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Abstract

In this paper, we comprehensively reveal the learning dynamics of normalized
neural network using Stochastic Gradient Descent (with momentum) and Weight
Decay (WD), named as Spherical Motion Dynamics (SMD). Most related works
on this topic focus on studying “effective learning rate" using “equilibrium" as-
sumption, i.e. assuming weight norm has converge to a fixed value. However, their
discussion on why equilibrium can be reached is either absent or unjustified. To
clarify the mechanism behind, our work directly explores the cause of equilibrium,
which should be regarded as a special state of SMD. Specifically, 1) we introduce
the assumptions that can lead to equilibrium state in SMD, and prove equilibrium
can be reached in a linear rate regime; 2) we propose “angular update" as a substi-
tute for effective learning rate to depict the state of SMD, and derive the theoretical
value of angular update in equilibrium state; 3) we verify our assumptions and
theoretical results on various large-scale computer vision tasks including ImageNet
and MSCOCO with standard settings. Experiment results show our theoretical
findings agree well with empirical observations. Furthermore, we provide intuitive
interpretations, showing how the behavior of angular update in SMD affects the
optimization of neural network, and yields unexpected phenomenon in practice.
We believe our findings and theoretical results can deepen our understanding on
current training techniques for deep neural network.

1 Introduction

Normalization techniques (e.g. Batch Normalization (Ioffe & Szegedy, 2015) or its variants) are
one of the most commonly adopted techniques for training deep neural networks (DNN). A typical
normalization can be formulated as following: consider a single unit in a neural network, the input is
X , the weight of linear layer is w (bias is included in w), then its output is

y(X;w; γ;β) = g(
Xw − µ(Xw)

σ(wX)
γ + β), (1)

where g is a nonlinear activation function like ReLU or sigmoid, µ, σ are mean and standard deviation
computed across specific dimension of Xw (like Batch Normalization (Ioffe & Szegedy, 2015),
Layer Normalization Ba et al. (2016), Group Normalization (Wu & He, 2018), etc.). β, γ are learnable
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parameters to remedy for the limited range of normalized feature map. Aside from normalizing
feature map, Salimans & Kingma (2016) normalizes weight by l2 norm instead:

y(X;w; γ;β) = g(X
w

||w||2
γ + β), (2)

where || · ||2 denotes l2 norm of a vector. Though formulated in different manners, all normalization
techniques mentioned above share an interesting property: scale-invariance

Definition 1 (Scale-invariance). Given loss function L(w), w is scale-invariant w.r.t. L if and only
if ∀k ∈ R

+, we have L(w) = L(kw).

By definition of scale-invariance, we can directly derive the following properties of scale-invariant
weights in Lemma 1

Lemma 1. If w is scale-invariant with respect to L(w) , then for all k > 0, we have:

〈wt,
∂L
∂w

∣

∣

∣

w=wt

〉 = 0 (3)

∂L
∂w

∣

∣

∣

w=kwt

=
1

k
· ∂L
∂w

∣

∣

∣

w=wt

. (4)

Proof is in appendix. Lemma 1 is also discussed in Hoffer et al. (2018); van Laarhoven (2017); Li &
Arora (2020); Li et al. (2020), it makes the learning dynamics of normalized neural network exhibit
an interesting phenomenon when using Stochastic Gradient Descent (SGD) with Weight Decay (WD):
a typical SGD update rule with WD is

wt+1 = wt − η(
∂L
∂w

∣

∣

∣

w=wt

+ λwt) = (1− ηλ)wt − η
∂L
∂w

∣

∣

∣

w=wt

, (5)

Figure 1: Illustration of optimization behavior with
BN and WD. Angular update ∆t represents the an-
gle between the updated weight wt and its former
value wt+1.

where η denotes learning rate, λ denotes WD
factor. Then dynamics of wt is like a phys-
ical process – a satellite’s motion around the
earth (see illustration in Fig.1): according to
Eq.(3), −η∂L/∂w

