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The finite-element method is used to perform an accurate numerical study of the
normal indentation of an elastic-plastic half-space by a rigid sphere. The effects of
elasticity and strain-hardening rate of the half-space are explored, and the role of
friction is assessed by analysing the limiting cases of frictionless contact and sticking
friction. Indentation maps are constructed with axes of contact radius a (normal-
ized by the indenter radius R) and the yield strain of the half-space. Competing
regimes of deformation mode are determined and are plotted on the indentation
map: (i) elastic Hertzian contact; (ii) elastic-plastic deformation; (iii) plastic similar-
ity regime; (iv) finite-deformation elastic contact; and (v) finite-deformation plastic
contact. The locations of the boundaries between deformation regimes change only
slightly with the degree of strain-hardening rate and of interfacial friction. It is found
that the domain of validity of the rigid–strain-hardening similarity solution is rather
restricted: it is relevant only for solids with a yield strain of less than 2× 10−4 and
a/R < 0.16. Friction between the indenter and the substrate strongly affects the
strain field beneath the indenter, and has a significant effect on the contact size
as a function of indent depth. The effect of pre-stress within the half-space is also
explored; it is found that the indentation response is hardly affected, except for the
case of the elastic-plastic indentation regime.
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1. Introduction

The contact of two non-conforming bodies is a fundamental problem in the mechan-
ics of materials, which has a wide range of applications. For example, the friction and
wear of engineering solids depend critically on the details of the contacts at asperity
level. Powder compaction processes rely upon the plastic indentation of deformable
particles for their success, and predictions of the multi-axial stress versus strain
compaction behaviour are based on a knowledge of the local indentation response
between particles. Indentation tests have been used from the beginning of this cen-
tury to measure routinely the plastic properties of metals. Yet current international
standards on indentation tests are based on empirical correlations, with little input
from analytical and numerical solutions.

In this paper, a finite-element study of spherical indentation is reported. Only
recently has contact modelling by the finite-element method advanced sufficiently,
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Figure 1. Geometry of spherical indentation. A normal load L is applied to the sphere of radius
R, resulting in a contact radius a and indent depth h. The pile-up δ is positive if the material
piles up above the initial surface of the half-space.

and the computational power become readily available, for such a study to be con-
ducted within a practical time-scale. Previous indentation calculations were based
on restrictive assumptions introduced to minimize the computational effort (see, for
example, Hill et al . 1989; Biwa & Stor̊akers 1995; Bower et al . 1993), were limited
in scope or accuracy due to the limited computational power available (Hardy et al .
1971; Follansbee & Sinclair 1984), or were focused on specific aspects of indentation
(Fleck et al . 1992; Kral et al . 1993, 1995a, b; Ogbonna et al . 1995). The present
study of Brinell indentation is part of a larger computational study of the contact of
dissimilar spherical particles, and additional results are reported in the companion
paper (Mesarovic & Fleck 1999).

We shall consider normal indentation of an elastic-plastic half-space by a rigid
sphere of radius R. It is assumed that the half-space is sufficiently tough for indenta-
tion to proceed without crack formation (Sharp et al . 1993), and that the yield strain
is sufficiently small (less than 10%) for yielding to occur before finite-deformation
effects intervene. Initially, elastic indentation occurs and the classical solution of
Hertz is reproduced for the frictionless indenter. Initial yield occurs when the aver-
age contact pressure (over the projected contact area) is ca. 10% above the yield stress
of the material. Continuing indentation is characterized as elastic-plastic since both
elastic and plastic deformation contribute to the overall response. Johnson (1970)
has shown that the elastic-plastic mode is akin to the steady-state expansion of a
spherical cavity, with a small plastic zone contained within an outer elastic field.
Further indentation leads to the fully plastic regime. We show that the fully plas-
tic regime can be subdivided into two regimes: for relatively small contact sizes, a
similarity solution applies, as discussed below, while for large contact sizes, a finite-
deformation mode dominates. It is the purpose of the present paper to explore in
detail the regimes of dominance of the competing modes of indentation.

The geometric parameters associated with spherical (Brinell) indentation are de-
fined in figure 1. A rigid sphere of radius R, loaded by a normal force L, indents a
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semi-infinite medium to a depth h and to a contact radius a; the pile-up/sink-in at
the edge of the contact with respect to the original level δ is taken to be positive for
pile-up, and negative for sink-in. It is further assumed that the half-space comprises
a homogeneous isotropic elastic-plastic solid, with the usual elastic parameters of
Young’s modulus, E, and Poisson’s ratio, ν. Precise details of the plastic behaviour
are given below, but, for the moment, we assume that the plastic response is char-
acterized by two parameters: a strength σ0 and a non-dimensional strain-hardening
exponent m. Dimensional analysis reveals that the normalized contact size, a/R, and
the normalized average contact pressure, L/(πa2σ0), depend upon the four indepen-
dent non-dimensional groups of indent depth h/R, yield strain σ0/E, and the material
parameters m and ν. For small indent depths, the response is elastic and is given
by the Hertz elastic solution for frictionless indentation, and by Mossakovski (1963)
and Spence (1968) for a sticking indenter (for a review of these solutions see Hills et
al . 1993). Note that in the Hertz solution, Poisson’s ratio ν appears combined with
the Young’s modulus E in the form of a single elastic constant

E∗ ≡ E/(1− ν2). (1.1)

Experiments (Johnson 1970) and early numerical results summarized by Johnson
(1985, p. 176) suggest that the elastic constant (1.1) adequately describes the elastic
contribution to deformation in the elastic-plastic indentation regime.

