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Abstract. We introduce and study a class of operator tuples in complex Hilbert spaces,
which we call spherical tuples. In particular, we characterize spherical multi-shifts, and more
generally, multiplication tuples on RKHS. We further use these characterizations to describe
various spectral parts including the Taylor spectrum. We also find a criterion for the Schatten
Sp-class membership of cross-commutators of spherical m-shifts. We show, in particular, that
cross-commutators of non-compact spherical m-shifts cannot belong to Sp for p ≤ m.

We specialize our results to some well-studied classes of multi-shifts. We prove that the
cross-commutators of a spherical joint m-shift, which is a q-isometry or a 2-expansion, belongs
to Sp if and only if p > m. We further give an example of a spherical jointly hyponormal 2-shift,
for which the cross-commutators are compact but not in Sp for any p < ∞.
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1. Introduction

The motivation for the present paper comes from different directions. Firstly, as there is

considerable literature on circular operators (refer to [44], [23], [4], [38], [40]), it is natural to

look for the higher-dimensional analogs of circular operators. There are of course two possible

analogs, namely, poly-circular tuples and spherical tuples. Multi-variable weighted shifts (for

short, multi-shifts) form a subclass of the class of poly-circular tuples, and indeed, there are

some important papers on this latter class (see, for instance, [32], [15], [27], [20]). There are

also several important papers on multivariable weighted shifts that are spherical, see [8], [6],

[2], [7], [1], [27], [25]. However, the higher-dimensional counter-parts of many important results

in the masterful exposition [44] by A. Shields are either unknown or not formulated. The main

objective of this paper is to introduce spherical operator tuples in an abstract way and to study

some of their basic properties, as well as properties of spherical multi-variable weighted shifts,

which form a subclass of this class.

One of our motivations is the following phenomenon concerning multi-dimensional cross-

commutators and Hankel operators, which is often referred to as “cut-off”: in several particular

situations, these operators cannot be too small unless they are zero, see [31], [48], [51], [19],

[37], [50]. More recently, related questions have been studied in relation with the multi-variable

Berger-Shaw theory and the so-called Arveson conjecture, see, for instance, [18], [3], [21], [22],

[28], [34] and others. In our context, we prove that cross-commutators of non-compact spherical

m-shifts do not belong to Sp for p ≤ m.
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If N stands for the set of non-negative integers, we denote by N
m for the cartesian product

N× · · · × N (m times). Let p = (p1, · · · , pm) and n = (n1, · · · , nm) be in N
m. We write p ≤ n

if pj ≤ nj for j = 1, · · · ,m. For p ≤ n,
(n
p

)

is understood to be the product
(n1

p1

)

· · ·
(nm

pm

)

and

|p| is understood to be p1 + · · ·+ pm.

For a Hilbert space H, let H(m) denote the orthogonal direct sum of m copies of H. Let
B(H) denote the Banach algebra of bounded linear operators on H. If the opposite is not

specified, all the operators we consider will be assumed linear and bounded.

If T = (T1, · · · , Tm) is an m-tuple of commuting bounded linear operators Tj (1 ≤ j ≤ m)

on H then we set T ∗ to be (T ∗
1 , · · · , T ∗

m) and T p to be T p1
1 · · ·T pm

m .

The main object of our interest in this paper is the class of so-called spherical tuples.

Definition 1.1 : Let T be an m-tuple of commuting bounded linear operators T1, · · · , Tm on

an infinite dimensional Hilbert space H. Let U(m) denote the group of complex m×m unitary

matrices. For U = (ujk)1≤j,k≤m ∈ U(m), the commuting operator m-tuple TU is given by

(TU )j =

m
∑

k=1

ujkTk (1 ≤ j ≤ m).(1.1)

We say that T is spherical if for every U ∈ U(m), there exists a unitary operator Γ(U) ∈ B(H)

such that Γ(U)Tj = (TU )jΓ(U) for all j = 1, · · · ,m. If, further, Γ can be chosen to be a strongly

continuous unitary representation of U(m) on H then we say that T is strongly spherical.

Remark 1.2 : Let T = (T1, · · · , Tm) be a spherical m-tuple.

(1) Any permutation of T is unitarily equivalent to T. In particular, Tj is unitarily equiv-

alent to Tk for any 1 ≤ j, k ≤ m.

(2) For any unital ∗-representation π : B(H) → B(H1), π(T ) := (π(T1), · · · , π(Tm)) is

also a spherical m-tuple. Indeed, since π sends unitaries to unitaries, π(Γ(U))π(Tj) =

(π(T )U )jπ(Γ(U)) for all j = 1, · · · ,m, and π(Γ(U)) is unitary. We also observe that

T ∗ = (T ∗
1 , · · · , T ∗

m) is spherical.

Let T = (T1, · · · , Tm) be an m-tuple of commuting bounded linear operators on a Hilbert

space H. Let DT denote the linear transformation from H to H(m), given by

DTh := (T1h, · · · , Tmh) (h ∈ H).

Note that ker(DT ) =
⋂m

i=1 ker(Ti).

Next, we need to invoke the basics of the theory of multi-shifts [32]. First a definition.

Let T be an m-tuple of commuting operators T1, · · · , Tm on a Hilbert space H. A closed

subspace M of H is said to be cyclic for T if

H =
∨

{T nx : x ∈ M, n ∈ N
m}.

We say that T is cyclic with cyclic vector x if the subspace spanned by x is cyclic for T.

Let
{

w
(j)
n : 1 ≤ j ≤ m,n ∈ N

m
}

be a multi-sequence of complex numbers. An m-variable

weighted shift T = (T1, · · · , Tm) with respect to an orthonormal basis {en}n∈Nm of a Hilbert

space H is defined by

Tjen := w(j)
n en+εj (1 ≤ j ≤ m),

where εj is the m-tuple with 1 in the jth place and zeros elsewhere. The notation T :

{w(j)
n }n∈Nm will mean that T is the m-variable weighted shift tuple with weight multi-sequence

{

w
(j)
n : 1 ≤ j ≤ m,n ∈ N

m
}

. Notice that Tj commutes with Tk if and only if w
(j)
n w

(k)
n+εj =

w
(k)
n w

(j)
n+εk

for all n ∈ N
m. By [32, Corollary 9], T is bounded if and only if

sup
{

|w(j)
n | : 1 ≤ j ≤ m,n ∈ N

m
}

<∞.
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We always assume that the weight multi-sequence of T consists of positive numbers and that

T is commuting. Note that T : {w(j)
n }n∈Nm is cyclic with cyclic vector e0.

Let T : {w(j)
n }n∈Nm be an m-variable weighted shift. Define βn = ‖T ne0‖ (n ∈ N

m) and

consider the Hilbert space H2(β) of formal power series

f(z) =
∑

n∈Nm

anz
n

such that

‖f‖2β =
∑

n∈Nm

|an|2β2n <∞.

It follows from [32, Proposition 8] that any m-variable weighted shift T is unitarily equivalent

to the m-tupleMz = (Mz1 , · · · ,Mzm) of multiplication by the co-ordinate functions z1, · · · , zm
on the corresponding space H2(β). Notice that the linear set of polynomials in z1, · · · , zm (that

is, formal power series with finitely many non-zero coefficients) is dense in H2(β). Equivalently,

Mz is cyclic with cyclic vector the constant formal power series 1 (that is, the formal series
∑

n∈Nm anz
n, for which an = 0 for all non-zero n ∈ N

m and a0 = 1). The relation between

weights w
(j)
n and the sequence βn is given by

(1.2) w(j)
n = βn+εj/βn, 1 ≤ j ≤ m, n ∈ N

m.

Note further that ker(DM∗
z
) is spanned by the constant formal power series 1.

Recall that all formal power series in H2(β) converge absolutely on the point-spectrum

σp(M
∗
z ) of the adjoint m-tuple M∗

z of Mz [32, Propositions 19 and 20]. In particular, H2(β)

may be realized as a reproducing kernel Hilbert space (RKHS) with reproducing kernel κ :

σp(T
∗)× σp(T

∗) → C given by

κ(z, w) =
∑

n∈Nm

wnzn/β2n (z, w ∈ σp(T ∗)),(1.3)

assuming that σp(M
∗
z ) has non-empty interior. Conversely, as it follows from Theorem 2.11

below, the multiplication m-tuple Mz acting in a RKHS H with reproducing kernel κ of

the form (1.3) is unitarily equivalent to an m-variable weighted shift on H2(β) if all complex

polynomials in z1, · · · , zm are contained in H . Notice that the norm in H2(β) has poly-

circular symmetry: ‖f(ζ · z)‖β = ‖f(z)‖β for any f ∈ H2(β) and any ζ ∈ T
m, where ζ · z =

(ζ1z1, . . . , ζmzm). So if the largest open set where all series in H2(β) converge is not empty, it

is a Reinhardt domain.

We denote by BR the open ball centered at the origin and of radius R > 0:

BR := {z = (z1, · · · , zm) ∈ C
m : ‖z‖22 = |z1|2 + · · ·+ |zm|2 < R2}.

The sphere centered at the origin and of radius R > 0 is denoted by ∂BR. For simplicity, the

unit ball B1 and the unit sphere ∂B1 are denoted respectively by B and ∂B.

Let us discuss three basic examples of (spherical) weighted m-variable shifts, with which we

are primarily concerned.

Example 1.3. For any real number p > 0, let Hp be the RKHS of holomorphic functions on

the unit ball B with reproducing kernel

κp(z, w) =
1

(1 − 〈z, w〉)p (z, w ∈ B).

If Mz,p denotes the multiplication tuple on Hp then it is unitarily equivalent to the weighted

shift m-tuple with weight sequence

(1.4) w(i)
n,p =

√

ni + 1

|n|+ p
(n ∈ N

m, i = 1, · · · ,m).
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The RKHS’s Hm,Hm+1,H1 are, respectively, the Hardy space H2(∂B), the Bergman space

A2(B), the Drury-Arveson space H2
m. The multiplication tuples Mz,m,Mz,m+1,Mz,1 are com-

monly known as the Szegö m-shift, the Bergman m-shift, the Drury-Arveson m-shift respec-

tively. The spaces Hp have been studied in many papers. In [47], a characterization of Carleson

measures in these spaces has been given. In [33], the spaces Fq = H1+m+q have been stud-

ied; in particular, a kind of model theorem and von Neumann inequalities related to these

spaces for row contractions is established there and some K-theory results are proved for the

corresponding Toeplitz algebras. In this work, a scale of Dirichlet-type spaces corresponding

to q < 0 is also considered, but their definition is different, and they do not belong to the

collection of spaces Hp.

