM I1 if V x j = O Q  f 0) 
in the interior domain. Therefore, fields o f  FORMS 1 and 11 can be expanded in terms of  
fields of FORMS III and IV. Because of  the nature of  the  fields (TJ or TM), FORM I fields 
can be expanded in terms of  FORM I11 and FORM II fields can be expanded in terms of  
FORM IV. To perform such a n  expansion, one must simply express the r-dependence of the 
terms o f  FORMS I and 11 in Fourier-Bessel series over the finite domain of interest. (Note 
that  such an expansion cannot be extended t o  r + m for FORMS Ie or IIe that are singular 
as r + m; nor can they be extended t o  r = 0 for FORMS I' or 11' that are singular at r = 0). 
The expansion of  each term of  FORMS I or  I1 requires an infinite series of  Bessel functions. 
That is, by examining the Bessel function in series form, it is apparent that the Fourier- 
Bessel series representations for powers of  r will not truncate. Therefore, a linear dependence 
exists between FORMS 1 and Ill  and between FORMS I1 and IV, but only if all the terms of  
the  Bessel function expansion are included (i.e.I+ 00 in the FORM 111 and FORM 1V series). 
Another way t o  state this is that FORMS I and 111 (and FORMS I1 and IVjare asymptotically 
linearly dependent as the summation limit 1 approached infinity. Any single eigenvector or 
any finite sum of  eigenvectors of FORMS Ill or IV are linearly independent of  FORMS 1 
and 11. 

If only a few eigenvalues of FORMS 111 and/or IV fields are to be  used in a numerical fit, 
n o  attention need be paid to the asymptotic linear dependence. However, if models are 
attempted that include large numbers of eigenvalues, this linear dependence must be taken 
into account. In a least-squares fit model, the linear-equation matrix will become asynip- 
totically singular as the number of  included eigenvalues approaches infinity, if FORMS I and 
111 (or FORMS 11 and IV) arc included. (In practice, the matrix will become ill-conditioned 
when a large number of eigenvalues are used.) 

5 Boundary conditions at a conducting spherical shell 

The effect o f  a conducting spherical shell o n  the magnetic field is pertinent to the study of 
shielding, the effect of the ionosphere on the geomagnetic field, and other situations where 
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currents flow on a spherical shell. Therefore, the basic equations that are pertinent t o  such a 
boundary are included in t h s  section. No provision is made for motion of the shell, but this 
can be added as needed. Emphasis is placed on the coupling of the field forms due to a 
conducting shell. Current is allowed to flow to and from the conducting shell consistent with 
field FORMS 11, 111, and IV adjacent to it. Anisotropic conductivity is discussed and a 
simplified model for the ionosphere is suggested. 

5.1 S U R F A C E  C U R R E N T  R E L A T I O N S H I P S  

The surface current in the shell is related to the magnetic field by 

j, = i x  (He- H') (47) 

where He is evaluated just exterior to the spherical shell (r =R+) and Hi is evaluated just 
interior to the shell (r = R -). The divergence of (47) yields 

v -j, = - [ v x He - V x Hi], 

or 

vs -j, = - j ;  + j:. (48) 
Fields of FORMS I and I11 have j ,  = 0; they do not contribute to V, . j, on the spherical 
shell, only FORMS I1 and IV contribute. 

The r-component of the curl of (47) yields 

( V  x js)r = v, .(He - Hi). 

Since, 

V . H = O  

and 
i a  

V . H = V , . H + -  - (r2Hr) 
r2 ar 

equation (49) can be written 

i a  
- - [r2(H; - 
r2 ar 

Fields of FORMS I1 and IV have Hr = 0; they do not contribute to ( V  x jS), on the spherical 
shell, only FORMS I and 111 contribute. 

5.2 M A G N E T I C - F I E L D  B O U N D A R Y  C O N D I T I O N  

The magnetic field normal to the surface (the r-component) must be continuous across the 
boundary; that is 

H," =Hi.  (53) 
Only magnetic fields of FORMS I and 111 couple magnetically (through 53). Using superscripts 
to indicate the form, (53) becomes 

(54) ~p + HrIIIe = HIi + HIIIi 
r r .  

Equation (54) has already been applied to FORM I fields to obtain equation (5). 
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5.3 ELECTRIC-  FIEL D B O U N D A R Y  C O N  DITIO N 

Though analysis of electric fields, per se, is not a part of this paper, the role of electric fields 
in coupling magnetic fields across a spherical-shell boundary will be considered. The con- 
ductance of a spherical shell can be represented by an impedance function that is, in general 

(1) a function of the coordinates ( e , @ )  (i.e. it is inhomogeneous); 
( 2 )  a dyadic (i.e. it is anisotropic); and 
(3) it is complex (i.e. it can be both resistive and reactive). 