∣

∣

w=wt

(green line in Fig.1) is

always perpendicular to wt, providing “centrifu-
gal effect” to make ||wt+1||2 larger than ||wt||2;
while −ηλwt (red line in Fig.1) is always in
the opposite direction of wt, providing “cen-
tripetal effect” to make ||wt+1||2 smaller than
||wt||2. Due to this “tug of war” between “cen-
trifugal effect” and “centripetal effect”, the norm
of weight will change accordingly. Though the
norm of scale-invariant weight doesn’t influence
the loss at all (by definition), but it will affect
the optimizing trajectory by changing the scale
of gradient (Eq.4). Therefore, to decouple the re-
lation between weight norm and gradient norm,
a common way (van Laarhoven, 2017; Hoffer
et al., 2017; Chiley et al., 2019) is to regard the
learning dynamics of scale-invariant weight as a manifold learning process restricted on a unit sphere,
using “effective learning rate", defined as η/||wt||22. Akin to this reason, in this paper the learning
dynamics of scale-invariant weight is viewed as a motion on a unit sphere, whose motion speed
is determined by weight norm (in original weight space), gradient norm, and hyper-parameters.
Therefore, we formally name it as Spherical Motion Dynamcis (SMD) and focus on discussing its
unique properties.

Concept of “Equilibrium” Since “tug-of-war” in SMD determines the relative sizes of ||wt+1||2
and ||wt||2, a question naturally arises: what will happen if ||wt+1||2 = ||wt||2? van Laarhoven
(2017) discuss this question first; Chiley et al. (2019) named this state where ||wt+1||2 = ||wt||2
in SMD as “equilibrium”, and discuss its properties; Li & Arora (2020) derives a lemma about
equilibrium in SGD with Momentum (SGDM); Li et al. (2020); Kunin et al. (2021) establish the

2



equilibrium in continuous approximation model. However, most early literature (van Laarhoven,
2017; Chiley et al., 2019; Li & Arora, 2020; Kunin et al., 2021) do not discuss a fundamental
question: “Does equilibrium really occur in practice?” van Laarhoven (2017) intuitively explains
that equilibrium is caused by convergence of optimization. But there exists a contradiction between
the interpretation of van Laarhoven (2017) and traditional view of optimization: if equilibrium
(||wt||2 = ||wt+1||2) is caused by convergence of optimization, then gradient of loss ∂L/∂w

∣

∣

w=wt

should be 0, which makes the balance of “centrifugal effect” and “centripetal effect” impossible
to reach (since centripetal effect comes from ∂L/∂w

∣

∣

w=wt

). Therefore, van Laarhoven (2017);

Chiley et al. (2019); Li & Arora (2020); Kunin et al. (2021) all essentially regard equilibrium as an
assumption, and do not justify its existence in neither empirical nor theoretical aspects. “Equilibrium”
was not even a phenomenon observed in practice, but only a concept until recently.

Recent work (Li et al., 2020) successfully exhibits the existence of equilibrium by formulating SGD
in Eq.(5) via a Stochastic Differential Equation (SDE) in the continuous time limit. They theoretically
prove equilibrium can be reached in SDE settings via convergence of ||w||t, and the convergence
time is O(1/(λη)) (λ, η denote WD factor and learning rate respectively). However, due to the
gap between discrete formulation of SGD and continuous formulation of SDE, theoretical results
derived from SDE model can only provide intuitive understanding on empirical observations, some
of which are even incorrect (will be discussed latter); Besides, SDE can hardly take SGD with
momentum (Polyak, 1964) into account, which has become default setting in nearly all kinds of deep
learning tasks. In summary, a thorough understanding on cause of “equilibrium” and its impact to
learning dynamics of normalized neural network is still needed.

In this paper, we comprehensively reveal Spherical Motion Dynamics (SMD), i.e. the learning
dynamics of normalized neural network using SGD(M) and weight decay (WD). Our analysis on
SMD is directly established on discrete settings. We interpret why equilibrium can be reached in
SMD in both theoretical and empirical aspects, and show how SMD affects the optimization trajectory
of neural network. Specifically, our contributions are

• We introduce the assumptions which can lead to equilibrium in SMD, and justify their rea-
sonableness by sufficient experiments. We also prove under given assumptions, equilibrium
can be reached as weight norm approach to its theoretical value in a linear rate regime. Our
theorem show equilibrium is a dynamic state in SMD, convergence of weight norm is
neither the precondition nor the consequence of equilibrium. This conclusion almost
refutes the assumptions of all previous related work (van Laarhoven, 2017; Chiley et al.,
2019; Li & Arora, 2020; Kunin et al., 2021), and the conclusion of Li et al. (2020).