As it is proved in [6], Mz,p is subnormal for any p ≥ m. In fact, Mz,p is jointly subnormal

if and only if p ≥ m, see the discussion after Theorem 5.3.

The paper is organized as follows. In the second section, we present various characterizations

of spherical tuples. The main results of this section are Theorem 2.1, where we characterize

m-variable weighted shifts (equivalently, multiplication m-tuples), which are spherical, and

Theorem 2.5, which gives abstract conditions, when an arbitrary spherical operator m-tuple is

unitarily equivalent to a multiplication m-tuple. We also discuss some examples. In Section 3,

we describe various spectral parts of spherical multi-shifts, including the Taylor spectrum. In

particular, we obtain refinements of some results in [27]. In Section 4, we provide a sufficient

and necessary condition for the Schatten p-class membership of cross-commutators of spherical

m-shifts. We deduce that for a noncompact m-tuple Mz, if [M
∗
zj ,Mzk ] ∈ Sp for all j, k, then

p > m (which is a manifestation of the cut-off). Here [A,B] stands for the commutator

AB − BA of operators A,B on a space H. The results of Sections 3 and 4 rely heavily on

the results of Section 2. In the last Section 5, we mainly discuss the cut-off phenomenon for

some special classes of spherical multi-shifts, such as q-expansions, q-isometries and jointly

hyponormal tuples.

2. Spherical Tuples

Let C[z] stand for the vector space of analytic polynomials in z1, · · · , zm. We define

Hom(k) =
{

p ∈ C[z] : p(z) =
∑

|n|=k

akz
n
}

.

For a polynomial p ∈ C[z] and an integer k ≥ 0, we denote by p[k] ∈ Hom(k) the homogeneous

part of p of degree k. More generally, f[k] stands for the homogeneous part
∑

|n|=k akz
n of a

formal power series f(z) =
∑

n∈Nm anz
n.

Let σ denote the normalized surface area measure on the unit sphere ∂B. We often use the

short notation L2(∂B) for the Hilbert space L2(∂B, σ) of σ-square-integrable “functions” on

∂B.

The first theorem of this section provides a handy characterization of spherical multi-shifts.

The multi-shifts with weight multi-sequence given by (2.6) arise naturally in the study of

reproducing C[z1, · · · , zm]-modules with U(m)-invariant kernels, refer to [27, Section 4].

Theorem 2.1. Let Mz be a bounded multiplication m-tuple in H2(β). Then Mz is spherical if

and only if the norm ‖ · ‖β on H2(β) can be expressed as

(2.5) ‖f‖2β =
∞
∑

k=0

β̃2k‖f[k]‖2L2(∂B) (f ∈ H2(β))
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for a sequence β̃0, β̃1, β̃2, · · · , of positive numbers. If this happens then Mz is unitarily equiva-

lent to the m-variable weighted shift T : {w(i)
n }n∈Nm with the weight sequence

(2.6) w(i)
n =

β̃|n|+1

β̃|n|

√

ni + 1

|n|+m
(n ∈ N

m, 1 ≤ i ≤ m).

In this case, the sequence βn = ‖zn‖β can be expressed as

(2.7) βn = β̃|n|

√

(m− 1)!n!

(m− 1 + |n|)! (n ∈ N
m).

Remark 2.2 : Whenever {βn}n∈Nm is a multi-sequence, which gives rise to a spherical tuple

Mz, we will denote by {β̃k}k∈N the corresponding scalar weight sequence, related to β via

formula (2.7).

Definition 2.3 : Let T : {w(i)
n }n∈Nm be a spherical m-variable weighted shift and let {β̃k}k∈N

be the corresponding scalar weight sequence. Then the shift associated with T is the one-

variable weighted shift Tδ : {δk}k∈N, where

δk :=
β̃k+1

β̃k
, k ∈ N.

It is easy to see that the following statements are equivalent:

(1) A scalar weight sequence {β̃k} gives rise to a bounded spherical m-tuple Mz on H2(β),

where β is given by (2.7);

(2) The spherical m-variable shift T : {w(i)
n }n∈Nm is bounded;

(3) supk≥0 δk <∞;

(4) The one-variable shift Tδ, associated with T , is bounded.

When dealing with a spherical multiplication m-tuple Mz and with the corresponding m-

variable weighted shift T, we will always assume that the condition (3) above holds.

For an m-tuple T of commuting bounded linear operators T1, · · · , Tm on H, let

QT (I) :=

m
∑

j=1

T ∗
j Tj .

Remark 2.4 : Let Mz be a bounded multiplication m-tuple in H2(β). Then QMz(I) = I if

and only if Mz is the Szegö m-shift. Further, the defect operator I −QM∗
z
(I) is an orthogonal

projection if and only if Mz is the Drury-Arveson m-shift.

The next result characterizes all multi-shifts within the whole class of spherical tuples and

should be combined with the above Theorem 2.1. Recall that for an m-tuple S = (S1, · · · , Sm),

ker(DS∗) =
⋂m

i=1 ker(S
∗
i ).

Theorem 2.5. Let T be a commuting, bounded spherical operator m-tuple on a Hilbert space

H. Then the following assertions are equivalent.

(1) ker(DT ∗) is a one-dimensional cyclic subspace for T ;

(2) T is unitarily equivalent to an m-variable weighted shift;

(3) T is unitarily equivalent to a multiplication m-tuple Mz on a space H2(β).

Before we turn to the proofs of Theorems 2.1 and 2.5, let us see a couple of instructive

examples.

Example 2.6. Let Mz be a bounded spherical multiplication m-tuple on a space H2(β) and

suppose that the ball BR, where all power series in H2(β) converge has positive radius (see
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Theorem 3.4(2) below for the description of R = r(Mz) in terms of βk’s). Fix an integer s > 0.

Then the set

H2(β)s =
{

f ∈ H2(β) : Dαf(0) = 0 for all α, |α| < s
}

is a closed subspace of H2(β), which is invariant under Mz. Let T be the restriction of the

m-tuple Mz to H2(β)s. Then T is a spherical m-tuple (see Theorem 2.12 below), but the

dimension of ker(DT ∗) is greater than one. This gives an example of an m-tuple of operators

of multiplication by the co-ordinate functions z1, . . . , zm on a Hilbert space of scalar power

series in z1, . . . , zm, which does not satisfy the equivalent conditions (1)-(3) of Theorem 2.5.

Example 2.7. Here we show that the existence of a cyclic vector for a commuting spherical

operator m-tuple T also does not imply the above conditions (1)-(3). Namely, take any integer

ℓ > m − 1
2 . Consider the Sobolev space H = W ℓ,2(∂B); we refer to [29] for a definition. We

will need also the dual space H′ = W−ℓ,2(∂B); its elements are complex-valued distributions,

defined on the unit sphere ∂B. Both spaces are Hilbert, and infinitely differential functions are

dense both in H′ and in H. The pairing between H and H′ is a continuation of the L2 pairing

〈f, g〉 =
∫

∂B f ḡ, defined for C∞ functions.

Let T be the multiplication tuple Mz on H′. Since the spaces H and H′ and their norms

are invariant under unitary rotations in C
n, T is a (strongly) spherical tuple.

It is easy to see that T is not unitarily equivalent to a spherical m-variable weighted shift.

Indeed, if S denotes the m-tuple of multiplication by z on H′ then
∑m

j=1 TjSj = I. It follows

that ker(DT ∗) = {0}, and hence T cannot be unitarily equivalent to a weighted shift.

Nevertheless, T has a cyclic vector. Indeed, choose any dense sequence {an} of points on

∂B such that their first coordinates z1(an) are all distinct. The adjoint tuple to T coincides

with the multiplication tuple Mz, acting on H. By the Sobolev embedding theorem, H is

continuously embedded into C(∂B). Hence for any sequence {cn} in ℓ1, the linear functional

ψ(f)
def
=

∑

n

cnf(an)

is bounded on H and therefore is an element of H′. We assert that if the sequence {cn} does

not vanish and decays sufficiently fast, then the vector ψ ∈ H′ is cyclic for Mz1 and therefore

for the whole tuple T .

Indeed, suppose that some function f ∈ H satisfies

ψ((λ−Mz1)
−1f) =

∑

n

cnf(an)

λ− z1(an)
= 0

for any λ with |λ| > 1. Suppose that cn 6= 0 for all n, and
∑

n n
−2 log |cn| = −∞. Since the

points z1(an) are all distinct, it follows from a theorem by Sibilev [46] that cnf(an) = 0 for all

n, which implies that f is zero. Hence ψ is cyclic for the operator Mz1 on H′.

We remark that a similar construction of a cyclic vector for a family of normal operators is

given in [42].

Before proving Theorems 2.1 and 2.5, we need several lemmas.

Lemma 2.8. Let L be a finite-dimensional Hilbert space and let π : U(m) → B(L) be an irre-

ducible unitary representation with respect to two unitary structures defined by scalar products

〈·, ·〉1 and 〈·, ·〉2 on L. Then there is a constant γ > 0 such that

〈x, y〉2 = γ〈x, y〉1 (x, y ∈ L).

Proof. By the Riesz Representation Theorem, there exists a positive operator A on L such

that 〈x, y〉2 = 〈Ax, y〉1 for every x, y ∈ L. Since L is finite-dimensional and A is positive, the



SPHERICAL TUPLES OF HILBERT SPACE OPERATORS 7

point-spectrum of A is a non-empty finite subset of (0,+∞). Let γ be the minimal eigenvalue

of A. We claim that ker(A− γI) = L.

Since A− γI is a nonnegative operator, for x ∈ L, one has

〈x, x〉2 = γ〈x, x〉1 iff 〈(A− γI)x, x〉1 = 0 iff x ∈ ker(A− γI).(2.8)

Let U ∈ U(m) and x ∈ ker(A− γI). By assumption, π(U) preserves both scalar products, and

hence by (2.8),

〈π(U)x, π(U)x〉2 = 〈x, x〉2 = γ〈x, x〉1 = γ〈π(U)x, π(U)x〉1.