(a) The similarity solution

With increasing indent depth, the indentation response becomes dominated by
plastic flow, and it is to be expected that the elastic parameters become irrele-
vant; then, the non-dimensional contact size a/R and contact pressure L/(πa2σ0)
will depend only upon non-dimensional indent depth h/R and the strain-hardening
exponentm. For this regime of behaviour, a similarity solution for rigid-plastic inden-
tation has been found by Hill et al . (1989). Motivated by Tabor’s (1951) analysis
and by a number of early experimental investigations (Meyer 1908; O’Neill 1944;
Norbury & Samuel 1928), Hill et al . (1989) determined the similarity solution upon
making the following simplifying assumptions.

(i) The constitutive law of the indented half-space is power law in nature and
satisfies J2 deformation theory. In the uniaxial case, the strain ε is a power-law
function of stress σ, ε = ε0(σ/σ0)m, where m is a strain-hardening exponent, ε0
is a representative strain, and σ0 is a representative strength of the solid. Note
that a linear elastic contribution to deformation is neglected for the general
case m 6= 1.

(ii) The geometric profile of the indenter can be represented by a power-law rela-
tion, for both plane strain and axisymmetric problems. This assumption in-
cludes indentation by a rigid sphere, since, for small contact sizes, the profile
of a sphere can be approximated by a paraboloid of revolution.

(iii) Infinitesimal straining occurs, and, at any stage of indentation, the indenter
imposes a uniform normal velocity on the current contact patch of the half-
space.
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Hill et al . (1989) showed that the overall solution has the property of self-similarity,
i.e. that the geometry, stress and strain fields throughout the indentation process are
derivable from a single solution by appropriate scaling. For indentation by a sphere,
the appropriate scaling laws are

L

πa2σ0
= α

(
a

ε0R

)1/m

(1.2 a)

and

a2 = c22hR, (1.2 b)

where the functions α and c2 depend only upon the value of m and the friction
assumption, and must be determined numerically for the nonlinear solid. Suitable
rearrangement of (1.2 a), (1.2 b), reveals that the load versus contact depth relation
takes the power-law form

Lε
1/m
0

πR2σ0
= K(m)

(
h

R

)[(2m+1)/2m]

, (1.3 a)

where

K ≡ α(2c2)[(2m+1)/2m]. (1.3 b)

Hill (1992) and Bower et al . (1993) extended the similarity solution to the case of a
power-law creeping solid, and Biwa & Stor̊akers (1995) extended it to the case of a J2
flow theory solid. Bower et al . (1993) also considered the effects of friction between
the indenter and the substrate. The above authors tabulated the values of α and c2
for a range of hardening exponents and creep indices. Their finite-element formula-
tions are based on the assumption of self-similarity and are, essentially, single-step
solutions, where the history dependence is replaced by a spatial (radial) dependence
in a modified boundary-value problem.

In the current paper, the limits of validity of the similarity solution are investigated.
Specifically, the effects of elasticity and finite deformation are determined. For that
purpose, selected values of the elastic and plastic constitutive parameters are assumed
and different ways of coupling elastic and plastic deformation are explored. It is found
that the regime of validity of the similarity solution is restricted by both elasticity
and by finite-deformation effects. Indentation maps are constructed to display the
competing regimes of deformation mode: elastic, elastic-plastic, plastic similarity
solution, elastic-finite deformation, and plastic-finite deformation. Next, the effects
of friction are examined for the limiting cases of a frictionless and a sticking indenter.
Finally, the indentation response is explored for a half-space containing a pre-existing
uniform stress field.

2. Constitutive description and finite-element implementation

Two hardening versions of isotropic J2 flow theory are considered: a piecewise-
linear/power-law version and a Ramberg–Osgood strain-hardening law. For both
descriptions, the yield strength is defined by σ0, the yield strain by ε0, and the
initial slope of the uniaxial stress versus strain curve defines the Young’s modulus
E ≡ σ0/ε0.

Proc. R. Soc. Lond. A (1999)
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Figure 2. A choice of strain-hardening law: linear/power law described by (2.1), and Ram-
berg–Osgood law, described by (2.2). In both cases, curves are shown for a strain-hardening
exponent m = 3.

