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In this paper we calculate the analytical solutions for the radii of planar and polar spherical photon orbits
around a rotating black hole that is associated with quintessential field and cloud of strings. This includes a full
analytical treatment of a quintic that describes orbits on the equatorial plane. Furthermore, The radial profile
of the impact parameters is studied and the radii corresponding to the extreme cases are derived. For the more
general cases, we also discuss the photon regions that form around this black hole. To simulate the orbits that
appear in different inclinations, we analytically solve the latitudinal and azimuth equations of motion in terms
of the Weierstraßian elliptic functions, by considering the radii of spherical orbits, in their general form, as the
initial conditions. The period and the stability conditions of the orbits are also obtained analytically.
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I. INTRODUCTION AND OUTLOOK

Black holes are indeed among the most mysterious astrophysical objects. From their first observational evidences, which were
due to Cygnus X-1 in the early 70’s [1, 2], to the latest observations of the shadows of M87* and SgrA* [3, 4], the quest for
obtaining astrophysical data from black holes have been on a constant course. While the former was indicating an extreme X-ray
source, the latter were indeed optical resemblances of what general relativity had been formulated for the exterior geometry of
such objects. According to general relativity, the near-horizon spacetime around black holes is so wrapped, that photons travel
on spherical orbits. Such photon orbits are essentially unstable, and together, they form a photon ring that confines the black
hole shadow. From the theoretical viewpoint, the determination of spherical orbits for static spacetimes (like Schwarzschild), is
easy, since they are planar and are, essentially, circles on the equatorial plane. This situation, however, changes for stationary
(rotating) black holes, since the frame-dragging effect produces a region filled with photons on constant-radius orbits; the so-
called photon regions. For the case of Kerr black holes and applying the geodesic equations for light rays, the radii of planar
and polar orbits were first given in Refs. [5, 6], and discussed further in the context of Kerr geodesics in Ref. [7]. Ever since,
numerous publications have been devoted to the study of spherical photon orbits, photon regions and photon rings in Kerr and
Kerr-like black hole spacetimes (see for example Refs. [8–19]). It is important to highlight that, the photon regions are spatially
bounded by the aforementioned radii of planar orbits, which have been given analytical expressions for Kerr black holes. On
the other hand, the analytical determination of the radii of non-planar photon orbits in their most general form in Kerr-like
spacetimes is a formidable task, because it leads to solving polynomials of the orders of six and above. Nevertheless, some
rigorous, by approximated studies have been done so far in order to provide some semi-analytical expressions for the radii of
photon orbits on Kerr black holes (see Refs. [20, 21]).

In this paper, we also deal with the spherical photon orbits on a Kerr-like black hole, whose exterior geometry is a rotating
counterpart of a static spherically symmetric spacetime associated with quintessence. In fact, it is plausible that the black
hole evolution in the current cosmic era, could be affected by the dark side of the universe [22–25]. Technically, one can
add specific cosmological components to the black hole’s spacetime geometry, so that the dark features could also contribute.
Such components may be contributed, for example, by including a dark fluid energy-momentum tensor in the Einstein field
equations, in the form of a halo [26, 27], or a quintessential field [28–30]. In fact, quintessential fields are supposed to explain,
dynamically, the late time accelerated expansion of the universe. Additionally, we assume that the black hole is also associated
with cloud of strings, which means that instead of point particles, the cosmic fluid in which the black hole resides, consists of
one-dimensional strings. Based on the same criteria, a generalization to the Schwazschild black hole spacetime has been done
in Refs. [31, 32]. On the other hand, if both of the quintessence and cloud of strings are present for a Schwarzschild black hole,
the spacetime is endowed with extra gravitational potentials, that can be regarded similarly as those in the Mannheim-Kazanas
spherically symmetric solution to the fourth order Weyl conformal gravity, which was claimed to recover the flat galactic rotation
curves [33]. In such spacetime, the source of gravity is extended, and hence, the black hole resides in a stringy universe. A static

∗ mohsen.fathi@postgrado.uv.cl
† marco.olivaresr@mail.udp.cl
‡ jose.villanueva@uv.cl

ar
X

iv
:2

20
7.

04
07

6v
3 

 [
gr

-q
c]

  4
 J

an
 2

02
3

mailto:mohsen.fathi@postgrado.uv.cl
mailto:marco.olivaresr@mail.udp.cl
mailto:jose.villanueva@uv.cl


2

spherically symmetric spacetime metric for this black hole, has been derived and analyzed in Refs. [34–36]. Applying a modified
Newman-Janis algorithm, this spacetime was then assigned a rotating counterpart in Ref. [37], which reduces correctly to that
of Kerr, in the absence of the parameters of quintessence and cloud of strings.

In this work, we pursue two main objectives. First, we go deep into the analytical derivation of the radii of the planar orbits
around the black hole. This requires a precise treatment of a quintic that governs such orbits. Secondly, we obtain the exact
analytical solutions for the evolution of the polar and azimuth coordinates, that happen on constant radii. To obviate these aims,
we organize the paper as follows: In Sect. II, we briefly introduce the static spacetime, its components and casual structure. This
is followed by discussing the rotating counterpart, in terms of the horizons, the ergoregion and the properties of the extremal
case. In Sect. III, we begin our study of the spherical photon orbits on the black hole, by means of the geodesic equations.
There, we calculate the critical impact parameters, and this way, a general octic equation is generated than governs the radii of
spherical orbits. We continue this section by confining ourselves to the equatorial plane, so the aforementioned octic reduces
to a quintic. This quintic will be treated analytically and its solutions are expressed in terms of the generalized hypergeometric
functions. The detailed mathematical methods are then described in the appendices. Further in this section, we also calculate
the radii of polar orbits that cross the axis of symmetry. With the help of these information, we discuss some examples of the
photon regions that form in the exterior of the black hole, for various spin parameters. In Sect. IV, we give a rigorous study
of the latitudinal and azimuth motion, by solving analytically their first order equations of motion. Accordingly, the integrals
of motion are given solutions in terms of the three Weierstraßian elliptic functions. In this section, the period of the latitudinal
oscillations is calculated separately, and is compared to that inferred from the profile of the polar coordinate, for some specific
examples. In Sect. V, we apply the above solutions for some radii determined by solving numerically the octic for a variety
of initial inclinations, in order to simulate several categories of spherical orbits, for sub-extremal, extremal and super-extremal
spacetimes. In this section, we also discuss the stability of the orbits. We conclude in Sect. VI. Throughout this work, we apply
a geometrized system of units, in which G = c = 1.

II. THE BLACK HOLE SOLUTION IN THE DARK BACKGROUND

The static, spherically symmetric black hole solution in the quintessential background, which is surrounded by cloud of
strings, is described by the following metric in the xµ = (t, r, θ, φ) coordinates:

ds2 = −B(r)dt2 +
dr2

B(r)
+ r2dθ2 + r2 sin2 θdφ2 (1)

with the lapse function defined as [34, 35]

B(r) = 1− α− 2M

r
− γ

r3wq+1
, (2)

in which, α, M , γ and wq , represent, respectively, the dimensionless string cloud parameter (0 < α < 1), the black hole
mass, the quintessence parameter and the equation of state (EoS) parameter. For a perfect fluid distribution of matter/energy,
this latter is defined by Pq = wqρq , with Pq and ρq as the quintessential energy pressure and density, and lies within the range
−1 < wq < − 1

3 . This parameter is set to be responsible for the cosmological acceleration and the special case of wq = −1
recovers the cosmological constant.

To proceed further with our study, we will consider the case of wq = − 2
3 which corresponds to the black hole spacetime with

the lapse function

B(r) = 1− α− 2M

r
− γr, (3)

located in a matter dominated universe [38]. This spacetime is not asymptotically flat, however, its three-dimensional subspace
has an asymptotic deficit of angle [39]. Such effect is also intensified by the presence of the cloud of strings. Note that, for this
particular choice for the wq , the dimension of γ is m−1.

Let us define the mass function [37, 40]

ρ(r) = M +
αr

2
+
γr2

2
, (4)

that vanishes at r0 =
−α+
√
α2−8Mγ

2γ . This way, the lapse function (3) can be recast as B(r) = 1
r [r − 2ρ(r)]. Hence, at r0 we

have B(r0) = 1, which corresponds to the Minkowski spacetime. On the other hand, the condition ρ(r0) = 0 implies that the
mass parameter can also opt negative values. Based on the fact that α, γ > 0, negative values for ρ(r) correspond to negative
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radial distances. This, however, is not allowed physically, since the geometry of the static black hole has a real singularity at
r = 0.

For a quintessential energy tensor Tµν = (ε, Pr, Pθ, Pφ) with a constituent of cloud of strings, one can confirm that [37]

ε =
2ρ′

8π
= −Pr, (5a)

Pθ = Pr −
ρ′′r + 2ρ′

8πr
= Pφ, (5b)

where primes denote differentiations with respect to the r-coordinate. The above relations hold in the context of general relativity
Gµν = 8πTµν , where Gµν is the Einstein tensor. Hence, the solution (3) can be regarded as a static black hole spacetime
surrounded by cloud of strings, that is located in a universe filled with quintessential dark energy. Note that, for a comoving
time-like observer with a velocity four-vector field uµ = (1, 0, 0, 0), the values in Eq. (5) provide

Tµνu
µuν =

α+ 2γr

8πr2
. (6)

Hence, Tµνuµuν > 0 is guaranteed for all γ > 0 and therefore, we can infer that the weak energy condition (WEC) is respected.
Note that γc → 0 for α→ 1, and γc = 1

8M for α→ 0. The black hole admits the two horizons [41]

r++ =
1− α
γ

cos2

(
1

2
arcsin

(
2
√

2Mγ

1− α

))
, (7)

r+ =
1− α
γ

sin2

(
1

2
arcsin

(
2
√

2Mγ

1− α

))
, (8)

that correspond, respectively, to the (quintessential) cosmological, and the event horizons (note that, these horizons are only valid
for the case of γ 6= 0). This way, the extremal black hole has a unique horizon r+ = r++ = re = 4M

1−α for γ = γc ≡ (1−α)2

8M ,
and a naked singularity is obtained for γ > γc (therefore the static black hole is valid for the range 0 < γ < γc). This black hole
has been studied in Ref. [42], regarding the radial and circular orbits of mass-less and massive particles. This study has been
completed in Ref. [43], by investigating all types of possible orbits for these particles. Furthermore, in Ref. [44], the shadow
and the photon sphere of this black hole has been studied.

