Species	Symm.	E _{tot} (B3LYP)	ZPE	E _{rel}	E _{tot} (MP2)	E _{rel}
			(B3LYP)	(+ZPE)		(MP2+ZPE)
$1 (C_{10}H_{12}^{2+})$	T _d	-387.50975	122.8			
$2(C_6Si_4H_{12}^{2+})$	T _d	-1393.26436	105.9			
$3 (C_6 Ge_4 H_{12}^{2+})$	T _d	-8535.31823	104.5			
$4(C_8H_4^{2+})$	T _d	-306.07727	51.9			
$5(C_4Si_4H_4^{2+})$	T _d	-1311.99446	42.3			
6 (Si ₈ H ₄ ²⁺)	T _d	-2317.63864	27.0			
$7 (Ge_8 H_4^{2+})$	$T_{\rm d}$	-16601.96694	23.9			
8 (C_8^{2-})	T _d	-304.17150	19.8			
9 (Si ₈ ²⁻)	T _d	-2315.92437	7.7			
10 (Ge_8^{2-})	T _d	-16600.23928	4.7			
11 (Si ₈ Li ₂)	$C_{\rm s}$	-2331.02089	10.0			
12 (Si ₈ Li ⁻)	C_{2v}	-2323.54017	9.0			
13 (Si ₈ Na ₂)	$C_{\rm s}$	-2640.55579	8.8			
14 (Si ₈ Na ⁻)	C_{2v}	-2478.30047	8.4			
15 (Ge ₈ Li ₂)	$C_{\rm s}$	-16615.40115	7.2			
16 (Ge ₈ Li ⁻)	C_{2v}	-16607.89148	6.1			
17 (Ge ₈ Na ₂)	$C_{\rm s}$	-16924.92855	5.8			
18 (Ge ₈ Na ⁻)	C_{2v}	-16762.64771	5.3			
19 (C ₈ H ₂)	$C_{\rm s}$	-305.53289	37.0			
20 (Si ₈ H ₂)	$C_{\rm s}$	-2317.08149	17.3			
21 (Ge ₈ H ₂)	$C_{\rm s}$	-16601.40044	14.1			
22 (C ₂₀ H ₁₂)	$T_{\rm h}$ (nonet)	-768.85411	157.3	-4.8	-766.39596	82.9
	$T_{\rm h}$	-768.84646	157.3	0.0	-766.52806	0.0
23 (C ₁₂ Si ₈ H ₁₂)	$T_{\rm h}$ (nonet)	-2780.17895	131.9	53.3		
	$T_{\rm h}$	-2780.26380	131.9	0.0		
24 ($C_{12}Ge_8H_{12}$)	$T_{\rm h}$ (nonet)	-17064.32320	128.3	91.3		
	$T_{\rm h}$	-17064.46964	128.8	0.0		
25 (C ₂₀ H ₂₄)	$T_{\rm h}$ (nonet)	-776.14501	240.6	-3.2	-773.44425	70.4
	$T_{\rm h}$	-776.13884	239.8	0.0	-773.55530	0.0
	D_{2d}	-776.45225	248.2	-188.3		
	$D_{4\mathrm{h}}$	-776.46245	247.6	-195.3		
Ni@25	$T_{\rm h}$	-2284.45541	242.4			
26 (C ₁₂ Si ₈ H ₂₄)	$T_{\rm h}$ (nonet)	-2787.44027	208.2	66.5		
	$T_{\rm h}$	-2787.53845	203.3	0.0		
	D_{2d}	-2787.66046	206.4	-73.4		
Ni@26	$T_{\rm h}$	-4295.94803	207.3			
27 ($C_{12}Ge_8H_{24}$)	$T_{\rm h}$ (nonet)	-17071.52982	206.0	101.2		
	T _h	-17071.67971	198.9	0.0		

S-Table 1. B3LYP/6-31G* total energies (au), zero-point energies (ZPE, kcal/mol) and relative energies (with ZPE, kcal/mol) as well as MP2 total energies and relative energies for selective species.