(i) Piecewise-linear/power-law version. We assume that under uniaxial ten-
sion the total strain is linear in strain for σ < σ0, and is power law in strain
beyond the yield strength, σ > σ0,

ε

ε0
=

{
σ/σ0, for σ 6 σ0,

(σ/σ0)m, for σ > σ0,
(2.1)

where m is a strain-hardening exponent. Note that (2.1) dictates that the plastic
strain vanishes below yield, and is given by εpl = ε0[(σ/σ0)m − σ/σ0] for σ > σ0.

(ii) Ramberg–Osgood hardening law. Under uniaxial tension the total strain is
given by

ε/ε0 = σ/σ0 + (σ/σ0)m, (2.2)

where m is again the strain-hardening exponent. The strain-hardening laws (2.1)
and (2.2) differ for small strains but converge at ε/ε0 � 1, as sketched in figure 2.
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In the elastic-ideally plastic limit, m → ∞, the constitutive laws (2.1) and (2.2)
coincide.

The uniaxial constitutive relations (2.1) and (2.2) are readily generalized to arbi-
trary stress–strain states within the framework of the J2 flow theory by defining
the effective (Mises) stress, σ, the effective strain rate ε̇, and the effective strain, ε,
according to

σ =
√

3
2sijsij , (2.3 a)

ε̇ =
√

2
3DijDij , (2.3 b)

and

ε(t) =
∫ t

0
ε̇(τ) dτ, (2.3 c)

where sij are the deviatoric components of the Cauchy stress, Dij are the symmetric
components of the velocity gradient (with respect to the current configuration), and
the usual indicial notation is used.

In the current study, we concentrate on frictionless indentation of (i) an elastic-
ideally plastic solid (m → ∞), and (ii) the power-law hardening solids (2.1) and
(2.2) with m = 3. Some additional runs were done for m = 2 and m = 7 in order
to confirm general trends. Indentation depths of up to h = 0.2R were investigated,
which corresponds to a/R = 0.7 for an elastic-ideally plastic solid, and to a/R = 0.5
for the hardening solid (2.2) with m = 3; thus, the recommended indentation regime
was covered for both the Brinell and Rockwell B tests (ASTM 1993). The effects of
friction and pre-existing stress were investigated for the elastic-ideally plastic solid.

(a) Finite-element implementation

The finite-element calculations were performed using the commercial finite-element
code ABAQUS (ABAQUS 1995). The rigid contact surface option was employed to
mimic the rigid indenter, and finite-deformation effects were included in the formula-
tion. A typical mesh, comprising eight-noded isoparametric rectangles and six-noded
isoparametric triangles, is displayed in figure 3. Despite the differences in contact
behaviour of mid-side and corner nodes, the second-order elements showed better
convergence and accuracy than linear elements used in preliminary runs. The hybrid
element formulation was used to facilitate convergence at large strains, where incom-
pressible plastic deformation dominates. The mesh has over 3000 elements and about
27 000 degrees of freedom. The shortest distance between nodes along the contact is
about 0.0005R. Automatic stepping of displacement was used for most calculations
except for a few special cases when the maximum increment was set manually to
check the accuracy of the solution. The automatic stepping routine required between
100 and 1000 increments. (The former value was required for rapid strain hardening
and a high yield strain (10−2), while the latter value was required for the elastic-
ideally plastic case with a low value of yield strain (10−5).) Other meshes were used
occasionally for specially difficult cases and to check some salient points of the solu-
tion. For example, a refined mesh was used to obtain better resolution in the elastic
regime; the mesh spacing was one-third of that of the standard mesh. A mesh that
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Figure 3. Typical finite-element mesh, composed of second-order isoparametric axisymmetric
elements. The distance between nodes at first contact is 0.0005R.

is refined at large contact size was used to check the accuracy of solution at large
contacts.

Preliminary studies showed that the precise outer boundary conditions are unim-
portant for meshes with an outer boundary further than 10R. In general, vanishing
displacements were applied on the quarter-circular outer boundary at a radius of
20R. However, for the case of a pre-stressed half-space, a square outer boundary,
20R× 20R, was used for the sake of simplicity; prescribed radial displacements were
imposed prior to indentation along the outer edge of the square boundary, the bottom
being free to move horizontally.