To obtain the rotating counterpart of this black hole spacetime, in Ref. [37], a modified version of the Newman-Janis algorithm
[45], proposed by Azreg-Aı̈nou [46] was applied. This algorithm generates the stationary spacetime

ds2 = −∆− a2 sin2 θ

Σ
dt2 +

Σ

∆
dr2 − 2a sin2 θ

(
1− ∆− a2 sin2 θ

Σ

)
dtdφ+ Σdθ2

+ sin2 θ

[
Σ + a2 sin2 θ

(
2− ∆− a2 sin2 θ

Σ

)]
dφ2, (9)

in which a is the black hole’s spin parameter which is directly related to its angular momentum through the relation J = aM ,
and referring to the lapse function (3), we have defined

∆(r) = a2 + r2B(r) = (1− α)r2 + a2 − 2Mr − γr3, (10a)

Σ(r, θ) = r2 + a2 cos2 θ. (10b)

The metric (9) can resemble the Kerr-like form

ds2 = −
(

1− 2ρr

Σ

)
dt2 +

Σ

∆
dr2 − 4ρra sin2 θ

Σ
dtdφ+ Σdθ2 + sin2 θ

(
r2 + a2 +

2ρra2 sin2 θ

Σ

)
dφ2, (11)

by means of the definition (4), according to which, ∆ = r2 + a2 − 2ρr. Unlike the static case, the mass function ρ(r) may
encounter its zero value at r0 as well as becoming negative. As mentioned before, for positive α and γ, this latter corresponds
to negative r. This case has been included in the study of particle geodesics, for example in Refs. [47–50]. Accordingly, since
r = 0 is not a singularity for the spacetime (11), the test particles can enter the negative sub-manifold of the spacetime, by
avoiding the ring singularity. For large negative values of r, this sub-manifold corresponds to a negative universe, where the
black hole possesses a negative mass. In this study, however, we are not concerned about this case and only positive values of r
are taken into account.
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Now the energy tensor components of Eqs. (5) change to [37]

ε =
2ρ′r2

8πΣ2
= −Pr, (12a)

Pθ = Pr −
ρ′′r + 2ρ′

8πΣ
= Pφ. (12b)

Furthermore, for a comoving time-like observer the values in Eq. (12) provide

Tµνu
µuν =

r2(α+ 2γr)

8π (a2 cos2 θ + r2)
2 , (13)

which for all γ > 0 implies Tµνuµuν > 0. Hence, the solution (11) can be regarded as a stationary black hole spacetime
associated with cloud of strings, and located in a universe filled with quintessential dark energy. The rotating black hole defined
in Eq. (11) admits three horizons located at the real roots of the equation ∆(r) = 0, which are

r++ = R∗ + 4

√
χ2

3
cos

(
1

3
arccos

(√
27χ2

3

χ3
2

))
, (14)

r+ = R∗ + 4

√
χ2

3
cos

(
1

3
arccos

(√
27χ2

3

χ3
2

)
+

4π

3

)
, (15)

r− = R∗ + 4

√
χ2

3
cos

(
1

3
arccos

(√
27χ2

3

χ3
2

)
+

2π

3

)
, (16)

denoting, respectively, the (quintessential) cosmological, event and Cauchy horizons, where

χ2 =
3R2
∗

4

(
1− 3γ

4γc

)
, (17a)

χ3 =
a2

16γ
+
R3
∗

8

(
1− 9γ

8γc

)
, (17b)

and

R∗ =
1− α

3γ
=

√
8Mγc
3γ

. (18)

Note that, unlike the static case, the extremal rotating black hole corresponds to γ = γ̄c, where the discriminant of the cubic
∆(r) = 0 vanishes, with

γ̄c =
2

27a4

[√
[4M2 − 3a2(1− α)]

3
+ 9Ma2(1− α)− 8M3

]
, (19)

and hence, γ̄c is only well-defined in the context of the stationary black hole with a 6= 0. For an extremal black hole with γ = γ̄c,
the exterior horizons of the black hole merge, resulting in r+ = r++. The naked singularity then corresponds to γ > γ̄c (this
means that the stationary black hole solution is valid for 0 < γ < γ̄c). One can also obtain the value for the spin parameter that
corresponds to the extremal black hole, which reads

āc =
1

3γ

√
2

3

[
9Mγ(1− α)− (1− α)3 +

√
[(1− α)2 − 6Mγ]

3

] 1
2

, (20)

and is well-defined only for γ 6= 0 (accordingly, the black hole exists for a < āc). Note that, the extremality in this case results
in r− = r+, which will be considered further in this paper as a particular case, in the demonstration of the photon regions.

In Fig. 1, the behavior of the third order polynomial of ∆(r) has been plotted by indicating its three roots. Furthermore, as
it is well-known, the static limits correspond to hypersurfaces at the radii obtained from solving the equation gtt = 0. These
hypersurfaces, together with those formed by the horizons, constitute the ergoregions. Inside the ergoregions, no static observer
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FIG. 1. The behavior of ∆(r) and its zeros, for two values of the spin parameter, corresponding to a slow and a fast rotating black hole.
Different values of γ have been used around the extremal value γ̄c, and we have considered α = 0.2. This way, γ̄c = 0.0807 for a = 0.3, and
γ̄c = 0.0870 for a = 0.85. The unit of length along the axis is taken as M .
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γ = γc + 0.03
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a = 0.3
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FIG. 2. The behaviors of gtt and its real roots, plotted for θ = π
4

and the same parameters as considered for Fig. 1.

can exist and all the observers are in the state of corotation with the black hole. The equation gtt = 0 results in the solutions

rst++
= R∗ + 4

√
χ2

3
cos

(
1

3
arccos

(√
27χ̄2

3

χ3
2

))
, (21)

rst+ = R∗ + 4

√
χ2

3
cos

(
1

3
arccos

(√
27χ̄2

3

χ̄3
2

)
+

4π

3

)
, (22)

rst− = R∗ + 4

√
χ2

3
cos

(
1

3
arccos

(√
27χ̄2

3

χ3
2

)
+

2π

3

)
, (23)

that satisfy the conditions 0 < rst− < r−, and r+ < rst+ < rst++
< r++, where χ̄3 = χ3 − a2 sin2 θ

16γ (so it is verified that
the static limits and the horizons coincide for the case of θ = 0, or as viewed from the axis of symmetry). In Fig. 2, the radial
profiles of gtt have been shown for the same parameters exploited in Fig. 1. In Ref. [37], the ergoregion structure of this black
hole has been discussed, qualitatively, for different values of α and γ, and accordingly, it has been shown that the presence of
the cloud of strings causes the ergoregion to shrink.
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III. THE SPHERICAL PHOTON ORBITS AND THE PHOTON REGIONS

In the case of a 6= 0 there are several spherical light rays around the black hole. Each of them stays on a sphere r = const.1,
with the θ-coordinate varying between two turning points (explicit derivations and discussions on this subject for the case of
Kerr black holes can be found in standard texts such as those in Refs. [5–7]). These spherical light rays exist for radius values
in a certain interval; only the innermost and the outermost ones are circular, and all the other ones are non-planar (see below).
The photon region is the region of all points, through which, such spherical light rays exist. In what follows, we follow the
standard Carter’s equations of geodesic motion for the light rays (obtained from the method of the separation of Hamilton-
Jacobi equations), in order to obtain the aforementioned radii of planar light orbits. Further in this section, the photon regions
are demonstrated and discussed.

We use the Hamilton-Jacobi equation and the Carter’s separation method to determine the geodesic equations in the exterior
geometry of the black hole given by the metric (9). These equations take the first-order differential forms [7, 52]

M
dt

dλ
=
r2 + a2

∆

[
E
(
r2 + a2

)
− aL

]
− a

(
aE sin2 θ − L

)
, (24)

M
dr

dλ
= ±

√
R(r), (25)

M
dθ

dλ
= ±

√
Θ(θ), (26)

M
dφ

dλ
=

a

∆

[
E
(
r2 + a2

)
− aL

]
−
(
aE − L

sin2 θ

)
, (27)

by making use of the dimensionless Mino time, λ, as Σdλ = Mdτ [53], with τ as the trajectory affine parameter. In the above
first order differential equations, E and L are the constants of motion related to the temporal and axisymmetrical symmetries
of the spacetime. Note that, here E cannot be regarded as the conserved energy of the photons because the spacetime is not
asymptotically flat. On the other hand, L is the component of the angular momentum associated with the photons which is
stretched along the axis of symmetry, and Q is the Carter’s constant. Furthermore,

R(r) =
[
E
(
r2 + a2

)
− aL

]2 −∆
[
(aE − L)

2
+ Q

]
, (28a)

Θ(θ) = Q −
(

L2

sin2 θ
− a2E2

)
cos2 θ. (28b)

For convenience, we choose the positive segments of Eqs. (25) and (26), and define the two impact parameters

ξ =
L

E
, (29)

η =
Q

E2
. (30)

Note that, Q has a crucial role in the determination of the particles’ orbits in the sense that trajectories confined to the equatorial
plane (i.e. θ = π

2 ) correspond to Q = 0 (or η = 0), which also constitutes the boundary of the orbits with constant radii that
satisfy Q ≥ 0.

