SPHERICAL TUPLES OF HILBERT SPACE OPERATORS

SAMEER CHAVAN AND DMITRY YAKUBOVICH

Abstract

We introduce and study a class of operator tuples in complex Hilbert spaces, which we call spherical tuples. In particular, we characterize spherical multi-shifts, and more generally, multiplication tuples on RKHS. We further use these characterizations to describe various spectral parts including the Taylor spectrum. We also find a criterion for the Schatten S_{p}-class membership of cross-commutators of spherical m-shifts. We show, in particular, that cross-commutators of non-compact spherical m-shifts cannot belong to S_{p} for $p \leq m$.

We specialize our results to some well-studied classes of multi-shifts. We prove that the cross-commutators of a spherical joint m-shift, which is a q-isometry or a 2 -expansion, belongs to S_{p} if and only if $p>m$. We further give an example of a spherical jointly hyponormal 2-shift, for which the cross-commutators are compact but not in S_{p} for any $p<\infty$.

Contents

1. Introduction
2. Spherical Tuples
3. Spectral Theory for Multi-shifts
4. The Membership of Cross-commutators in the Schatten Classes
5. Special Classes of Spherical Tuples

References

1. Introduction

The motivation for the present paper comes from different directions. Firstly, as there is considerable literature on circular operators (refer to [44], [23], [4], [38], [40]), it is natural to look for the higher-dimensional analogs of circular operators. There are of course two possible analogs, namely, poly-circular tuples and spherical tuples. Multi-variable weighted shifts (for short, multi-shifts) form a subclass of the class of poly-circular tuples, and indeed, there are some important papers on this latter class (see, for instance, [32], [15], [27], [20]). There are also several important papers on multivariable weighted shifts that are spherical, see [8] 6], [2], [7], [1], [27], [25]. However, the higher-dimensional counter-parts of many important results in the masterful exposition [44] by A. Shields are either unknown or not formulated. The main objective of this paper is to introduce spherical operator tuples in an abstract way and to study some of their basic properties, as well as properties of spherical multi-variable weighted shifts, which form a subclass of this class.

One of our motivations is the following phenomenon concerning multi-dimensional crosscommutators and Hankel operators, which is often referred to as "cut-off": in several particular situations, these operators cannot be too small unless they are zero, see [31, [48, [51], 19], [37], [50]. More recently, related questions have been studied in relation with the multi-variable Berger-Shaw theory and the so-called Arveson conjecture, see, for instance, [18], [3], [21], [22], [28], [34] and others. In our context, we prove that cross-commutators of non-compact spherical m-shifts do not belong to S_{p} for $p \leq m$.

[^0]If \mathbb{N} stands for the set of non-negative integers, we denote by \mathbb{N}^{m} for the cartesian product $\mathbb{N} \times \cdots \times \mathbb{N}(m$ times $)$. Let $p=\left(p_{1}, \cdots, p_{m}\right)$ and $n=\left(n_{1}, \cdots, n_{m}\right)$ be in \mathbb{N}^{m}. We write $p \leq n$ if $p_{j} \leq n_{j}$ for $j=1, \cdots, m$. For $p \leq n,\binom{n}{p}$ is understood to be the product $\binom{n_{1}}{p_{1}} \cdots\binom{n_{m}}{p_{m}}$ and $|p|$ is understood to be $p_{1}+\cdots+p_{m}$.

For a Hilbert space \mathcal{H}, let $\mathcal{H}^{(m)}$ denote the orthogonal direct sum of m copies of \mathcal{H}. Let $B(\mathcal{H})$ denote the Banach algebra of bounded linear operators on \mathcal{H}. If the opposite is not specified, all the operators we consider will be assumed linear and bounded.

If $T=\left(T_{1}, \cdots, T_{m}\right)$ is an m-tuple of commuting bounded linear operators $T_{j}(1 \leq j \leq m)$ on \mathcal{H} then we set T^{*} to be $\left(T_{1}^{*}, \cdots, T_{m}^{*}\right)$ and T^{p} to be $T_{1}^{p_{1}} \cdots T_{m}^{p_{m}}$.

The main object of our interest in this paper is the class of so-called spherical tuples.
Definition 1.1 : Let T be an m-tuple of commuting bounded linear operators T_{1}, \cdots, T_{m} on an infinite dimensional Hilbert space \mathcal{H}. Let $\mathcal{U}(m)$ denote the group of complex $m \times m$ unitary matrices. For $U=\left(u_{j k}\right)_{1 \leq j, k \leq m} \in \mathcal{U}(m)$, the commuting operator m-tuple T_{U} is given by

$$
\begin{equation*}
\left(T_{U}\right)_{j}=\sum_{k=1}^{m} u_{j k} T_{k}(1 \leq j \leq m) \tag{1.1}
\end{equation*}
$$

We say that T is spherical if for every $U \in \mathcal{U}(m)$, there exists a unitary operator $\Gamma(U) \in B(\mathcal{H})$ such that $\Gamma(U) T_{j}=\left(T_{U}\right)_{j} \Gamma(U)$ for all $j=1, \cdots, m$. If, further, Γ can be chosen to be a strongly continuous unitary representation of $\mathcal{U}(m)$ on \mathcal{H} then we say that T is strongly spherical.

Remark 1.2 : Let $T=\left(T_{1}, \cdots, T_{m}\right)$ be a spherical m-tuple.
(1) Any permutation of T is unitarily equivalent to T. In particular, T_{j} is unitarily equivalent to T_{k} for any $1 \leq j, k \leq m$.
(2) For any unital $*$-representation $\pi: B(\mathcal{H}) \rightarrow B\left(\mathcal{H}_{1}\right), \pi(T):=\left(\pi\left(T_{1}\right), \cdots, \pi\left(T_{m}\right)\right)$ is also a spherical m-tuple. Indeed, since π sends unitaries to unitaries, $\pi(\Gamma(U)) \pi\left(T_{j}\right)=$ $\left(\pi(T)_{U}\right)_{j} \pi(\Gamma(U))$ for all $j=1, \cdots, m$, and $\pi(\Gamma(U))$ is unitary. We also observe that $T^{*}=\left(T_{1}^{*}, \cdots, T_{m}^{*}\right)$ is spherical.

Let $T=\left(T_{1}, \cdots, T_{m}\right)$ be an m-tuple of commuting bounded linear operators on a Hilbert space \mathcal{H}. Let D_{T} denote the linear transformation from \mathcal{H} to $\mathcal{H}^{(m)}$, given by

$$
D_{T} h:=\left(T_{1} h, \cdots, T_{m} h\right)(h \in \mathcal{H})
$$

Note that $\operatorname{ker}\left(D_{T}\right)=\bigcap_{i=1}^{m} \operatorname{ker}\left(T_{i}\right)$.
Next, we need to invoke the basics of the theory of multi-shifts 32]. First a definition.
Let T be an m-tuple of commuting operators T_{1}, \cdots, T_{m} on a Hilbert space \mathcal{H}. A closed subspace \mathcal{M} of \mathcal{H} is said to be cyclic for T if

$$
\mathcal{H}=\bigvee\left\{T^{n} x: x \in \mathcal{M}, n \in \mathbb{N}^{m}\right\}
$$

We say that T is cyclic with cyclic vector x if the subspace spanned by x is cyclic for T.
Let $\left\{w_{n}^{(j)}: 1 \leq j \leq m, n \in \mathbb{N}^{m}\right\}$ be a multi-sequence of complex numbers. An m-variable weighted shift $T=\left(T_{1}, \cdots, T_{m}\right)$ with respect to an orthonormal basis $\left\{e_{n}\right\}_{n \in \mathbb{N}^{m}}$ of a Hilbert space \mathcal{H} is defined by

$$
T_{j} e_{n}:=w_{n}^{(j)} e_{n+\varepsilon_{j}}(1 \leq j \leq m)
$$

where ε_{j} is the m-tuple with 1 in the j th place and zeros elsewhere. The notation T : $\left\{w_{n}^{(j)}\right\}_{n \in \mathbb{N}^{m}}$ will mean that T is the m-variable weighted shift tuple with weight multi-sequence $\left\{w_{n}^{(j)}: 1 \leq j \leq m, n \in \mathbb{N}^{m}\right\}$. Notice that T_{j} commutes with T_{k} if and only if $w_{n}^{(j)} w_{n+\varepsilon_{j}}^{(k)}=$ $w_{n}^{(k)} w_{n+\varepsilon_{k}}^{(j)}$ for all $n \in \mathbb{N}^{m}$. By [32, Corollary 9], T is bounded if and only if

$$
\sup \left\{\left|w_{n}^{(j)}\right|: 1 \leq j \leq m, n \in \mathbb{N}^{m}\right\}<\infty
$$

We always assume that the weight multi-sequence of T consists of positive numbers and that T is commuting. Note that $T:\left\{w_{n}^{(j)}\right\}_{n \in \mathbb{N}^{m}}$ is cyclic with cyclic vector e_{0}.

Let $T:\left\{w_{n}^{(j)}\right\}_{n \in \mathbb{N}^{m}}$ be an m-variable weighted shift. Define $\beta_{n}=\left\|T^{n} e_{0}\right\|\left(n \in \mathbb{N}^{m}\right)$ and consider the Hilbert space $H^{2}(\beta)$ of formal power series

$$
f(z)=\sum_{n \in \mathbb{N}^{m}} a_{n} z^{n}
$$

such that

$$
\|f\|_{\beta}^{2}=\sum_{n \in \mathbb{N}^{m}}\left|a_{n}\right|^{2} \beta_{n}^{2}<\infty .
$$

It follows from [32, Proposition 8] that any m-variable weighted shift T is unitarily equivalent to the m-tuple $M_{z}=\left(M_{z_{1}}, \cdots, M_{z_{m}}\right)$ of multiplication by the co-ordinate functions z_{1}, \cdots, z_{m} on the corresponding space $H^{2}(\beta)$. Notice that the linear set of polynomials in z_{1}, \cdots, z_{m} (that is, formal power series with finitely many non-zero coefficients) is dense in $H^{2}(\beta)$. Equivalently, M_{z} is cyclic with cyclic vector the constant formal power series 1 (that is, the formal series $\sum_{n \in \mathbb{N}^{m}} a_{n} z^{n}$, for which $a_{n}=0$ for all non-zero $n \in \mathbb{N}^{m}$ and $a_{0}=1$). The relation between weights $w_{n}^{(j)}$ and the sequence β_{n} is given by

$$
\begin{equation*}
w_{n}^{(j)}=\beta_{n+\varepsilon_{j}} / \beta_{n}, \quad 1 \leq j \leq m, n \in \mathbb{N}^{m} . \tag{1.2}
\end{equation*}
$$

Note further that $\operatorname{ker}\left(D_{M_{z}^{*}}\right)$ is spanned by the constant formal power series 1 .
Recall that all formal power series in $H^{2}(\beta)$ converge absolutely on the point-spectrum $\sigma_{p}\left(M_{z}^{*}\right)$ of the adjoint m-tuple M_{z}^{*} of M_{z} [32, Propositions 19 and 20]. In particular, $H^{2}(\beta)$ may be realized as a reproducing kernel Hilbert space (RKHS) with reproducing kernel \varkappa : $\sigma_{p}\left(T^{*}\right) \times \sigma_{p}\left(T^{*}\right) \rightarrow \mathbb{C}$ given by

$$
\begin{equation*}
\varkappa(z, w)=\sum_{n \in \mathbb{N}^{m}} \bar{w}^{n} z^{n} / \beta_{n}^{2} \quad\left(z, w \in \sigma_{p}\left(T^{*}\right)\right), \tag{1.3}
\end{equation*}
$$

assuming that $\sigma_{p}\left(M_{z}^{*}\right)$ has non-empty interior. Conversely, as it follows from Theorem 2.11 below, the multiplication m-tuple M_{z} acting in a RKHS \mathscr{H} with reproducing kernel \varkappa of the form (1.3) is unitarily equivalent to an m-variable weighted shift on $H^{2}(\beta)$ if all complex polynomials in z_{1}, \cdots, z_{m} are contained in \mathscr{H}. Notice that the norm in $H^{2}(\beta)$ has polycircular symmetry: $\|f(\zeta \cdot z)\|_{\beta}=\|f(z)\|_{\beta}$ for any $f \in H^{2}(\beta)$ and any $\zeta \in \mathbb{T}^{m}$, where $\zeta \cdot z=$ $\left(\zeta_{1} z_{1}, \ldots, \zeta_{m} z_{m}\right)$. So if the largest open set where all series in $H^{2}(\beta)$ converge is not empty, it is a Reinhardt domain.