In addition to the usual errors associated with the numerical procedure, such as the
element interpolation functions, an error specific to finite-element contact problems
is due to the discrete increments in contact size (as observed by, for example, Laursen
& Simo (1992) and Fleck et al . (1992)). To gain insight into the nature of this error,
an infinitesimal strain elastic analysis was performed of frictionless indentation by a
sphere, and compared with the Hertz solution. The results are shown in figure 4. Each
vertical column of circular data points gives the contact size at a constant number of
contact nodes. The top point of each column represents the instant when a new node
makes first contact with the indenter. As indentation proceeds, the indentation depth
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2714 S. Dj. Mesarovic and N. A. Fleck

0.35

0.4

0.45

0.5

0.55

0.05 0.07 0.09 0.1
a R

a
2
/2hR

L

(πa
2
E*)(a R)

Hertz value = 4
3π

Hertz value = 0.5

0.15
/

/

Figure 4. Comparison of finite-element results for frictionless elastic indentation and the Hertz
solution. In the finite-element calculations, a value for Poisson’s ratio of ν = 0.3 was chosen.

h increases, but, until the next node makes contact, the contact size a remains the
same in the infinitesimal strain formulation; when the finite-deformation formulation
is used and sliding is allowed, the contact size increases slightly. Thus, data points
appear as vertical columns. The interpretation for L/[(πa2E∗)(a/R)] (diamonds)
is similar: the lowermost data correspond to first contact of successive nodes. A
comparison of the numerical solution with the exact Hertz solution in figure 4 shows
that the midpoint of each column is close to the Hertz solution. The error in a2/2hR
is less then ±6% for a/R = 0.05, and decreases to ca.±3% for a/R > 0.1. Generally,
one can express the relative error as one-half of the ratio of the distance between
nodes and the current contact size, so that the ‘worst’ data reported here (for a
contact size a/R = 0.001, with initial contact nodes spaced at 0.00017R) have an
error of ±8.5%. The actual scatter (as in figure 4) is usually somewhat larger than
the error predicted in this way, probably due to the additional errors inherent in the
finite-element procedure. For clarity, only the selected midpoints are reported for the
elastic-plastic cases.

3. Frictionless indentation of an elastic-ideally plastic solid

(a) Average indentation pressure as a function of contact size

The finite-element procedure was used to calculate the indentation response for nor-
mal indentation of an elastic-ideally plastic half-space by a frictionless sphere. In
elastic Hertzian contact, the indentation solution depends only on the plane-strain
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Figure 5. Frictionless indentation of an elastic-ideally plastic solid. Finite-element results and
similarity solution. (a) Average pressure as a function of aE∗/(Rσ0); (b) average pressure as a
function of a/R; (c) a2/(2hR) as a function of aE∗/(Rσ0); (d) a2/(2hR) as a function of a/R;
(e) load versus indent depth response.
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elastic modulus E∗ as given by (1.1), and not on E and ν independently. Conse-
quently, Johnson (1970) argued that in the early stages of elastic-plastic indenta-
tion, the effects of elasticity depend primarily upon the magnitude of E∗. We also
make this choice, and report results in terms of E∗. Most of the runs were done
with ν = 0.3, except for a few cases where extreme values of Poisson’s ratio were
used in order to check the validity of using the single elastic constant E∗. Johnson
(1970) further argued that the degree of deformation in elastic-plastic indentation
depends upon the ratio of the representative strain a/R beneath the indenter to
the yield strain σ0/E

∗ of the half-space. Thus, the degree of indentation is defined
by the single non-dimensional group aE∗/Rσ0. With this rationale in mind, finite-
element predictions of the average indentation pressure are plotted against aE∗/Rσ0
in figure 5a, for a wide range in value of σ0/E

∗ and Poisson ratio ν. The results
for aE∗/Rσ0 < 100 agree with both experimental values and early numerical results
given by Johnson (1970, 1985). After an initial regime of elastic Hertzian contact,
the material yields at L/πa2σ0 ≈ 1.1 and aE∗/Rσ0 ≈ 2.5. The plot of mean pres-
sure versus aE∗/Rσ0 shows no obvious departure from linearity at the onset of
yield, and remains linear until L/πa2σ0 ≈ 1.6. Thus, the parameter E∗ accurately
accounts for effects of elasticity beyond first yield. This is hardly surprising, since
plastic flow is initially confined to a small volume of material centred at a depth of
about 0.5a. As the plastic zone spreads, the normalization by the elastic constant
E∗ becomes less accurate and the individual curves begin to diverge. The devia-
tion in the responses at larger contact pressures (L/πa2σ0 > 1.6) in figure 5a is
due to more than numerical scatter, and a dependence can be observed of the aver-
age pressure upon the Poisson ratio (and, hence, upon the elastic compressibility):
the lower the elastic compressibility of the material, the higher is the average pres-
sure.

As the contact size is increased further, the average indentation pressure increases
until a regime of constant average pressure is reached at (aE∗/Rσ0) = 40–50; the
plateau value of pressure is in agreement with the value predicted by the rigid-ideally
plastic similarity solution (1.2 a). At somewhat larger values of (aE∗/Rσ0), the aver-
age pressure falls with increasing contact size and the curves markedly separate. At
these large values of contact size, the elastic contribution to the strain field beneath
the indenter is negligible, and the parameter (aE∗/Rσ0) ceases to uniquely define
the degree of indentation. Instead, the normalized contact size a/R is the controlling
non-dimensional parameter. This is clearly demonstrated by a plot of normalized
contact pressure, L/πa2σ0 versus a/R, as shown in figure 5b. Therein, the curves
of average pressure versus a/R coalesce to a single master curve for a/R > 0.16,
independent of the magnitude of σ0/E

∗ and of ν. For smaller values of contact size,
the relative locations of the responses depend strongly upon the values of σ0/E

∗
in addition to a/R, as already discussed. It is further noted from figure 5a, b that
the maximum value of the average pressure associated with the similarity solution is
never attained for a solid with a sufficiently high yield strain.