The necessary conditions for unstable photon orbits are characterized by the equations R(r) = 0 = R′(r), which by means
of Eq. (28a) provide [54]

ξp =

(
r2 + a2

)
∆′(r)− 4r∆(r)

a∆′(r)
, (31)

ηp =
r2

a2∆′(r)2

[
8
(
2a2 + r∆′(r)

)
∆(r)− 16∆(r)2 − r2∆′(r)2

]
. (32)

One can define the effective inclination angle [55]

cos i =
L√

L2 + Q
, (33)

1 Note that, the r-constant photonic surfaces, instead of being spherical, are indeed spheroidal. This has been discussed for example in Ref. [51]. On the other
hand, the term spherical orbits refers directly to every single photon orbit with constant radial distance from the black hole, and is commonly used in the
literature.
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given in terms of the two conserved quantities L and Q. Now applying the above definition and by eliminating E from the
Eqs. (31) and (32), we can derive the following octic equation:

p8(x) =

8∑
j=0

mjx
j = 0, (34)

where

m0 = 4u4ν, (35a)

m1 = 8u4ν(1 + α), (35b)

m2 = 4u2ν
[
u2
(
3b+ (1 + α)2

)
− 6
]
, (35c)

m3 = 4u2
[
3bu2ν(1 + α)− 4(1 + 2αν)

]
, (35d)

m4 = 9
(
4 + b2u4ν

)
+ 8u2ν

(
1− α2 − 5b

)
, (35e)

m5 = 8
[
bu2(1− 2αν)− 3(1− α)

]
, (35f)

m6 = 4
[
3b+ (1− α)2 − 6b2u2ν

]
, (35g)

m7 = −4b(1− α), (35h)

m8 = b2, (35i)

given the dimensionless parameters

x =
r

M
, (36a)

u =
a

M
, (36b)

b = γM, (36c)

ν = sin2 i. (36d)

This way, the geometrical parameters of the spacetime can be recast as ∆(x) = (1 − α)x2 + u2 − 2x − bx3 and Σ(x, θ) =
x2 + u2 cos2 θ, and he critical impact parameters become

ξp(x) =

[(
x2 + u2

)
∆′(x)− 4x∆(x)

]
u∆′(x)

, (37)

ηp(x) =
x2

u2∆′(x)2

[
8
(
2u2 + x∆′(x)

)
∆(x)− 16∆(x)2 − x2∆′(x)2

]
. (38)

Accordingly, the solution to the Eq. (34) will be given in terms of x(u, α, b, ν) for which x > 0, 0 ≤ |u| < ūc, 0 ≤ α < 1, 0 ≤
b < b̄c, and 0 ≤ ν ≤ 1, with ūc = āc

M and b̄c = γ̄cM . We continue by studying the planar and polar photon orbits in the
spacetime.

A. Radii of planar and polar orbits in the Kerr limit

The case of planar orbits on the equatorial plane corresponds to Q = 0 (i.e. i = 0, π or ν = 0). When a Kerr black hole is
concerned with (i.e. α = b = 0), the octic equation (34) reduces to the cubic

x3 − 6x2 + 9x− 4u2 = 0. (39)

Clearly, for the case of the Schwarzschild black hole (i.e. u = α = b = 0), the cubic (39) reduces to x − 3 = 0, which gives
the radius of a circular photon orbit (or the photon ring) on the equatorial plane. The general form of Eq. (39) has been solved
in Refs. [5, 7], which based on our notations in Eqs. (36), can be expressed as [21]

xp± = 2

[
1 + cos

(
2

3
arccos (±u)

)]
, (40)
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that puts the retrograde (counter-rotating) photon orbits in the domain 3 ≤ xp+ ≤ 4, and the prograde (corotating) ones in the
domain 1 ≤ xp− ≤ 3.

It is also possible to apply the same method to calculate the radius of polar orbits, for which L = 0 (i.e. i = ±π2 or ν = 1).
This way, we obtain another cubic

x3 − 3x2 + u2x+ u2 = 0, (41)

with the unique solution [21]

xpol = 1 + 2

√
1− u

3
cos

1

3
arccos

 1− u√(
1− u

3

)3
 , (42)

which is valid in the domain 1 ≤ xpol ≤ 3. Photons on these orbits are in the sate of corotation with the black hole as a
consequence of the dragging of their inertial frames.

B. Radii of planar and polar orbits in the general case

For the case of planar orbits, the octic equation (34) reduces to the quintic

p5(x) =

5∑
j=0

m̄jx
j = 0, (43)

where

m̄0 = −4u2 < 0, (44a)
m̄1 = 9 > 0, (44b)

m̄2 = 2
[
bu2 − 3(1− α)

]
, (44c)

m̄3 = 3b+ (1− α)2 > 0, (44d)
m̄4 = −b(1− α) < 0, (44e)

m̄5 =
b2

4
> 0. (44f)

According to the coefficients given in Eqs. (44), the quintic (43) has either three or five sign variations, depending on the sign of
m̄2. Hence, the Descartes’ rule of sign changes implies that

number of positive roots of p5(x) =


0 < u <

√
3
b (1− α), 3, 1, or 0,

u >
√

3
b (1− α), 5, 3, 1, or 0,

(45)

according to whether m̄2 > 0 or m̄2 < 0. According to the celeberated Abel–Ruffini theorem, it is impossible to express exact
solutions to polynomials beyond quartic, in terms of finite radicals. There are, however, several algebraic methods at hand,
that can propose analytical solutions to quintic equations. Among those, the Mellin hypergeometric representation [56] and the
Hermite–Kronecker–Brioschi characterization in terms of elliptic integrals [57–59] can be named. It is common to reduce the
general quintic to its Bring-Jerrard form [60], by means of a Tschirnhausen transformation. The solutions to the quintic can
be then given in terms of generalized hypergeometric functions and finally, in the form of Bring radicals. Applying a proper
Tschirnhausen transformation, reduces the quintic (43) into the Bring-Jerrard form (see appendix A)

p5BJ
(t) = t5 − t +K = 0, (46)
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where K = d5f
5 and f = d

− 1
4

4 (see Eqs. (A13d) and (A13e) in appendix A, for the definitions of d4 and d5, and also the further
derivations therein). The simplified Bring-Jerrard quintic (46) has the five solutions [61]

t1 = KF1(K), (47)

t2 = −F1(K)− 1

4
KF2(K) +

5

32
K2F3(K)− 5

32
K3F4(K), (48)

t3 = −F1(K)− 1

4
KF2(K)− 5

32
K2F3(K)− 5

32
K3F4(K), (49)

t4 = −iF1(K)− 1

4
KF2(K)− 5

32
iK2F3(K) +

5

32
K3F4(K), (50)

t5 = −iF1(K)− 1

4
KF2(K) +

5

32
iK2F3(K) +

5

32
K3F4(K), (51)

where i =
√
−1, and we have used the definitions [62]

F1(K) = F2(K), (52a)

F2(K) = 4F3

({
1

5
,

2

5
,

3

5
,

4

5

}
;

{
1

2
,

3

4
,

5

4

}
;

3125

256
K4

)
, (52b)

F3(K) = 4F3

({
9

20
,

13

20
,

17

20
,

21

20

}
;

{
3

4
,

5

4
,

3

2

}
;

3125

256
K4

)
, (52c)

F4(K) = 4F3

({
7

10
,

9

10
,

11

10
,

13

10

}
;

{
5

4
,

3

2
,

7

4

}
;

3125

256
K4

)
, (52d)

(52e)

with

kFk−1

({
1

k + 1
, · · · , k

k + 1

}
;

{
2

k
,

3

k
, · · · , k − 1

k
,
k + 1

k

}
;Dk

[
s
(
1− sk

)]k)
(53)

for k = 2, 3, · · · and 0 ≤ s ≤ (k + 1)−
1
k , as the generalized hypergeometric function, in which we have defined Dk =

k−k(k + 1)k+1. In particular,

4F3 ({β1, β2, β3, β4}; {ζ1, ζ2, ζ3}; s) =
∑
k≥0

(β1)k(β2)k(β3)k(β4)k
k!(ζ1)k(ζ2)k(ζ3)k

sk, (54)

with

(βj)k =
Γ(βj + k)

Γ(βj)
, (55)

where Γ(s) is the gamma function. Note that, the solutions (47)–(51) are merely analytical and their nature is only revealed by
observing their numerical values. On the other hand, in order to obtain the relevant values of x in the context of the original
quintic (43), we need to go though a quartic and a quadratic equation. Pursuing this, one obtains eight sets of the solutions in the
form of xjil with j = 1, 5, i = 1, 4 and l = 1, 2 (see appendix B and in particular, Eq. (B14)). In Table I, a variety of values for
the black hole parameters have been taken into account together with their corresponding value of K in the Bring-Jerrard form
(46). Note that, the quintic provides, at least, a real value and a complex conjugate pair for t, in accordance with Eqs. (47)–(51).
The rest of the roots can be either two distinct real values or another complex conjugate pair. These roots have been calculated
by means of the aforementioned equations and have been put in their appropriate positions within Table I.