We denote by \mathbb{B}_{R} the open ball centered at the origin and of radius $R>0$:

$$
\mathbb{B}_{R}:=\left\{z=\left(z_{1}, \cdots, z_{m}\right) \in \mathbb{C}^{m}: \quad\|z\|_{2}^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{m}\right|^{2}<R^{2}\right\} .
$$

The sphere centered at the origin and of radius $R>0$ is denoted by $\partial \mathbb{B}_{R}$. For simplicity, the unit ball \mathbb{B}_{1} and the unit sphere $\partial \mathbb{B}_{1}$ are denoted respectively by \mathbb{B} and $\partial \mathbb{B}$.

Let us discuss three basic examples of (spherical) weighted m-variable shifts, with which we are primarily concerned.

Example 1.3. For any real number $p>0$, let \mathscr{H}_{p} be the RKHS of holomorphic functions on the unit ball \mathbb{B} with reproducing kernel

$$
\varkappa_{p}(z, w)=\frac{1}{(1-\langle z, w\rangle)^{p}}(z, w \in \mathbb{B}) .
$$

If $M_{z, p}$ denotes the multiplication tuple on \mathscr{H}_{p} then it is unitarily equivalent to the weighted shift m-tuple with weight sequence

$$
\begin{equation*}
w_{n, p}^{(i)}=\sqrt{\frac{n_{i}+1}{|n|+p}}\left(n \in \mathbb{N}^{m}, i=1, \cdots, m\right) \tag{1.4}
\end{equation*}
$$

The RKHS's $\mathscr{H}_{m}, \mathscr{H}_{m+1}, \mathscr{H}_{1}$ are, respectively, the Hardy space $H^{2}(\partial \mathbb{B})$, the Bergman space $A^{2}(\mathbb{B})$, the Drury-Arveson space H_{m}^{2}. The multiplication tuples $M_{z, m}, M_{z, m+1}, M_{z, 1}$ are commonly known as the Szegö m-shift, the Bergman m-shift, the Drury-Arveson m-shift respectively. The spaces \mathscr{H}_{p} have been studied in many papers. In [47], a characterization of Carleson measures in these spaces has been given. In [33], the spaces $\mathscr{F}_{q}=\mathscr{H}_{1+m+q}$ have been studied; in particular, a kind of model theorem and von Neumann inequalities related to these spaces for row contractions is established there and some K-theory results are proved for the corresponding Toeplitz algebras. In this work, a scale of Dirichlet-type spaces corresponding to $q<0$ is also considered, but their definition is different, and they do not belong to the collection of spaces \mathscr{H}_{p}.

As it is proved in [6], $M_{z, p}$ is subnormal for any $p \geq m$. In fact, $M_{z, p}$ is jointly subnormal if and only if $p \geq m$, see the discussion after Theorem 5.3.

The paper is organized as follows. In the second section, we present various characterizations of spherical tuples. The main results of this section are Theorem 2.1, where we characterize m-variable weighted shifts (equivalently, multiplication m-tuples), which are spherical, and Theorem [2.5, which gives abstract conditions, when an arbitrary spherical operator m-tuple is unitarily equivalent to a multiplication m-tuple. We also discuss some examples. In Section 3, we describe various spectral parts of spherical multi-shifts, including the Taylor spectrum. In particular, we obtain refinements of some results in [27]. In Section 4, we provide a sufficient and necessary condition for the Schatten p-class membership of cross-commutators of spherical m-shifts. We deduce that for a noncompact m-tuple M_{z}, if $\left[M_{z_{j}}^{*}, M_{z_{k}}\right] \in S_{p}$ for all j, k, then $p>m$ (which is a manifestation of the cut-off). Here $[A, B]$ stands for the commutator $A B-B A$ of operators A, B on a space \mathcal{H}. The results of Sections 3 and 4 rely heavily on the results of Section 2. In the last Section 5, we mainly discuss the cut-off phenomenon for some special classes of spherical multi-shifts, such as q-expansions, q-isometries and jointly hyponormal tuples.

2. Spherical Tuples

Let $\mathbb{C}[z]$ stand for the vector space of analytic polynomials in z_{1}, \cdots, z_{m}. We define

$$
\operatorname{Hom}(k)=\left\{p \in \mathbb{C}[z]: p(z)=\sum_{|n|=k} a_{k} z^{n}\right\}
$$

For a polynomial $p \in \mathbb{C}[z]$ and an integer $k \geq 0$, we denote by $p_{[k]} \in \operatorname{Hom}(k)$ the homogeneous part of p of degree k. More generally, $f_{[k]}$ stands for the homogeneous part $\sum_{|n|=k} a_{k} z^{n}$ of a formal power series $f(z)=\sum_{n \in \mathbb{N}^{m}} a_{n} z^{n}$.

Let σ denote the normalized surface area measure on the unit sphere $\partial \mathbb{B}$. We often use the short notation $L^{2}(\partial \mathbb{B})$ for the Hilbert space $L^{2}(\partial \mathbb{B}, \sigma)$ of σ-square-integrable "functions" on $\partial \mathbb{B}$.

The first theorem of this section provides a handy characterization of spherical multi-shifts. The multi-shifts with weight multi-sequence given by (2.6) arise naturally in the study of reproducing $\mathbb{C}\left[z_{1}, \cdots, z_{m}\right]$-modules with $\mathcal{U}(m)$-invariant kernels, refer to [27, Section 4].

Theorem 2.1. Let M_{z} be a bounded multiplication m-tuple in $H^{2}(\beta)$. Then M_{z} is spherical if and only if the norm $\|\cdot\|_{\beta}$ on $H^{2}(\beta)$ can be expressed as

$$
\begin{equation*}
\|f\|_{\beta}^{2}=\sum_{k=0}^{\infty} \tilde{\beta}_{k}^{2}\left\|f_{[k]}\right\|_{L^{2}(\partial \mathbb{B})}^{2}\left(f \in H^{2}(\beta)\right) \tag{2.5}
\end{equation*}
$$

for a sequence $\tilde{\beta}_{0}, \tilde{\beta}_{1}, \tilde{\beta}_{2}, \cdots$, of positive numbers. If this happens then M_{z} is unitarily equivalent to the m-variable weighted shift $T:\left\{w_{n}^{(i)}\right\}_{n \in \mathbb{N}^{m}}$ with the weight sequence

$$
\begin{equation*}
w_{n}^{(i)}=\frac{\tilde{\beta}_{|n|+1}}{\tilde{\beta}_{|n|}} \sqrt{\frac{n_{i}+1}{|n|+m}}\left(n \in \mathbb{N}^{m}, 1 \leq i \leq m\right) \tag{2.6}
\end{equation*}
$$

In this case, the sequence $\beta_{n}=\left\|z^{n}\right\|_{\beta}$ can be expressed as

$$
\begin{equation*}
\beta_{n}=\tilde{\beta}_{|n|} \sqrt{\frac{(m-1)!n!}{(m-1+|n|)!}}\left(n \in \mathbb{N}^{m}\right) \tag{2.7}
\end{equation*}
$$

Remark 2.2 : Whenever $\left\{\beta_{n}\right\}_{n \in \mathbb{N}^{m}}$ is a multi-sequence, which gives rise to a spherical tuple M_{z}, we will denote by $\left\{\tilde{\beta}_{k}\right\}_{k \in \mathbb{N}}$ the corresponding scalar weight sequence, related to β via formula (2.7).

Definition 2.3 : Let $T:\left\{w_{n}^{(i)}\right\}_{n \in \mathbb{N} m}$ be a spherical m-variable weighted shift and let $\left\{\tilde{\beta}_{k}\right\}_{k \in \mathbb{N}}$ be the corresponding scalar weight sequence. Then the shift associated with T is the onevariable weighted shift $T_{\delta}:\left\{\delta_{k}\right\}_{k \in \mathbb{N}}$, where

$$
\delta_{k}:=\frac{\tilde{\beta}_{k+1}}{\tilde{\beta}_{k}}, \quad k \in \mathbb{N} .
$$

It is easy to see that the following statements are equivalent:
(1) A scalar weight sequence $\left\{\tilde{\beta}_{k}\right\}$ gives rise to a bounded spherical m-tuple M_{z} on $H^{2}(\beta)$, where β is given by (2.7);
(2) The spherical m-variable shift $T:\left\{w_{n}^{(i)}\right\}_{n \in \mathbb{N}^{m}}$ is bounded;
(3) $\sup _{k \geq 0} \delta_{k}<\infty$;
(4) The one-variable shift T_{δ}, associated with T, is bounded.

When dealing with a spherical multiplication m-tuple M_{z} and with the corresponding m variable weighted shift T, we will always assume that the condition (3) above holds.

For an m-tuple T of commuting bounded linear operators T_{1}, \cdots, T_{m} on \mathcal{H}, let

$$
Q_{T}(I):=\sum_{j=1}^{m} T_{j}^{*} T_{j} .
$$

Remark 2.4 : Let M_{z} be a bounded multiplication m-tuple in $H^{2}(\beta)$. Then $Q_{M_{z}}(I)=I$ if and only if M_{z} is the Szegö m-shift. Further, the defect operator $I-Q_{M_{z}^{*}}(I)$ is an orthogonal projection if and only if M_{z} is the Drury-Arveson m-shift.

The next result characterizes all multi-shifts within the whole class of spherical tuples and should be combined with the above Theorem 2.1. Recall that for an m-tuple $S=\left(S_{1}, \cdots, S_{m}\right)$, $\operatorname{ker}\left(D_{S^{*}}\right)=\bigcap_{i=1}^{m} \operatorname{ker}\left(S_{i}^{*}\right)$.

Theorem 2.5. Let T be a commuting, bounded spherical operator m-tuple on a Hilbert space \mathcal{H}. Then the following assertions are equivalent.
(1) $\operatorname{ker}\left(D_{T^{*}}\right)$ is a one-dimensional cyclic subspace for T;
(2) T is unitarily equivalent to an m-variable weighted shift;
(3) T is unitarily equivalent to a multiplication m-tuple M_{z} on a space $H^{2}(\beta)$.

Before we turn to the proofs of Theorems 2.1 and 2.5, let us see a couple of instructive examples.

Example 2.6. Let M_{z} be a bounded spherical multiplication m-tuple on a space $H^{2}(\beta)$ and suppose that the ball B_{R}, where all power series in $H^{2}(\beta)$ converge has positive radius (see

Theorem 3.4(2) below for the description of $R=r\left(M_{z}\right)$ in terms of β_{k} 's). Fix an integer $s>0$. Then the set

$$
H^{2}(\beta)_{s}=\left\{f \in H^{2}(\beta): D^{\alpha} f(0)=0 \quad \text { for all } \alpha,|\alpha|<s\right\}
$$

is a closed subspace of $H^{2}(\beta)$, which is invariant under M_{z}. Let T be the restriction of the m-tuple M_{z} to $H^{2}(\beta)_{s}$. Then T is a spherical m-tuple (see Theorem 2.12 below), but the dimension of $\operatorname{ker}\left(D_{T^{*}}\right)$ is greater than one. This gives an example of an m-tuple of operators of multiplication by the co-ordinate functions z_{1}, \ldots, z_{m} on a Hilbert space of scalar power series in z_{1}, \ldots, z_{m}, which does not satisfy the equivalent conditions (1)-(3) of Theorem 2.5.

Example 2.7. Here we show that the existence of a cyclic vector for a commuting spherical operator m-tuple T also does not imply the above conditions (1)-(3). Namely, take any integer $\ell>m-\frac{1}{2}$. Consider the Sobolev space $\mathcal{H}=W^{\ell, 2}(\partial \mathbb{B})$; we refer to [29] for a definition. We will need also the dual space $\mathcal{H}^{\prime}=W^{-\ell, 2}(\partial \mathbb{B})$; its elements are complex-valued distributions, defined on the unit sphere $\partial \mathbb{B}$. Both spaces are Hilbert, and infinitely differential functions are dense both in \mathcal{H}^{\prime} and in \mathcal{H}. The pairing between \mathcal{H} and \mathcal{H}^{\prime} is a continuation of the L^{2} pairing $\langle f, g\rangle=\int_{\partial \mathbb{B}} f \bar{g}$, defined for C^{∞} functions.

Let T be the multiplication tuple M_{z} on \mathcal{H}^{\prime}. Since the spaces \mathcal{H} and \mathcal{H}^{\prime} and their norms are invariant under unitary rotations in \mathbb{C}^{n}, T is a (strongly) spherical tuple.

It is easy to see that T is not unitarily equivalent to a spherical m-variable weighted shift. Indeed, if S denotes the m-tuple of multiplication by \bar{z} on \mathcal{H}^{\prime} then $\sum_{j=1}^{m} T_{j} S_{j}=I$. It follows that $\operatorname{ker}\left(D_{T^{*}}\right)=\{0\}$, and hence T cannot be unitarily equivalent to a weighted shift.