The drop in average pressure with increasing contact size for a/R > 0.16 represents
the failure of the assumptions involved in the similarity solution, specifically the
assumption of infinitesimal strain kinematics and the boundary condition of uniform
normal velocity. As the contact size increases, the tangential velocity of points in
contact with the indenter deviates from the horizontal, so that the uniform vertical
velocity boundary condition ceases to be appropriate.
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Most hardness measurements in metals are actually done in the finite-deformation
regime (ASTM 1993). The present results are in broad agreement with Tabor’s (1951,
p. 51) summary of hardness measurements for work-hardened metals with a high
yield strain. He found that the ratio of average contact pressure to yield strength
is between 2.8 and 2.9, rather then 3, which is predicted by the similarity solution.
A similar drop in the average pressure for large contacts has been observed for the
compression of elastic-plastic spheres between flat elastic platens (Chaudhri et al .
1984; Timothy et al . 1987; Chaudhri 1987).

(b) Contact area as a function of indent depth

The normalized contact area a2/2hR is plotted against (aE∗/Rσ0) in figure 5c and
against a/R in figure 5d. First yield is again not detectable: a2/2hR remains constant
at the value 0.5 beyond first yield until the plastic zone has spread somewhat. The
elastic constant E∗ appears to be the appropriate combination of elastic parameters
in the elastic-plastic regime. With a further increase in contact size, the rigid-plastic
similarity regime of constant a2/2hR is attained only for very low values of the yield
strain (less than about 2× 10−4). Again, the value of a/R that marks the beginning
of the finite-deformation regime is independent of the value of the elastic parameters
(figure 5d).

The onset of the finite-deformation regime predicted here (a/R = 0.16) differs
from the finite-element predictions of Bower et al . (1993), who predict that the
finite-deformation effects become relevant at a/R = 0.4. We attribute this difference
to the coarse mesh used by Bower et al . (1993).

(c) Contact stiffness

The relationship between indent depth and contact force is of fundamental impor-
tance in applications of indentation theory to the contact stiffness of rough surfaces
and to the macroscopic compaction response of an assemblage of particles. In addi-
tion, the load–displacement relation is relevant to some types of indentation test,
such as the Rockwell B test. Plots of contact load versus indent depth are given in
figure 5e, for the same range in value of yield strain and Poisson’s ratio as reported in
figure 5a–d. The secant contact stiffness L/h is constant in the similarity regime, but
decreases with increasing contact size in the finite-deformation regime, as illustrated
in figure 5e. The drop in contact stiffness compared with the similarity solution is
due to the multiplicative effect of the drop in average contact pressure, see figure 5b,
and the drop in contact area, see figure 5d. Elastic deformation has a negligible
effect on the load–displacement curve in the finite-deformation regime: the response
is insensitive to the value of the elastic parameters within this regime.

(d) Indentation map

A map showing the various regimes of deformation for normal indentation of an
elastic-ideally plastic solid by a frictionless sphere is shown in figure 6. The axes
are the contact size a/R and the yield strain σ0/E

∗ as independent non-dimensional
variables. The contours of average pressure and the normalized contact area a2/2hR
are shown.
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Figure 6. Map of frictionless indentation of an elastic-ideally plastic solid, showing regimes
of deformation mechanism. Contours of average pressure (——) and normalized contact area
a2/(2hR) (– – –) are included. The map is based on the finite-element results for E∗/σ0 = 3,
10, 30, 100, 250, 500, 1000 and 10 000.

The map shows the evolution in indentation response with increasing contact size
a/R, for any given prescribed value of yield strain σ0/E

∗. Consider, for example,
indentation of a half-space of yield strain σ0/E

∗ = 10−4. Then, as a/R increases,
the indentation response evolves from Hertz’s elastic solution to the elastic-plastic
solution as elucidated by Johnson (1970), to the fully plastic similarity solution, and,
finally, to a state of finite-deformation plasticity.
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The map comprises five distinct regimes: Hertzian elastic indentation; elastic-
plastic indentation; rigid-plastic similarity regime; finite-deformation plasticity; and
finite-deformation elasticity. We briefly consider each regime in turn and the factors
dictating the boundaries. The Hertzian elastic regime pertains when the Mises stress
within the half-space is less than the yield strength of the solid: this is satisfied
for a/R < 2.5σ0/E

∗. Within the Hertzian regime, the normalized contact area is
constant at a2/2hR = 0.5, and the average contact pressure is given by

L

πa2σ0
=

4
3π

a

R

E∗

σ0
.