It follows that ker(A−γI) is invariant under π(U). Since π(U)∗ = π(U−1), ker(A−γI) is indeed
a reducing subspace for π(U). Since ker(A − γI) 6= {0} and π is irreducible by assumption,

we must have ker(A − γI) = L. Thus the claim stands verified. The desired conclusion now

follows from (2.8) and the polarization identity. �

We also need an analogue of this lemma for reducible representations.

Lemma 2.9. Let L be a finite-dimensional Hilbert space and let π : U(m) → B(L) be an

unitary representation with respect to a unitary structure defined by a scalar product 〈·, ·〉1.
Let L = L1 ⊕ L2 ⊕ · · · ⊕ Lk be the corresponding decomposition of L into irreducible sub-

spaces Lj and suppose these subspaces are of distinct dimensions. Suppose that we are given

another semidefinite sesquilinear product 〈·, ·〉2 on L, which is invariant with respect to π:

〈π(U)x, π(U)y〉2 = 〈x, y〉2 for all x, y ∈ L and all U ∈ U(m). Then there are nonnegative

constants β̃1, . . . , β̃k such that the following statements hold:

(1) 〈x, y〉2 = β̃j〈x, y〉1 (x, y ∈ Lj);

(2) 〈x, y〉2 = 0 if x ∈ Lp, y ∈ Lr, p 6= r.

Proof. Similarly to the previous proof, there is a nonnegative operator A on L such that

〈x, y〉2 = 〈Ax, y〉1 for every x, y ∈ L. By the assumption, one has a decomposition π =

π1 ⊕ π2 ⊕ · · · ⊕ πk, where πj : U(m) → B(Lj) are irreducible representations. We obtain

assertion (1) by applying Lemma 2.8 to representations πj (if the product 〈·, ·〉2 is not definite,

one can apply Lemma 2.8 to positive definite products 〈·, ·〉1 and 〈x, y〉3 = 〈x, y〉1 + 〈x, y〉2).
To see (2), note that πj are all inequivalent representations and apply [43, Corollary 2.21]. �

Next lemma will be crucial in the proof of Theorem 2.5.

Lemma 2.10. Let T be a commuting, bounded spherical operator m-tuple on H. Suppose

that ker(DT ∗) is one-dimensional and is spanned by a vector e ∈ H. Suppose that e is cyclic

for T . Then there is sequence of positive weights {β̃k}k≥0 such that for any polynomial p ∈
C[z1, . . . , zm],

(2.9) ‖p(T )e‖2 =

deg p
∑

k=0

β̃k‖p[k]‖2L2(∂B)

where ‖p‖2L2(∂B) =
∫

∂B |p(z)|2dσ(z) for the surface area measure σ on the unit sphere ∂B. The

sequence {β̃k} is defined uniquely.

Proof. Notice first that kerDT ∗ = (T1H+ · · ·+ TmH)⊥ is invariant under the action of U(m).

Hence for any U in U(m), there is a scalar constant ζ(U), |ζ(U)| = 1, such that Γ(U)e = ζ(U)e.

Fix a positive integer N , and denote by HN the space of polynomials in C[z] of degree less

or equal to N . Clearly, HN is a closed subspace of L2(∂B); the corresponding scalar product

will be denoted as 〈·, ·〉1. Define a second semidefinite sesquilinear product on HN by

〈p, q〉2 = 〈p(T )e, q(T )e〉H.



SPHERICAL TUPLES OF HILBERT SPACE OPERATORS 8

Both products are invariant under the action of U(m). Indeed, p(TU )e = ζ(U)Γ(U)−1p(T )e

for all p ∈ C[z] and U ∈ U(m). Hence

〈p(Uz), q(Uz)〉2 = 〈p(TU )e, q(TU )e〉H
= 〈ζ(U)Γ(U)−1p(T )e, ζ(U)Γ(U)−1q(T )e〉H = 〈p, q〉2

for all p, q ∈ HN . It follows from [43, pg. 175] that the decomposition of (HN , 〈·, ·〉1) into

irreducible subspaces with respect to the action of U(m) on HN is given by HN = Hom(0) ⊕
Hom(1)⊕ · · · ⊕Hom(N). This fact and Lemma 2.9 imply formula (2.9) for some nonnegative

constants β̃0, . . . , β̃N . If a constant β̃j were zero, it would follow that p(T )e = 0 for any

homogeneous polynomial p ∈ Hom(j), which would imply that p(T )e = 0 for all p ∈ Hom(k, 0)

with k > j. Since e is cyclic, this would imply that H is finite dimensional, which gives a

contradiction.

Since N is arbitrary, the statement of Lemma follows. �

Proof of Theorem 2.1. First of all, we mention that 〈zn, zk〉L2(∂B) = 0 for any distinct multi-

indices n, k ∈ N
m see [52, formula (1.21), page 13]. So the functions zn, n ∈ N

m form an

orthogonal sequence in L2(∂B). It follows that the norm, defined by (2.5), is an H2(β) norm

for certain multi-sequence βn. It is clear that the multiplication tuple Mz on the Hilbert space

with the norm (2.5) is spherical. This gives the “if” part of the first statement.

Conversely, for each multiplication tuple Mz, the space ker(DM∗
z
) is one-dimensional and is

spanned by the formal power series 1. So we can apply Lemma 2.10 to get the “only if” part

of the first statement.

Finally, one can make use of (2.5) and of the formula

(2.10)

∫

∂B
|zn|2dσ(z) = (m− 1)!n!

(m− 1 + |n|)! (n ∈ N
m),

(see [52, Lemma 1.11]) to derive the expressions (2.6) and (2.7) for w
(i)
n and β̃n respectively. �

Proof of Theorem 2.5. The equivalence of (2) and (3) has been noted already. If (3) holds,

then ker(DT ∗) is one-dimensional and is spanned by the image in H of the formal power series

1 under the unitary equivalence. This implies (1). Finally, suppose that (1) holds, and let e be

a unit vector that spans ker(DT ∗). Then it follows from Lemma 2.10 that there is a sequence

β̃0, β̃1, β̃2, . . . such the map p 7→ p(T )e, p ∈ C[z] extends to a unitary map from H2(β) to H,

which intertwines T with Mz. �

Let Λ ⊂ Z
m
+ be a set of multi-indices. In what follows, we will say that Λ is inductive if for

any n ∈ Λ, the multi-indices n+ εj are also in Λ for j = 1, . . . ,m.

Theorem 2.11. Let Ω be a Reinhardt domain in Cm such that 0 ∈ Ω. Let H be a Mz-

invariant RKHS of functions on Ω such that H ⊂ Hol(Ω), the inclusion being continuous. Let

κ(z, w) (z, w ∈ Ω) denote the reproducing kernel of H .

Then the following statements are equivalent.

(1) For every ζ ∈ T
m,

κ(ζ · z, ζ · w) = κ(z, w) (z, w ∈ Ω),(2.11)

where ζ · z = (ζ1z1, · · · , ζmzm) ∈ C
m.

(2) For every ζ ∈ T
m, f(ζ·) ∈ H whenever f ∈ H , and

〈f(ζ·), g(ζ·)〉 = 〈f, g〉 (f, g ∈ H ).
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(3) There exist a multi-sequence {βn}k∈Zm
+

and an inductive set Λ ⊂ Z
m
+ such that H =

H2(β)Λ, where

H2(β)Λ =
{

f ∈ H2(β) : Dnf(0) = 0 for all n ∈ Z
m
+ , n /∈ Λ

}

.

(4) There exists an inductive set Λ′ ⊂ Z
m
+ such that the functions zn, n ∈ Λ′, are contained

in H and form there an orthogonal basis.

(5) There exist an inductive set Λ′′ ⊂ Z
m
+ and a family {αn}n∈Λ′′ of positive numbers such

that

(2.12) κ(z, w) =
∑

n∈Λ′′

αnz
nwn (z, w ∈ Ω).

Moreover, if (1)–(5) hold, then Λ = Λ′ = Λ′′.

In (3), in the equality H = H2(β)Λ we identify analytic functions in Ω with the cor-

responding formal power series centered at the origin. This equality means that these two

Hilbert spaces consist of the same functions and the norms in these two spaces are identical.

Theorem 2.12. Let H be a Mz-invariant RKHS of functions on BR in C
m. Suppose H ⊂

Hol(BR), the inclusion being continuous. Let κ(z, w) (z, w ∈ BR) denote the reproducing kernel

of H .

Then the following statements are equivalent.

(1) For every U ∈ U(m),

κ(Uz,Uw) = κ(z, w) (z, w ∈ BR).(2.13)

(2) For every U ∈ U(m), f(U ·) ∈ H whenever f ∈ H , and

〈f(U ·), g(U ·)〉 = 〈f, g〉 (f, g ∈ H ).

(3) There exist s ∈ Z+ and a scalar sequence {β̃k}k∈N such that H = H2(β)s, where the

multi-sequence β is given by (2.7) and

H2(β)s =
{

f ∈ H2(β) : Dnf(0) = 0 for all n ∈ Z
m
+ , |n| < s

}

.

If any of the conditions (1) – (3) holds, then Mz is a strongly spherical tuple.

Remark 2.13 : Some statements close to the above Theorem 2.12 are given in the beginning

of Section 4 of the paper [27] by Guo, Hu and Xu, though they do not discuss the continuity of

the representations Γ. As follows from their discussion, the spaces H2(β)s are defined uniquely

by their generating function F (t), analytic in the disc |t| < R2 in the complex plane, such that

κ(z, w) = F
(

〈z, w〉
)

(z, w ∈ BR).

Such representation always exists, all the coefficients an in the expansion F (t) =
∑∞

k=s akt
k

are positive and are given by

(2.14) ak =
(m− 1 + k)!

(m− 1)! k!

1

β̃2k
, k ≥ s

(it follows from (1.3) and (2.7)).