• We define a novel index, angular update, to measure the change of normalized neural
network within a single iteration. We also derive its theoretical value in equilibrium. Our
results show that angular update is better than norm of weight to indicate if equilibrium
has been reached reached in SMD. Our empirical results further show angular update is an
important index to reflect the effect of SMD and equilibrium;

• We verify our theorems on different computer vision tasks (including one of most challenging
datasets ImageNet (Russakovsky et al., 2015) and MSCOCO (Lin et al., 2014)) with
various networks structures. Experiments show the theoretical value of angular update
and weight norm agree well with empirical observation. We also show how SMD influence
the optimization trajectory of normalized neural network by controlling angular update.

We believe SMD is one of the key reason why learning dynamics of normalized neural network is not
consistent with traditional optimization theory (Li et al., 2020). We think it is of great potential to take
SMD and its equilibrium state into account while studying leaning dynamics of modern normalized
neural network or designing novel efficient training strategy.

2 Theoretical results

In this section, we theoretically formulate Spherical Motion Dynamics (SMD) in discrete SGD/SGDM
settings, and provide a precise description on “equilibrium” phenomenon; Then we prove equilibrium
can be reached in SMD under specific assumptions; Finally a new index, whose theoretical value in
equilibrium can be derived, is proposed to indicate the state of SMD.
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A new definition need to be given at first. Eq.(4) implies though norm of scale-invariant weights
does not affect the output of neural network, it can influence norm of gradients, thus we define unit
gradient in order to decouple weight norm and gradient norm.

Definition 2 (Unit Gradient). If wt 6= 0, w̃ = w/||w||2, the unit gradient of ∂L/∂w|w=wt
is

∂L/∂w|w=w̃t
.

According to the definition of unit gradient, the unit gradient norm is independent of weight norm.
Specifically, by setting k as 1/||wt||2 in Eq.(4), the relation among weight norm, gradient and unit
gradient is

∂L
∂w

∣

∣

∣

w=wt

=
1

||wt||
· ∂L
∂w

∣

∣

∣

w=w̃t

. (6)

Now, we can depict equilibrium of SGD and SGDM in theorem 1, 2 respectively.

Theorem 1. (Equilibrium in SGD) Assume the loss function is L(X;w) with scale-invariant weight

w, denote gt =
∂L
∂w

∣

∣

Xt,wt

, g̃t = gt · ||wt||2. Consider the update rule of SGD with weight decay,

wt+1 = wt − η · (gt + λwt) (7)

where λ, η ∈ (0, 1). If the following assumptions hold:

1) λη ≪ 1 (o(λη) can be omitted);

2) Let Lt = E[||g̃t||22|wt]. ∃V ∈ R
+, ∀t ∈ N

+, E[(||g̃t||22 − Lt)
2|wt] ≤ V ;

3) ∀t ∈ N
+, Lt satisfies |Lt+1 − Lt| < 4

√
V (λη)3/2;

4) ∃l ∈ R
+, ∀t ∈ N

+, ||g̃t||22 > l, l > 2[ 2λη
1−2λη ]

2Lt.

Then ∃B > 0, ∀t ∈ N
+, w∗

t = 4

√

Lt−1η/(2λ), we have

E[||wt||22 − (w∗

t )
2]2 ≤ (1− 2λη)tB +

2V η2

l
. (8)

Remark 1. The theoretical value of weight norm w∗
t in Theorem 1 is consistent with the magnitude

of weight norm (O( 4

√

η/λ)) in equilibrium in van Laarhoven (2017), though van Laarhoven (2017)
assumes the equilibrium has been reached in advance, hence van Laarhoven (2017) cannot provide
the approaching rate and scale of bias/variance. The vanishing term ((1 − 2λη)tB) in Eq.(8) is
consistent with the mixing time O(1/(λη)) presented in Li et al. (2020).