Nevertheless, T has a cyclic vector. Indeed, choose any dense sequence $\left\{a_{n}\right\}$ of points on $\partial \mathbb{B}$ such that their first coordinates $z_{1}\left(a_{n}\right)$ are all distinct. The adjoint tuple to T coincides with the multiplication tuple M_{z}, acting on \mathcal{H}. By the Sobolev embedding theorem, \mathcal{H} is continuously embedded into $C(\partial \mathbb{B})$. Hence for any sequence $\left\{c_{n}\right\}$ in ℓ^{1}, the linear functional

$$
\psi(f) \stackrel{\text { def }}{=} \sum_{n} c_{n} f\left(a_{n}\right)
$$

is bounded on \mathcal{H} and therefore is an element of \mathcal{H}^{\prime}. We assert that if the sequence $\left\{c_{n}\right\}$ does not vanish and decays sufficiently fast, then the vector $\psi \in \mathcal{H}^{\prime}$ is cyclic for $M_{z_{1}}$ and therefore for the whole tuple T.

Indeed, suppose that some function $f \in \mathcal{H}$ satisfies

$$
\psi\left(\left(\lambda-M_{z_{1}}\right)^{-1} f\right)=\sum_{n} \frac{c_{n} f\left(a_{n}\right)}{\lambda-z_{1}\left(a_{n}\right)}=0
$$

for any λ with $|\lambda|>1$. Suppose that $c_{n} \neq 0$ for all n, and $\sum_{n} n^{-2} \log \left|c_{n}\right|=-\infty$. Since the points $z_{1}\left(a_{n}\right)$ are all distinct, it follows from a theorem by Sibilev [46] that $c_{n} f\left(a_{n}\right)=0$ for all n, which implies that f is zero. Hence ψ is cyclic for the operator $M_{z_{1}}$ on \mathcal{H}^{\prime}.

We remark that a similar construction of a cyclic vector for a family of normal operators is given in 42].

Before proving Theorems 2.1 and 2.5, we need several lemmas.
Lemma 2.8. Let L be a finite-dimensional Hilbert space and let $\pi: \mathcal{U}(m) \rightarrow B(L)$ be an irreducible unitary representation with respect to two unitary structures defined by scalar products $\langle\cdot, \cdot\rangle_{1}$ and $\langle\cdot, \cdot\rangle_{2}$ on L. Then there is a constant $\gamma>0$ such that

$$
\langle x, y\rangle_{2}=\gamma\langle x, y\rangle_{1}(x, y \in L) .
$$

Proof. By the Riesz Representation Theorem, there exists a positive operator A on L such that $\langle x, y\rangle_{2}=\langle A x, y\rangle_{1}$ for every $x, y \in L$. Since L is finite-dimensional and A is positive, the
point-spectrum of A is a non-empty finite subset of $(0,+\infty)$. Let γ be the minimal eigenvalue of A. We claim that $\operatorname{ker}(A-\gamma I)=L$.

Since $A-\gamma I$ is a nonnegative operator, for $x \in L$, one has

$$
\begin{equation*}
\langle x, x\rangle_{2}=\gamma\langle x, x\rangle_{1} \text { iff }\langle(A-\gamma I) x, x\rangle_{1}=0 \text { iff } x \in \operatorname{ker}(A-\gamma I) \tag{2.8}
\end{equation*}
$$

Let $U \in \mathcal{U}(m)$ and $x \in \operatorname{ker}(A-\gamma I)$. By assumption, $\pi(U)$ preserves both scalar products, and hence by (2.8),

$$
\langle\pi(U) x, \pi(U) x\rangle_{2}=\langle x, x\rangle_{2}=\gamma\langle x, x\rangle_{1}=\gamma\langle\pi(U) x, \pi(U) x\rangle_{1}
$$

It follows that $\operatorname{ker}(A-\gamma I)$ is invariant under $\pi(U)$. Since $\pi(U)^{*}=\pi\left(U^{-1}\right), \operatorname{ker}(A-\gamma I)$ is indeed a reducing subspace for $\pi(U)$. Since $\operatorname{ker}(A-\gamma I) \neq\{0\}$ and π is irreducible by assumption, we must have $\operatorname{ker}(A-\gamma I)=L$. Thus the claim stands verified. The desired conclusion now follows from (2.8) and the polarization identity.

We also need an analogue of this lemma for reducible representations.
Lemma 2.9. Let L be a finite-dimensional Hilbert space and let $\pi: \mathcal{U}(m) \rightarrow B(L)$ be an unitary representation with respect to a unitary structure defined by a scalar product $\langle\cdot, \cdot\rangle_{1}$. Let $L=L_{1} \oplus L_{2} \oplus \cdots \oplus L_{k}$ be the corresponding decomposition of L into irreducible subspaces L_{j} and suppose these subspaces are of distinct dimensions. Suppose that we are given another semidefinite sesquilinear product $\langle\cdot, \cdot\rangle_{2}$ on L, which is invariant with respect to π : $\langle\pi(U) x, \pi(U) y\rangle_{2}=\langle x, y\rangle_{2}$ for all $x, y \in L$ and all $U \in \mathcal{U}(m)$. Then there are nonnegative constants $\tilde{\beta}_{1}, \ldots, \tilde{\beta}_{k}$ such that the following statements hold:
(1) $\langle x, y\rangle_{2}=\tilde{\beta}_{j}\langle x, y\rangle_{1}\left(x, y \in L_{j}\right)$;
(2) $\langle x, y\rangle_{2}=0$ if $x \in L_{p}, y \in L_{r}, p \neq r$.

Proof. Similarly to the previous proof, there is a nonnegative operator A on L such that $\langle x, y\rangle_{2}=\langle A x, y\rangle_{1}$ for every $x, y \in L$. By the assumption, one has a decomposition $\pi=$ $\pi_{1} \oplus \pi_{2} \oplus \cdots \oplus \pi_{k}$, where $\pi_{j}: \mathcal{U}(m) \rightarrow B\left(L_{j}\right)$ are irreducible representations. We obtain assertion (1) by applying Lemma 2.8 to representations π_{j} (if the product $\langle\cdot, \cdot\rangle_{2}$ is not definite, one can apply Lemma 2.8 to positive definite products $\langle\cdot, \cdot\rangle_{1}$ and $\left.\langle x, y\rangle_{3}=\langle x, y\rangle_{1}+\langle x, y\rangle_{2}\right)$. To see (2), note that π_{j} are all inequivalent representations and apply [43, Corollary 2.21].

Next lemma will be crucial in the proof of Theorem 2.5.
Lemma 2.10. Let T be a commuting, bounded spherical operator m-tuple on \mathcal{H}. Suppose that $\operatorname{ker}\left(D_{T^{*}}\right)$ is one-dimensional and is spanned by a vector $e \in \mathcal{H}$. Suppose that e is cyclic for T. Then there is sequence of positive weights $\left\{\tilde{\beta}_{k}\right\}_{k \geq 0}$ such that for any polynomial $p \in$ $\mathbb{C}\left[z_{1}, \ldots, z_{m}\right]$,

$$
\begin{equation*}
\|p(T) e\|^{2}=\sum_{k=0}^{\operatorname{deg} p} \tilde{\beta}_{k}\left\|p_{[k]}\right\|_{L^{2}(\partial \mathbb{B})}^{2} \tag{2.9}
\end{equation*}
$$

where $\|p\|_{L^{2}(\partial \mathbb{B})}^{2}=\int_{\partial \mathbb{B}}|p(z)|^{2} d \sigma(z)$ for the surface area measure σ on the unit sphere $\partial \mathbb{B}$. The sequence $\left\{\tilde{\beta}_{k}\right\}$ is defined uniquely.

Proof. Notice first that ker $D_{T^{*}}=\left(T_{1} \mathcal{H}+\cdots+T_{m} \mathcal{H}\right)^{\perp}$ is invariant under the action of $\mathcal{U}(m)$. Hence for any U in $\mathcal{U}(m)$, there is a scalar constant $\zeta(U),|\zeta(U)|=1$, such that $\Gamma(U) e=\zeta(U) e$.

Fix a positive integer N, and denote by H_{N} the space of polynomials in $\mathbb{C}[z]$ of degree less or equal to N. Clearly, H_{N} is a closed subspace of $L^{2}(\partial \mathbb{B})$; the corresponding scalar product will be denoted as $\langle\cdot, \cdot\rangle_{1}$. Define a second semidefinite sesquilinear product on H_{N} by

$$
\langle p, q\rangle_{2}=\langle p(T) e, q(T) e\rangle_{\mathcal{H}}
$$

Both products are invariant under the action of $\mathcal{U}(m)$. Indeed, $p\left(T_{U}\right) e=\zeta(U) \Gamma(U)^{-1} p(T) e$ for all $p \in \mathbb{C}[z]$ and $U \in \mathcal{U}(m)$. Hence

$$
\begin{aligned}
\langle p(U z), q(U z)\rangle_{2} & =\left\langle p\left(T_{U}\right) e, q\left(T_{U}\right) e\right\rangle_{\mathcal{H}} \\
& =\left\langle\zeta(U) \Gamma(U)^{-1} p(T) e, \zeta(U) \Gamma(U)^{-1} q(T) e\right\rangle_{\mathcal{H}}=\langle p, q\rangle_{2}
\end{aligned}
$$

for all $p, q \in H_{N}$. It follows from [43, pg. 175] that the decomposition of $\left(H_{N},\langle\cdot, \cdot\rangle_{1}\right)$ into irreducible subspaces with respect to the action of $\mathcal{U}(m)$ on H_{N} is given by $H_{N}=\operatorname{Hom}(0) \oplus$ $\operatorname{Hom}(1) \oplus \cdots \oplus \operatorname{Hom}(N)$. This fact and Lemma 2.9 imply formula (2.9) for some nonnegative constants $\tilde{\beta}_{0}, \ldots, \tilde{\beta}_{N}$. If a constant $\tilde{\beta}_{j}$ were zero, it would follow that $p(T) e=0$ for any homogeneous polynomial $p \in \operatorname{Hom}(j)$, which would imply that $p(T) e=0$ for all $p \in \operatorname{Hom}(k, 0)$ with $k>j$. Since e is cyclic, this would imply that \mathcal{H} is finite dimensional, which gives a contradiction.

Since N is arbitrary, the statement of Lemma follows.
Proof of Theorem 2.1. First of all, we mention that $\left\langle z^{n}, z^{k}\right\rangle_{L^{2}(\partial \mathbb{B})}=0$ for any distinct multiindices $n, k \in \mathbb{N}^{m}$ see [52, formula (1.21), page 13]. So the functions $z^{n}, n \in \mathbb{N}^{m}$ form an orthogonal sequence in $L^{2}(\partial \mathbb{B})$. It follows that the norm, defined by (2.5) , is an $H^{2}(\beta)$ norm for certain multi-sequence β_{n}. It is clear that the multiplication tuple M_{z} on the Hilbert space with the norm (2.5) is spherical. This gives the "if" part of the first statement.

Conversely, for each multiplication tuple M_{z}, the space $\operatorname{ker}\left(D_{M_{z}^{*}}\right)$ is one-dimensional and is spanned by the formal power series 1 . So we can apply Lemma 2.10 to get the "only if" part of the first statement.

Finally, one can make use of (2.5) and of the formula

$$
\begin{equation*}
\int_{\partial \mathbb{B}}\left|z^{n}\right|^{2} d \sigma(z)=\frac{(m-1)!n!}{(m-1+|n|)!}\left(n \in \mathbb{N}^{m}\right) \tag{2.10}
\end{equation*}
$$

(see [52, Lemma 1.11]) to derive the expressions (2.6) and (2.7) for $w_{n}^{(i)}$ and $\tilde{\beta}_{n}$ respectively.

Proof of Theorem 2.5. The equivalence of (2) and (3) has been noted already. If (3) holds, then $\operatorname{ker}\left(D_{T^{*}}\right)$ is one-dimensional and is spanned by the image in \mathcal{H} of the formal power series 1 under the unitary equivalence. This implies (1). Finally, suppose that (1) holds, and let e be a unit vector that spans $\operatorname{ker}\left(D_{T^{*}}\right)$. Then it follows from Lemma 2.10 that there is a sequence $\tilde{\beta}_{0}, \tilde{\beta}_{1}, \tilde{\beta}_{2}, \ldots$ such the map $p \mapsto p(T) e, p \in \mathbb{C}[z]$ extends to a unitary map from $H^{2}(\beta)$ to \mathcal{H}, which intertwines T with M_{z}.