On the other hand, one can directly solve, numerically, the quintic (43) for definite values of the black hole parameters. This
way, one finds that there are three real and two complex conjugate solutions for the quintic. This is indeed expected, since the
condition m̄2 > 0 is always satisfied for the chosen values of α and b given in Table I. Hence according to Eq. (45), the quintic
can possess, at most, three positive roots. The behavior of these solutions (termed as xp) with respect to the changes in the spin
parameter u, have been plotted in Fig. 3 for two definite values of b. As it is observed in the diagrams, the solutions are simply
connected by passing definite extremal cases, where the black hole characteristic hypersurfaces unite.

Note that, since the polar orbits correspond to i = π
2 (or ν = 1), the octic (34) does not reduce. There is, however, another

way of obtaining these radii, which passes through the definition of the impact parameter ξp. In fact, since ξp corresponds to the
angular momentum of the photons around the φ-axis, a vanishing ξp means that the photon trajectories do not have any changes
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u α b K t

10−1 10−2 −0.4057 −0.8504,−0.4186, 1.0828, 0.0931± 1.0220i
2× 10−1 10−2 0.0378 −1.009, 0.0378, 0.9903,−0.0094± 1.0002i

0.85 10−2 10−4 −0.5971 1.1133,−0.6838± 0.1417i, 0.1272± 1.0410i
10−4 10−6 −0.6470 1.1207,−0.6954± 0.1877i, 0.1351± 1.0460i
10−6 10−8 4.3165 −1.418,−0.351± 1.326i, 1.060± 0.7033i
10−1 10−2 0.3999 0.4117, 0.85394,−1.082,−0.0919± 1.021i

1 10−2 10−4 0.2499 0.9242, 0.2509,−1.055,−0.06026± 1.009i
10−6 10−8 −0.3872 0.0000,−0.5578± 0.5578i, 0.5578± 0.5578i
10−1 10−2 0.0653 −1.016, 0.0653, 0.9830,−0.01628± 1.001i

ūc 10−4 10−6 0.1948 −1.044, 0.1951, 0.94383,−0.04762± 1.006i
10−6 10−8 0.5652 −1.108,−0.1219± 1.038i, 0.6762± 0.0996i

ūc + 0.2 10−1 10−2 0.0820 −1.02, 0.0820, 0.97836,−0.02041± 1.001i

TABLE I. The values of the constantK obtained from the method pursued in appendix A, given for specific cases of the black hole parameters.
Their corresponding solutions to the t-parameter in the Bring-Jerrard form (46), have been then calculated by means of Eqs. (47)–(51).
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x-
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xe
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FIG. 3. The behaviors of xp for α = 0.2 and two values for the quintessential parameter b, with respect to the changes in u, where x+, x−
and xe, correspond respectively to the dimensionless radii of the event, Cauchy, and the extremal black hole horizons. The latter is obtained
for u = ūc. In the diagrams, the radius of prograde (retrograde) photon orbits has been indicated by xp− (xp+ ), and xpint is the interior radius
of photon orbits. Furthermore, xp0 is where the solutions xp± connect to each other, and corresponds to u = 0. This radius corresponds to the
circular photon orbit (ring) for a quintessential Schwarzschild black hole associated with cloud of strings. Note that, since the corresponding
values of the cosmological horizons are too large, they are not shown in the figures.

in their φ-coordinate; hence, they are completely polar. Applying the expression in Eq. (37), we can observe that ξp(x) = 0 is
an equation of fourth order, reading as

p4(x) =

4∑
j=0

¯̄mjx
j = 0, (56)

in which

¯̄m0 = −2u2, (57a)
¯̄m1 = 2(1− α)u2 − 4u2, (57b)
¯̄m2 = 6− 3bu2, (57c)
¯̄m3 = −2(1− α), (57d)
¯̄m4 = b. (57e)
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The above quartic has the solutions (see appendix B)

xj = x̄j −
¯̄m3

4
, (58)

in which

x̄1 = Ā +
√

Ā2 − B̄, (59)

x̄2 = Ā−
√

Ā2 − B̄, (60)

x̄3 = −Ā +
√

Ā2 − C̄, (61)

x̄4 = −Ā−
√

Ā2 − C̄, (62)

where

Ā =

√
Ū− A

6
, (63a)

B̄ = 2Ā2 +
A

2
+

B

4Ā
, (63b)

C̄ = 2Ā2 +
A

2
− B

4Ā
, (63c)

with

A = ¯̄m2 −
3 ¯̄m2

3

8
, (64a)

B = ¯̄m1 +
¯̄m3

3

8
−

¯̄m2 ¯̄m3

2
, (64b)

C = ¯̄m0 +
¯̄m2 ¯̄m2

3

16
− 3 ¯̄m4

3

256
−

¯̄m1 ¯̄m3

4
, (64c)

and

Ū =

√
ϕ2

3
cosh

(
1

3
arccosh

(
3ϕ3

√
3

ϕ3
2

))
, (65)

where

ϕ2 =
A2

12
+ C, (66a)

ϕ3 =
A3

216
− AC

6
+

B2

16
. (66b)

The values of xj in Eq. (58), are therefore, the radii of the polar spherical orbits around the black hole. Note that, the solutions
xj adopt one negative and three positive real values. To facilitate the comparison with the other radii in what follows in this
study, we choose the particular positive value that is comparable to the radial size of the event horizon.

C. Photon regions

As we mentioned, the planar circular orbits that correspond to the case of Q = 0 and θ = π
2 , are on the equatorial plane.

The generic existence of the spherical photon orbits, however, can be determined for Q > 0 which results in 0 < i < π
2 (or

0 < ν < 1). This means that the θ-coordinate also oscillates between these two angles. In fact, applying the condition Θ(θ) ≥ 0
to Eq. (28b), and exploiting the critical values for ξp and ηp given in Eqs. (31) and (32), result in the inequality

[4x∆(x)−∆′(x)Σ(x, θ)]
2 ≤ 16u2x2∆(x) sin2 θ. (67)

Now considering the Kerr-Schild coordinates

X =
√
x2 + u2 sin θ cosφ, (68a)

Y =
√
x2 + u2 sin θ sinφ, (68b)

Z = x cos θ. (68c)
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FIG. 4. Examples of photon regions plotted in the Kerr-Schild coordinates in the polar plane X-Z, for α = 0.2. The diagrams correspond
to two values b = 0.01, 0.075, and for each of the cases of b, they demonstrate two cases of sub-extremal black holes with u = 0.95, 1,
extremal black holes with u = ūc, and super-extremal cases with u = ūc + 0.2. From smaller to larger, the dashed blue curves indicate
respectively xpint , xp− , and xp+ . Same holds for the red dashed ones that indicate x− and x+, with their separation filled with light color.
Furthermore, the white dashed curve is the radius of polar orbits. The photon region which has entered the domain 0 < x < x−, in the
extremal cases, corresponds to the causality violation. The green regions correspond to the interior and exterior ergoregions. Finally, the black
circles ◦ indicate the cross-section of the ring singularity which is located on the equatorial plane, at Z = 0 andX = u. For the super-extremal
cases (naked singularities), the horizons disappear and the photon regions are connected directly to the ring singularity, although they do not
fill the entire exterior regions. In this case, there is only one radius for the spherical orbits, which is xp+ . However, since these regions do
not connect on the axis of symmetry, Z, the shadow contour of the naked singularity suffers from disconnections. In this sense, the more the
photon regions recede from the Z-axis, the more these disconnections can be observable (see Ref. [63] for a rigorous discussion on the shadow
of naked singularities). Furthermore, note that the unsmooth behavior of rst+ for the cases of b = 0.075, can be expected from the unsmooth
behavior of characteristic hypersurfaces for this value of b, as seen in Fig. 3 .

In the X-Z plane, which is of our interest in this subsection, we let φ = 0, and therefore, Y = 0. In Fig. 4, we have applied
the condition (67) to demonstrate the photon regions (filled by photons on unstable spherical orbits), in the polar plane X-Z,
for the same values of b as used in Fig. 3. For each case, we have used the static limit radii given in Eqs. (22) and (23), to
demonstrate the respected shape of the ergoregions. The plots correspond to the sub-extremal and extremal black holes, as well
as the super-extremal cases (naked singularities), and only the exterior photon orbits have been taken into account.

IV. ANALYTICAL SOLUTIONS FOR THE SPHERICAL PHOTON ORBITS

It is often convenient to re-scale Eλ→ λ. This is basically equivalent to letting E = 1, which is considered to be the case for
our further studies.

As it is inferred from Eq. (28b), photon orbits are, in general, allowed for η ≥ 0. This of course includes spherical photon
orbits. Below, we calculate the analytical solutions for the polar and azimuth angles that correspond to the spherical orbits.

A. The latitudinal motion

In fact, one can recast Eq. (28b) as [64]

Θ(θ) = u2 cos2 θ
[(

1−
√
W(θ)

)(
1 +

√
W(θ)

)]
, (69)



13

2 3 4 5 6
x

-20

0

20

40

60

ηp

max

t
ξp

xp-

xp+

xpmaxxpol

FIG. 5. The behaviors of ηp(x), ξp(x), Zmax and Zt, plotted for u = 0.85, α = 0.2 and b = 0.01.

where

W(θ) =
1

u2

[
η

cos2 θ
− ξ2

sin2 θ

]
, (70)

is the angular gravitational potential. Accordingly and from Eq. (26), one can write the differential equation for the θ-motion as

− dZ
dλ

=
√

ΘZ , (71)

where we have defined Z = cos θ, and therefore

ΘZ = η − χ0Z2 − u2Z4. (72)

where χ0 = η + ξ2 − u2. Naturally, for the planar orbits with ηp = 0, the trajectories remain on the equatorial plane.