Lemma 2.14. Let G be a subgroup of the group GLm(C) of invertible, complex m×m matrices

and let Ω be a G-invariant (that is, gz ∈ Ω whenever g ∈ G and z ∈ Ω) domain in C
m such

that 0 ∈ Ω. Let H be a Mz-invariant RKHS of functions on Ω such that H ⊂ Hol(Ω), the

inclusion being continuous. Let κ(z, w) (z, w ∈ Ω) denote the reproducing kernel of H . Let

Mz = (Mz1 , · · · ,Mzm) be the bounded m-tuple of multiplication by the co-ordinate functions

z1, · · · , zm. Then the following statements are equivalent:
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(1) For every g ∈ G,

κ(gz, gw) = κ(z, w) (z, w ∈ Ω).(2.15)

(2) For every g ∈ G, f(g·) ∈ H whenever f ∈ H , and

〈f(g·), h(g·)〉 = 〈f, h〉 (f, h ∈ H ).

If this happens then the representation Γ : G→ B(H ) of G on H given by

Γ(g)f(z) = f(gz) (z ∈ Ω, g ∈ G)(2.16)

is strongly continuous, unitary and satisfies Γ(g)Mzj =M(gz)jΓ(g) (j = 1, · · · ,m). In particu-

lar, if G = U(m), then Mz is strongly spherical.

Proof. (1) implies (2): Suppose that (1) holds. Set

Γ(g)κ(·, w) = κ(·, g−1(w)) (w ∈ Ω, g ∈ G).

We check that Γ extends to a unitary representation of G on H . By the reproducing property

of κ and (2.15),

〈Γ(g)κ(·, z), Γ(g)κ(·, w)〉 = 〈κ(·, z), κ(·, w)〉.

Since
∨{κ(·, w) : w ∈ Ω} = H , Γ(g) extends isometrically to the entire H . Since g(Ω) = Ω,

Γ(g) is surjective, and hence unitary. Finally, since Γ(g)∗ = Γ(g−1), it follows that

Γ(g)f(z) = 〈Γ(g)f , κ(·, z)〉 = 〈f, Γ(g−1)κ(·, z)〉 = f(gz)

for any z ∈ Ω and any f ∈ H .

(2) implies (1): Assume that (2) is true. By the uniqueness of the reproducing kernel, it

suffices to check that κ(gz, gw) is a reproducing kernel for H for every g ∈ G. However,

〈f, κ(g·, gw)〉 = 〈f(g−1·), κ(·, gw)〉 = f(w) (w ∈ Ω),

which gives (1).

The fact that Γ is a unitary representation of G on H follows from (2). It follows from the

closed graph theorem that the operators Mzj are bounded. Notice that by Hartogs’ separate

analyticity theorem [35], κ(z, w) is holomorphic in z, w, and it follows that the map w →
κ(w,w) is continuous. Since ‖κ(·, w)− κ(·, w0)‖2 = κ(w,w) + κ(w0, w0)− 2Reκ(w,w0), the

function w 7→ κ(·, w) ∈ H is norm continuous. Therefore Γ(g)κ(·, w) depends continuously

on g for any w. Since the reproducing kernels are complete, Γ is strongly continuous. The

remaining part is a routine verification. �

Remark 2.15 : We are particularly interested in the subgroups UD(m) and U(m) of GLm(C),

where UD(m) denotes the subgroup of unitary diagonal m×m matrices.

Proof of Theorem 2.11. By Lemma 2.14, (1) and (2) are equivalent. It is clear that (3) and

(4) are equivalent, and the corresponding sets Λ and Λ′ coincide whenever (3) and (4) hold. It

is also clear that (3) implies (2).

(2) implies (4). Assume that (2) holds. Define the set Λ′ ⊂ N
m by

Λ′ =
{

n0 ∈ N
m : ∃f =

∑

anz
n ∈ H : an0

6= 0
}

.

Since H is Mz-invariant, Λ
′ is inductive.

Put S(t)f(z) = f(eitz), t ∈ R
m, where eitz = (eit1z1, . . . , e

itmzm). By applying Lemma 2.14,

we get that S is a unitary strongly continuous m-parameter group. Given any function f(z) =
∑

anz
n ∈ H and any n0 ∈ N

m such that an0
6= 0, we notice that

an0
zn0 =

1

(2π)m

∫

[0,2π]m
e−in0tS(t)f dt.
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(The integral is understood in the Bochner sense. The equality is true because it holds pointwise

for any z ∈ Ω.) It follows that for any n0 ∈ Λ′, zn0 ∈ H .

Now take any p, q ∈ N
m such that p 6= q. Then for some 1 ≤ j ≤ m, pj 6= qj. Let

ζ = wεj+
∑

i 6=j εi, where w ∈ T. Then 〈zp, zq〉 = 〈ζzp, ζzq〉 = wpj−qj〈zp, zq〉, which is possible

for all w ∈ T only if 〈zp, zq〉 = 0. We have checked that the functions zn, n ∈ Λ′ form an

orthogonal sequence in H . Any f ∈ H has a Taylor series representation f(z) =
∑

n∈Λ′ anz
n,

which converges weakly in H . Therefore the sequence {zn}n∈Λ′ is in fact an orthogonal basis

in H .

Given any orthonormal basis {φk}k∈K in H , the reproducing kernel of H can be expressed

by the well-known formula κ(z, w) =
∑

k∈K
φk(w)φk(z). It follows that (3) implies (5) (with

Λ′′ = Λ).

It is immediate that (5) implies (1), which concludes the proof of the fact that conditions

(1)–(5) are all equivalent. It also has been shown already that if (1)–(5) are fulfilled, then

Λ = Λ′ = Λ′′. �

Proof of Theorem 2.12. By Lemma 2.14, (1) is equivalent to (2). It is clear that (3) implies

(2). It remains to prove that (2) implies (3). Suppose that (2) holds. Then we can apply

Theorem 2.11 and deduce that H = H2(β)Λ for an inductive set Λ. Let s = min{|n| : n ∈ Λ},
then the intersection R of H with the space Hom(s) of analytic homogeneous polynomials of

order s is non-zero, and the group U(m) acts on R. Since the action of U(m) on Hom(s) is

irreducible (we already have used it in Lemma 2.10), it follows that R = Hom(s). Since Λ is

inductive, Λ = {n ∈ N
m : |n| ≥ s}, which gives (3).

By Lemma 2.14, if any of the equivalent conditions (1)–(3) holds, then the tupleMz consists

of bounded operators. Now (3) implies that Mz is strongly spherical. �

3. Spectral Theory for Multi-shifts

For a masterful exposition of various notions of invertibility, Fredholmness and multi-

parameter spectral theory, the reader is referred to [13]. For T ∈ B(H), we reserve the symbols

σ(T ), σp(T ), σap(T ), σe(T ) for the Taylor spectrum, point-spectrum, approximate-point spec-

trum, essential spectrum of T respectively. It is well known that the spectral mapping theorem

for polynomial mappings holds for both the Taylor and the approximate-point spectra. Except

the point-spectrum, all spectra mentioned above are always non-empty.

Given a commuting m-tuple T = (T1, · · · , Tm) of operators on H, set

(3.17) QT (X) :=

m
∑

i=1

T ∗
i XTi (X ∈ B(H)).

We define inductively Q0
T (I) = I and Qk

T (I) = QT

(

Qk−1
T (I)

)

for k ≥ 1. Then we have

(3.18) Qk
T (I) =

∑

|α|=k

k!

α!
T ∗αTα.

Lemma 3.1. Let T be a spherical commuting, bounded m-variable weighted shift with respect

to an orthonormal basis {en}n∈Nm . Let Tδ : {δk}k∈N be the (one-variable) shift associated with

T with respect to an orthonormal basis {fk}k∈N. Then

〈Qk
T (I)en, en〉 = ‖T k

δ f|n|‖2 (k ∈ N, n ∈ N
m).(3.19)

Proof. It is easy to see that the operator Qk
T (I) is diagonal with respect to the basis {en}, and

Qk
T (I)en = δ2|n|δ

2
|n|+1 · · · δ2|n|+k−1en (k ∈ N, n ∈ N

m).(3.20)

The desired conclusion is now immediate. �
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Proposition 3.2. Let T be a spherical commuting, bounded m-variable weighted shift with

respect to the orthonormal basis {en}n∈Nm . Let Tδ : {δk}k∈N be the shift associated with T with

respect to the orthonormal basis {fk}k∈N. Then the geometric spectral radius r(T ) := sup{‖z‖2 :

z ∈ σ(T )} of T is equal to the spectral radius of Tδ.

Proof. By [39, Theorem 1] and [10, Theorem 1], the geometric spectral radius R of T is given

by

R = lim
k→∞

∥

∥Qk
T (I)

∥

∥

1

2k .

It is easy to see that the orthogonal basis {en}n∈Nm diagonalizes the positive operator

Qk
T (I). Also, by (3.19), 〈Qk

T (I)en, en〉 = ‖T k
δ f|n|‖2 for every k ∈ N and n ∈ N

m. It follows that

lim
k→∞

∥

∥Qk
T (I)

∥

∥

1/2k
= sup

k≥0
‖T k

δ ‖1/k = r(Tδ),

by the well-known general formula for the spectral radius of a linear operator. �

Let C(H) denote the norm-closed ideal of compact operators on H. Since B(H)/C(H) is a

unital C∗-algebra, the Calkin algebra, there exist a Hilbert space K and an injective unital ∗-
representation π : B(H)/C(H) → B(K) [11, Chapter VIII]. In particular, π ◦ q : B(H) → B(K)

is a unital ∗-representation, where q : B(H) → B(H)/C(H) stands for the quotient (Calkin)

map. Set π ◦ q(T ) := (π ◦ q(T1), · · · , π ◦ q(Tm)).

We recall that a tuple T = (T1, . . . , Tm) is called essentially normal if all commutators

[Tj , Tk] and [T ∗
j , Tk], j, k = 1, . . . ,m are compact. The following (known) version of the

Fuglede–Putman commutativity theorem holds: given operators A and N on a Hilbert space

H, if N is essentially normal and the commutator [A,N ] is compact, then the commutator

[A,N∗] also is compact. This follows by applying the classical Fuglede–Putman theorem to

operators π ◦ q(N) and π ◦ q(A). We refer to [49] for an additional information.

It follows that a commutative tuple T is essentially normal whenever [T ∗
j , Tj ] are compact

for j = 1, . . . ,m.

Remark 3.3 : Let T : {w(i)
n } be a bounded spherical m-variable weighted shift and let Tδ :

{δk}k∈N be the one-variable shift associated with T. As it follows from [27, Corollary 4.4], T is

essentially normal if and only if Tδ is essentially normal if and only if limk→∞

(

δ2k − δ2k−1

)

= 0

(observe that by (2.14), ak
ak+1

= k+1
k+m

β̃2
k+1

β̃2
k

).