Let $\Lambda \subset \mathbb{Z}_{+}^{m}$ be a set of multi-indices. In what follows, we will say that Λ is inductive if for any $n \in \Lambda$, the multi-indices $n+\varepsilon_{j}$ are also in Λ for $j=1, \ldots, m$.

Theorem 2.11. Let Ω be a Reinhardt domain in \mathbb{C}^{m} such that $0 \in \Omega$. Let \mathscr{H} be a $M_{z^{-}}$ invariant RKHS of functions on Ω such that $\mathscr{H} \subset \operatorname{Hol}(\Omega)$, the inclusion being continuous. Let $\varkappa(z, w)(z, w \in \Omega)$ denote the reproducing kernel of \mathscr{H}.

Then the following statements are equivalent.
(1) For every $\zeta \in \mathbb{T}^{m}$,

$$
\begin{equation*}
\varkappa(\zeta \cdot z, \zeta \cdot w)=\varkappa(z, w)(z, w \in \Omega) \tag{2.11}
\end{equation*}
$$

where $\zeta \cdot z=\left(\zeta_{1} z_{1}, \cdots, \zeta_{m} z_{m}\right) \in \mathbb{C}^{m}$.
(2) For every $\zeta \in \mathbb{T}^{m}, f(\zeta \cdot) \in \mathscr{H}$ whenever $f \in \mathscr{H}$, and

$$
\langle f(\zeta \cdot), g(\zeta \cdot)\rangle=\langle f, g\rangle(f, g \in \mathscr{H})
$$

(3) There exist a multi-sequence $\left\{\beta_{n}\right\}_{k \in \mathbb{Z}_{+}^{m}}$ and an inductive set $\Lambda \subset \mathbb{Z}_{+}^{m}$ such that $\mathscr{H}=$ $H^{2}(\beta)_{\Lambda}$, where

$$
H^{2}(\beta)_{\Lambda}=\left\{f \in H^{2}(\beta): D^{n} f(0)=0 \quad \text { for all } n \in \mathbb{Z}_{+}^{m}, n \notin \Lambda\right\}
$$

(4) There exists an inductive set $\Lambda^{\prime} \subset \mathbb{Z}_{+}^{m}$ such that the functions $z^{n}, n \in \Lambda^{\prime}$, are contained in \mathscr{H} and form there an orthogonal basis.
(5) There exist an inductive set $\Lambda^{\prime \prime} \subset \mathbb{Z}_{+}^{m}$ and a family $\left\{\alpha_{n}\right\}_{n \in \Lambda^{\prime \prime}}$ of positive numbers such that

$$
\begin{equation*}
\varkappa(z, w)=\sum_{n \in \Lambda^{\prime \prime}} \alpha_{n} z^{n} \bar{w}^{n}(z, w \in \Omega) \tag{2.12}
\end{equation*}
$$

Moreover, if (1)-(5) hold, then $\Lambda=\Lambda^{\prime}=\Lambda^{\prime \prime}$.
In (3), in the equality $\mathscr{H}=H^{2}(\beta)_{\Lambda}$ we identify analytic functions in Ω with the corresponding formal power series centered at the origin. This equality means that these two Hilbert spaces consist of the same functions and the norms in these two spaces are identical.

Theorem 2.12. Let \mathscr{H} be a M_{z}-invariant $R K H S$ of functions on \mathbb{B}_{R} in \mathbb{C}^{m}. Suppose $\mathscr{H} \subset$ $\operatorname{Hol}\left(\mathbb{B}_{R}\right)$, the inclusion being continuous. Let $\varkappa(z, w)\left(z, w \in \mathbb{B}_{R}\right)$ denote the reproducing kernel of \mathscr{H}.

Then the following statements are equivalent.
(1) For every $U \in \mathcal{U}(m)$,

$$
\begin{equation*}
\varkappa(U z, U w)=\varkappa(z, w)\left(z, w \in \mathbb{B}_{R}\right) \tag{2.13}
\end{equation*}
$$

(2) For every $U \in \mathcal{U}(m), f(U \cdot) \in \mathscr{H}$ whenever $f \in \mathscr{H}$, and

$$
\langle f(U \cdot), g(U \cdot)\rangle=\langle f, g\rangle(f, g \in \mathscr{H})
$$

(3) There exist $s \in \mathbb{Z}_{+}$and a scalar sequence $\left\{\tilde{\beta}_{k}\right\}_{k \in \mathbb{N}}$ such that $\mathscr{H}=H^{2}(\beta)_{s}$, where the multi-sequence β is given by (2.7) and

$$
H^{2}(\beta)_{s}=\left\{f \in H^{2}(\beta): D^{n} f(0)=0 \quad \text { for all } n \in \mathbb{Z}_{+}^{m},|n|<s\right\}
$$

If any of the conditions (1) - (3) holds, then M_{z} is a strongly spherical tuple.
Remark 2.13 : Some statements close to the above Theorem 2.12 are given in the beginning of Section 4 of the paper [27] by Guo, Hu and Xu , though they do not discuss the continuity of the representations Γ. As follows from their discussion, the spaces $H^{2}(\beta)_{s}$ are defined uniquely by their generating function $F(t)$, analytic in the disc $|t|<R^{2}$ in the complex plane, such that

$$
\varkappa(z, w)=F(\langle z, w\rangle)\left(z, w \in \mathbb{B}_{R}\right) .
$$

Such representation always exists, all the coefficients a_{n} in the expansion $F(t)=\sum_{k=s}^{\infty} a_{k} t^{k}$ are positive and are given by

$$
\begin{equation*}
a_{k}=\frac{(m-1+k)!}{(m-1)!k!} \frac{1}{\tilde{\beta}_{k}^{2}}, k \geq s \tag{2.14}
\end{equation*}
$$

(it follows from (1.3) and (2.7)).

Lemma 2.14. Let G be a subgroup of the group $G L_{m}(\mathbb{C})$ of invertible, complex $m \times m$ matrices and let Ω be a G-invariant (that is, $\mathfrak{g} z \in \Omega$ whenever $\mathfrak{g} \in G$ and $z \in \Omega$) domain in \mathbb{C}^{m} such that $0 \in \Omega$. Let \mathscr{H} be a M_{z}-invariant RKHS of functions on Ω such that $\mathscr{H} \subset \operatorname{Hol}(\Omega)$, the inclusion being continuous. Let $\varkappa(z, w)(z, w \in \Omega)$ denote the reproducing kernel of \mathscr{H}. Let $M_{z}=\left(M_{z_{1}}, \cdots, M_{z_{m}}\right)$ be the bounded m-tuple of multiplication by the co-ordinate functions z_{1}, \cdots, z_{m}. Then the following statements are equivalent:
(1) For every $\mathfrak{g} \in G$,

$$
\begin{equation*}
\varkappa(\mathfrak{g} z, \mathfrak{g} w)=\varkappa(z, w)(z, w \in \Omega) . \tag{2.15}
\end{equation*}
$$

(2) For every $\mathfrak{g} \in G, f(\mathfrak{g} \cdot) \in \mathscr{H}$ whenever $f \in \mathscr{H}$, and

$$
\langle f(\mathfrak{g} \cdot), h(\mathfrak{g} \cdot)\rangle=\langle f, h\rangle(f, h \in \mathscr{H}) .
$$

If this happens then the representation $\Gamma: G \rightarrow B(\mathscr{H})$ of G on \mathscr{H} given by

$$
\begin{equation*}
\Gamma(\mathfrak{g}) f(z)=f(\mathfrak{g} z)(z \in \Omega, \mathfrak{g} \in G) \tag{2.16}
\end{equation*}
$$

is strongly continuous, unitary and satisfies $\Gamma(\mathfrak{g}) M_{z_{j}}=M_{(\mathfrak{g} z)_{j}} \Gamma(\mathfrak{g})(j=1, \cdots, m)$. In particular, if $G=\mathcal{U}(m)$, then M_{z} is strongly spherical.

Proof. (1) implies (2): Suppose that (1) holds. Set

$$
\Gamma(\mathfrak{g}) \varkappa(\cdot, w)=\varkappa\left(\cdot, \mathfrak{g}^{-1}(w)\right)(w \in \Omega, \mathfrak{g} \in G)
$$

We check that Γ extends to a unitary representation of G on \mathscr{H}. By the reproducing property of \varkappa and (2.15),

$$
\langle\Gamma(\mathfrak{g}) \varkappa(\cdot, z), \Gamma(\mathfrak{g}) \varkappa(\cdot, w)\rangle=\langle\varkappa(\cdot, z), \varkappa(\cdot, w)\rangle .
$$

Since $\bigvee\{\varkappa(\cdot, w): w \in \Omega\}=\mathscr{H}, \Gamma(\mathfrak{g})$ extends isometrically to the entire \mathscr{H}. Since $\mathfrak{g}(\Omega)=\Omega$, $\Gamma(\mathfrak{g})$ is surjective, and hence unitary. Finally, since $\Gamma(\mathfrak{g})^{*}=\Gamma\left(\mathfrak{g}^{-1}\right)$, it follows that

$$
\Gamma(\mathfrak{g}) f(z)=\langle\Gamma(\mathfrak{g}) f, \varkappa(\cdot, z)\rangle=\left\langle f, \Gamma\left(\mathfrak{g}^{-1}\right) \varkappa(\cdot, z)\right\rangle=f(\mathfrak{g} z)
$$

for any $z \in \Omega$ and any $f \in \mathscr{H}$.
(2) implies (1): Assume that (2) is true. By the uniqueness of the reproducing kernel, it suffices to check that $\varkappa(\mathfrak{g} z, \mathfrak{g} w)$ is a reproducing kernel for \mathscr{H} for every $\mathfrak{g} \in G$. However,

$$
\langle f, \varkappa(\mathfrak{g} \cdot, \mathfrak{g} w)\rangle=\left\langle f\left(\mathfrak{g}^{-1} \cdot\right), \varkappa(\cdot, \mathfrak{g} w)\right\rangle=f(w)(w \in \Omega)
$$

which gives (1).
The fact that Γ is a unitary representation of G on \mathscr{H} follows from (2). It follows from the closed graph theorem that the operators $M_{z_{j}}$ are bounded. Notice that by Hartogs' separate analyticity theorem [35], $\varkappa(z, \bar{w})$ is holomorphic in z, w, and it follows that the map $w \rightarrow$ $\varkappa(w, w)$ is continuous. Since $\left\|\varkappa(\cdot, w)-\varkappa\left(\cdot, w_{0}\right)\right\|^{2}=\varkappa(w, w)+\varkappa\left(w_{0}, w_{0}\right)-2 \operatorname{Re} \varkappa\left(w, w_{0}\right)$, the function $w \mapsto \varkappa(\cdot, w) \in \mathcal{H}$ is norm continuous. Therefore $\Gamma(\mathfrak{g}) \varkappa(\cdot, w)$ depends continuously on \mathfrak{g} for any w. Since the reproducing kernels are complete, Γ is strongly continuous. The remaining part is a routine verification.

Remark 2.15 : We are particularly interested in the subgroups $\mathcal{U} \mathcal{D}(m)$ and $\mathcal{U}(m)$ of $G L_{m}(\mathbb{C})$, where $\mathcal{U} \mathcal{D}(m)$ denotes the subgroup of unitary diagonal $m \times m$ matrices.

Proof of Theorem 2.11. By Lemma 2.14, (1) and (2) are equivalent. It is clear that (3) and (4) are equivalent, and the corresponding sets Λ and Λ^{\prime} coincide whenever (3) and (4) hold. It is also clear that (3) implies (2).
(2) implies (4). Assume that (2) holds. Define the set $\Lambda^{\prime} \subset \mathbb{N}^{m}$ by

$$
\Lambda^{\prime}=\left\{n_{0} \in \mathbb{N}^{m}: \exists f=\sum a_{n} z^{n} \in \mathscr{H}: a_{n_{0}} \neq 0\right\}
$$

Since \mathscr{H} is M_{z}-invariant, Λ^{\prime} is inductive.
Put $S(t) f(z)=f\left(e^{i t} z\right), t \in \mathbb{R}^{m}$, where $e^{i t} z=\left(e^{i t_{1}} z_{1}, \ldots, e^{i t_{m}} z_{m}\right)$. By applying Lemma 2.14, we get that S is a unitary strongly continuous m-parameter group. Given any function $f(z)=$ $\sum a_{n} z^{n} \in \mathscr{H}$ and any $n_{0} \in \mathbb{N}^{m}$ such that $a_{n_{0}} \neq 0$, we notice that

$$
a_{n_{0}} z^{n_{0}}=\frac{1}{(2 \pi)^{m}} \int_{[0,2 \pi]^{m}} e^{-i n_{0} t} S(t) f d t
$$

(The integral is understood in the Bochner sense. The equality is true because it holds pointwise for any $z \in \Omega$.) It follows that for any $n_{0} \in \Lambda^{\prime}, z^{n_{0}} \in \mathscr{H}$.