The proof can be seen in appendix. Assumption 1 is consistent with commonly used settings in
practice (Goyal et al., 2017; He et al., 2017; Ma et al., 2018); Assumptions 2, 3, 4 all concern
unit gradient: unit gradient norm should change smoothly (assumption 3) with bounded variance
(assumption 2); besides, unit gradient norm should have a lower bound (assumption 4). We will see
these assumptions can easily hold in practice in section 4.1.

Remark 2. Note in theorem 1, we assume ||g̃t||22 has a uniform lowere bound l, while E[(||g̃t||22 −
Lt)

2|wt] has a uniform upper bound V . But these are too strong assumptions and may not hold in
practice. We only use them for ease of demonstration and proof. In fact the lower bound of ||g̃t||22
and upper bound of E[(||g̃t||22 − Lt)

2|wt] can be replaced with smoothly varying functions lt and Vt

respectively to remove unnecessary assumptions on uniformness. The “trend” to reach equilibirum is
actually a local property, which can be inferred from the proof.

True meaning of “equilibrium”: a dynamic state of SMD Recall as we demonstrate in introduc-
tion, the concept of equilibrium is originally established on the assumption that weight norm is steady
(||wt||2 = ||wt+1||2). But the assumption (||wt||2 = ||wt+1||2) is unrealistic due to the complex
dynamics of training process and the variance of stochastic gradients. Now theorem 1 provides
a realistic meaning of equilibrium in SGD settings: equilibrium is just a dynamic state of SMD,
meaning ||wt||22 oscillates around the theoretical value (w∗

t )
2 determined by hyperparameters and

unit gradient norm. Its variance is bounded by 2V η2/l, which is relatively small comparing with
(w∗

t )
4 because

2V η2

l
/(w∗

t )
4 =

4V λη

Lt−1l
= O(λη) ≪ 1. (9)
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Aside form the stochastic behavior of ||wt||22, the “dynamic state” also reflects in the variation of the
theoretical value (w∗

t )
2. Because (w∗

t )
2 is determined by Lt, which is allowed to change smoothly

across the whole training process in assumption 2 (See more discussion in appendix). In summary,
the sign of equilibrium is neither the convergence of weight norm ||wt||22 (van Laarhoven, 2017;
Chiley et al., 2019) nor the convergence of ||wt||2 in expectation (Li et al., 2020). The real sign of
equilibrium is whether E||wt||22 is close to its theoretical value (w∗

t )
2.

Theorem 1 also shows the dynamic equilibrium can be reached in a linear rate regime when vanishing
term is larger than constant term in Eq.(8). The approaching rate is only determined by predefined
parameters λ, η. Moreover, based on the proof of theorem 1, the cause of equilibrium is independent
of optimization process at all, which implies the possibility that equilibrium can be reached long
before the convergence of loss function, which refutes the conjections that “equilibirum” a equilibirum
distribution of function space.

Now we extend theorem 1 to momentum case. SGDM is more complex than SGD since momentum
is not always perpendicular to the weight, hence we need to modify assumptions.

Theorem 2. (Equilibrium in SGDM) Considering the update rule of SGDM (heavy ball
method (Polyak, 1964)):

vt = αvt−1 + gt + λwt (10)

wt+1 = wt − ηvt (11)

where λ, η ∈ (0, 1), α ∈ ( 12 , 1). If following assumptions hold:

5) λη ≪ 1, λη < (1−√
α)2;

6) Define ht = ||gt||22 + 2α〈vt−1, gt〉, h̃t = ht · ||wt||22, Lt = E[h̃t|wt]. ∃V ∈ R
+, ∀t ∈ N

+,

E[(h̃t − Lt)
2|wt] ≤ V ;

7) ∀t ∈ N
+, Lt satisfies |Lt+1 − Lt| < 4

√
V (λη)3/2;

8) ∃l ∈ R
+, ∀t ∈ N

+, h̃t > l > 2[ 6λη
(1−α)3(1+α)−8λη(1−α) ]

2Lt;

then ∃B,C > 0, C only depends on α, w∗
t = 4

√

Lt−1η/(λ(1− α)(2− λη/(1 + α))), we have

E[||wt||22 − (w∗

t )
2]2 ≤ (1− 2λη

1− α
)tB +

V η2

l
C, (12)

Remark 3. So far, no other work rigorously prove equilibrium can be reached in SGDM. The most
relevant work (Li et al., 2020) only provides a conjecture on convergence rate of weight norm in
SGDM. By regarding SGDM as SGD with larger learning rate, they guess that the mixing time to
reach equilibrium in SGDM case should be O(1/(λη)), same order as mixing time in SGD case.
Their conjecture cannot provide further insight on difference between SGD and SGDM. While our
results (vanishing terms in Eq.(8), (12) respectively) clearly reflect the difference: the approaching
rate of SGDM should be 1/(1− α) times larger than rate of SGD with same ηλ. α is usually set as
0.9 in practice, hence SGDM can reach equilibrium condition much faster than SGD.