The main theorem of this section describes several spectral parts of spherical m-shifts.

Theorem 3.4. Let Mz be a bounded spherical multiplication m-tuple in H2(β), so that the

norm in H2(β) is given by (2.5) for a certain sequence β̃0, β̃1, β̃2, · · · , of positive numbers. Let

R(Mz), r(Mz), i(Mz) be given by

R(Mz) = lim
j→∞

sup
k≥0

j

√

β̃k+j

β̃k
,(3.21)

r(Mz) = lim inf
j→∞

j

√

β̃j ,(3.22)

i(Mz) = lim
j→∞

inf
k≥0

j

√

β̃k+j

β̃k
.(3.23)

Then i(Mz) ≤ r(Mz) ≤ R(Mz), and the following statements are true:

(1) The Taylor spectrum of T is the closed ball BR(Mz) in C
m.

(2) The ball Br(Mz) in C
m is the largest open ball in which all the power series in H2(β)

converge.
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(3) Either σp(T
∗) = Br(Mz) or σp(T

∗) = Br(Mz).

(4) σap(Mz) = Ai(Mz), R(Mz), where Ai(Mz), R(Mz) stands for the closed ball shell in C
m of

inner-radius i(Mz) and outer-radius R(Mz).

(5) If in addition, limk→∞
β̃k+1

β̃k

− β̃k

β̃k−1

= 0 then the essential spectrum of Mz is the closed

ball shell of inner-radius lim infk→∞
β̃k+1

β̃k

and outer-radius lim supk→∞
β̃k+1

β̃k

.

The first part of the Theorem 3.4 is obtained in [27, Theorem 4.5(1)], under the additional

assumption of essential normality, by entirely different methods. An upper estimate of the

geometric joint spectral radius of Mz is given in [33, Theorem 9.6].

Note further that statement (5) of the theorem is precisely [27, Theorem 4.5(2)]. We can

give a more general version of this statement.

Lemma 3.5. Let T be an essentially normal spherical m-tuple. Then the essential spectrum

of T is given by

σe(T ) =
{

z ∈ C
m : ‖z‖22 ∈ σe(QT (I))

}

.

Proof. We adapt the proof of [27, Theorem 4.5(2)] to the present situation. Suppose T is

essentially normal. Equivalently, (q(T1), · · · , q(Tm)) is a commuting normal m-tuple in the

Calkin Algebra. Let M be the maximal ideal space of the commutative C∗-algebra C∗(q(T ))

generated by q(T1), · · · , q(Tm). By [12, Corollary 3.10], the essential spectrum of T is given by

σe(T ) = {(φ(q(T1)), · · · , φ(q(Tm)) : φ ∈ M}.

If λ ∈ σe(T ) then for some φ ∈ M,

q(QT (I)− ‖λ‖2I) =
m
∑

j=1

q(T ∗
j )q(Tj)− |φ(q(Tj))|2.

Clearly, φ annihilates q(QT (I) − ‖λ‖2I) ∈ C∗(q(T )). Thus q(QT (I)− ‖λ‖2I) is not invertible,
and hence ‖λ‖2 ∈ σe(QT (I)). Conversely, suppose ‖λ‖22 ∈ σe(QT (I)) for some λ ∈ C

m. Thus

q(QT (I) − ‖λ‖22I) is not invertible in the Calkin algebra, and hence in C∗(q(T )). Thus there

exists some φλ ∈ M annihilating q(QT (I) − ‖λ‖22I). This gives ‖λ‖22 =
∑m

j=1 |φλ(q(Tj))|2. On

the other hand, (φλ(q(T1)), · · · , φλ(q(Tm)) ∈ σe(T ). By the spherical symmetry of the essential

spectrum, we must have λ ∈ σe(T ). �

Let us pass to the proof of Theorem 3.4. It involves several lemmas and propositions.

The first lemma is a multi-variable analog of a well-known fact about the approximate point

spectrum [44, Proposition 13].

Lemma 3.6. Let T be a commuting m-tuple of operators on a Hilbert space. Then the ap-

proximate point-spectrum of T is disjoint from the open ball Bm∞(T ), where

(3.24) m∞(T ) = sup
k≥1

inf
h∈H, ‖h‖=1

∥

∥Qk
T (I)h

∥

∥

1

2k .

Proof. Take any λ ∈ C
m such that ‖λ‖2 < m∞(T ). Then there exist some µ > 0 and integer

k > 0 such that ‖λ‖2 < µ and ‖Qk
T (I)h‖ ≥ µ2k‖h‖ for any h ∈ H.

Put λα = λα1

1 . . . λαm
m for α ∈ N

m. Notice that

∑

|α|=k

k!

α!
|λα|2 =

(

|λ1|2 + · · ·+ |λm|2
)k

= ‖λ‖2k2 .
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Hence, by the Cauchy-Schwarz inequality, for any unit vector h ∈ H,
∑

|α|=k

k!

α!
‖Tαh− λαh‖2 ≥

∑

|α|=k

k!

α!

(

‖Tαh‖ − |λα|
)2

≥
∑

|α|=k

k!

α!
‖Tαh‖2 − 2

(

∑

|α|=k

k!

α!
‖Tαh‖2

)1/2‖λ‖k2 + ‖λ‖2k2

= ‖Qk
T (I)h‖ − 2‖Qk

T (I)h‖1/2‖λ‖k2 + ‖λ‖2k2 ≥ (µk − ‖λ‖k2)2 > 0.

Therefore λ /∈ σap(T ). �

Proposition 3.7. The Taylor spectrum, approximate point-spectrum, point-spectrum, essential

spectrum of a spherical m-tuple are spherically symmetric.

Proof. The spherical symmetry of Taylor spectrum and approximate point-spectrum follows

immediately from the spectral mapping property for polynomials. On the other hand, the

spherical symmetry of the point spectrum follows from the definition. We now check the

assertion for the essential spectrum. Let T be our spherical m-tuple and let π, q, K be as in

the discussion following Proposition 3.2. One may deduce from [13, Theorem 6.2] and spectral

permanence for the Taylor spectrum that σe(T ) = σ(π ◦ q(T )). Since the Taylor spectrum of a

spherical tuple has spherical symmetry, it now suffices to show that π ◦ q(T ) is spherical. This
follows from Remark 1.2(2). �

In the single variable case, the following result was obtained by R. L. Kelley (refer to [41]).

Lemma 3.8. Let Mz be a bounded multiplication m-tuple in H2(β). Then the Taylor spectrum

of Mz is connected.

Proof. By [32, Corollary 3], σ(Mz) has a poly-circular symmetry (that is, ζ · w ∈ σ(Mz) for

any w ∈ σ(Mz) and any ζ ∈ T
m). Note that 0 belongs to the point spectrum σp(M

∗
z ) of M

∗
z ,

and hence to the Taylor spectrum of Mz in view of σp(M
∗
z ) ⊆ σ(M∗

z ) = {z̄ : z ∈ σ(Mz)} (for

z = (z1, . . . , zm), we put z̄ = (z̄1, . . . , z̄m)). It suffices to check that σ(M∗
z ) is connected. Let

K1 be the connected component of σ(M∗
z ) containing 0 and let K2 = σ(M∗

z ) \ K1. By the

Shilov Idempotent Theorem [13, Application 5.24], there exist invariant subspaces M1,M2 of

M∗
z such that H = M1 ∔M2 and σ(M∗

z |Mi
) = Ki for i = 1, 2.

Let h ∈ ker(DS∗
k
), where Sk := (Mk

z1 , · · · ,Mk
zm) for a positive integer k. Then h = x + y

for x ∈ M1 and y ∈ M2. It follows that (M∗
zj )

kx = 0 and (M∗
zj )

ky = 0 for all j = 1, · · · ,m.
If y is non-zero then 0 ∈ σp(S

∗
k) ⊆ σ(S∗

k), and hence by the spectral mapping property,

0 ∈ σ(M∗
z |M2

). Since 0 /∈ K2, we must have y = 0. It follows that M1 contains the dense linear

manifold
⋃

k≥1 ker(DS∗
k
), and hence M1 = H. Thus the Taylor spectrum of M∗

z is equal to K1.

In particular, the Taylor spectrum of Mz is connected. �

Lemma 3.9.

lim
j→∞

sup
k≥0

( β̃k+j+1

β̃k+1

)
1

j

(

(k + 2) · · · (k + j + 1)

(k +m+ 1) · · · (k + j +m)

)
1

2j

= lim
j→∞

sup
k≥0

(

β̃k+j+1

β̃k+1

)
1

j

,

lim
j→∞

inf
k≥0

( β̃k+j+1

β̃k+1

)
1

j

(

(k + 2) · · · (k + j + 1)

(k +m+ 1) · · · (k + j +m)

)
1

2j

= lim
j→∞

inf
k≥0

( β̃k+j+1

β̃k+1

)
1

j
.

Proof. For k ≥ 0 and j ≥ 1, put

ρkj :=
(k + 2) . . . (k + j + 1)

(k +m+ 1) . . . (k + j +m)
=

(k + 2) . . . (k +m)

(k + j + 2) . . . (k + j +m)
.

It is easy to see that ρkj is an increasing function of k (for a fixed j). Hence ρ
1

2j

0j ≤ ρ
1

2j

kj ≤ 1 for

all k ≥ 0. Since ρ
1

2j

0j → 1 as j → ∞, both statements of the Lemma follow. �
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Proof of Theorem 3.4. (1): Suppose Mz is spherical. We already recorded that the Taylor

spectrum of a spherical tuple has spherical symmetry. By Lemma 3.8, the Taylor spectrum

of Mz is connected. It is easy to see that the only bounded closed connected subsets of Cm

with spherical symmetry are balls and ball shells. This follows from the fact that the unitary

group U(m) acts transitively on any sphere. Since 0 belongs to the spectrum σ(Mz), it must

be a ball centered at the origin. The formula for the spectral radius of Mz now follows from

Proposition 3.2 and the known formula for the spectral radius of Tδ [44].