1. Properties of the planar orbits

As mentioned above, the planar orbits that correspond to i = 0, are indeed circles on the equatorial plane. In general, the
impact parameter ηp is confined between its values at the two radii of planar orbits, xp− and xp+ (where it vanishes). As it can
be seen in Fig. 5, the ηp parameter increases monotonically from the point xp− and reaches its maximum at

xpmax
=

1− α−
√
α2 − 2α− 6b+ 1

b
. (73)

As before, the above value is well-defined only for b 6= 0. For the case of a Kerr black hole (i.e. α = β = 0), the equation
η′p(x) = 0 results in xpmax

= 3 (which is indeed that of the Schwarzschild black hole). After this point, ηp decreases monotoni-
cally until it reaches its second zero at xp+ . At the point xpol, the impact parameter ξp switches from positive values to negative
values. At this point, the angular momentum of the photons is zero (i.e., orbits are along the axis of symmetry and i = π

2 ). Note
that, there is a relation between ξp and the maximum latitude Zmax reachable by the photons, which is the angular value where
ΘZ = 0. This equation gives the two values

Z2
max =

χ0

2u2

(√
1 +

4u2η

χ2
0

− 1

)
, (74a)

Zmin = −Zmax, (74b)

that confine the Z-parameter. This way, the θ-parameter oscillates in the domain θ ∈ [θmin, θmax], where θmin = arccos(Zmax)
and θmax = arccos(Zmin). So, letting η = ηp(x), we can plot the radial profile of Zmax, and compare it with the behavior of
ξp (see Fig. 5). Note that, the φ-coordinate changes its sign during each orbit. This sign change can be determined by mean of
the equation of motion (27). However, to determine the sign change of the φ-coordinate in terms of the latitudinal evolution,
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one can solve the equation φ̇ = 0 for Z , which gives the latitudinal turning points of the azimuth angle. After doing the proper
substitutions, this equation provides the value

Zt =
x2
[
bx2 + 2(α− 1)x+ 6

]
u2 [3bx2 + 2(α+ 1)x+ 2]

, (75)

whose radial profile has been shown in Fig. 5. As it is observed from the figure, the physically reliable segments are where
|Zt| < |Zmax|. According to the figure, this inequality holds when xpol < x < xpmax

, corresponding to ξpm < ξp < 0, where

ξpm ≡ ξp(xpmax
) =

u
[
(2− α)

(
α+

√
(1− α)2 − 6b− 1

)
+ 4b

]
(1− α)

(
α+

√
(1− α)2 − 6b− 1

)
+ 4b

. (76)

Such orbits, therefore, do not move in a fixed azimuth direction. We continue by considering the more general cases.

2. The case of η > 0 (non-planar orbits)

The equation of motion (71) can be integrated directly to provide the analytical solution for the evolution of the θ-coordinate.
This yields

θ(λ) = arccos

(
Zmax −

3

12℘ (κ0λ) + ψ0

)
, (77)

in which ℘(. . . ; g2, g3) ≡ ℘(. . . ) is the Weierstraßian ℘ function, with the invariants g2 and g3. In Eq. (77), we have defined

κ0 = u
√

2Zmax (Z2
0 + Z2

max), (78a)

ψ0 =
Z2

0 + 5Z2
max

2Zmax (Z2
0 + Z2

max)
, (78b)

with

Z2
0 =

χ0

2u2

(√
1 +

4u2η

χ2
0

+ 1

)
, (79)

and

g2 =
Z4

0 + Z4
max − 14Z2

0Z2
max

48Z2
max (Z2

0 + Z2
max)

2 , (80a)

g3 =
33Z4

0Z2
max − 33Z2

0Z4
max + Z6

0 − z6
max

1728Z3
max (Z2

0 + Z2
max)

3 . (80b)

As an example, in Fig. 6, the profile ofW(θ) together with the corresponding evolution of the θ-coordinate, have been plotted
for specific values of the black hole parameters and the inclination, which lead to the two real values xp = xp1,2 from Eq. (34).

3. Period of the latitudinal motion

As it can be observed from the latitudinal motion in Fig. 6, the temporal evolution of the θ-coordinate includes points, at
which, the periodic (wave-like) motion passes the θ = π

2 line. These points are the so-called nodes, and for each full oscillation
of the function, there are two of them. In fact, by applying Eq. (77), the Mino time for the nodes can be obtained as

λnod =
1

κ0
ß

(
1

4Zmax
− ψ0

12

)
, (81)

where ß(· · · ) ≡ ℘−1(· · · ; g2, g3). On the other hand, as it can also be inferred from the figures, the period of the oscillations
of the polar angle θ differs between the prograde and the retrograde orbits. In fact, by applying Eq. (71), it is straightforward to
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FIG. 6. The profile ofW(θ) and the behavior of θ(λ) plotted for the spherical photon orbits with the inclination angle i = 30◦ (or ν = 1
4

).
The octic (34) has been solved numerically for u = 0.85, α = 0.2 and b = 0.01, leading to the two real radii (a) xp1 = 2.536 (prograde) and
(b) xp2 = 4.610 (retrograde), that correspond respectively to ξp1 = 4.367, ηp1 = 6.358 and ξp2 = −8.601, ηp2 = 24.659. Where the orbits
pass the θ = π

2
plane, nodes will appear in the way of the spherical orbits. It is also evident the that period of the latitudinal oscillations for

the prograde orbits is larger compared to that for the retrograde ones.

calculate the period of the latitudinal oscillations for the cycle θmin → θmax → θmin (or Zmax → Zmin → Zmax). Using the
definition in Eq. (72), the general relation for this period is obtained as

Tλ =
2πZmax√
ηp(x)

, (82)

for oscillations aroundZ = 0. For the particular cases of Fig. 6, it is found that Tλ1 = 1.259 for prograde orbits, and Tλ2 = 0.634
for retrograde ones.

B. The azimuth motion

The evolution of the azimuth angle in Eq. (27), can be recast as

φ(λ) = C̄p(x)Φθ1(λ) + Φθ2(λ), (83)

for the spherical photon orbits, in which

C̄p(x) =
u

∆(x)

[(
x2 + u2

)
− uξp(x)−∆(x)

]
, (84a)

Φθ1(λ) =

∫ θ(λ) dθ√
Θ(θ)

, (84b)

Φθ2(λ) = ξp

∫ θ(λ) dθ

sin2 θ
√

Θ(θ)
. (84c)
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At any fixed radius of spherical orbits, we have C̄p(x) → C̄p(xp). The integral (84b) can be inferred directly from Eq. (77),
yielding

Φθ1(λ) =
ß
(
Uθ + 1

4ψ0

)
κ0

, (85)

with κ0 and ψ0 given in Eqs. (78a) and (78b), and

Uθ =
1

4 (Zmax − cos θ)
− ψ0

3
, (86)

where Zmax is given in Eq. (74a). Applying the same analytical methods, we get

Φθ(λ) = K0 [K1F1(Uθ)−K2F2(Uθ)− κ0λ] , (87)

where

Fj(Uθ) =
1

℘′(υj)

[
ln

(
σ (ß(Uθ)− υj)
σ (ß(Uθ) + υj)

)
+ 2ß(Uθ)ζ(υj)

]
, j = 1, 2, (88)

in which ℘′(υ) ≡ d
dυ℘(υ; g2, g3), and the Weierstraß invariants g2,3 are the same as those in Eqs. (80). Here, σ(· · · ) and ζ(· · · )

are, respectively, the Weierstraßian Sigma and Zeta functions, with the same invariants [65]. Furthermore,

υ1 = ß

(
−ψ0

12
− 1

4|1−Zmax|

)
, (89a)

υ2 = ß

(
−ψ0

12
+

1

4|1 + Zmax|

)
. (89b)

In Eq. (87), we have defined

K0 =
ξ2
p

u(1−Zmax)(1 + Zmax)
√

2Zmax (Z2
max + Z2

0 )
, (90a)

K1 =
1 + Zmax

8(1−Zmax)
, (90b)

K2 =
1−Zmax

8(1 + Zmax)
. (90c)

For the sake of convenience in the simulation of the orbits, we let φ(θmin) = 0 as the initial condition. It is then necessary to
interpolate θ → θ(λ) in the expression of Uθ in Eq. (86).

V. EXPLICIT EXAMPLES OF ORBITS

In this section, we apply the exact analytical solutions for the θ(λ) and φ(λ), to simulate some specific examples of the
spherical orbits in the spacetime. The trajectories that are presented in this section are each based on specific initial conditions,
and the solutions are then evolved in order to generate the desired trajectories. First of all, in Fig. 7, the spherical orbits
corresponding to the radii dealt with in Fig. 6, have been plotted. The plots have been done in the Kerr-Schild coordinates (68).
Furthermore, in Fig. 8, the data given in Table II have been used to simulate several spherical orbits on fast and extremal black
holes, as well as on the naked singularity. The radii included in this tables have been obtained by solving, numerically, the octic
(34), for different initial data for the black hole. It is evident that some of the orbits exhibit profound instability. It is therefore
worth studying the stability of the orbits.