Property 3 is beyond the scope of this paper; only static fields and quasi-static fields (i.e. 
the displacement current is negligible) are discussed. It is assumed that the spherical shell is 
characterized by a real dyadic impedance 2 that is, in general, a function of the coordinates. 

The electric field tangential to the shell is given by 

E = 2 . j, = (Zseise + Ze,js,)Q + (zae ise + Z,,is,>i. (55) 

Substituting j, from (47), one obtains E in terms of the magnetic field tangential to the shell 
as 

E = [-ZOO (Hg - H i )  + Zoo (6 - Hd)] 0 + [ ~ Zw (Hg - H i )  + ZM ( H i  - H j  )] 4. (56) 

The condition that couples the various field terms through the electric field is Faraday's 
law applied in the radial direction: 

(Vx Ej, = - j , .  (57) 

(V x E), = 0 .  (58) 

If the fields are static, B ,  = 0 and 

Applying the curl operator to (56), one obtains 

(59) I a 
a@ + - [Z,, (Hg - H a )  - z,, (H; - H J ) ]  . 

Equation (59), combined with (57) or (58), constitutes the electric-field coupling equation 
in general form. Since this equation has no symmetry (in general form), it is possible for it 
to provide coupling between any magnetic-field terms. In particular, it can couple FORMS I1 
and/or IV to FORMS I and/or 111. This was found not to be possible with only magnetic-field 
coupling (53 and 54). 

5.4 A U N I F O R M ,  S C A L A R  I M P E D A N C E  

Assume that Z,, = Z, = Z (a constant) and that Z,, = 2, = 0. Then 

E =Zj, 
and 
(V x E), =Z(V x jJr. 
Substitution using (52) shows that 

z a  
( V X  E), = - - - [r2(H: -@)I. 

r2 ar 
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Only fields of FORMS I and I11 have H, # 0 and can be coupled by this equation. If only 
FORM I fields are present, it can be easily shown that their Legendre-function terms of 
degree n decay with a time constant of T = Rpo/Z (2n + 1)  (where R is the spherical shell 
radius and p o  is the permeability of free space), unless supported by sources in the spherical 
shell. 

In the case of the ionosphere, such sources could be present due to motion of the iono- 
sphere in the presence of the main geomagnetic field. However, the uniform, scalar 
impedance model is useless for describing the effects of field-aligned current above the iono- 
sphere in the polar region since FORM 111 fields are TJ ( j ,  = 0), and the field-aligned current 
flows into and out of the ionosphere (Potemra 1979); an appropriate model for this purpose 
must relate surface current in the ionosphere to fields of FORM I1 and/or IV. 

5.5 A N  A P P R O X I M A T E  I M P E D A N C E  F O R  T H E  I O N O S P H E R E  

An approximate form for Z that is illustrative and may have value for ionospheric (or other) 
modelling is (shown in matrix form); 

That is, ZOO = z, = Zd (diagonal terms - yield E-field parallel to j) and -zo, =zoo = Zh 
( k i l l  impedance - yields E-field perpendicular to j ;  see Potemra 1980). (Note that Zh niust 
be positive in the northern polar region and negative in the southern polar region.) Then, 

E=Z.J ,=Zdjs-Zh(i ,~6 ---iso$') 

E = Zdj, - -  Zh (H: - Hi) 

where subscript t indicates tangential component. The curl of (64) yields 

The field forms that contribute to the various terms of (65) are: 

Te mi Contributing field form 

Zd(Vxjs)r FORMS I,III(see 52) 

(VsZd x j d r  
-Zh (j," i:) FORMS 11, IV 

vszh 4, 

FORMS I, 11,111, IV 

FORMS I, 11,111, IV. 

Equation (65) illustrates that, if both Zd and Zh are finite in some region, fields of all 
forms can be coupled even in regions where the impedance is spatially constant; i.e. vszd = 0, 
vszh = 0 and only the first and third terms survive. (This condition may be approximated 
in the polar regions. Constant Zh is unphysical globally, however, since Zh must have 
approximate odd symmetry about the magnetic equator.) 

Ignoring the V,Z terms of (65), and settingjt and (V x E), to zero, one obtains 

Zd (V x js)r= Zhj;. (66) 

This equation describes the basic features of the coupling of field-aligned currents above the 
ionosphere 6")  to the surface currents in the ionospheric shell 6,) in the polar regions. Only 
the solenoidal part of j, (FORM I and possibly some FORM 111 fields) is involved in the 
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coupling; the irrotational part of j, is given by the same terms that describe j :  (FORM I1 and 
possibly some FORM IV fields). 