Proof can be seen in appendix. Like assumption 1, assumption 5 also holds for commonly used
hyperparameter settings; Assumption 6, 7, 8 concerns not unit gradient norm ||g̃t||22 but an adjusted

value h̃t which dominates the expectation and variance of ||wt||22. We empirically find the expectation

of 〈vt−1, gt〉 is very close to 0, therefore the behavior of h̃t is similar to that of ||g̃t||22 (see Figure 3(d)).

We leave theoretical analysis on h̃t as future work. The experiments on justification of assumptions
6, 7, 8 can be seen in Figure 3. Comparing with Eq.(8) and Eq.(12), we can infer with same η, λ,
SGDM can reach equilibrium state much faster than SGD, but it may have a larger variance, our
experiments also verify our claim (see Figure 3(b), 3(e)).

We have derived the theoretical value of weight norm in equilibrium, it allows us to check if
equilibrium has been reached in practice. But the theoretical value of weight norm still relies on
the expectation of unit gradient norm, which is not easy to compute in practice. Besides, weight
norm is of little value for studying normalized models since their weight is scale-invariant. Hence we
introduce an new and meaningful index, angular update, to reflect the effect of SMD and equilibrium.
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Definition 3 (Angular Update). Let wt denote a scale-invariant weight from a neural network at
iteration t, then angular update ∆t is defined as

∆t = ∡(wt,wt+1) = arccos

( 〈wt,wt+1〉
||wt|| · ||wt+1||

)

, (13)

where ∡(·, ·) denotes the angle between two vectors, 〈·, ·〉 denotes the inner product.

Angular update has a concrete geometric meaning (see illustration in Figure 1): it is exactly the
geodesic distance between w̃t and w̃t+1 on Sp−1, where w̃t = wt/||wt||2, w̃t+1 = wt+1/||wt+1||2.
Comparing with the Euclidean distance ||wt+1−wt||2, angular update ∆t better reflects the effective
update of the scale-invariant weight wt on its intrinsic domain Sp−1. Angular update is determined
by the relative sizes of gradient norm and weight norm, while the relative sizes of gradient/weight
norm are influenced by SMD, hence angular update is strongly affected by SMD. The following
theorem exhibits the behavior of angular update when equilibrium is reached in SMD.

Theorem 3. (Theoretical value of Angular Update) In SGD(SGDM) case, if assumptions in theorem
1(2) hold, η2 ≪ 1, t is sufficiently large so that vanishing terms in Eq.(8), (12) can be omitted, then

with probability at least 1− 3

√

V
Ltl

we have

|∆t −
√

2λη

1 + α
| < O( 3

√

V

Ltl
). (14)

In SGD case, α = 0.

Remark 4. Results of SGD and SGDM case are summarized in Eq.(14) in order to highlight the
connection between SGD and SGDM. Theoretical value of angular update in Theorem 3 is partially
consistent with previous works (Chiley et al., 2019; Li & Arora, 2020; Li et al., 2020; Kunin et al.,
2021), detailed discussion is buried in appendix. Note bias term in right side of Eq.(14) is of

O( 3

√

V/Ltl), which is too large comparing with its empirical value (see Figure 3(c), 3(f)), we leave
it as a future work to improve the bound in Eq.(14).

Proof is in appendix. According to theorem 3, the theoretical value of angular update in equilibrium
only depends on hyper-parameters: learning rate η, WD factor λ, and momentum factor α. Hence
comparing with behavior of weight norm, angular update provides an easier way to check whether
equilibrium is reached. Since equilibrium can be reached in a linear rate regime as theorem 1, 2
demonstrate, theorem 3 implies update efficiency of scale-invariant weights within a single step
eventually will be determined only by predefined hyperparameters, regardless other attributes of the
weights (shape, size, position in network structure, or effects from other weights).