(2): Let w ∈ Br(Mz). We claim that any power series in H2(β) converges absolutely at

w. It suffices to check that w belongs to the point spectrum σp(M
∗
z ) of T ∗, or, equiva-

lently,
∑

n≥0 |wn|2/‖zn‖2β < ∞ (see [32, Propositions 18–20]). Since σp(M
∗
z ) has spherical

symmetry, it suffices to check that w̃ = (|w|, 0, · · · , 0) ∈ Br(Mz) belongs to σp(M
∗
z ). But

∑

n≥0 |w̃n|2/‖zn‖2β =
∑

n1≥0 |w|2n1/‖zn1

1 ‖2β =
∑∞

n1=0

(

m−1+n1

n1

)

β̃−2
n1

|w|2n1 < ∞, and the claim

follows. This also shows that Br(Mz) ⊆ σp(M
∗
z ). Finally, note that the maximal ball contained

in the domain of convergence of the above series is precisely Br(Mz).

(3): This is clear from the proof of (2) and the spherical symmetry of σp(M
∗
z ).

(4): First of all, it follows from (3.19) that

m∞(T ) = lim
k→∞

inf
‖h‖=1

‖T k
δ h‖ = i(Mz)

(see (3.24)). By Lemma 3.6, the open ball Bi(Mz) is disjoint from σap(T ). Since the approx-

imate point-spectrum of Mz is contained in the Taylor spectrum, it follows that σap(T ) ⊂
Ai(Mz),R(Mz).

To prove the converse inclusion, consider the bounded linear operator S1 := Mz1 |M, where

M is the closure of C[z1] in H
2(β). It is a one-variable weighted shift in the basis {zj1/‖z

j
1‖},

and we can apply to it [41, Theorem 1]. We get σap(S1) = {α ∈ C : i(S1) ≤ |α| ≤ R(S1)},
where R(S1), i(S1) are given by

R(S1) = lim
j→∞

sup
k≥0

( β̃k+j+1

β̃k+1

)
1

j

(

(k + 2) · · · (k + j + 1)

(k +m+ 1) · · · (k + j +m)

)
1

2j

i(S1) = lim
j→∞

inf
k≥0

( β̃k+j+1

β̃k+1

)
1

j

(

(k + 2) · · · (k + j + 1)

(k +m+ 1) · · · (k + j +m)

)
1

2j

.

By Lemma 3.9, i(S1) = i(Mz) and R(S1) = R(Mz).

The proof is divided into two cases:

i(Mz) = R(Mz): If this happens then by the preceding discussion, i(S1) = i(Mz) = R(Mz) =

R(S1). In particular, {w ∈ C : |w| = R(Mz)} = σap(S1) ⊆ σap(Mz1). Now by the projection

property for the approximate point-spectrum [13, Pg. 18], the projection of σap(Mz) onto the

z1-axis is precisely σap(Mz1). Since R(Mz) ∈ σap(Mz1), there exists w2, · · · , wm ∈ C such that

(R(Mz), w2, · · · , wm) ∈ σap(Mz). By (1) above, σap(Mz) ⊆ σ(Mz) = BR(Mz). It follows that

w2 = · · · = wm = 0, and hence (R(Mz), 0, · · · , 0) ∈ σap(Mz). Since σap(Mz) has spherical

symmetry, it contains the degenerate ball-shell Ai(Mz),R(Mz).

i(Mz) < R(Mz): Since the approximate point-spectrum is always closed, it suffices to check

that Ai(Mz),R(Mz) ⊆ σap(Mz). Let w ∈ Ai(Mz),R(Mz). By the spherical symmetry of σap(Mz),

we may take w of the form (‖w‖, 0, · · · , 0). We adapt the argument of [41, Theorem 1] to

the present situation. Choose numbers a, b such that i(Mz) < a < ‖w‖ < b < R(Mz).

Let ε > 0 be given. Choose positive integers n, k such that (‖w‖/b)n < ε, 1/k < ε and

‖zn+k+1
1 ‖/‖zk+1

1 ‖ > bn. We further choose positive integers p and q such that (a/‖w‖)p < ε,

q > n + k and ‖zp+q+1
1 ‖/‖zq+1

1 ‖ < ap. Now the argument in the ([41], Proof of Theorem 1)
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actually yields ‖(S1 − ‖w‖I)f‖ < ε‖S1‖‖f‖, where f ∈ M is given by

f(z1) =

p+q+1
∑

l=k+1

‖w‖k+1−lzl1.

Set g(z) = f(z1), and note that g ∈ H2(β) and ‖(Mz1 − ‖w‖I)g‖ < ε‖Mz1‖‖g‖. Further, since
1/k < ε, we have ‖Mzjg‖ < ε‖Mz1‖‖g‖ for j = 2, · · · ,m. Since ε > 0 is arbitrary, w ∈ σap(T ).

(5): The assertion about the essential spectrum is already obtained in [27, Theorem 4.5(2)].

Alternatively, it may be deduced from [27, Lemma 4.7], Remark 3.3 and Lemma 3.5. �

We remark that for an essentially commuting tuple T satisfying σe(T ) = ∂B, the C∗ algebra

it generates can be described using the results of [26].

Let T be an essentially normal, spherical m-tuple. It follows from Lemma 3.5 that the

essential spectrum of T is connected if and only if the essential spectrum of
∑m

j=1 T
∗
j Tj is

connected. If in addition, T is a multi-shift, then this always happens as seen above. In view

of this, it is interesting to note that there exists a jointly hyponormal 2-shift with disconnected

essential spectrum [17, Theorem 2.5].

We close the section with the following question.

Question 3.10. Calculate the essential spectrum of any spherical multiplication m-tuple Mz.

Is it always connected?

As it is shown in [36, Example 3.7.7], one always has σe(Mz) = σap(Mz) = Āi(Mz),R(Mz) if

Mz =Mz1 is a 1-tuple.

4. The Membership of Cross-commutators in the Schatten Classes

In this section, we discuss the so-called p-essential normality of spherical tuples. Recall that

an m-tuple T of commuting bounded linear operators T1, · · · , Tm is p-essentially normal if the

cross-commutators [T ∗
i , Tl] belong to the Schatten p-class for all j, l = 1, · · · ,m. As before, we

put δk = β̃k+1/β̃k, k ∈ N. Throughout this section, we assume that m ≥ 2.

Remark 4.1 : Anm-variable weighted shift T : {w(i)
n } is compact if and only if lim|n|→∞w

(i)
n =

0 for all indices i = 1, . . . ,m [32, Proposition 6]. It follows that a spherical m-variable weighted

shift is compact if and only if limk→∞ δk = 0.

The main part of this Section is devoted to the proof of the following criterion of when the

cross-commutators of a spherical weighted shift belong to the Schatten class Sp.

Theorem 4.2. Let Mz be a bounded spherical multiplication m-tuple in H2(β), so that the

norm in H2(β) is given by (2.5) for a certain sequence β̃0, β̃1, β̃2, · · · , of positive numbers. Let

1 ≤ p ≤ ∞. Then the following statements are equivalent:

(1) The self-commutators [M∗
zj ,Mzj ] belong to the Schatten class Sp for all j, 1 ≤ j ≤ m;

(2) The cross-commutators [M∗
zj ,Mzl ] belong to the Schatten class Sp for all indices j, l;

(3)

(4.25)
∞
∑

k=1

δ2pk km−p−1 +
∞
∑

k=1

∣

∣δ2k − δ2k−1

∣

∣

p
km−1 <∞.

We refer to [33] for some related results, such as the membership of I−∑

M∗
zjMzj in classes

Sp, see Proposition 6.9 and other results in Section 6 of the cited work.

The following notation will be used. We will say that two quantities Fk, Gk, depending on

k ∈ N, are comparable, and write Fk ≈ Gk (k → ∞) if there exist positive constants A, B, k0

(that may depend on m and p) such that AGk ≤ Fk ≤ BGk for all k ≥ k0.
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Lemma 4.3. Let 1 ≤ p <∞. Then for j 6= l,
∑

n ∈ N
m,

|n| = k, nj > 0

n
p/2
j n

p/2
l ≈ kp+m−1 as k → ∞.

Proof. By symmetry, it suffices to consider the case j = 1, l = 2. One has

∑

n ∈ N
m,

|n| = k, n1 > 0

n
p/2
1 n

p/2
2 =

1

m− 1

m
∑

r=2

∑

n ∈ N
m,

|n| = k, n1 > 0

n
p/2
1 np/2r ≈

∑

n ∈ N
m,

|n| = k, n1 > 0

n
p/2
1

(

m
∑

r=2

nr

)p/2
.

Hence

∑

n ∈ N
m,

|n| = k, n1 > 0

n
p/2
1 n

p/2
2 ≈

∑

|n|=k,n1>0

n
p/2
1 (k − n1)

p/2 =

k
∑

j=1

(

k−j+m−2
k−j

)

jp/2(k − j)p/2

≈
k

∑

j=1

jp/2(k − j)m−2+(p/2) ≈ kp+m−1

∫ 1

0
xp/2(1− x)m−2+(p/2) dx,

which gives the assertion of the Lemma. �

Lemma 4.4. Let 1 ≤ p < +∞. For any j, 1 ≤ j ≤ m, and any s ∈ R, one has

(4.26)
∑

n∈Nm, |n|=k

∣

∣snj − 1
∣

∣

p ≈ kp+m−1 |s|p + km−1,

where the constants involved in the relation ≈ can depend on p,m but not on k and s.

Proof. Denoting l = nj, we get

∑

n∈Nm, |n|=k

∣

∣snj − 1
∣

∣

p
=

k
∑

l=0

(k−l+m−2
m−2

)

|sl − 1|p ≈
k

∑

l=0

(k − l + 1)m−2|sl − 1|p.

So the estimate in one direction is trivial:

∑

n∈Nm, |n|=k

∣

∣snj−1
∣

∣

p ≤
k

∑

l=0

(k+1)m−2|sl−1|p ≤ C
k

∑

l=0

(k+1)m−2(|sl|p+1) ≤ C1

(

kp+m−1 |s|p+km−1
)

.

To prove the reverse estimate, define the interval I(s) as follows: I(s) = [k/2, k] if |s|k ≥ 6

and I(s) = [0, k/18] if |s|k < 6. One has

|sl − 1| ≥ 1 + |s|l
2

for l ∈ I(s).