Thus, along the boundary between the Hertzian regime and the elastic-plastic regime
we have L/πa2σ0 = 1.1 and a2/2hR = 0.5.

At very large values of yield strain, σ0/E
∗ > 0.1, the Hertz solution is interrupted

at large contact sizes not by the onset of yield but by finite-deformation effects; these
are due to nonlinear strain–displacement kinematics and a failure of the contact
assumption concerning a prescribed normal velocity. At still larger contact sizes the
finite-deformation elastic regime gives way to finite-deformation plasticity.

Now consider the elastic-plastic indentation regime. Within this regime, the nor-
malized contact pressure L/πa2σ0 and the normalized contact area a2/2hR increase
with increasing combined parameter aE∗/Rσ0, as commented upon already in con-
nection with figure 5a, c. For σ0/E

∗ less than about 2 × 10−4, the elastic-plastic
regime is superseded by the similarity regime according to the criterion

a

R
> 800

E∗

σ0
.

If, on the other hand, σ0/E
∗ exceeds approximately 2 × 10−4, the elastic-plastic

regime gives way to the finite-deformation plasticity regime at about a/R = 0.16.
Note that the similarity regime is defined as the region of the map over which

the average indentation pressure and the normalized contact area are given by the
constant values associated with the rigid-plastic similarity solution, relations (1.2 a),
(1.2 b). It is bounded on the left by elasticity effects on the normalized contact area
a2/2hR, and on the right by finite-deformation effects on the average pressure.

4. Indentation of elastic-hardening solids by a frictionless sphere

Practical engineering alloys strain harden in the plastic range, and so it is instructive
to explore the effects of strain hardening on the indentation response, for an ideal-
ized strain-hardening solid as characterized by (2.1) and (2.2). On noting that the
similarity solution (1.2 a) states that the average indentation pressure scales with
the reference stress σr = σ0[a/(ε0R)]1/m, we present results for the average pressure
by normalizing stresses with respect to σr. Predictions for the reduced average pres-
sure L/πa2σr are given in figure 7a, and for the normalized contact area a2/2hR in
figure 7b, for selected values of yield strain and Poisson’s ratio, and for m = 3.

It is clear from figure 7a that L/πa2σr increases with increasing aE∗/Rσ0 in the
elastic-plastic regime and then remains constant, attaining the value predicted by
the similarity solution. The differences in response for the Ramberg–Osgood and
linear/power-law solids are significant only within the elastic-plastic regime. No drop
in reduced average pressure is observed at large contact sizes form 6 3; form > 3, the
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Figure 7. Indentation of elastic-plastic hardening solid, m = 3. (a) Reduced average pressure
L/(πa2σr) versus aE∗/(Rσ0); (b) normalized contact area a2/(2hR) versus aE∗/(Rσ0); (c) load
versus indent depth response.

reduced average pressure drops with increasing contact size in the finite-deformation
regime. This is consistent with the feature that the similarity solution predicts a
switch between sink-in and pile-up behaviour at m = 3; pile-up and the drop in the
average reduced pressure are both associated with the plastic flow of material around
the indenter.

The evolution of the normalized contact area a2/2hR with contact size (figure 7b)
for the strain-hardening case (m = 3) is qualitatively the same as in the elastic-
ideally plastic case (figure 5b, d). To within numerical error, the similarity solution is
attained only for very low values of yield strain (less than 3× 10−4). The parameter
a2/2hR increases in the elastic-plastic regime, remains constant in the fully plastic
similarity regime and, then decreases again in the finite-deformation regime. The
precise form of the elastic-plastic coupling in the constitutive laws (2.1) and (2.2)
has a significant effect on the response within the elastic-plastic regime. Consistently,
at fixed value of aE∗/σ0, the linear/power-hardening law (2.1) gives larger values of
a2/2hR and of L/πa2σr than the Ramberg–Osgood description (2.2). It is further
noted from figure 7a, b that the combined parameter aE∗/Rσ0 adequately captures
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Figure 8. Comparison between the indentation maps for linear/power-law hardening solid
(m = 3), and an elastic-ideally plastic solid.

the role of elasticity in the indentation response: curves for a range in value of yield
strain and Poisson ratio coalesce within the elastic-plastic and the similarity regimes.

The similarity solution predicts that, for m = 3, the indentation load L is propor-
tional to the indent depth h to the power of 7/6 (see relations (1.2 a) and (1.2 b)).
Numerical results for L versus h7/6 show that this contact law breaks down within the
finite-deformation regime (figure 7c), but the deviation from the similarity solution is
less pronounced then in the elastic-ideally plastic case (figure 5e). It is further noted
from figure 7c that the Ramberg–Osgood constitutive law (2.2) gives a somewhat
softer response than the linear/power-law version (2.1).