Now take any $p, q \in \mathbb{N}^{m}$ such that $p \neq q$. Then for some $1 \leq j \leq m, p_{j} \neq q_{j}$. Let $\zeta=w \varepsilon_{j}+\sum_{i \neq j} \varepsilon_{i}$, where $w \in \mathbb{T}$. Then $\left\langle z^{p}, z^{q}\right\rangle=\left\langle\zeta z^{p}, \zeta z^{q}\right\rangle=w^{p_{j}-q_{j}}\left\langle z^{p}, z^{q}\right\rangle$, which is possible for all $w \in \mathbb{T}$ only if $\left\langle z^{p}, z^{q}\right\rangle=0$. We have checked that the functions $z^{n}, n \in \Lambda^{\prime}$ form an orthogonal sequence in \mathscr{H}. Any $f \in \mathscr{H}$ has a Taylor series representation $f(z)=\sum_{n \in \Lambda^{\prime}} a_{n} z^{n}$, which converges weakly in \mathscr{H}. Therefore the sequence $\left\{z^{n}\right\}_{n \in \Lambda^{\prime}}$ is in fact an orthogonal basis in \mathscr{H}.

Given any orthonormal basis $\left\{\phi_{k}\right\}_{k \in \mathscr{H}}$ in \mathscr{H}, the reproducing kernel of \mathscr{H} can be expressed by the well-known formula $\varkappa(z, w)=\sum_{k \in \mathscr{K}} \overline{\phi_{k}(w)} \phi_{k}(z)$. It follows that (3) implies (5) (with $\Lambda^{\prime \prime}=\Lambda$).

It is immediate that (5) implies (1), which concludes the proof of the fact that conditions (1)-(5) are all equivalent. It also has been shown already that if (1)-(5) are fulfilled, then $\Lambda=\Lambda^{\prime}=\Lambda^{\prime \prime}$.

Proof of Theorem 2.12. By Lemma 2.14, (1) is equivalent to (2). It is clear that (3) implies (2). It remains to prove that (2) implies (3). Suppose that (2) holds. Then we can apply Theorem 2.11 and deduce that $\mathscr{H}=H^{2}(\beta)_{\Lambda}$ for an inductive set Λ. Let $s=\min \{|n|: n \in \Lambda\}$, then the intersection R of \mathscr{H} with the space $\operatorname{Hom}(s)$ of analytic homogeneous polynomials of order s is non-zero, and the group $\mathcal{U}(m)$ acts on R. Since the action of $\mathcal{U}(m)$ on $\operatorname{Hom}(s)$ is irreducible (we already have used it in Lemma 2.10), it follows that $R=\operatorname{Hom}(s)$. Since Λ is inductive, $\Lambda=\left\{n \in \mathbb{N}^{m}:|n| \geq s\right\}$, which gives (3).

By Lemma [2.14, if any of the equivalent conditions (1)-(3) holds, then the tuple M_{z} consists of bounded operators. Now (3) implies that M_{z} is strongly spherical.

3. Spectral Theory for Multi-shifts

For a masterful exposition of various notions of invertibility, Fredholmness and multiparameter spectral theory, the reader is referred to [13]. For $T \in B(\mathcal{H})$, we reserve the symbols $\sigma(T), \sigma_{p}(T), \sigma_{a p}(T), \sigma_{e}(T)$ for the Taylor spectrum, point-spectrum, approximate-point spectrum, essential spectrum of T respectively. It is well known that the spectral mapping theorem for polynomial mappings holds for both the Taylor and the approximate-point spectra. Except the point-spectrum, all spectra mentioned above are always non-empty.

Given a commuting m-tuple $T=\left(T_{1}, \cdots, T_{m}\right)$ of operators on \mathcal{H}, set

$$
\begin{equation*}
Q_{T}(X):=\sum_{i=1}^{m} T_{i}^{*} X T_{i}(X \in B(\mathcal{H})) . \tag{3.17}
\end{equation*}
$$

We define inductively $Q_{T}^{0}(I)=I$ and $Q_{T}^{k}(I)=Q_{T}\left(Q_{T}^{k-1}(I)\right)$ for $k \geq 1$. Then we have

$$
\begin{equation*}
Q_{T}^{k}(I)=\sum_{|\alpha|=k} \frac{k!}{\alpha!} T^{* \alpha} T^{\alpha} \tag{3.18}
\end{equation*}
$$

Lemma 3.1. Let T be a spherical commuting, bounded m-variable weighted shift with respect to an orthonormal basis $\left\{e_{n}\right\}_{n \in \mathbb{N}^{m}}$. Let $T_{\delta}:\left\{\delta_{k}\right\}_{k \in \mathbb{N}}$ be the (one-variable) shift associated with T with respect to an orthonormal basis $\left\{f_{k}\right\}_{k \in \mathbb{N}}$. Then

$$
\begin{equation*}
\left\langle Q_{T}^{k}(I) e_{n}, e_{n}\right\rangle=\left\|T_{\delta}^{k} f_{|n|}\right\|^{2}\left(k \in \mathbb{N}, n \in \mathbb{N}^{m}\right) \tag{3.19}
\end{equation*}
$$

Proof. It is easy to see that the operator $Q_{T}^{k}(I)$ is diagonal with respect to the basis $\left\{e_{n}\right\}$, and

$$
\begin{equation*}
Q_{T}^{k}(I) e_{n}=\delta_{|n|}^{2} \delta_{|n|+1}^{2} \cdots \delta_{|n|+k-1}^{2} e_{n}\left(k \in \mathbb{N}, n \in \mathbb{N}^{m}\right) \tag{3.20}
\end{equation*}
$$

The desired conclusion is now immediate.

Proposition 3.2. Let T be a spherical commuting, bounded m-variable weighted shift with respect to the orthonormal basis $\left\{e_{n}\right\}_{n \in \mathbb{N}^{m}}$. Let $T_{\delta}:\left\{\delta_{k}\right\}_{k \in \mathbb{N}}$ be the shift associated with T with respect to the orthonormal basis $\left\{f_{k}\right\}_{k \in \mathbb{N}}$. Then the geometric spectral radius $r(T):=\sup \left\{\|z\|_{2}\right.$: $z \in \sigma(T)\}$ of T is equal to the spectral radius of T_{δ}.

Proof. By [39, Theorem 1] and [10, Theorem 1], the geometric spectral radius R of T is given by

$$
R=\lim _{k \rightarrow \infty}\left\|Q_{T}^{k}(I)\right\|^{\frac{1}{2 k}}
$$

It is easy to see that the orthogonal basis $\left\{e_{n}\right\}_{n \in \mathbb{N}^{m}}$ diagonalizes the positive operator $Q_{T}^{k}(I)$. Also, by ((3.19),$\left\langle Q_{T}^{k}(I) e_{n}, e_{n}\right\rangle=\left\|T_{\delta}^{k} f_{|n|}\right\|^{2}$ for every $k \in \mathbb{N}$ and $n \in \mathbb{N}^{m}$. It follows that

$$
\lim _{k \rightarrow \infty}\left\|Q_{T}^{k}(I)\right\|^{1 / 2 k}=\sup _{k \geq 0}\left\|T_{\delta}^{k}\right\|^{1 / k}=r\left(T_{\delta}\right)
$$

by the well-known general formula for the spectral radius of a linear operator.
Let $\mathcal{C}(\mathcal{H})$ denote the norm-closed ideal of compact operators on \mathcal{H}. Since $B(\mathcal{H}) / \mathcal{C}(\mathcal{H})$ is a unital C^{*}-algebra, the Calkin algebra, there exist a Hilbert space \mathcal{K} and an injective unital *representation $\pi: B(\mathcal{H}) / \mathcal{C}(\mathcal{H}) \rightarrow B(\mathcal{K})$ [11, Chapter VIII]. In particular, $\pi \circ q: B(\mathcal{H}) \rightarrow B(\mathcal{K})$ is a unital $*$-representation, where $q: B(\mathcal{H}) \rightarrow B(\mathcal{H}) / \mathcal{C}(\mathcal{H})$ stands for the quotient (Calkin) map. Set $\pi \circ q(T):=\left(\pi \circ q\left(T_{1}\right), \cdots, \pi \circ q\left(T_{m}\right)\right)$.

We recall that a tuple $T=\left(T_{1}, \ldots, T_{m}\right)$ is called essentially normal if all commutators $\left[T_{j}, T_{k}\right]$ and $\left[T_{j}^{*}, T_{k}\right], j, k=1, \ldots, m$ are compact. The following (known) version of the Fuglede-Putman commutativity theorem holds: given operators A and N on a Hilbert space H, if N is essentially normal and the commutator $[A, N]$ is compact, then the commutator $\left[A, N^{*}\right]$ also is compact. This follows by applying the classical Fuglede-Putman theorem to operators $\pi \circ q(N)$ and $\pi \circ q(A)$. We refer to [49] for an additional information.

It follows that a commutative tuple T is essentially normal whenever $\left[T_{j}^{*}, T_{j}\right]$ are compact for $j=1, \ldots, m$.
Remark 3.3 : Let $T:\left\{w_{n}^{(i)}\right\}$ be a bounded spherical m-variable weighted shift and let T_{δ} : $\left\{\delta_{k}\right\}_{k \in \mathbb{N}}$ be the one-variable shift associated with T. As it follows from [27, Corollary 4.4], T is essentially normal if and only if T_{δ} is essentially normal if and only if $\lim _{k \rightarrow \infty}\left(\delta_{k}^{2}-\delta_{k-1}^{2}\right)=0$ (observe that by (2.14),$\frac{a_{k}}{a_{k+1}}=\frac{k+1}{k+m} \frac{\tilde{\beta}_{k+1}^{2}}{\tilde{\beta}_{k}^{2}}$).

The main theorem of this section describes several spectral parts of spherical m-shifts.
Theorem 3.4. Let M_{z} be a bounded spherical multiplication m-tuple in $H^{2}(\beta)$, so that the norm in $H^{2}(\beta)$ is given by (2.5) for a certain sequence $\tilde{\beta}_{0}, \tilde{\beta}_{1}, \tilde{\beta}_{2}, \cdots$, of positive numbers. Let $R\left(M_{z}\right), r\left(M_{z}\right), i\left(M_{z}\right)$ be given by

$$
\begin{gather*}
R\left(M_{z}\right)=\lim _{j \rightarrow \infty} \sup _{k \geq 0} \sqrt[j]{\frac{\tilde{\beta}_{k+j}}{\tilde{\beta}_{k}}} \tag{3.21}\\
r\left(M_{z}\right)=\liminf _{j \rightarrow \infty} \sqrt[j]{\tilde{\beta}_{j}} \tag{3.22}\\
i\left(M_{z}\right)=\lim _{j \rightarrow \infty} \inf _{k \geq 0} \sqrt[j]{\frac{\tilde{\beta}_{k+j}}{\tilde{\beta}_{k}}} \tag{3.23}
\end{gather*}
$$

Then $i\left(M_{z}\right) \leq r\left(M_{z}\right) \leq R\left(M_{z}\right)$, and the following statements are true:
(1) The Taylor spectrum of T is the closed ball $\overline{\mathbb{B}}_{R\left(M_{z}\right)}$ in \mathbb{C}^{m}.
(2) The ball $\mathbb{B}_{r\left(M_{z}\right)}$ in \mathbb{C}^{m} is the largest open ball in which all the power series in $H^{2}(\beta)$ converge.
(3) Either $\sigma_{p}\left(T^{*}\right)=\mathbb{B}_{r\left(M_{z}\right)}$ or $\sigma_{p}\left(T^{*}\right)=\overline{\mathbb{B}}_{r\left(M_{z}\right)}$.
(4) $\sigma_{a p}\left(M_{z}\right)=\bar{A}_{i\left(M_{z}\right), R\left(M_{z}\right)}$, where $\bar{A}_{i\left(M_{z}\right), R\left(M_{z}\right)}$ stands for the closed ball shell in \mathbb{C}^{m} of inner-radius $i\left(M_{z}\right)$ and outer-radius $R\left(M_{z}\right)$.
(5) If in addition, $\lim _{k \rightarrow \infty} \frac{\tilde{\beta}_{k+1}}{\tilde{\beta}_{k}}-\frac{\tilde{\beta}_{k}}{\widehat{\beta}_{k-1}}=0$ then the essential spectrum of M_{z} is the closed ball shell of inner-radius $\lim \inf _{k \rightarrow \infty} \frac{\tilde{\beta}_{k+1}}{\tilde{\beta}_{k}}$ and outer-radius $\lim \sup _{k \rightarrow \infty} \frac{\tilde{\beta}_{k+1}}{\dot{\beta}_{k}}$.