	D_{2d}	-17071.80521	202.4	-75.3
Ni@27	$T_{\rm h}$	-18580.13248	201.1	
$28 (C_{10} H_4^{4+})$	$T_{\rm d}$	-380.44549	51.7	
29 ($C_4Si_6H_4^{4+}$)	$T_{\rm d}$	-1889.68693	42.9	
30 ($C_4Ge_6H_4^{4+}$)	$T_{\rm d}$	-12602.88550	40.2	
31 $(Si_{10}H_4^{4+})$	$T_{\rm d}$	-2895.37233	27.7	
32 (Ge ₁₀ H ₄ ⁴⁺)	$T_{\rm d}$	-20750.78954	22.1	
33 (C ₆ Bi ₄ H ₄)	$T_{\rm d}$	-330.040103	48.3	
34 (Si ₆ Bi ₄ H ₄)	$T_{\rm d}$	-1838.68383	37.6	
35 (Ge ₆ Bi ₄ H ₄)	$T_{\rm d}$	-12551.91779	36.4	

S-Table 2. Total energies(au), relative energies, zero-point energies (kcal/mol),relative energies (with ZPE, kcal/mol), number of imaginary frequencies and mode following converged local minima structures, and HOMO-LUMO gap energies of X_8^{2-} (X= Si and Ge) isomers (see S-Figure 1and S-Figure 2)

Species	Symm.	E _{tot}	ZPE	$E_{rel}(+ZPE)$	NIMAG	Gap
Si ₈ ²⁻	a (<i>T</i> _d)	-2315.92437	7.7	0.0	0	3.25
	b (<i>C</i> _{2h})	-2315.87291	7.0	31.6	0	1.84
	$c(O_h)$	-2315.88359	7.1	25.0	$1 \rightarrow a(T_{d})$	2.74
	$d(C_s)$	-2315.88473	6.6	23.8	0	2.24
	$e(C_{2v})$	-2315.85806	6.3	40.2	$1 \to f(C_s)$	2.07
	$f(C_s)$	-2315.85874	6.5	40.0	0	1.86
	g (D _{2d})	-2315.88948	6.5	20.7	$1 -> h(D_2)$	2.15
	$h(D_2)$	-2315.8900	6.7	20.6	0	2.10
$\mathrm{Ge_8}^{2-}$	a (<i>T</i> _d)	-16600.23928	4.7	0.0	0	3.19
	b (<i>D</i> _{2d})	-16600.21211	4.0	16.3	0	2.20
	$c(C_s)$	-16600.20085	4.0	23.4	0	2.17
	$d(C_{2v})$	-16600.16437	3.9	46.2	0	1.77
	$e(C_{2v})$	-16600.19694	4.0	25.9	0	2.45
	$f(C_{2v})$	-16600.18298	3.9	34.5	$1 -> b(D_{2d})$	5.59
	$g(C_{2h})$	-16600.19224	3.9	28.7	0	2.231
	$h(C_s)$	-16600.16301	3.8	47.0	1	1.623
	i (D ₃)	-16600.19224	3.9	28.7	0	2.231
	j (<i>C</i> _{2v})	-16600.20441	4.0	21.2	$1 -> b(D_{2d})$	1.88

S-Figure 2. B3LYP/6-31G* optimized Ge₈²⁻ isomers

Species	Symm	E _{tot}	E _{rel}	NIMAG	ZPE	Gap
_		(au)	(Kcal/mol)		(Kcal/mol)	(eV)
1,2- C ₈ H ₂	C_{2v}	-305.52293	6.2	0	37.3	3.62
1,3- C ₈ H ₂	C_{2v}	-305.53289	0.0	0	37.0	3.82
$1,4-C_8H_2$	D_{3d}	-305.50704	16.2	0	39.3	2.41
1,2- Si ₈ H ₂	C_{2v}	-2317.04872	20.6	2	16.7	2.34
	$C_{\rm s}$	-2317.06189	12.3	1	16.6	2.46
	C_1	-2317.07491	4.1	0	17.0	2.62
1,3- Si ₈ H ₂	C_{2v}	-2317.08149	0.0	0	17.3	2.85
1,4- Si_8H_2	D_{3d}	-2317.02982	32.4	3	15.9	1.41
	$C_{\rm s}$	-2317.04811	21.0	0	16.8	1.83
1,2- Ge ₈ H ₂	C_{2v}	-16601.38560	9.3	0	13.7	1.88
1,3- Ge ₈ H ₂	C_{2v}	-16601.40044	0.0	0	14.1	2.59
1,4- Ge ₈ H ₂	D_{3d}	-16601.35993	25.4	2	13.8	1.08
	C_{i}	-16601.38005	12.8	0	14.4	1.65

S-Table 3. Total energies, relative energies, number of imaginary frequencies, zero-point energies and HOMO-LUMO gap energies of isomers of X_8H_2 (X=C, Si and Ge) (see S-Figure 3)

S-Figure 3. Optimized structurs of 1,3-X₈H₂ (X=C, Si and Ge)