Indeed, in the first case |sl − 1| ≥ |sl| − 1 ≥ (1 + |s|l)/2 and in the second case, |sl − 1| ≥
1− |sl| ≥ (1 + |s|l)/2. So for some positive constants C2, C3 one gets

∑

n∈Nm, |n|=k

∣

∣snj − 1
∣

∣

p ≥
∑

l∈Z∩I(s)

(k − l + 1)m−2|sl − 1|p

≥ C2

∑

l∈Z∩I(s)

(k − l + 1)m−2(1 + |s|plp) ≥ C3

(

kp+m−1 |s|p + km−1
)

. �

Proof of Theorem 4.2. We will use the following formulas, which are easy to deduce from (2.6).

Let 1 ≤ j ≤ m. Then

(4.27) [T ∗
j , Tj ] en =







[

(nj+1)δ2
|n|

|n|+m − njδ2|n|−1

|n|+m−1

]

en, nj > 0,

δ2
|n|

|n|+m en, nj = 0.

If 1 ≤ j, l ≤ m and j 6= l, then

(4.28) [T ∗
j , Tl] en =







√

nj(nl + 1)

[

δ2
|n|

|n|+m − δ2
|n|−1

|n|+m−1

]

en+εl−εj , nj > 0,

0, nj = 0.
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By symmetry, to prove that (1) is equivalent to (3), it suffices to give two-sided estimates of

the self-commutator [T ∗
m, Tm]. Equation (4.27) gives

∥

∥[T ∗
m, Tm]

∥

∥

p

Sp =
∞
∑

k=1

∑

n ∈ N
m,

|n| = k, nm > 0

∣

∣

∣

∣

(nm + 1)δ2k
k +m

−
nmδ

2
k−1

k +m− 1

∣

∣

∣

∣

p

+
∑

n∈Nm, nm=0

δ2p|n|

(|n|+m)p

≈
∞
∑

k=1

∑

n ∈ N
m,

|n| = k, nm > 0

∣

∣

∣

∣

nm

( δ2k
k +m

−
δ2k−1

k +m− 1

)

+
δ2k

k +m

∣

∣

∣

∣

p

+

∞
∑

k=0

(k + 1)m−2−p δ2pk .

By substituting s/t for s in (4.26), one gets

∑

n∈Nm, |n|=k

∣

∣nms− t
∣

∣

p ≈ kp+m−1 |s|p + km−1|t|p

(where the constants involved in the relation ≈ do not depend on s, t ∈ R and k). It follows

that

∥

∥[T ∗
m, Tm]

∥

∥

p

Sp ≈
∞
∑

k=1

∣

∣

∣

δ2k
k +m

−
δ2k−1

k +m− 1

∣

∣

∣

p
kp+m−1 +

∞
∑

k=0

δ2pk
(k +m)p

km−1 .

Now, by applying the two-sided estimate

(4.29) C1

(

∣

∣δ2k − δ2k−1

∣

∣

p

(k +m)p
−

δ2pk−1

(k +m)p(k +m− 1)p

)

≤
∣

∣

∣

δ2k
k +m

−
δ2k−1

k +m− 1

∣

∣

∣

p

≤ C2

(

∣

∣δ2k − δ2k−1

∣

∣

p

(k +m)p
+

δ2pk−1

(k +m)p(k +m− 1)p

)

,

where C1 and C2 are positive constants, it is easy to see that the relation
∥

∥[T ∗
m, Tm]

∥

∥

Sp < ∞
is equivalent to (3).

It is obvious that (2) implies (1), so it only remains to prove that (3) implies that the

commutators [T ∗
j , Tl] belong to Sp whenever the indices j and l are distinct. This follows easily

from (4.28), Lemma 4.3 and (4.29). �

Next we derive several consequences of Theorem 4.2, which are motivated by the so-called

cut-off phenomenon in the Berger-Shaw theory [2, Proposition 5.3], [19, Proposition 3], [22,

Theorem 1.1] (refer to [50] for a detailed account of this phenomenon).

Corollary 4.5. Let Mz be a bounded spherical multiplication m-tuple on H2(β). If all com-

mutators [M∗
zj ,Mzk ] belong to Sp, where 1 ≤ p <∞, then either the operators Mzj are compact

or p > m.

Proof. To simplify notation, we put τk = δ2k. It suffices to show that if all commutators

[M∗
zj ,Mzk ] are in Sm, then τk → 0 as k → ∞ (see Remark 4.1). Suppose, to the contrary, that

[M∗
zj ,Mzk ] are in Sm, but τk do not tend to zero. Then there exist an ε > 0 and a sequence

k1, k2, . . . such that τkj > ε for all j ∈ N. By Theorem 4.2,

(4.30)
∑

k

τmk k−1 +
∑

k

|τk+1 − τk|m km−1 <∞,

and, as we will now show, it leads to a contradiction. Choose N so large that

∞
∑

l=kN

|τl+1 − τl|m lm−1 <
(ε

2

)m
.
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Take any j ≥ N and any k such that kj ≤ k ≤ 2kj . Since
∑2kj−1

l=kj
1
l ≤ 1, we get

|τk − τkj | ≤
k−1
∑

l=kj

|τl+1 − τl|

≤
(

k−1
∑

l=kj

|τl+1 − τl|mlm−1
)

1

m ·
(

k−1
∑

l=kj

1

l

)
m−1

m
<
ε

2
· 1 =

ε

2
.

Hence τk > ε/2 for all k in the range kj ≤ k ≤ 2kj for all j ≥ N . This implies that

∞
∑

k=kj

τmk k−1 ≥
2kj
∑

k=kj

τmk k−1 ≥
(ε

2

)m
2kj
∑

k=kj

k−1 ≥ 1

2

(ε

2

)m

for all j ≥ N . Therefore the first sum in (4.30) diverges.

This contradiction implies that, in fact, τk should tend to 0. �

Corollary 4.6. Suppose that the sequence {δk} does not tend to zero and |δk+1 − δk| ≤ C/k

for some constant C. Then the commutators [M∗
zj ,Mzk ] belong to Sp if and only if p > m.

Proof. Since {δk} does not tend to zero. by Remark 4.1, none of Mz1 , · · · ,Mzm is compact.

If [M∗
zj ,Mzl ] ∈ Sp for all j, l, then by Corollary 4.5, p > m. The converse statement follows

immediately from Theorem 4.2. �

In particular, the statement of this Corollary holds if |δk−1| ≤ C/k for some constant C. It

can also be applied to sequences β̃k like β̃k = C1 exp(C2k
α), where C1, C2 and α are constants.

We end this section with the following question.

Question 4.7. Give a characterization of all (strongly) spherical m-tuples T such that ker(DT ∗)

is finite-dimensional and is cyclic for T , in terms of some free parameters (similarly to Theo-

rems 2.1 and 2.5). Can our results on the calculation of parts of the spectrum and on member-

ship of cross-commutators [Tj, T
∗
j ] in Sp be generalized to this subclass of spherical m-tuples?

5. Special Classes of Spherical Tuples

Recall that an m-tuple S = (S1, · · · , Sm) of commuting operators Si in B(H) is jointly

subnormal if there exist a Hilbert space K containing H and an m-tuple N = (N1, · · · , Nm) of

commuting normal operators Ni in B(K) such that Nih = Sih for every h ∈ H and 1 ≤ i ≤ m.

An m-tuple S = (S1, · · · , Sm) of commuting operators Si in B(H) is jointly hyponormal if

the m×m matrix ([T ∗
j , Ti])1≤i,j≤m is positive definite, where [A,B] stands for the commutator

AB −BA of A and B. It is not difficult to see that a jointly subnormal tuple is always jointly

hyponormal [5], [14].

Definition 5.1 : Fix an integer q ≥ 1 and put

Bq(QT ) :=

q
∑

s=0

(−1)s
(

q

s

)

Qs
T (I)(5.31)

(see (3.17), (3.18)). We say that T is a joint q-contraction (respectively, joint q-expansion) if

Bq(QT ) ≥ 0 (respectively, Bq(QT ) ≤ 0).

We say that T is a joint q-hyperexpansion if T is a joint k-expansion for all k = 1, · · · , q.
Also, T is said to be a joint complete hyperexpansion if T is a joint q-hyperexpansion for all

q ≥ 1. If Bq(QT ) = 0, then T is a joint q-isometry. If m = 1 then we drop the prefix 1- and

term joint in all the above definitions.
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The Bergman m-shift is jointly subnormal while the Drury-Arveson m-shift is a joint m-

isometry [24]. The Szegö m-shift being a joint isometry is jointly subnormal. It is also a joint

q-isometry for any q ≥ 1.

Remark 5.2 : Let T be a spherical m-tuple. Assume further that T is a joint p-isometry or a

joint 2-hyperexpansion. Then the approximate point-spectrum σap(T ) of T is a subset of the

unit sphere [9, Proposition 3.4]. Since σap(T ) is always non-empty, by its spherical symmetry,

it must be the entire unit sphere.

Theorem 5.3. Let T : {w(i)
n } be a spherical m-variable weighted shift. Let Tδ : {δk}k∈N be

the one-variable weighted shift associated with T (see the Definition 2.3). Then we have the

following statements:

(1) T is jointly subnormal if and only if Tδ is subnormal.

(2) T is a joint q-isometry if and only if Tδ is a q-isometry.

(3) T is a joint q-expansion if and only if Tδ is a q-expansion.

(4) T is a joint complete hyperexpansion if and only if Tδ is a complete hyperexpansion.

(5) T is jointly hyponormal if and only if Tδ is hyponormal.

Proof. The desired conclusions in (2)-(4) follow immediately from (3.19).

To see (1), without loss of generality, we may assume that QT (I) = T ∗
1 T1+ · · ·+T ∗

mTm ≤ I.

By [6, Theorem 5.2], an operator m-tuple T such that QT (I) ≤ I is jointly subnormal if and

only if
p

∑

j=0

(−1)j
(

p

j

)

∑

|α|=j

j!

α!
‖Tαf‖2 ≥ 0

for every f ∈ H and every p, k ∈ N. Now (1) may be derived from (3.19).