The first part of the Theorem 3.4 is obtained in [27, Theorem 4.5(1)], under the additional assumption of essential normality, by entirely different methods. An upper estimate of the geometric joint spectral radius of M_{z} is given in [33, Theorem 9.6].

Note further that statement (5) of the theorem is precisely [27, Theorem 4.5(2)]. We can give a more general version of this statement.

Lemma 3.5. Let T be an essentially normal spherical m-tuple. Then the essential spectrum of T is given by

$$
\sigma_{e}(T)=\left\{z \in \mathbb{C}^{m}:\|z\|_{2}^{2} \in \sigma_{e}\left(Q_{T}(I)\right)\right\}
$$

Proof. We adapt the proof of [27, Theorem 4.5(2)] to the present situation. Suppose T is essentially normal. Equivalently, $\left(q\left(T_{1}\right), \cdots, q\left(T_{m}\right)\right)$ is a commuting normal m-tuple in the Calkin Algebra. Let \mathcal{M} be the maximal ideal space of the commutative C^{*}-algebra $C^{*}(q(T))$ generated by $q\left(T_{1}\right), \cdots, q\left(T_{m}\right)$. By [12, Corollary 3.10], the essential spectrum of T is given by

$$
\sigma_{e}(T)=\left\{\left(\phi\left(q\left(T_{1}\right)\right), \cdots, \phi\left(q\left(T_{m}\right)\right): \phi \in \mathcal{M}\right\}\right.
$$

If $\lambda \in \sigma_{e}(T)$ then for some $\phi \in \mathcal{M}$,

$$
q\left(Q_{T}(I)-\|\lambda\|^{2} I\right)=\sum_{j=1}^{m} q\left(T_{j}^{*}\right) q\left(T_{j}\right)-\left|\phi\left(q\left(T_{j}\right)\right)\right|^{2} .
$$

Clearly, ϕ annihilates $q\left(Q_{T}(I)-\|\lambda\|^{2} I\right) \in C^{*}(q(T))$. Thus $q\left(Q_{T}(I)-\|\lambda\|^{2} I\right)$ is not invertible, and hence $\|\lambda\|^{2} \in \sigma_{e}\left(Q_{T}(I)\right)$. Conversely, suppose $\|\lambda\|_{2}^{2} \in \sigma_{e}\left(Q_{T}(I)\right)$ for some $\lambda \in \mathbb{C}^{m}$. Thus $q\left(Q_{T}(I)-\|\lambda\|_{2}^{2} I\right)$ is not invertible in the Calkin algebra, and hence in $C^{*}(q(T))$. Thus there exists some $\phi_{\lambda} \in \mathcal{M}$ annihilating $q\left(Q_{T}(I)-\|\lambda\|_{2}^{2} I\right)$. This gives $\|\lambda\|_{2}^{2}=\sum_{j=1}^{m}\left|\phi_{\lambda}\left(q\left(T_{j}\right)\right)\right|^{2}$. On the other hand, $\left(\phi_{\lambda}\left(q\left(T_{1}\right)\right), \cdots, \phi_{\lambda}\left(q\left(T_{m}\right)\right) \in \sigma_{e}(T)\right.$. By the spherical symmetry of the essential spectrum, we must have $\lambda \in \sigma_{e}(T)$.

Let us pass to the proof of Theorem [3.4, It involves several lemmas and propositions. The first lemma is a multi-variable analog of a well-known fact about the approximate point spectrum [44, Proposition 13].

Lemma 3.6. Let T be a commuting m-tuple of operators on a Hilbert space. Then the approximate point-spectrum of T is disjoint from the open ball $\mathbb{B}_{m_{\infty}(T)}$, where

$$
\begin{equation*}
m_{\infty}(T)=\sup _{k \geq 1} \inf _{h \in \mathcal{H},\|h\|=1}\left\|Q_{T}^{k}(I) h\right\|^{\frac{1}{2 k}} . \tag{3.24}
\end{equation*}
$$

Proof. Take any $\lambda \in \mathbb{C}^{m}$ such that $\|\lambda\|_{2}<m_{\infty}(T)$. Then there exist some $\mu>0$ and integer $k>0$ such that $\|\lambda\|_{2}<\mu$ and $\left\|Q_{T}^{k}(I) h\right\| \geq \mu^{2 k}\|h\|$ for any $h \in \mathcal{H}$.

Put $\lambda^{\alpha}=\lambda_{1}^{\alpha_{1}} \ldots \lambda_{m}^{\alpha_{m}}$ for $\alpha \in \mathbb{N}^{m}$. Notice that

$$
\sum_{|\alpha|=k} \frac{k!}{\alpha!}\left|\lambda^{\alpha}\right|^{2}=\left(\left|\lambda_{1}\right|^{2}+\cdots+\left|\lambda_{m}\right|^{2}\right)^{k}=\|\lambda\|_{2}^{2 k} .
$$

Hence, by the Cauchy-Schwarz inequality, for any unit vector $h \in \mathcal{H}$,

$$
\begin{aligned}
\sum_{|\alpha|=k} \frac{k!}{\alpha!}\left\|T^{\alpha} h-\lambda^{\alpha} h\right\|^{2} & \geq \sum_{|\alpha|=k} \frac{k!}{\alpha!}\left(\left\|T^{\alpha} h\right\|-\left|\lambda^{\alpha}\right|\right)^{2} \\
& \geq \sum_{|\alpha|=k} \frac{k!}{\alpha!}\left\|T^{\alpha} h\right\|^{2}-2\left(\sum_{|\alpha|=k} \frac{k!}{\alpha!}\left\|T^{\alpha} h\right\|^{2}\right)^{1 / 2}\|\lambda\|_{2}^{k}+\|\lambda\|_{2}^{2 k} \\
& =\left\|Q_{T}^{k}(I) h\right\|-2\left\|Q_{T}^{k}(I) h\right\|^{1 / 2}\|\lambda\|_{2}^{k}+\|\lambda\|_{2}^{2 k} \geq\left(\mu^{k}-\|\lambda\|_{2}^{k}\right)^{2}>0
\end{aligned}
$$

Therefore $\lambda \notin \sigma_{a p}(T)$.
Proposition 3.7. The Taylor spectrum, approximate point-spectrum, point-spectrum, essential spectrum of a spherical m-tuple are spherically symmetric.

Proof. The spherical symmetry of Taylor spectrum and approximate point-spectrum follows immediately from the spectral mapping property for polynomials. On the other hand, the spherical symmetry of the point spectrum follows from the definition. We now check the assertion for the essential spectrum. Let T be our spherical m-tuple and let π, q, \mathcal{K} be as in the discussion following Proposition 3.2, One may deduce from [13, Theorem 6.2] and spectral permanence for the Taylor spectrum that $\sigma_{e}(T)=\sigma(\pi \circ q(T))$. Since the Taylor spectrum of a spherical tuple has spherical symmetry, it now suffices to show that $\pi \circ q(T)$ is spherical. This follows from Remark 1.2(2).

In the single variable case, the following result was obtained by R. L. Kelley (refer to [41]).
Lemma 3.8. Let M_{z} be a bounded multiplication m-tuple in $H^{2}(\beta)$. Then the Taylor spectrum of M_{z} is connected.

Proof. By [32, Corollary 3], $\sigma\left(M_{z}\right)$ has a poly-circular symmetry (that is, $\zeta \cdot w \in \sigma\left(M_{z}\right)$ for any $w \in \sigma\left(M_{z}\right)$ and any $\left.\zeta \in \mathbb{T}^{m}\right)$. Note that 0 belongs to the point spectrum $\sigma_{p}\left(M_{z}^{*}\right)$ of M_{z}^{*}, and hence to the Taylor spectrum of M_{z} in view of $\sigma_{p}\left(M_{z}^{*}\right) \subseteq \sigma\left(M_{z}^{*}\right)=\left\{\bar{z}: z \in \sigma\left(M_{z}\right)\right\}$ (for $z=\left(z_{1}, \ldots, z_{m}\right)$, we put $\left.\bar{z}=\left(\bar{z}_{1}, \ldots, \bar{z}_{m}\right)\right)$. It suffices to check that $\sigma\left(M_{z}^{*}\right)$ is connected. Let K_{1} be the connected component of $\sigma\left(M_{z}^{*}\right)$ containing 0 and let $K_{2}=\sigma\left(M_{z}^{*}\right) \backslash K_{1}$. By the Shilov Idempotent Theorem [13, Application 5.24], there exist invariant subspaces $\mathcal{M}_{1}, \mathcal{M}_{2}$ of M_{z}^{*} such that $\mathcal{H}=\mathcal{M}_{1} \dot{+} \mathcal{M}_{2}$ and $\sigma\left(M_{z}^{*} \mid{ }_{M_{i}}\right)=K_{i}$ for $i=1,2$.

Let $h \in \operatorname{ker}\left(D_{S_{k}^{*}}\right)$, where $S_{k}:=\left(M_{z_{1}}^{k}, \cdots, M_{z_{m}}^{k}\right)$ for a positive integer k. Then $h=x+y$ for $x \in \mathcal{M}_{1}$ and $y \in \mathcal{M}_{2}$. It follows that $\left(M_{z_{j}}^{*}\right)^{k} x=0$ and $\left(M_{z_{j}}^{*}\right)^{k} y=0$ for all $j=1, \cdots, m$. If y is non-zero then $0 \in \sigma_{p}\left(S_{k}^{*}\right) \subseteq \sigma\left(S_{k}^{*}\right)$, and hence by the spectral mapping property, $0 \in \sigma\left(\left.M_{z}^{*}\right|_{\mathcal{M}_{2}}\right)$. Since $0 \notin K_{2}$, we must have $y=0$. It follows that \mathcal{M}_{1} contains the dense linear manifold $\bigcup_{k \geq 1} \operatorname{ker}\left(D_{S_{k}^{*}}\right)$, and hence $\mathcal{M}_{1}=\mathcal{H}$. Thus the Taylor spectrum of M_{z}^{*} is equal to K_{1}. In particular, the Taylor spectrum of M_{z} is connected.

Lemma 3.9.

$$
\begin{aligned}
& \lim _{j \rightarrow \infty} \sup _{k \geq 0}\left(\frac{\tilde{\beta}_{k+j+1}}{\tilde{\beta}_{k+1}}\right)^{\frac{1}{j}}\left(\frac{(k+2) \cdots(k+j+1)}{(k+m+1) \cdots(k+j+m)}\right)^{\frac{1}{2 j}}=\lim _{j \rightarrow \infty} \sup _{k \geq 0}\left(\frac{\tilde{\beta}_{k+j+1}}{\tilde{\beta}_{k+1}}\right)^{\frac{1}{j}}, \\
& \lim _{j \rightarrow \infty} \inf _{k \geq 0}\left(\frac{\tilde{\beta}_{k+j+1}}{\tilde{\beta}_{k+1}}\right)^{\frac{1}{j}}\left(\frac{(k+2) \cdots(k+j+1)}{(k+m+1) \cdots(k+j+m)}\right)^{\frac{1}{2 j}}=\lim _{j \rightarrow \infty} \inf _{k \geq 0}\left(\frac{\tilde{\beta}_{k+j+1}}{\tilde{\beta}_{k+1}}\right)^{\frac{1}{j}} .
\end{aligned}
$$

Proof. For $k \geq 0$ and $j \geq 1$, put

$$
\rho_{k j}:=\frac{(k+2) \ldots(k+j+1)}{(k+m+1) \ldots(k+j+m)}=\frac{(k+2) \ldots(k+m)}{(k+j+2) \ldots(k+j+m)} .
$$

It is easy to see that $\rho_{k j}$ is an increasing function of k (for a fixed j). Hence $\rho_{0 j}^{\frac{1}{2 j}} \leq \rho_{k j}^{\frac{1}{2 j}} \leq 1$ for all $k \geq 0$. Since $\rho_{0 j}^{\frac{1}{2 j}} \rightarrow 1$ as $j \rightarrow \infty$, both statements of the Lemma follow.