3 The Role of Angular Update in Sphereical Motion Dynamics

Figure 2: Illustration of local minimum and angu-
lar updates. Blue arrow indicates a single step with
larger angular update, while green arrow indicates
a single step with smaller angular update.

Far beyond just an index indicating whether
equilibrium is reached, angular update is also
a important way by which SMD can affect the
optimization process of normalized neural net-
work. In this section, we will provide an intu-
itive explanation on the role of angular update
in folklore view of landscape exploration.

The optimization process of gradient descent
method is like an expedition to find the bottom
of a basin in loss landscape (i.e. a local mini-
mum). It is well known that gradient descent
with constant learning rate can always converge
to the minimum in strong convex problem as
the gradient norm will converge to zero (Boyd
et al., 2004); while SGD with constant learning
rate can not converge to the minimum certainly,
because noise of gradients can make trajectory “escape from local minimum” Zhu et al. (2018).
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However, the behavior of SGD(M) in equilibrium is unique: due to the scale invariant property, the
loss landscape is defined on a unit sphere Sp−1, so does the basin (local mimium). Then based on
the geometrical meaning of angular update, angular update denotes a "single step length" on the
loss landscape. According to theorem 3, when equilibrium state has been reached in SMD, angular

update is approximated equal to
√

2λη/(1 + α). Hence with constant η, λ, and α, the optimization
trajectory is “stuck” at the top of the basin, unable to reach the bottom (converge/reduce loss), just
like the illustration in Figure 2. The value of angular update in equilibrium is totally determined by
hyper-parameters, there is no way the optimization trajectory can move to the bottom of basin in
equilibrium due to overly large single step length. Based on the analysis above, we have following
conjectures: if the trajectory stays in the same basin with different values of angular update in
equilibirum, and momentum factor is fixed, then

1. Larger angular update leads to higher training loss and lower test accuracy in equilibrium;

2. Even with different learning rate and weight decay, same angular update leads to similar
training loss/test accuracy in equilibrium;

We will verify our conjectures in following empirical study. Note the influence of momentum is
different from learning rate and weight decay: even momentum can decrease the value of angular
update as theorem 3 implies, it still can increase the oscillating range of the trajectory in the basin,
resulting in larger training/testing loss.

4 Experiments

In this section, we verify our theorems and conjectures on SMD and equilibrium by empirical study.
We show the equilibrium phenomenon described in our theorems really occurs in various computer
vision tasks including ImageNet (Russakovsky et al., 2015) and MSCOCO (Lin et al., 2014). We
also analyze an interesting phenomenon as an example to show how SMD can affect training process
in a way different from traditional view on optimization of neural network.

4.1 Fixed learning rate

First we verify our theorems on ImageNet (Russakovsky et al., 2015) with fixed learning rate. We
use Resnet50 (He et al., 2016) as the baseline model. In SGDM case, the momentum factor is
α = 0.9. Form Figure 3(b), 3(e), 3(c), 3(f), we can see empirical value of ||wt||22 and ∆t differ
from their theoretical value respectively at very beginning, because the initialized value of weight
norm is handcrafted, far away from the theoretical value in equilibrium. After several iterations,
empirical values of weight norm and angular update agree with their theoretical values very well,
which implies equilibrium has been reached. We also observe SGDM can achieve equilibrium much
faster than SGD. According to Eq.(8), (12), the underlying reason might be with same learning rate η
and WD factor λ, approaching rate of SGDM ( λη

1−α ) is larger than approaching rate of SGD (λη).

Results in Figure 3 also prove our claim that equilibrium is a dynamical state: even equilibrium has

been reached, E||g̃||22 (Eh̃t) constantly increase, ||wt||22 increases accordingly, ||wt||22 and ∆t always
oscillate around their theoretical values respectively, showing equilibrium state maintains in SMD.