A comparison of the indentation map for the linear/power-law solid (2.1) with
m = 3 and for the elastic-ideally plastic solid is given in figure 8. Overall, there is
only a minor effect of strain-hardening rate on the location of the boundaries of the
map. For m = 3, the boundaries of the similarity regime are determined solely by the
behaviour of the normalized contact area a2/2hR. The reduced average pressure is
constant for a much wider range of contact sizes than is a2/2hR (compare figure 7a
with figure 7b). In contrast, for higher values of m (such as m = 7 and m → ∞
explored in detail), a drop in reduced average pressure occurs at a sufficiently large
contact size and determines the right-hand boundary of the similarity region.

5. Effect of friction on indentation of an elastic-ideally plastic solid

In practical indentation tests it is difficult to control the degree of friction between
indenter and half-space. Here, we consider the two limiting cases of frictionless inden-
tation and sticking friction, in order to gauge the sensitivity of the indentation
response to friction level. We focus our attention on indentation of an elastic-ideally
plastic solid, and give some representative results in figure 9a–c for a solid of low
yield strain (E∗/σ0 = 10 000, ν = 0.3). Selected calculations show that the broad
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conclusions do not change for other values of yield strain and for the strain-hardening
case. The similarity solutions for the frictionless and sticking indentation of the rigid-
ideally plastic solid (Bower et al . 1993) are included in the figures.

It is clear from figure 9a that the average indentation pressure is consistently
higher for the case of sticking friction than for the case of frictionless indentation,
consistent with the notion that sticking friction induces greater plastic constraint
on the deformation field. The most striking difference between the responses is the
lack of a drop in the average pressure for the case of a sticking indenter in the
finite-deformation regime. In the frictionless case it is the large sliding and associated
material flow around the indenter that is responsible for the drop in average pressure.
Now consider the normalized contact area, plotted against contact size in figure 9b.
Compared with the frictionless case, sticking friction reduces the amount of pile-up
at the edge of the indenter and leads to consistently smaller contact areas for a given
indent depth. This is supported by the experimental measurements of Stute (1978),
who compared the surface profiles for lubricated and dry Brinell indentation.

In contrast with the average contact pressure, the normalized contact area drops
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somewhat with increasing contact size in the finite-deformation plasticity regime
for the case of sticking friction. We conclude from figure 9a, b that with increasing
contact size, the deformation regime evolves from elastic-plastic to the similarity
regime, and, finally, to finite-deformation plasticity. Within the similarity regime,
sticking friction gives 7% higher contact pressure and 8% smaller contact area than
the frictionless indenter; consequently, the contact stiffness L/h by the similarity
solution is about 1% greater for the frictionless case than for the sticking case. At
indent depths greater than h/R = 0.02, the finite-deformation regime is entered and
the contact stiffness decreases in a nonlinear manner with increasing indent depth
(see figure 9c). Within this regime, the contact stiffness for the frictionless indenter
is less than that for the sticking case.

An indentation map for the sticking indenter can be overlaid on that for the
frictionless indenter, as shown in figure 10. The differences between the two maps
are small. The finite-element predictions for the onset of first yield for the sticking
indenter almost coincide with those for the frictionless indenter, in agreement with
the analytical results of Hertz, Mossakovski (1963) and Spence (1968). (The detailed
stress fields for the case of the sticking indenter are given by Hills & Sackfield (1987).)
For both the frictionless and the sticking cases, first yield occurs at a depth of about
0.5a. The main difference between the maps is the location of the upper boundary
of the similarity regime. For the sticking case, this is determined by the breakdown
of the geometric similarity condition (a2/2hR = const.), while for the frictionless
case, the boundary is set by the drop in average pressure. Thus, the transition to the
finite-deformation regime occurs at a higher value of a/R for the sticking indenter.

Although the friction condition has little effect on the indent force versus depth
relationship, it does have a major effect on the strain distribution beneath the inden-
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Figure 11. Distribution of effective plastic strain along the centreline and beneath the indenter,
for frictionless and sticking indentation of an elastic-ideally plastic solid with E∗/σ0 = 10 000
and ν = 0.3.

ter. For both the sticking and frictionless cases, figure 11 shows the effective plastic
strain within the indented half-space, plotted as a function of depth and along the
axis of symmetry. The sticking indenter imposes a radial constraint on the material
in the immediate vicinity of contact; for the frictionless case, the material slides freely
along the indenter and the maximum effective plastic strain occurs at the surface.
Chaudhri (1996) performed a series of Vickers indentations on the cross-section of
the previously spherically indented annealed copper specimen. He found that the
maximum hardness (and, thus, the maximum effective strain) occurs at a depth of
about 0.2a beneath the indenter, and not at the surface. Our results indicate that
this is a friction effect.