Proof of Theorem 3.4. (1): Suppose M_{z} is spherical. We already recorded that the Taylor spectrum of a spherical tuple has spherical symmetry. By Lemma 3.8, the Taylor spectrum of M_{z} is connected. It is easy to see that the only bounded closed connected subsets of \mathbb{C}^{m} with spherical symmetry are balls and ball shells. This follows from the fact that the unitary group $\mathcal{U}(m)$ acts transitively on any sphere. Since 0 belongs to the spectrum $\sigma\left(M_{z}\right)$, it must be a ball centered at the origin. The formula for the spectral radius of M_{z} now follows from Proposition 3.2 and the known formula for the spectral radius of T_{δ} [44].
(2): Let $w \in \mathbb{B}_{r\left(M_{z}\right)}$. We claim that any power series in $H^{2}(\beta)$ converges absolutely at w. It suffices to check that w belongs to the point spectrum $\sigma_{p}\left(M_{z}^{*}\right)$ of T^{*}, or, equivalently, $\sum_{n \geq 0}\left|w^{n}\right|^{2} /\left\|z^{n}\right\|_{\beta}^{2}<\infty$ (see [32, Propositions 18-20]). Since $\sigma_{p}\left(M_{z}^{*}\right)$ has spherical symmetry, it suffices to check that $\tilde{w}=(|w|, 0, \cdots, 0) \in \mathbb{B}_{r\left(M_{z}\right)}$ belongs to $\sigma_{p}\left(M_{z}^{*}\right)$. But $\sum_{n \geq 0}\left|\tilde{w}^{n}\right|^{2} /\left\|z^{n}\right\|_{\beta}^{2}=\sum_{n_{1} \geq 0}|w|^{2 n_{1}} /\left\|z_{1}^{n_{1}}\right\|_{\beta}^{2}=\sum_{n_{1}=0}^{\infty}\binom{m-1+n_{1}}{n_{1}} \tilde{\beta}_{n_{1}}^{-2}|w|^{2 n_{1}}<\infty$, and the claim follows. This also shows that $\mathbb{B}_{r\left(M_{z}\right)} \subseteq \sigma_{p}\left(M_{z}^{*}\right)$. Finally, note that the maximal ball contained in the domain of convergence of the above series is precisely $\mathbb{B}_{r\left(M_{z}\right)}$.
(3): This is clear from the proof of (2) and the spherical symmetry of $\sigma_{p}\left(M_{z}^{*}\right)$.
(4): First of all, it follows from (3.19) that

$$
m_{\infty}(T)=\lim _{k \rightarrow \infty} \inf _{\|h\|=1}\left\|T_{\delta}^{k} h\right\|=i\left(M_{z}\right)
$$

(see (3.24)). By Lemma 3.6, the open ball $\mathbb{B}_{i\left(M_{z}\right)}$ is disjoint from $\sigma_{a p}(T)$. Since the approximate point-spectrum of M_{z} is contained in the Taylor spectrum, it follows that $\sigma_{a p}(T) \subset$ $\bar{A}_{i\left(M_{z}\right), R\left(M_{z}\right)}$.

To prove the converse inclusion, consider the bounded linear operator $S_{1}:=\left.M_{z_{1}}\right|_{\mathcal{M}}$, where \mathcal{M} is the closure of $\mathbb{C}\left[z_{1}\right]$ in $H^{2}(\beta)$. It is a one-variable weighted shift in the basis $\left\{z_{1}^{j} /\left\|z_{1}^{j}\right\|\right\}$, and we can apply to it [41, Theorem 1]. We get $\sigma_{a p}\left(S_{1}\right)=\left\{\alpha \in \mathbb{C}: i\left(S_{1}\right) \leq|\alpha| \leq R\left(S_{1}\right)\right\}$, where $R\left(S_{1}\right), i\left(S_{1}\right)$ are given by

$$
\begin{aligned}
& R\left(S_{1}\right)=\lim _{j \rightarrow \infty} \sup _{k \geq 0}\left(\frac{\tilde{\beta}_{k+j+1}}{\tilde{\beta}_{k+1}}\right)^{\frac{1}{j}}\left(\frac{(k+2) \cdots(k+j+1)}{(k+m+1) \cdots(k+j+m)}\right)^{\frac{1}{2 j}} \\
& i\left(S_{1}\right)=\lim _{j \rightarrow \infty} \inf _{k \geq 0}\left(\frac{\tilde{\beta}_{k+j+1}}{\tilde{\beta}_{k+1}}\right)^{\frac{1}{j}}\left(\frac{(k+2) \cdots(k+j+1)}{(k+m+1) \cdots(k+j+m)}\right)^{\frac{1}{2 j}} .
\end{aligned}
$$

By Lemma 3.9, $i\left(S_{1}\right)=i\left(M_{z}\right)$ and $R\left(S_{1}\right)=R\left(M_{z}\right)$.
The proof is divided into two cases:
$i\left(M_{z}\right)=R\left(M_{z}\right)$: If this happens then by the preceding discussion, $i\left(S_{1}\right)=i\left(M_{z}\right)=R\left(M_{z}\right)=$ $R\left(S_{1}\right)$. In particular, $\left\{w \in \mathbb{C}:|w|=R\left(M_{z}\right)\right\}=\sigma_{a p}\left(S_{1}\right) \subseteq \sigma_{a p}\left(M_{z_{1}}\right)$. Now by the projection property for the approximate point-spectrum [13, Pg. 18], the projection of $\sigma_{a p}\left(M_{z}\right)$ onto the z_{1}-axis is precisely $\sigma_{a p}\left(M_{z_{1}}\right)$. Since $R\left(M_{z}\right) \in \sigma_{a p}\left(M_{z_{1}}\right)$, there exists $w_{2}, \cdots, w_{m} \in \mathbb{C}$ such that $\left(R\left(M_{z}\right), w_{2}, \cdots, w_{m}\right) \in \sigma_{a p}\left(M_{z}\right)$. By (1) above, $\sigma_{a p}\left(M_{z}\right) \subseteq \sigma\left(M_{z}\right)=\bar{B}_{R\left(M_{z}\right)}$. It follows that $w_{2}=\cdots=w_{m}=0$, and hence $\left(R\left(M_{z}\right), 0, \cdots, 0\right) \in \sigma_{a p}\left(M_{z}\right)$. Since $\sigma_{a p}\left(M_{z}\right)$ has spherical symmetry, it contains the degenerate ball-shell $\bar{A}_{i\left(M_{z}\right), R\left(M_{z}\right)}$.
$i\left(M_{z}\right)<R\left(M_{z}\right)$: Since the approximate point-spectrum is always closed, it suffices to check that $A_{i\left(M_{z}\right), R\left(M_{z}\right)} \subseteq \sigma_{a p}\left(M_{z}\right)$. Let $w \in A_{i\left(M_{z}\right), R\left(M_{z}\right)}$. By the spherical symmetry of $\sigma_{a p}\left(M_{z}\right)$, we may take w of the form $(\|w\|, 0, \cdots, 0)$. We adapt the argument of [41, Theorem 1] to the present situation. Choose numbers a, b such that $i\left(M_{z}\right)<a<\|w\|<b<R\left(M_{z}\right)$. Let $\varepsilon>0$ be given. Choose positive integers n, k such that $(\|w\| / b)^{n}<\varepsilon, 1 / k<\varepsilon$ and $\left\|z_{1}^{n+k+1}\right\| /\left\|z_{1}^{k+1}\right\|>b^{n}$. We further choose positive integers p and q such that $(a /\|w\|)^{p}<\varepsilon$, $q>n+k$ and $\left\|z_{1}^{p+q+1}\right\| /\left\|z_{1}^{q+1}\right\|<a^{p}$. Now the argument in the (41, Proof of Theorem 1)
actually yields $\left\|\left(S_{1}-\|w\| I\right) f\right\|<\varepsilon\left\|S_{1}\right\|\|f\|$, where $f \in \mathcal{M}$ is given by

$$
f\left(z_{1}\right)=\sum_{l=k+1}^{p+q+1}\|w\|^{k+1-l} z_{1}^{l} .
$$

Set $g(z)=f\left(z_{1}\right)$, and note that $g \in H^{2}(\beta)$ and $\left\|\left(M_{z_{1}}-\|w\| I\right) g\right\|<\varepsilon\left\|M_{z_{1}}\right\|\|g\|$. Further, since $1 / k<\varepsilon$, we have $\left\|M_{z_{j}} g\right\|<\varepsilon\left\|M_{z_{1}}\right\|\|g\|$ for $j=2, \cdots, m$. Since $\varepsilon>0$ is arbitrary, $w \in \sigma_{a p}(T)$.
(5): The assertion about the essential spectrum is already obtained in [27, Theorem 4.5(2)]. Alternatively, it may be deduced from [27, Lemma 4.7], Remark 3.3 and Lemma 3.5,

We remark that for an essentially commuting tuple T satisfying $\sigma_{e}(T)=\partial \mathbb{B}$, the C^{*} algebra it generates can be described using the results of [26].

Let T be an essentially normal, spherical m-tuple. It follows from Lemma 3.5 that the essential spectrum of T is connected if and only if the essential spectrum of $\sum_{j=1}^{m} T_{j}^{*} T_{j}$ is connected. If in addition, T is a multi-shift, then this always happens as seen above. In view of this, it is interesting to note that there exists a jointly hyponormal 2 -shift with disconnected essential spectrum [17, Theorem 2.5].

We close the section with the following question.
Question 3.10. Calculate the essential spectrum of any spherical multiplication m-tuple M_{z}. Is it always connected?

As it is shown in [36, Example 3.7.7], one always has $\sigma_{e}\left(M_{z}\right)=\sigma_{a p}\left(M_{z}\right)=\bar{A}_{i\left(M_{z}\right), R\left(M_{z}\right)}$ if $M_{z}=M_{z_{1}}$ is a 1-tuple.

4. The Membership of Cross-commutators in the Schatten Classes

In this section, we discuss the so-called p-essential normality of spherical tuples. Recall that an m-tuple T of commuting bounded linear operators T_{1}, \cdots, T_{m} is p-essentially normal if the cross-commutators $\left[T_{i}^{*}, T_{l}\right]$ belong to the Schatten p-class for all $j, l=1, \cdots, m$. As before, we put $\delta_{k}=\tilde{\beta}_{k+1} / \tilde{\beta}_{k}, k \in \mathbb{N}$. Throughout this section, we assume that $m \geq 2$.
Remark 4.1 : An m-variable weighted shift $T:\left\{w_{n}^{(i)}\right\}$ is compact if and only if $\lim _{|n| \rightarrow \infty} w_{n}^{(i)}=$ 0 for all indices $i=1, \ldots, m$ [32, Proposition 6]. It follows that a spherical m-variable weighted shift is compact if and only if $\lim _{k \rightarrow \infty} \delta_{k}=0$.

The main part of this Section is devoted to the proof of the following criterion of when the cross-commutators of a spherical weighted shift belong to the Schatten class \mathcal{S}^{p}.

Theorem 4.2. Let M_{z} be a bounded spherical multiplication m-tuple in $H^{2}(\beta)$, so that the norm in $H^{2}(\beta)$ is given by (2.5) for a certain sequence $\tilde{\beta}_{0}, \tilde{\beta}_{1}, \tilde{\beta}_{2}, \cdots$, of positive numbers. Let $1 \leq p \leq \infty$. Then the following statements are equivalent:
(1) The self-commutators $\left[M_{z_{j}}^{*}, M_{z_{j}}\right]$ belong to the Schatten class \mathcal{S}^{p} for all $j, 1 \leq j \leq m$;
(2) The cross-commutators $\left[M_{z_{j}}^{*}, M_{z_{l}}\right]$ belong to the Schatten class \mathcal{S}^{p} for all indices j, l;
(3)

$$
\begin{equation*}
\sum_{k=1}^{\infty} \delta_{k}^{2 p} k^{m-p-1}+\sum_{k=1}^{\infty}\left|\delta_{k}^{2}-\delta_{k-1}^{2}\right|^{p} k^{m-1}<\infty \tag{4.25}
\end{equation*}
$$

We refer to [33] for some related results, such as the membership of $I-\sum M_{z_{j}}^{*} M_{z_{j}}$ in classes S_{p}, see Proposition 6.9 and other results in Section 6 of the cited work.

The following notation will be used. We will say that two quantities F_{k}, G_{k}, depending on $k \in \mathbb{N}$, are comparable, and write $F_{k} \approx G_{k}(k \rightarrow \infty)$ if there exist positive constants A, B, k_{0} (that may depend on m and p) such that $A G_{k} \leq F_{k} \leq B G_{k}$ for all $k \geq k_{0}$.