Then we train Resnet50 on Imagenet with different hyperparameters to verify our conejctures. The
results are shown in Figure 4. We can see the experimental results strongly support our conjectures:
in SGD case, whatever learning rate η and WD factor λ is, they have similar angular update in
equilibrium, as well as similar training/testing curves; when angular update is larger, both training
loss and test error are larger. These phenomena are even more obvious in SGDM case, when
momentum factor α is fixed. Besides, the role of momentum in SMD is exactly as we speculate: it
can decrease angular update while increase training/testing loss.

4.2 Multi-stage learning rate

Now we study the behavior of angular update with SGDM and multi-stage learning rate schedule on
Imagenet (Russakovsky et al., 2015) and MSCOCO (Lin et al., 2014). In ImageNet classification task,
we still use Resnet50 as baseline model. The training settings rigorously follow Goyal et al. (2017);
In MSCOCO experiment, we conduct experiments on Mask-RCNN (He et al., 2017) benchmark
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(a) Unit gradient norm in SGD (b) Weight norm in SGD (c) Angular update in SGD

(d) Unit gradient norm square and

h̃ in SGDM

(e) Weight norm in SGDM (f) Angular update in SGDM

Figure 3: Performance of layer.2.0.conv2 from Resnet50 in SGD and SGDM, respectively. In (a), (d),

semitransparent line represents the raw value of ||g̃t||22 or h̃t, while solid line represents the averaged

value within consecutive 200 iterations to estimate the expectation of ||g̃t||22 or h̃t conditioning on
t; In (b), (e), blue solid lines represents the raw value of weight norm ||wt||2, while dashed line
represent the theoretical value of weight norm computed in Theorem 1, 2 respectively. To compute

the theoretical value of weight norm, we use the estimated E||g̃||22 and Eh̃ (solid lines) in (a) and (d)
respectively; In (c), (f), red lines represent raw value of angular update during training, dashed lines

represent the theoretical value of angular update computed by
√
2λη and

√

2λη/(1 + α) respectively.

(a) Training Loss (SGD) (b) Top-1 accuracy (SGD) (c) Angular update (SGD)

(d) Training Loss (SGDM) (e) Top-1 accuracy (SGDM) (f) Angular update (SGDM)

Figure 4: Resnet50 are trained on Imagenet with different hyper-parameters. The angular update is
computed by the weight in LAYER.2.0.CONV2 of Resnet50. Dashed lines in (c), (f) represent the

theoretical value of angular update by

√

2λη
1+α .
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(a) Angular update in Imagenet (b) Angular update in Imagenet
(rescaled)

(c) Weight norm in Imagenet

(d) Angular update in MSCOCO (e) Angular update in MSCOCO
(rescaled)

(f) Weight norm in MSCOCO

Figure 5: In (a),(b),(d),(e), solid lines with different colors represent raw value of angular update from
all convolution layers; In (a), (d), training setting rigorously follows Goyal et al. (2017); He et al.

(2019) respectively; In (b), (e), weight norm is divided by
4
√
10 as long as learning rate is divided

by 10; In (c), (f), weight norm is computed on layer.1.0.conv2 in Resnet50 backbone. Blue line
represent original settings, orange lines represent rescaled settings.

using a Feature Pyramid Network (FPN) (Lin et al., 2017), ResNet50 backbone and SyncBN (Peng
et al., 2018) following the 4x setting in He et al. (2019).

There appears to be a mismatch between theorems and empirical observations in Figure 5(a), 5(d):
angular update ∆t in the last two learning rate stages is smaller than its theoretical value. This
mismatch can be well interpreted by our theory: according to Theorem 1, 2, when equilibrium state

is reached, theoretical value of weight norm ||wt||2 satisfies ||wt||2 ∝ 4

√

η
λ . However, when learning

rate is divided by k, equilibrium state is broken, theoretical value of weight norm ||wt||2 in the new

equilibrium state is 4

√

1/k times smaller. But new equilibrium cannot be reached immediately (see
Figure 5(c), 5(f)), following corollary gives the least number of iterations to reach new equilibrium.

Corollary 3.1. In SGD case with learning rate η, WD factor λ, if learning rate is divided by k,
and unit gradient norm remains unchanged, then at least ⌈[log(k)]/(2λη)⌉ iterations are required
to reach the new equilibrium state; In SGDM case with momentum coefficient α, then at least
⌈[log(k)(1− α)]/(2λη)⌉ iterations are required to reach the new equilibrium state.