A. Stability of the orbits

In fact, condition R(x) = R′(x) = 0, with

R(x) =
[
(x2 + u2)− uξ

]2 −∆(x)
[
(u− ξ)2 − η

]
, (91)
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u α b i◦ xp (ξp, ηp) case

10−1 10−2 17 1.918 (7.444, 58.885) (s1)
10−2 10−4 30 1.939 (7.307, 55.226) (s2)

0.85 10−4 10−6 60 1.952 (7.224, 53.066) (s3)
10−6 10−8 89 1.956 (7.198, 52.397) (s4)
10−1 10−2 90 2.985 (0, 36.308): polar orbit (s5)
10−1 10−2 30 1.751 (8.878,101.566) (f1)

1 10−2 10−4 45 1.754 (8.840, 100.339) (f2)
10−6 10−8 75 1.757 (8.811, 99.391) (f3)
10−1 10−2 30 1.281 (9.092× 101, 1.917× 104) (e1)

ūc 10−4 10−6 45 1.302 (10.835× 101, 2.625× 104) (e2)
10−6 10−8 85 1.339 (41.842, 3.684× 103) (e3)

ūc + 0.2 10−1 10−2 60 1.323 (55.661, 6.684× 103) (se)

TABLE II. Some examples for the values of xp together with their corresponding pair (ξp, ηp), given for a variety of characteristic parameters
for the black hole, as well as different inclinations. Each case has been indicated by a letter with a numerical subscript, which will be referred
to in the simulations of the orbits. The examples contain sub-extremal, extremal and super-extremal cases.

FIG. 7. The spherical photon orbits on the radii xp1 and xp2 (from left to right), whose profiles of the polar angle have been depicted in Fig. 6.
The smooth interior black surface is the closure of the points which are swept by xp, and is cut into half by a yellow circle which indicates the
θ = π

2
plane. By doing a comparison with the profiles of the θ-coordinate in the cases (a) and (b) of Fig. 6, one can confirm that the limits

of the latitudinal oscillations in the orbits are the same as those given in the profiles. On the other hand, as expected from the θ-profiles, the
period of oscillations of the prograde orbits (left) are larger than those of the retrograde ones (right), as it can also be inferred by comparing
the rapidity of the changes between the maximum and minimum latitudes in the above orbits.

can be regarded as the instability condition against radial perturbations for the photon orbits, once it is accompanied by the extra
condition R′′(x) < 0, that indicates the existence of a maximum in the radial effective potential. In this sense, the orbits become
marginally stable when R(x) = R′(x) = R′′(x) = 0. On the other hand, this situation can be recovered at xpmax

in Eq. (73),
where the extremum of ηp(x) occurs. However, regarding the stability of the orbits in terms of the spin parameter, one can solve
the equation η′p(x) = 0 for u, that yields

ustab =

√√√√x
[
3b2x4 − 6(1− α)bx3 + 4x2

(
b+ (1− α)2

)
− 12(1− α)x+ 12

]
4− 6bx2

. (92)
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(s1) (s2) (s3)

(s4) (s5) (s5) top view

(f1) (f2) (f3)

(e1) (e2) (e3)

(se) front view (se) top view

FIG. 8. Some examples of the spherical photon orbits, for the particular categories of Table II.

Furthermore, as discussed in subsection IV A 1, the circular orbits occur when ηp = 0. This condition results in the spin
parameter

uco = ±
√
x
[
bx2 + 2(α− 1)x+ 6

]
√

16− 8bx2
. (93)
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FIG. 9. The radial profiles of the spin parameter for the circular, polar and marginally stable orbits, in accordance with the case (s1) in Table
II.

Finally, the polar orbits (where ξp = 0) correspond to

upol =
x
√
bx2 − 2(1− α)x+ 6√

3bx2 + 2(1 + α)x+ 2
. (94)

For the case of Kerr black holes, the above values reduce correctly to ustab =
√

(x− 1)3 + 1, uco = ±
√
x

2 (3 − x), and

xpol = x
√

3−x
x+1 . The behaviors of the spin parameters in Eqs. (92)–(94) have been plotted in Fig. 9, for the special case of (s1)

in Table II. Accordingly, and by inspecting the conditions discussed above, it turns out that only the cases (f2) and (f3) among
all of the explicit categories in Fig. 8, are marginally stable, regarding their radii of the orbits in the context of the considered
spin parameter. The others are indeed unstable, and hence, they either fall onto the event horizon, or escape from the black hole
and contribute in the formation of the photon ring and the shadow.

The discussion that has been made so far, covers some important concepts of the spherical photon orbits on a stationary black
hole, and for our specif case of study, we have provided various analytical and numerical results. We therefore leave our study
at this point, and summarize our results in the next section.

VI. SUMMARY AND CONCLUSION

There is no doubt that the astrophysical objects become observable due to the electromagnetic radiations (photons) that we
receive from them. Black holes in particular, are not observable by their own and their strong gravitational lensig, which make
them observable, becomes noticeable whenever they pass a luminous background. In this sense, they can even trap photons
in their exterior geometry and force them to make orbits of constant radius. In this study, we aimed at the scrutinization of
such orbits on a rotating black hole which is associated with a particular type of quintessence and cloud of strings. Under
certain circumstances, the orbits become unstable, tending to either fall onto the event horizon or escaping from the black hole.
Imposing these conditions, we obtained an octic equation that governed the general radii of spherical photon orbits. Solving the
octic requires rather peculiar treatments and is left to a future study. Instead, we focused on the determination of the radii of
planar orbits, by reducing the aforementioned octic to a quintic. Applying a series of reductions (as explained in the appendices),
we reduced the quintic to its Bring-Jerrard form which has known analytical solutions in terms of the generalized hypergeometric
functions. We then presented some numerical examples for the included characteristic constant K in this reduced quintic. The
determination of the polar orbits was then done by means of solving a quartic equation. Furthermore, considering definite initial
conditions for the black hole, we demonstrated the profile of these radii versus changes in the spin parameter for two distinct
values for the quintessential parameter b. We observed that by the raise in b, the radius of retrograde photon orbits come closer
to that of the polar orbits. The existence of polar orbits is only an artifact of the frame-dragging caused by the rotation of the
black hole, as it also generates a photon region occupied with photon orbits with non-zero inclinations. Hence, the impact of
the quintessence becomes apparent in hampering the external growth of this region, and as a result, the photon region becomes
narrower by the raise in b. This is also conceivable in the demonstration of the photon regions that we did in Fig. 4. In this part,
we also indicated the peculiar behavior of the ergoregions for the larger quintessence. We then switched to the derivation of
analytical solutions for the evolution of the polar and azimuth angles. The corresponding integrals are of elliptic nature, so that
we could express their solutions in terms of the three main Weierstraßian elliptic functions. For the case of latitudinal motion,
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we observed that the prograde and retrograde orbits show different oscillation periods. This was also inferred from the analytic
expression for the periods of latitudinal motion and the simulation of the spherical orbits performed for a particular example.
Considering a variety of initial values for the black hole parameters, and by the help of the analytical solutions we had at hand,
we exemplified numerous spherical orbits for sub-extremal, extremal and super-extremal cases. Moreover, we highlighted that,
although we had applied the necessary conditions for the presence of instability in the orbits, an extra condition must also be
satisfied as the sufficient condition. Taking this into account, we performed an analytical study on the stability of the orbits. It
turned out that among the presented examples, only two cases were marginally stable and all the others were unstable. As it
is well-known, such unstable orbits are of crucial importance in astrophysical observations of black holes, because they carry
information from the near-horizon regions to the distant observers. For a future study, we have in mind the analytical study of
photon trajectories in all of their possible forms. This, potentially, is an interesting subject of investigation, since it makes it
possible to perform a more rigorous assessment of the strong gravitational lensing for the black hole, when the cosmological
parameters are present.
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Appendix A: Reduction of the quintic to the Bring-Jerrard form

Let us first recast the quintic (43) as

x5 + a1x
4 + a2x

3 + a3x
2 + a4x+ a5 = 0, (A1)

by defining aj = m̄−1
5 m̄5−j . We now proceed with transforming Eq. (A1) to the principal quintic form that is missing the x4

and x3 terms, by means of the quadratic Tschirnhausen transformation

y = x2 + b1x+ b2. (A2)

Applying a simple code in the software Mathematica, we can eliminate x between Eqs. (A1) and (A2), which results in

y5 + c1y
4 + c2y

3 + c3y
2 + c4y + c5 = 0, (A3)

where

c1 = a1b1 − a2
1 + 2a2 − 5b2, (A4a)

c2 = 4a2
1b2 − a2a1b1 − 4a1b1b2 + a2b

2
1 + 3a3b1 − 8a2b2 − 2a3a1 + a2

2 + 2a4 + 10b22, (A4b)

c3 = a3b
3
1 − a1a3b

2
1 + 4a4b

2
1 − 3a2b2b

2
1 + 6a1b

2
2b1 + a2a3b1 − 3a1a4b1 + 5a5b1 + 3a1a2b2b1 − 9a3b2b1

− 6a2
1b

2
2 + 12a2b

2
2 − 3a2

2b2 + 6a1a3b2 − 6a4b2 − a2
3 + 2a2a4 − 2a1a5 − 10b32, (A4c)

c4 = a4b
4
1 − a1a4b

3
1 + 5a5b

3
1 − 2a3b2b

3
1 + 3a2b

2
2b

2
1 + a2a4b

2
1 − 4a1a5b

2
1 + 2a1a3b2b

2
1 − 8a4b2b

2
1 − 4a1b

3
2b1

− 3a1a2b
2
2b1 + 9a3b

2
2b1 − a3a4b1 + 3a2a5b1 − 2a2a3b2b1 + 6a1a4b2b1 − 10a5b2b1

+ 4a2
1b

3
2 − 8a2b

3
2 + 3a2

2b
2
2 − 6a1a3b

2
2 + 6a4b

2
2 + 2a2

3b2 − 4a2a4b2 + 4a1a5b2 + a2
4 − 2a3a5 + 5b42, (A4d)

c5 = a5b
5
1 − a1a5b

4
1 + a2a5b

3
1 − a3a5b

2
1 + a4a5b1 − a2

5. (A4e)