The qualitative correctness of (66 )  can be verified by observing the behaviour of the 
current flow as illustrated by Potemra (1980). That is, in regions where j ;  is positive as 
shown in his fig. 10, the curl of j, is also positive (in the ?-direction) as shown in his fig. 4. 
and vice versa. If the field-aligned current is significant only in tubes carrying current to 
small regions of the ionosphere, then (to the approximation implied by 6 6 )  outside of these 
regions ( V  x j,),. 2 0 and j, can be expressed as the gradient of a scalar. Because 0, .j, = 0 in 
these regions, the scalar is a solution of the (two-dimensional) Laplace equation. Hence, the 
circulating part of j, is exactly analogous to magnetic field lines surrounding current-carrying 
conductors, where the conductors are the analogue of the field-aligned current tubes. Large- 
scale current circulation can result from small field-aligned current tubes. The stream lines of 
j, will be compact between the field-aligned current tubes (in analogy to the compactness of 
magnetic field lines between conductors carrying currents of opposite sign), forming the 
auroral electrojets. The non-circulating part of j, (the Pedersen current) is analogous to 
E-field lines connecting point charges. 

In the case of diffuse distributions of field-aligned current, the integral form of (66 )  
provides additional insight. Integration of (66 )  over an area A on the surface of the sphere 
and application of Stoke’s theorem yields 

la = JA jFd2x 

and the path of integration of j, encloses A .  That is, the line integral of j, around a closed 
path (on the sphere) is (zh/z,) times the field-aligned current enclosed by the path. 
Verification of these relationships and, hence, determination of the degree of accuracy (66 )  
will require computer analysis. 

Boundary conditions, such as that given by (58) and (59) and approximated by (66) ,  
yield only consistency relations; they do not differentiate between cause and effect. 
Nevertheless, this boundary condition does show that it is possible for the field-aligned 
currents (primarily of FORM TI) to drive directly the ionospheric circulating currents (of 
FORM I) in the ionosphere. The boundary condition provides the coupling relationship. The 
ionospheric currents completing the circuit for the field-aligned currents (i.e. the Pedersen 
currents) are given directly by the FORM 11 (and possibly some FORM IV) fields, that is, 
by (21) and (22). 

6 Generality of the field forms 
It should be emphasized that any distribution of magnetic field and current density that 
obeys the equation 

V x H = j  ( 6 8 )  
where 0- j  = O  can be represented by a sun1 of the Cield FORMS I,  11, 111 and IV. Hence, 
given a sufficiently accurate physical model or a sufficient amount of data concerning the 
magnetic field and/or currents, the magnetospheric system of currents and magnetic fields 
can, in principle, be represented (to the approximation that displacement current is neglected 
for time-varying fields). Hence, the ionosphere could be represented in detail in three 
dimensions. 
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The expansions presented in this paper were derived in terms of spherical coordinates. 

This choice was motivated by the near spherical shape of the ionosphere, recent interest in 
fields and currents near the ionosphere, and the successful use of spherical coordinates and 
spherical harmonics to describe the main field and other geomagnetic-field components. The 
primary ingredient required for defining the various field forms is the set of eigenfunctions 
of the operator curl curl. These vector eigenfunctions correspond to solutions of the vector 
Helmholtz equation discussed by Morse & Feshbach (1953). In the notation of Morse & 
Feshback (p. 1766), magnetic fields given by their component L are of FORM I ,  their com- 
ponent N yields FORM 111, and their component M yields FORM IV. FORM I1 would be 
obtained as a degenerate case of their component M .  FORM I1 also corresponds to their 
component M of the vector Laplace equation solution (pp. 1799, 1800). In describing geo- 
magnetic fields whose behaviour departs drastically from that of low order (generalized) 
multipole terms, one could employ one of the other five coordinate systems appropriate 
for representing these FORMS. For instance, one of the cylindrical coordinate systems might 
be used to model the geomagnetic tail. 

7 Modelling field-aligned currents 

It is obvious that the transverse magnetic FORMS I1 and IV will be predominant in 
representing field-aligned currents near the ionosphere. FORM 111 current density has no 
r-coniponent and therefore cannot represent currents flowing to and from the ionosphere. A 
possible current density with non-zero curl j that would require FORM 111 field terms can be 
visualized. It is current density due to charged particles circulating around main field lines. 
Such a distribution of current density may or may not be significant as a magnetic field 
source. Possible sources of curl j requiring FORM IV field terms are the regions of shear 
where the field-aligned current density changes sign (Sugiura 1975, fig. 8; or the same figure 
in Potemra 1979). Whether significant curl j exists in those regions depends on the details of 
the physics. If there exist sheets where curl j is significant, such as these thin regions, then 
the modeller has two choices. He can either include FORM IV fields to represent curl j on 
the sheets using sufficient spherical harmonic terms to resolve them (or their time average) 
to some accuracy, or he can divide the space into regions where curl j is very nearly zero and 
use separate (FORM 11) expansions in those regions. It may be possible to express almost all 
of the field-aligned current as an expansion in FORM 11 field terms, at least near the iono- 
sphere. To verify or disprove his conjecture, one can perform a field-fitting procedure 
including FORM I1 fields for the representation of field-aligned currents; then the residual 
field can be examined to determine its character and then decide what additional terms or 
refinements, if any, are required. 