Corollary 3.1 implies SGD/SGDM with smaller learning rate requires more iterations to reach new
equilibrium state. Hence, in second learning rate stage in Imagenet experiments, angular update
∆t can reach its new theoretical value within 15 epochs. But in last two learning rate stages of
Imagenet/MSCOCO experiments, SGDM cannot completely reach new equilibrium by the end of
training. As a result, we observe empirical value of ∆t is smaller than its theoretical value. Based on
our theorem, we can bridge the gap by skipping the intermediate process between old equilibrium
and new one. Specifically, when learning rate is divided by k, norm of scale-invariant weight is

also divided by
4
√
k, SGDM can reach new equilibrium immediately in new learning rate stage.

Experiments((b),(e) in Figure 5) show this simple strategy can make angular update ∆t always close
to its theoretical value across the whole training process though learning rate changes.

4.3 “Pseduo overfitting” caused by learning rate decay

“Dropping test preformance(accuracy)” phenomenon is often explained as a result of “overfitting”
issue, which refers to the phenomenon where a trained model can fit training data very well, but
fails to fit additional data for validation or prediction. To handle such issues, regularization methods
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like early-stopping (Prechelt, 1998) and dropout (Srivastava et al., 2014) are proposed. But here we
show in some cases “dropping test preformance” phenomena is just a “pseduo” overfitting, caused by
learning rate decay.

Let’s see the following experiment in which Resnet18 (He et al., 2016) is trained on CI-
FAR10 (Krizhevsky & Geoffrey, 2009) with standard settings (see experiment settings in appendix)
Figure 6 presents the training curves of the experiments. It can be seen from figure 6(b)(blue line
inside red ellipse) that with standard implementation of SGDM, test accuracy severely drops during
the 2nd learning rate stage. It seems a typical overfitting issue. However, two other phenomena
cannot be well interpreted by overfitting: 1) test accuracy only severely decreases during 2nd learning
rate stage, it performs normally in the 3rd, 4th learning rate stages (blue lines in Figure6(b)); 2) When
other optimization method like Adam (Kingma & Ba, 2015) is used, test accuracy does not drop
apparently in any learning rate stages (green line in Figure6(b)).

(a) Training loss (b) Test Accuracy (Top-1) (c) Angular update

Figure 6: Training curves of Resnet18 trained on CIFAR10 (averaged across 5 seeds). Angular update
is from layer1.0.conv1 of Resnet18.

Figure 7: Increasing angular caused by learning
rate decay.

Now SMD can provide a more reasonable in-
terpretation: we have demonstrated the conjec-
tures on the relationship between angular update
and performance of model (Sec. 3), and the
fact that learning rate decay can make angular
update increase (Sec. 4.2) above, so it’s rea-
sonable to speculate that learing rate decay is
the cause of the temporary “dropping test accu-
racy” phenomenon. See illustration in Figure 7:
after shrinking learning rate, smaller angular up-
date allows the optimizaton trajectory to move
towards the bottom of the basin, then angular
update will increase, forcing trajectory to “escape” from the bottom, resulting in dorpping test
performance. If this interpretation is ture, then rescaling strategy introduced in Sec. 4.2 should avoid
“pseduo dropping test performance” by eliminating increasing angular update phenomenon. Further
experiments support our speculation (Figure 6). They also explain why dropping test performance
cannot be seen in Adam: we track the angular update with Adam, and no increasing angular update
phenomenon is observed. Please see more discussion in appendix.

5 Conclusion

In this paper, we comprehensively reveal the learning dynamics of normalized neural network
with SGD/SGDM and weight decay (WD), named as Spherical Motion Dynamics (SMD). With
mild assumptions, we strictly prove SMD will reach equilibrium state in a linear regime. We
also propose a novel index, angular update, to depict the state of SMD, and derive its theoretical
property in equilibrium. Most importantly, we show our theorem is widely valid, they can be verified
on challenging computer vision tasks, beyond synthetic datasets. Besides, we show SMD can
dramatically effect the optimization of neural network by controlling angular update in practice. We
believe our results on SMD make an important step to understand the mechanism of deep neural
networks, and can inspire new deep learning techniques.
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