The two unknowns b1,2 allow for the elimination of c1,2. In fact, one can see that the equations c1 = c2 = 0 result in two
quadratics, solving which, provide the values

b1 =
4a3

1 − 13a2a1 ±
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

4a2
1 − 10a2

, (A5)

b2 =
5a2a

2
1 +

(
15a3 ±

√
5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4

)
a1 − 20a2

2

20a2
1 − 50a2

. (A6)

Applying these values in the coefficients in Eq. (A4), the quintic (A3) reduces to the principal form

y5 + uy2 + vy + w = 0, (A7)
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in which

u =
1

40 (2a2
1 − 5a2)

3

[
−90
√

5a1

√
8a3a3

1 + (16a4 − 3a2
2) a2

1 − 38a2a3a1 + 12a3
2 + 45a2

3 − 40a2a4a
4
2

+48
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4a1

(
2a2

1 − 5a2

)
a3

2

+1350
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4a3a

3
2

−6
√

5a1

(
2a2

1 − 5a2

)2√
8a3a3

1 + (16a4 − 3a2
2) a2

1 − 38a2a3a1 + 12a3
2 + 45a2

3 − 40a2a4a
2
2

+320
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4

(
5a2 − 2a2

1

)
a3a

2
2

−2700
√

5a1a
2
3

√
8a3a3

1 + (16a4 − 3a2
2) a2

1 − 38a2a3a1 + 12a3
2 + 45a2

3 − 40a2a4a2

−46
√

5
(
2a2

1 − 5a2

)2
a3

√
8a3a3

1 + (16a4 − 3a2
2) a2

1 − 38a2a3a1 + 12a3
2 + 45a2

3 − 40a2a4a2

+280
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4a1

(
5a2 − 2a2

1

)
a4a2

+4500
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4a

3
3

+520
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4a1

(
2a2

1 − 5a2

)
a2

3

+8
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4

(
2a2

1 − 5a2

)3
a3

+675
(
a6

2 − 8a1a3a
4
2 + 60a2

3a
3
2 − 80a1a

3
3a2 + 100a4

3

)
+ 40a2

1

(
2a2

1 − 5a2

)3
a4

+92
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4a1

(
2a2

1 − 5a2

)2
a4

+1400
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4

(
2a2

1 − 5a2

)
a3a4

+5
(
2a2

1 − 5a2

)3 (
a3

2 − 26a4a2 + 44a2
3

)
+ 135

(
2a2

1 − 5a2

) (
−3a5

2 + 20 (a1a3 + a4) a3
2 − 70a2

3a
2
2

−80a1a3a4a2 + 40a2
3 (2a1a3 + 5a4)

)
+100

√
5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4

(
2a2

1 − 5a2

)2
a5

−20a1

(
2a2

1 − 5a2

)3
(a2a3 − 6a5) + 5

(
2a2

1 − 5a2

)2 (
9a4

2 − 6 (8a1a3 + 33a4) a2
2

−2
(
137a2

3 + 30a1a5

)
a2 + 4

(
80a2

4 + 137a1a3a4 + 75a3a5

)) ]
, (A8)

v =
a4

(
4a3

1 − 13a2a1 +
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)4

(4a2
1 − 10a2)

4

+
5a5

(
4a3

1 − 13a2a1 +
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)3

(4a2
1 − 10a2)

3

−
a1a4

(
4a3

1 − 13a2a1 +
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)3

(4a2
1 − 10a2)

3

+
a2a4

(
4a3

1 − 13a2a1 +
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)2

(4a2
1 − 10a2)

2

−
a1a5

(
4a3

1 − 13a2a1 +
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)2

(2a2
1 − 5a2)

2

+
3a2a5

(
4a3

1 − 13a2a1 +
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)
4a2

1 − 10a2
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−
a3a4

(
4a3

1 − 13a2a1 +
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)
4a2

1 − 10a2

+
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(
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(√
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√
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√
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√
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+
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3 − 40a2a4 + 15a3

)

×
(

5a2a
2
1 +

(√
5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)
a1 − 20a2

2

)2
]

+
3a2

400 (2a2
1 − 5a2)

4

[(
4a3

1 − 13a2a1 +
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)2

×
(

5a2a
2
1 +

(√
5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)
a1 − 20a2

2

)2
]

+
4a2

1

(
5a2a

2
1 +

(√
5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)
a1 − 20a2

2

)3

(20a2
1 − 50a2)

3
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−
8a2

(
5a2a

2
1 +

(√
5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)
a1 − 20a2

2

)3

(20a2
1 − 50a2)

3

− a1

500 (2a2
1 − 5a2)

4

[(
4a3

1 − 13a2a1 +
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)

×
(

5a2a
2
1 +

(√
5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)
a1 − 20a2

2

)3
]

+
5
(

5a2a
2
1 +

(√
5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)
a1 − 20a2

2

)4

(20a2
1 − 50a2)

4

+
3a2

(
4a3

1 − 13a2a1 +
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)
a5

4a2
1 − 10a2

− 2a3a5

−
a1

(
4a3

1 − 13a2a1 +
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)2

a5

(2a2
1 − 5a2)

2

+
5
(

4a3
1 − 13a2a1 +

√
5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)3

a5

(4a2
1 − 10a2)

3

+
4a1

(
5a2a

2
1 +

(√
5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)
a1 − 20a2

2

)
a5

20a2
1 − 50a2

− a5

2 (2a2
1 − 5a2)

2

[(
4a3

1 − 13a2a1 +
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)
×
(

5a2a
2
1 +

(√
5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)
a1 − 20a2

2

)]
, (A9)

w =
a4

(
4a3

1 − 13a2a1 +
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)
a5

4a2
1 − 10a2

− a2
5

−
a3

(
4a3

1 − 13a2a1 +
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)2

a5

(4a2
1 − 10a2)

2

+
a2

(
4a3

1 − 13a2a1 +
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)3

a5

(4a2
1 − 10a2)

3

−
a1

(
4a3

1 − 13a2a1 +
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)4

a5

(4a2
1 − 10a2)

4

+

(
4a3

1 − 13a2a1 +
√

5
√

8a3a3
1 + (16a4 − 3a2

2) a2
1 − 38a2a3a1 + 12a3

2 + 45a2
3 − 40a2a4 + 15a3

)5

a5

(4a2
1 − 10a2)

5 . (A10)

Now, to transform the principal quintic (A7) to its Bring-Jerrard form, we use the quartic Tschirnhausen transformation
z = y4 + py3 + qy2 + ry + s. (A11)

Eliminating y between Eqs. (A7) and (A11), we get to the quintic
z5 + d1z

4 + d2z
3 + d3z

2 + d4z + d5 = 0, (A12)
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in which
d1 = 3pu− 5s + 4v, (A13a)

d2 = 10s2 − 12psu + 3p2u2 − 3qu2 + 2q2v− 16sv + 5puv + 6v2 + 5pqw− 4uw + r(3qu + 4pv + 5w), (A13b)

d3 = 7p2quw− 4p2qv2 + 5p2ruv− 9p2su2 + p2u2v + p3u3 − 3p3vw− 5p2w2 − pq2uv + 3pqru2 − 15pqsw

− 3pqu3 + 2pqvw + 5pr2w− 12prsv− pruw + 8prv2 + 18ps2u− 15psuv− pu2w + puv2 + 5q2rw

− 6q2sv− q3u2 − 8q2uw + 4q2v2 + 4qr2v− 9qrsu− 2qruv + 9qsu2 − 2qu2v− 5qw2 − 3r2u2 + r3u

− 15rsw + 3ru3 + 11rvw + 24s2v− 10s3 + 12suw− 18sv2 − u4 − 8uvw + 4v3, (A13c)

d4 = 5s4 − 2r3su + 9qrs2u− 12ps3u + 2q3su2 − 6pqrsu2 + 6r2su2 + 9p2s2u2 − 9qs2u2 − 2p3su3 + 6pqsu3

− 6rsu3 + 2su4 + r4v− 8qr2sv + 6q2s2v + 12prs2v− 16s3v− q3ruv + 3pqr2uv− 3r3uv + 2pq2suv

− 10p2rsuv + 4qrsuv + 15ps2uv + p3ru2v− 3pqru2v + 3r2u2v− 2p2su2v + 4qsu2v− ru3v + q4v2

− 4pq2rv2 + 2p2r2v2 + 4qr2v2 + 8p2qsv2 − 8q2sv2 − 16prsv2 + 18s2v2 − p3quv2 + 3pq2uv2 + p2ruv2

− 5qruv2 − 2psuv2 + qu2v2 + p4v3 − 4p2qv3 + 2q2v3 + 4prv3 − 8sv3 − puv3 + v4 + 5qr3w− 10q2rsw

− 10pr2sw + 15pqs2w + 15rs2w− 2q4uw + 6pq2ruw + 3p2r2uw− 9qr2uw− 14p2qsuw + 16q2suw

+ 2prsuw− 12s2uw + 2p3qu2w− 6pq2u2w + 6qru2w + 2psu2w− 2qu3w + pq3vw− 7p2qrvw + 3q2rvw

+ 13pr2vw + 6p3svw− 4pqsvw− 22rsvw− 3p4uvw + 11p2quvw− 4q2uvw− 10pruvw + 16suvw

+ 3pu2vw + p3v2w− 3pqv2w + 7rv2w− 4uv2w + 5p2q2w2 − 5q3w2 − 5p3rw2 − 5pqrw2 + 5r2w2