An expansion of detailed field information is often impractical because of the number of 
terms required to resolve geometrically small features with large gradients. Such small 
features are generally of two types: (1) time-invariant, slowly changing, or periodic features 
that can be represented by special physical models; the expansion can then represent the 
difference between the observed field values and those predicted by the model, and (2) 
stochastically changing features, whose behaviour is not well enough understood to create a 
physical model; an expansion is then used to represent the time-averaged behaviour of such a 
feature. The resolution required to describe the average behaviour is often much less than 
that required to describe one element of the average. Study of the cause, structure, etc. of 
the individual elements becomes a separate issue. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/74/2/489/630183 by guest on 21 August 2022



Representation o f  magnetic fields 505 

It appears, from a review of reduced polar-orbit satellite data (MAGSA T ,  Cain 1981 ) that 
the resolution required to  expand time-averaged fields due t o  field-aligned current does not 
preclude such an expansion. The availability of sufficient data to obtain a meaningful 
expansion is uncertain. An effort to examine this approach is in progress. 

Acknowledgments 

I wish to thank Dr Kendall Casey, Lawrence Livermore National Laboratory, for many 
helpful discussions concerning electromagnetic theory and, in particular, the theory of 
boundary value problems. I also thank Dr Joseph C. Cain, US Geological Survey, for  his 
patient explanations of geomagnetic phenomena. 

This work was supported by the US Geological Survey under Purchase Order 90091, 
dated 1980 August 28 and Contract Number 14-08-001-19998, dated 1981 May 8. 

References 
Abrarnowitz & Stegun, 1964. A Handbook of Mathematical Functions, Dover, New York. 
Bostrom, Rolf, 1964. A model of the auroral electrojets,J. geophys. Res., 69, 4983. 
Cain, Joseph C., Hendricks, Shirley J., Langel, Robert A. & Hudson, William V., 1967. A proposed model 

Chapman, Sydney & Bartels, Julius, 1962. Geomagnetism, Oxford University Press. 
€:ougere, Paul I;., 1969. Spherical harmonic analysis 3. The earth’s magnetic field, 1900-1965, J .  Geo- 

Jackson, John David, 1975. Classical Electrodynamics, Wiley, New York. 
Kisabeth, Jerry, L. & Rostoker, Gordon, 1977. Modelling of three-dimensional current systems associated 

with magnetic substorms, Geophys. J. R. astr. Soc., 49,655. 
Kisabeth, J .  R., 1979. On calculating magnetic and vector potential fields due to large-scale magncto- 

spheric current systems and induced currents in an infinitely conducting earth, Geoplzys. Mofzogr., 
21,473, American Geophysical Union. 

for the international geomagnetic reference field - 1965, J. Geomagn. Geoelect., Kyoto, 19,335. 

magn. Geoelect., Kyoto, 21,685. 

Morse, Philip, M. & Feshbach, Herman, 1953. Methods of Theoretical Physics, McGraw-Hill, New York. 
Potemra, T. A.,  1979. Current systems in the earth’s magnetosphere, Rev. Geophys. Space Phys., 17, 640. 
Potemra, T. A.,  1980. Hall currents in the aurora, The Hall Effect a i d  its Applications, eds Chien, C.  L. & 

Rikitake, Tsuneji, 1966. Electromagnetism of the Earth’s Interior, Elsevier, New York. 
Stern, David P., 1979. The electric field and global electrodynamics of the magnetosphere, Rev. Geophys. 

Space Phys., 17,626. 
Sugiura, Masahisa, 1975. Identifications of the polar cap boundary and the auroral belt in the high- 

altitude magnetosphere: a model for field-aligned currents,J. geophys. Res., 80, 2057. 
Vance, Edward F., 1978. Guest editor, Special joint issue on the nuclear electromagnetic pulse, 

Buns. Antennas Propag., AP-26 (1). 
Wait, James R., 1979. Guest editor, special issue on applications of electromagnetic theory to geo- 

physical exploration,Boc. IEEE, 6 7  (7). 
Watson, G. N., 1966. A neatise on the Theory of Bessel Functions, Cambridge University Press. 

Westgate, C. R., Plenum, New York. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/74/2/489/630183 by guest on 21 August 2022