6. The role of pre-existing stress within the half-space

Engineering surfaces often contain residual stress. For example, shot peening and ion
implantation result in equibiaxial compressive stress in a surface layer, while surface
thermal quenching associated with grinding and welding operations generates tensile
residual stresses. Little theoretical work has been reported on the effect of these
residual stresses on the indentation response. Here, we conduct a preliminary study
on the effects of pre-existing stresses on frictionless indentation. For simplicity, we
assume that a uniform state of equibiaxial stress exists throughout an elastic-ideally
plastic half-space. Thereby, we preserve the axisymmetric nature of the problem.
The assumption of uniform stress state is representative of cases where the depth
of indentation is much less than the length-scale over which the residual stress field
varies.
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Indentation predictions are given in figure 12a–c, for the elastic-ideally plastic
solid with selected values of yield strain and ν = 0.3. In each figure, predictions are
shown for the cases of vanishing pre-stress, equibiaxial tension of magnitude 1

2σ0 and
equibiaxial compression of magnitude −1

2σ0. For both the similarity regime and the
finite-deformation plasticity regime of indentation, pre-existing stress has a negligible
effect on the average contact pressure (figure 12a), on the normalized contact area
(figure 12b), and on the contact stiffness (figure 12c). However, within the elastic-
plastic indentation regime, the average contact pressure and normalized contact area
decrease with increasing residual tension, while the contact stiffness is approximately
independent of the initial stress state.

The reason for the lack of an effect of pre-stress on the behaviour within the
similarity regime and in the finite-deformation regime is perhaps not immediately
obvious. Some insight is gained from a contour plot of effective plastic strain beneath
the frictionless indenter for the three cases of equibiaxial tension, compression and
vanishing initial stress (figure 13). Contours are given at an indentation state a/R =
0.7 within the finite-deformation regime, in a solid of low yield strain, E∗/σ0 = 10 000
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10−4 no pre-stress
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Figure 13. Contours of effective plastic strain in an elastic-ideally plastic solid of E∗/σ0 = 10 000
and ν = 0.3, indented to a contact size of a/R = 0.7. Results are shown for vanishing pre-stress,
and for uniform equibiaxial pre-stress of magnitude ± 1

2σ0.

and ν = 0.3. The contour of effective plastic strain equal to 0.0001 can be considered
to be an approximate boundary of the plastic zone. While the overall plastic zone
shape depends upon the level of pre-stress, the region of large strain (effective strain
greater than 0.01) is practically identical in all three cases. Thus, pre-stress only
has an effect in the vicinity of the elastic-plastic boundary, where elastic and plastic
strains are of similar magnitude.

7. Concluding discussion

We have shown that it is the finite-deformation regime that is relevant to practical
ball indentation tests and not the similarity regime. In the light of these results, it
is of interest to review conventional understanding of indentation theory.

Tabor (1951) concluded that the average contact pressure is related to the contact
radius by a power law with the same power as the uniaxial stress–strain law:

L

πa2σ0
∝
(
a

R

)1/m

.

This appears to contradict our results within the finite-deformation regime for mate-
rials with weak hardening, m > 3. We can explain the discrepancy as follows. First,
Tabor’s conclusions are based largely on O’Neill’s (1944) and Meyer’s (1908) load–
contact size logarithmic plots, in which the slope, k = 2+(1/m), is rather insensitive
to small changes in the hardening exponent. The difference between the predicted
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exponents k in our work and Tabor’s exponents is less than the experimental scatter
in O’Neill’s experiments. Second, we have shown that sticking friction can prevent
the drop in average pressure within the finite-deformation regime.

The experimental data of Norbury & Samuel (1928) has been used by Tabor (1951)
and by Hill et al . (1989) to support the idea that the similarity regime dominates
the indentation response: Norbury & Samuel (1928) found that the ratio of pile-up
δ to the indent depth h is constant. Their experimental data are for a/R > 0.4,
and relate to the finite-deformation regime. Our numerical results (not shown) also
indicate that δ/h is constant within the finite-deformation regime.

We conclude by listing the main findings and implications of the current study as
follows.

(i) The region of validity of the plastic similarity solution is severely limited by
elastic effects for small contacts, and by finite-deformation effects for large
contacts. Maps of indentation regimes can be generated in a straightforward
manner to provide guidance for future testing and interpretation. The bound-
aries of the indentation regimes are relatively insensitive to the degree of strain
hardening and to the level of interfacial friction.

(ii) The level of friction strongly affects the strain field beneath the indenter, and
has a quantitative effect on the contact size as a function of indent depth.
Within the similarity regime, the contact stiffness is almost the same for stick-
ing and for frictionless indentation.

(iii) Pre-existing stress within the half-space has a minor effect on the indentation
response, except for the elastic-plastic indentation regime.

(iv) Extraction of material parameters, such as the hardening exponent m and the
characteristic strength σ0, is feasible from load versus indent depth measure-
ments, but may require more sophisticated indentation measurements than
those currently practised.
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