+ 10p2sw2 + 10qsw2 − 2p3uw2 + 4pquw2 − 7ruw2 + 2u2w2 + p2vw2 − 6qvw2 + 5pw3, (A13d)

d5 = w3p5 − sv3p4 − 2ruw2p4 − qvw2p4 + rv2wp4 + 3suvwp4 + s2u3p3 − 5qw3p3 + qsuv2p3 + 5rsw2p3

+ q2uw2p3 + 2suw2p3 + rvw2p3 − rsu2vp3 + r2u2wp3 − 2qsu2wp3 − sv2wp3 − 3s2vwp3 − qruvwp3

+ 4qsv3p2 + 5rw3p2 − uw3p2 − 3s3u2p2 − 4qs2v2p2 − 2r2sv2p2 − rsuv2p2 − 5qr2w2p2 − 5s2w2p2

− 5q2sw2p2 + 6qruw2p2 + 4q2vw2p2 − svw2p2 + s2u2vp2 + 5rs2uvp2 − 4qrv2wp2 + 7qs2uwp2 − 3r2suwp2

+ 2r3vwp2 + 7qrsvwp2 + r2uvwp2 − 11qsuvwp2 − 3qs2u3p− 4rsv3p + suv3p + 5q2w3p− 5sw3p + vw3p

+ 3qrs2u2p + 8rs2v2p + 4q2rsv2p + s2uv2p− 3q2suv2p + 5r3w2p + 2ru2w2p + 5q3rw2p + 5qrsw2p

− 3q3uw2p− 7r2uw2p− 4qsuw2p− 7qrvw2p + quvw2p + 3s4up− 4rs3vp + 3qrsu2vp− 5s3uvp− q2s2uvp

− 3qr2suvp− 5qs3wp + 5r2s2wp− 3qr2u2wp− s2u2wp + 6q2su2wp + 4r2v2wp + 3qsv2wp− ruv2wp

+ 3qr3uwp− rs2uwp− 6q2rsuwp− 4q2r2vwp + 2qs2vwp− 3su2vwp− q3svwp− 13r2svwp + 3q2ruvwp

+ 10rsuvwp− s5 − s2u4 − sv4 −w4 + 3rs2u3 + 4s2v3 − 2q2sv3 − 5qrw3 + 2quw3 + 3qs3u2 − q3s2u2

− 3r2s2u2 − 6s3v2 + 4q2s2v2 − qsu2v2 − q4sv2 − 4qr2sv2 + 5qrsuv2 − q5w2 − 5q2r2w2 − 5qs2w2 − q2u2w2

− 2su2w2 − qv2w2 + 5q3sw2 − 5r2sw2 + 3q2ruw2 + 7rsuw2 − 2q3vw2 + 3r2vw2 + 6qsvw2 − 3ruvw2

− 3qrs3u + r3s2u + 4s4v− 2q2s3v + rsu3v + 4qr2s2v− 2qs2u2v− 3r2su2v− r4sv− 2qrs2uv + 3r3suv

+ q3rsuv + r5w− 5rs3w− r2u3w + 2qsu3w + rv3w + 5q2rs2w + 3r3u2w− 6qrsu2w + 2q2rv2w− 7rsv2w

+ 4suv2w− 5qr3sw− 3r4uw + 4s3uw− q3r2uw− 8q2s2uw + 2q4suw + 9qr2suw + 4qr3vw + 11rs2vw

+ qru2vw + q4rvw− 3q2rsvw− 5qr2uvw− 8s2uvw + 4q2suvw. (A13e)

Similar to the previous step, it is now necessary to solve the equations d1 = d2 = 0 and the extra equation 3qu + 4pv + 5w = 0
extracted from Eq. (A13b), for the parameters p, q and s. These equations result in the values

p =
1

54u4 + 600uvw− 320v3

[
∓
(
27u3v + 375uw2 − 400v2w

)
+ Q

]
, (A14)

q =
1

27u5 − 160uv3 + 300u2vw

[
18u3v2 − 45u4w− 250uvw± 2

3
vQ

]
, (A15)

s =
1

270u4 + 3000uvw− 1600v3

[
135u4v− 1125u2w2 + 3600uv2w− 1280v4 ∓ 3uQ

]
, (A16)

where Q = 3|u|
√

5 (−27u4v2 + 2250u2vw2 + 108u5w− 1600uv3w + 256v5 + 3125w4). Note that, this process leaves r as a
free parameter. This parameter can be however determined appropriately, by means of the equation d3 = 0, which results in the
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cubic

e3r
3 + e2r

2 + e1r + e0 = 0, (A17)

where
e0 = 7p2quw− 4p2qv2 − 9p2su2 + p2u2v + p3u3 − 3p3vw− 5p2w2 − pq2uv− 15pqsw− 3pqu3 + 2pqvw

+ 6s2(3pu + 4v)− 15psuv− pu2w + puv2 − 6q2sv− q3u2 − 8q2uw + 4q2v2 + 9qsu2 − 2qu2v− 5qw2

+ 12suw− 18sv2 − u4 − 8uvw + 4v3 − 10s3, (A18a)

e1 = −9qsu + 3pqu2 + 3u3 − 12psv + 5p2uv− 2quv + 8pv2 + 5q2w− 15sw− puw + 11vw, (A18b)

e2 = −3u2 + 4qv + 5pw, (A18c)
e3 = u, (A18d)

whose solution, as it is well-known, can be expressed in terms of radicals. Now, applying these solutions for r, together with
those expressed in Eqs. (A14)–(A16) for p, q and s, the values of d4,5 in Eqs. (A13d) and (A13e) are obtained. The expressions
are, however, that huge that cannot be put in the paper. But we can be confident that the quintic (A12) has been reduced to the
Bring-Jerrard form

z5 + d4z + d5 = 0. (A19)

It is still possible to make more simplifications by defining

z
.
=

t

f
. (A20)

This way, the quintic (A19) can be recast as

t5 + d4f
4t + d5f

5 = 0. (A21)

Now letting

f =

(
± 1

d4

) 1
4

, (A22)

we get to the more simplified Bring-Jerrard form of the quintic
t5 ± t +K = 0, (A23)

where we have defined K = d5f
5.

Appendix B: Derivation of the solutions to the x-parameter

Let us denote the solutions in the Eqs. (47)–(51) by tj with j = 1, 5. Based on the definition in Eq. (A20), we have zj = f−1tj .
Then from Eq. (A11), one needs to solve a quartic of the general form, in order to obtain an expression for yj in terms of zj .
This way, for each of the solutions for zj , we have four solutions for yj . To proceed with solving the quartic (A11), let us first
apply the change of variable

yj = Wj −
p

4
, (B1)

which depresses the equation to

W 4
j +AW 2

j + BWj + C = 0, (B2)

where

A = q− 3p2

8
, (B3a)

B = r +
p3

8
− pq

2
, (B3b)

C = (s− zj) +
p2q

16
− 3p4

256
− pr

4
. (B3c)
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The method of solving the suppressed quartic (B2) has been given in the appendix C of Ref. [66]. Pursuing this method, we
obtain the four solutions

Wj1 = Ã+

√
Ã2 − B̃, (B4)

Wj2 = Ã −
√
Ã2 − B̃, (B5)

Wj3 = −Ã+

√
Ã2 − C̃, (B6)

Wj4 = −Ã −
√
Ã2 − C̃, (B7)

in which

Ã =

√
Ũ − A

6
, (B8a)

B̃ = 2Ã2 +
A
2

+
B

4Ã
, (B8b)

C̃ = 2Ã2 +
A
2
− B

4Ã
, (B8c)

where

Ũ =

√
ε̃2
3

cosh

(
1

3
arccosh

(
3ε̃3

√
3

ε̃32

))
, (B9)

with

ε̃2 =
A2

12
+ C, (B10a)

ε̃3 =
A3

216
− AC

6
+
B2

16
. (B10b)

Finally, the solutions to the y-parameter are given as

(yj)i ≡ yji = Wji −
p

4
, (B11)

where i = 1, 4. In this manner, the yji solutions form a 5 × 4 matrix (or in other words, four sets of solutions to the quintic
(A7), in accordance with the solutions to the quintic (A12)). Now, in order to obtain the solutions for the x-parameter, as it is
the original purpose of this discussion, we have to solve the quadratic equation (A2), for the known solutions yji. This results in
the two solutions

(xji)1 =
−b1 +

√
b21 − 4 (b2 − yji)

2
, (B12)

(xji)2 =
−b1 −

√
b21 − 4 (b2 − yji)

2
, (B13)

for b1,2 given in Eqs. (A5) and (A6). In this sense, for each of the yji solutions, there are two solutions for the x-parameter,
which can be abbreviated as xjil with l = 1, 2. These solutions form a 5× 4 matrix of 2× 1 matrices, in the form

xjil =



z1 : y11 →
(
x111

x112

)
y12 →

(
x121

x122

)
y13 →

(
x131

x132

)
y14 →

(
x141

x142

)
z2 : y21 →

(
x211

x212

)
y22 →

(
x221

x222

)
y23 →

(
x231

x232

)
y24 →

(
x241

x242

)
z3 : y31 →

(
x311

x312

)
y32 →

(
x321

x322

)
y33 →

(
x331

x332

)
y34 →

(
x341

x342

)
z4 : y41 →

(
x411

x412

)
y42 →

(
x421

x422

)
y43 →

(
x431

x432

)
y44 →

(
x441

x442

)
z5 : y51 →

(
x511

x512

)
y52 →

(
x521

x522

)
y53 →

(
x531

x532

)
y54 →

(
x541

x542

)


, (B14)

meaning that for the solutions of the t-parameter derived from the quintic (A23), there are eight sets of solutions for the x-
parameter in the context of the original quintic (A1).
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