To see (5), let us recall first that Tδ is hyponormal if and only if and only if {δk}k∈N is an

increasing sequence. Suppose first that Tδ is hyponormal. By [14, Theorem 6.1], T is jointly

hyponormal if and only if the matrix

P =
(

w
(i)
n+εj

w
(j)
n+εi

− w(i)
n w(j)

n

)

1≤i,j≤m

is positive definite for every n ∈ N
m. By (2.6),

w(i)
n = δ|n|α

(i)
n (n ∈ N

m, i = 1, · · · ,m),

where α
(i)
n :=

√

ni+1
|n|+m is the weight multi-sequence of the Szegö m-shift. It is easy to see that

the matrix

Q =
(

α
(i)
n+εjα

(j)
n+εi − α(i)

n α(j)
n

)

1≤i,j≤m

is positive definite for every n ∈ N
m. Let Pij , Qij denote the (i, j)th entry of m×m matrices

P,Q respectively. It follows that

Pij = δ2|n|+1Qij + (δ2|n|+1 − δ2|n|)α
(i)
n α(j)

n

Since {δk}k∈N is an increasing sequence, P is positive definite.

Conversely, suppose T is jointly hyponormal. Then it follows from [9, Lemma 4.10] that

Q2
T (I) ≥ QT (I)

2, where QT (X) = T ∗
1XT1 + · · · + T ∗

mXTm (X ∈ B(H)). It is immediate from

(3.20) that {δk}k∈N is an increasing sequence. �

Let p > 0, and let Mz,p be as introduced in Example 1.3. Note that the sequence δk there

is given by δ2k = (k+m)/(k+ p). It is now easy to deduce from Theorem 5.3(5) that the tuple

Mz,p is jointly hyponormal if and only if p ≥ m. As we already mentioned there, for p ≥ m,

Mz,p is actually jointly subnormal (see [33, Theorem 9.8] for a closely related fact). Here are

a few more consequences of Theorem 5.3:
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(1) Mz,p is a spherical joint 2-expansion if and only if m− 1 ≤ p ≤ m.

(2) Mz,p is a spherical joint q-isometry if and only if p is a positive integer, p ≤ m and

q ≥ m− p+ 1 (see Proposition 5.5 below).

It is a trivial consequence of Corollary 4.5 and Theorem 5.3(5) that for a spherical hyponor-

mal m-variable weighted shift T , the cross-commutators can belong to Sp only if p > m. We

give an example of a spherical, jointly hyponormal 2-variable weighted shift for which none of

the self-commutators belongs to the Schatten class Sp for any p <∞.

Example 5.4. Define inductively the sequence {ρk}k∈N as follows:

ρ0 = 1, ρk+1 = ρk + ηk (k ∈ N),

where ηk = 1/2l if k is of the form 22
l

; and 0 otherwise. Obviously, {ρk}k∈N is increasing. We

next define β̃k inductively by setting β̃0 = 1 and β̃k+1 = β̃k
√
ρk (k ∈ N). Then the 2-variable

weighted shift T = (T1, T2) with weight multi-sequence

w(i)
n =

β̃|n|+1

β̃|n|

√

ni + 1

|n|+ 2
(n ∈ N

2, i = 1, 2)

is bounded, spherical and jointly hyponormal. Note that

∞
∑

k=1

k
∣

∣

∣

β̃2k+1

β̃2k
− β̃2k
β̃2k−1

∣

∣

∣

p
=

∞
∑

k=1

kηpk ≥ 22
l 1

2lp
→ ∞

as l → ∞. By Theorem 4.2, [T ∗
j , Tj ] does not belong to the Schatten class Sp for any p < ∞

and any j = 1, 2.

In a similar way, one give an example of a non-compact spherical 2-variable weighted shift T

such that the corresponding one-variable shift Tδ is a contraction (or, equivalently, the sequence

{β̃k} decays), but the cross-commutators do not belong to Sp for any p.

For a sequence {fk}∞k=0, we put ∇fk = fk+1 − fk. In what follows, we denote

γk = β̃2k .

The following is certainly known (see, for instance, [45, pg 50]). We include a short proof

for reader’s convenience.

Proposition 5.5. Let {β̃k}∞k=0 be a 1-variable sequence and Mz the multiplication operator by

z acting on the (1-variable) space H2(β̃).

(1) Mz is a q-isometry if and only if there is a polynomial S of degree q − 1 or less such

that γk = S(k) for all k ∈ N.

(2) Mz is a q-expansion if and only if (−1)q∇qγk ≤ 0 for any k ∈ N.

Proof. (1): By the definition, Mz is a q-isometry if and only if
∑q

s=0(−1)s
(q
s

)

M
∗s
z M

s
z = 0. The

left hand part is a diagonal operator in the basis {zk} (for any weights {β̃k}). Hence Mz is

a q-isometry iff
∑q

s=0(−1)s
(

q
s

)

〈M s
z z

k, M s
z z

k〉 = 0 for any k ∈ N, which happens iff ∇qγk ≡ 0.

This gives (1).

(2): This can be proved along the lines of the verification of (1), and hence we skip it. �

Now it follows from Theorem 5.3(2) that a spherical m-tuple Mz is a q-isometry if and only

if the corresponding scalar sequence {β̃k} satisfies β̃2k = S(k), k ∈ N, for some polynomial S,

whose degree is less or equal than q − 1 . In particular, we get the following fact.

Corollary 5.6. Let Mz be a spherical q-isometry. Then [M∗
zj ,Mzl ] is in Sp for all j, l if and

only if p > m.
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Proof. Assuming that them-tupleMz is a q-isometry, we get a polynomial S of degree d ≤ q−1

such that β2k = S(k), k ∈ N. Then δ2k − 1 ∼ d/k, and we can apply Corollary 4.6 to get our

statement. �

Proposition 5.7. Let T be a m-variable spherical weighted shift and {β̃k}, {δk} be the corre-

sponding 1-variable sequences. Suppose that δk ≤ C and that the sequence {δk} does not tend

to zero. Put γk = β̃2k (as before).

(1) If ∇2γk ≤ 0, then all commutators [T ∗
j , Tk] are in Sp iff p > m.

(2) If ∇3γk ≤ 0 and β̃k > C > 0, then it is also true that all commutators [T ∗
j , Tk] belong

to Sp iff p > m.

It will follow from the proof that it suffices to assume that the inequality ∇2γk ≤ 0 or

∇3γk ≤ 0 holds except for a finite number of indices.

Proof of Proposition 5.7. First observe that

(5.32) δ2k+1 − δ2k =
γk+2

γk+1
− γk+1

γk
=

∇2γk
γk

− ∇γk+1∇γk
γk+1γk

.

Proof of (1): Suppose that ∇2γk ≤ 0. It follows from Richter’s Lemma [30, Lemma 6.9]

that ∇γk ≥ 0 for all k. Since {γk} is a concave sequence,

∇γk = γk+1 − γk ≤ γk − γ0
k

≤ γk
k

for all k ≥ 1. Hence

|∇2γk| = −∇2γk = ∇γk −∇γk+1 ≤ ∇γk ≤ γk
k
.

Therefore, by (5.32),

|δ2k+1 − δ2k| ≤
|∇2γk|
γk

+
|∇γk+1||∇γk|

γk+1γk
≤ 1

k
+

1

k
· 1

k + 1
≤ 2

k
, k ≥ 2.

So the assertion (1) follows from Corollary 4.6.

Proof of (2): We are assuming that ∇3γk ≤ 0 and that γk ≥ C > 0. Then there is an

index k0 such that the sign of ∇2γk is constant for k ≥ k0. If ∇2γk ≤ 0 for all k ≥ k0, the

proof is as above. So we can suppose that there is k0 ∈ N such that 0 < ∇2γk ≤ ∇2γk0 for

k ≥ k0. Hence {∇γk}k≥k0 is a growing sequence. Let us distinguish two opposite cases.

Case A: ∇γk > 0 for large indices k > k0. Then ∇γk > C1 > 0, and therefore γk ≥ C2k

for large indices k, where C2 > 0. Next let k > 2k0. If k is even, then

γk > γk − γk/2 =

k−1
∑

ℓ=k/2

∇γℓ ≥
k

2
∇γk/2

Since {∇γℓ} is concave,
∇γk +∇γ0

2
≤ ∇γk/2 <

2γk
k
.

Therefore
∇γk
γk

≤ 4

k
+

|∇γ0|
γk

≤ C3

k
.

In the same way, one gets that ∇γk
γk

≤ C3

k for odd k, k > 2k0 (just replace indices 0, k/2 by

1, (k + 1)/2 in the above estimates). Since {∇2γk} is bounded, (5.32) implies the estimate

|δk+1 − δk| ≤ C/k, and we are done.

Case B: ∇γk ≤ 0 for all k ≥ k0. Hence {|∇γk|} decays for k ≥ k0, and

(k − k0)|∇γk| ≤
k−1
∑

ℓ=k0

|∇γℓ| = γk0 − γk ≤ γk0
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for k > k0, so that |∇γk| ≤ C/k. Next, for k > k0, ∇2γk = |∇γk|−|∇γk+1| ≤ |∇γk| ≤ C/k, and

once again, we obtain that |δk+1−δk| ≤ C/k by using (5.32) and the assumption β̃k ≥ const > 0.

Therefore in both cases A and B, Corollary 4.6 implies assertion (2). �

Example 5.8. In the part 2) of the last Proposition, one cannot drop the assumption β̃k ≥
C > 0. Indeed, define {β̃k} by β̃22k = 12−k and β̃22k+1 = 12−k/3, k ≥ 0. Then (∇3γ)2k =

−(2/9) · 12−k and (∇3γ)2k+1 = −(23/144) · 12−k, k ≥ 0, so that ∇3γk < 0 for all k. On the

other side, δ2k+1 − δ2k = (−1)k+1/12 for any k, so that in this case, the tuple Mz is bounded,

but is not essentially normal (and therefore the self-commutators do not belong to any Sp).

Remark 5.9 : Let T : {w(i)
n }n∈Nm be a sphericalm-variable weighted shift and let Tδ : {δk}k∈N

be the shift associated with T. Suppose that {δk}k∈N converges to a non-negative number λ.

Then by Remark 3.3, T is essentially normal. Moreover, by Theorem 3.4(5), the essential

spectrum of T is ∂Bλ. This happens whenever T is jointly hyponormal, a joint q-isometry or a

joint 2-hyperexpansion. In case T is jointly hyponormal, λ = ‖Tδ‖ while in the remaining two

cases λ is equal to 1.
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