Lemma 4.3. Let $1 \leq p<\infty$. Then for $j \neq l$,

$$
\sum_{\substack{n \in \mathbb{N}^{m},|n|=k, n_{j}>0}} n_{j}^{p / 2} n_{l}^{p / 2} \approx k^{p+m-1} \text { as } k \rightarrow \infty
$$

Proof. By symmetry, it suffices to consider the case $j=1, l=2$. One has

$$
\sum_{\substack{n \in \mathbb{N}^{m},|n|=k, n_{1}>0}} n_{1}^{p / 2} n_{2}^{p / 2}=\frac{1}{m-1} \sum_{r=2}^{m} \sum_{\substack{n \in \mathbb{N}^{m},|n|=k, n_{1}>0}} n_{1}^{p / 2} n_{r}^{p / 2} \approx \sum_{\substack{n \in \mathbb{N}^{m},|n|=k, n_{1}>0}} n_{1}^{p / 2}\left(\sum_{r=2}^{m} n_{r}\right)^{p / 2}
$$

Hence

$$
\begin{aligned}
\sum_{\substack{n \in \mathbb{N}^{m},|n|=k, n_{1}>0}} n_{1}^{p / 2} n_{2}^{p / 2} & \approx \sum_{|n|=k, n_{1}>0} n_{1}^{p / 2}\left(k-n_{1}\right)^{p / 2}=\sum_{j=1}^{k}\left({\underset{k-j}{k-j+m-2}) j^{p / 2}(k-j)^{p / 2}}\right. \\
& \approx \sum_{j=1}^{k} j^{p / 2}(k-j)^{m-2+(p / 2)} \approx k^{p+m-1} \int_{0}^{1} x^{p / 2}(1-x)^{m-2+(p / 2)} d x
\end{aligned}
$$

which gives the assertion of the Lemma.
Lemma 4.4. Let $1 \leq p<+\infty$. For any $j, 1 \leq j \leq m$, and any $s \in \mathbb{R}$, one has

$$
\begin{equation*}
\sum_{n \in \mathbb{N}^{m},|n|=k}\left|s n_{j}-1\right|^{p} \approx k^{p+m-1}|s|^{p}+k^{m-1} \tag{4.26}
\end{equation*}
$$

where the constants involved in the relation \approx can depend on p, m but not on k and s.
Proof. Denoting $l=n_{j}$, we get

$$
\sum_{n \in \mathbb{N}^{m},|n|=k}\left|s n_{j}-1\right|^{p}=\sum_{l=0}^{k}\binom{k-l+m-2}{m-2}|s l-1|^{p} \approx \sum_{l=0}^{k}(k-l+1)^{m-2}|s l-1|^{p}
$$

So the estimate in one direction is trivial:
$\sum_{n \in \mathbb{N}^{m},|n|=k}\left|s n_{j}-1\right|^{p} \leq \sum_{l=0}^{k}(k+1)^{m-2}|s l-1|^{p} \leq C \sum_{l=0}^{k}(k+1)^{m-2}\left(|s l|^{p}+1\right) \leq C_{1}\left(k^{p+m-1}|s|^{p}+k^{m-1}\right)$.
To prove the reverse estimate, define the interval $I(s)$ as follows: $I(s)=[k / 2, k]$ if $|s| k \geq 6$ and $I(s)=[0, k / 18]$ if $|s| k<6$. One has

$$
|s l-1| \geq \frac{1+|s| l}{2} \text { for } l \in I(s)
$$

Indeed, in the first case $|s l-1| \geq|s l|-1 \geq(1+|s| l) / 2$ and in the second case, $|s l-1| \geq$ $1-|s l| \geq(1+|s| l) / 2$. So for some positive constants C_{2}, C_{3} one gets

$$
\begin{aligned}
\sum_{n \in \mathbb{N}^{m},|n|=k}\left|s n_{j}-1\right|^{p} & \geq \sum_{l \in \mathbb{Z} \cap I(s)}(k-l+1)^{m-2}|s l-1|^{p} \\
& \geq C_{2} \sum_{l \in \mathbb{Z} \cap I(s)}(k-l+1)^{m-2}\left(1+|s|^{p} l^{p}\right) \geq C_{3}\left(k^{p+m-1}|s|^{p}+k^{m-1}\right)
\end{aligned}
$$

Proof of Theorem 4.2. We will use the following formulas, which are easy to deduce from (2.6).
Let $1 \leq j \leq m$. Then

$$
\left[T_{j}^{*}, T_{j}\right] e_{n}= \begin{cases}{\left[\frac{\left(n_{j}+1\right) \delta_{|n|}^{2}}{|n|+m}-\frac{n_{j} \delta_{|n|-1}^{2}}{|n|+m-1}\right] e_{n},} & n_{j}>0 \tag{4.27}\\ \frac{\delta_{|n|}^{2}}{|n|+m} e_{n}, & n_{j}=0\end{cases}
$$

If $1 \leq j, l \leq m$ and $j \neq l$, then

$$
\left[T_{j}^{*}, T_{l}\right] e_{n}= \begin{cases}\sqrt{n_{j}\left(n_{l}+1\right)}\left[\frac{\delta_{|n|}^{2}}{|n|+m}-\frac{\delta_{|n|-1}^{2}}{|n|+m-1}\right] e_{n+\varepsilon_{l}-\varepsilon_{j}}, & n_{j}>0 \tag{4.28}\\ 0, & n_{j}=0\end{cases}
$$

By symmetry, to prove that (1) is equivalent to (3), it suffices to give two-sided estimates of the self-commutator $\left[T_{m}^{*}, T_{m}\right.$]. Equation (4.27) gives

$$
\begin{aligned}
\left\|\left[T_{m}^{*}, T_{m}\right]\right\|_{\mathcal{S}^{p}}^{p} & =\sum_{k=1}^{\infty} \sum_{\substack{n \in \mathbb{N}^{m},|n|=k, n_{m}>0}}\left|\frac{\left(n_{m}+1\right) \delta_{k}^{2}}{k+m}-\frac{n_{m} \delta_{k-1}^{2}}{k+m-1}\right|^{p}+\sum_{n \in \mathbb{N}^{m}, n_{m}=0} \frac{\delta_{|n|}^{2 p}}{(|n|+m)^{p}} \\
& \approx \sum_{k=1}^{\infty} \sum_{\substack{n \in \mathbb{N}^{m},|n|=k, n_{m}>0}}\left|n_{m}\left(\frac{\delta_{k}^{2}}{k+m}-\frac{\delta_{k-1}^{2}}{k+m-1}\right)+\frac{\delta_{k}^{2}}{k+m}\right|^{p}+\sum_{k=0}^{\infty}(k+1)^{m-2-p} \delta_{k}^{2 p}
\end{aligned}
$$

By substituting s / t for s in (4.26), one gets

$$
\sum_{n \in \mathbb{N}^{m},|n|=k}\left|n_{m} s-t\right|^{p} \approx k^{p+m-1}|s|^{p}+k^{m-1}|t|^{p}
$$

(where the constants involved in the relation \approx do not depend on $s, t \in \mathbb{R}$ and k). It follows that

$$
\left\|\left[T_{m}^{*}, T_{m}\right]\right\|_{\mathcal{S}^{p}}^{p} \approx \sum_{k=1}^{\infty}\left|\frac{\delta_{k}^{2}}{k+m}-\frac{\delta_{k-1}^{2}}{k+m-1}\right|^{p} k^{p+m-1}+\sum_{k=0}^{\infty} \frac{\delta_{k}^{2 p}}{(k+m)^{p}} k^{m-1}
$$

Now, by applying the two-sided estimate

$$
\begin{array}{r}
C_{1}\left(\frac{\left|\delta_{k}^{2}-\delta_{k-1}^{2}\right|^{p}}{(k+m)^{p}}-\frac{\delta_{k-1}^{2 p}}{(k+m)^{p}(k+m-1)^{p}}\right) \leq\left|\frac{\delta_{k}^{2}}{k+m}-\frac{\delta_{k-1}^{2}}{k+m-1}\right|^{p} \tag{4.29}\\
\leq C_{2}\left(\frac{\left|\delta_{k}^{2}-\delta_{k-1}^{2}\right|^{p}}{(k+m)^{p}}+\frac{\delta_{k-1}^{2 p}}{(k+m)^{p}(k+m-1)^{p}}\right)
\end{array}
$$

where C_{1} and C_{2} are positive constants, it is easy to see that the relation $\left\|\left[T_{m}^{*}, T_{m}\right]\right\|_{\mathcal{S}^{p}}<\infty$ is equivalent to (3).

It is obvious that (2) implies (1), so it only remains to prove that (3) implies that the commutators $\left[T_{j}^{*}, T_{l}\right]$ belong to \mathcal{S}_{p} whenever the indices j and l are distinct. This follows easily from (4.28), Lemma 4.3 and (4.29).

Next we derive several consequences of Theorem 4.2, which are motivated by the so-called cut-off phenomenon in the Berger-Shaw theory [2, Proposition 5.3], [19, Proposition 3], [22, Theorem 1.1] (refer to [50] for a detailed account of this phenomenon).

Corollary 4.5. Let M_{z} be a bounded spherical multiplication m-tuple on $H^{2}(\beta)$. If all commutators $\left[M_{z_{j}}^{*}, M_{z_{k}}\right]$ belong to S_{p}, where $1 \leq p<\infty$, then either the operators $M_{z_{j}}$ are compact or $p>m$.

Proof. To simplify notation, we put $\tau_{k}=\delta_{k}^{2}$. It suffices to show that if all commutators [$M_{z_{j}}^{*}, M_{z_{k}}$] are in S_{m}, then $\tau_{k} \rightarrow 0$ as $k \rightarrow \infty$ (see Remark 4.1). Suppose, to the contrary, that [$M_{z_{j}}^{*}, M_{z_{k}}$] are in S_{m}, but τ_{k} do not tend to zero. Then there exist an $\varepsilon>0$ and a sequence k_{1}, k_{2}, \ldots such that $\tau_{k_{j}}>\varepsilon$ for all $j \in \mathbb{N}$. By Theorem4.2,

$$
\begin{equation*}
\sum_{k} \tau_{k}^{m} k^{-1}+\sum_{k}\left|\tau_{k+1}-\tau_{k}\right|^{m} k^{m-1}<\infty \tag{4.30}
\end{equation*}
$$

and, as we will now show, it leads to a contradiction. Choose N so large that

$$
\sum_{l=k_{N}}^{\infty}\left|\tau_{l+1}-\tau_{l}\right|^{m} l^{m-1}<\left(\frac{\varepsilon}{2}\right)^{m}
$$

Take any $j \geq N$ and any k such that $k_{j} \leq k \leq 2 k_{j}$. Since $\sum_{l=k_{j}}^{2 k_{j}-1} \frac{1}{l} \leq 1$, we get

$$
\begin{aligned}
\left|\tau_{k}-\tau_{k_{j}}\right| & \leq \sum_{l=k_{j}}^{k-1}\left|\tau_{l+1}-\tau_{l}\right| \\
& \leq\left(\sum_{l=k_{j}}^{k-1}\left|\tau_{l+1}-\tau_{l}\right|^{m} l^{m-1}\right)^{\frac{1}{m}} \cdot\left(\sum_{l=k_{j}}^{k-1} \frac{1}{l}\right)^{\frac{m-1}{m}}<\frac{\varepsilon}{2} \cdot 1=\frac{\varepsilon}{2}
\end{aligned}
$$

Hence $\tau_{k}>\varepsilon / 2$ for all k in the range $k_{j} \leq k \leq 2 k_{j}$ for all $j \geq N$. This implies that

$$
\sum_{k=k_{j}}^{\infty} \tau_{k}^{m} k^{-1} \geq \sum_{k=k_{j}}^{2 k_{j}} \tau_{k}^{m} k^{-1} \geq\left(\frac{\varepsilon}{2}\right)^{m} \sum_{k=k_{j}}^{2 k_{j}} k^{-1} \geq \frac{1}{2}\left(\frac{\varepsilon}{2}\right)^{m}
$$

for all $j \geq N$. Therefore the first sum in (4.30) diverges.
This contradiction implies that, in fact, τ_{k} should tend to 0 .
Corollary 4.6. Suppose that the sequence $\left\{\delta_{k}\right\}$ does not tend to zero and $\left|\delta_{k+1}-\delta_{k}\right| \leq C / k$ for some constant C. Then the commutators $\left[M_{z_{j}}^{*}, M_{z_{k}}\right]$ belong to S_{p} if and only if $p>m$.

Proof. Since $\left\{\delta_{k}\right\}$ does not tend to zero. by Remark 4.1, none of $M_{z_{1}}, \cdots, M_{z_{m}}$ is compact. If $\left[M_{z_{j}}^{*}, M_{z_{l}}\right] \in S_{p}$ for all j, l, then by Corollary 4.5, $p>m$. The converse statement follows immediately from Theorem 4.2,

In particular, the statement of this Corollary holds if $\left|\delta_{k}-1\right| \leq C / k$ for some constant C. It can also be applied to sequences $\tilde{\beta}_{k}$ like $\tilde{\beta}_{k}=C_{1} \exp \left(C_{2} k^{\alpha}\right)$, where C_{1}, C_{2} and α are constants.

We end this section with the following question.
Question 4.7. Give a characterization of all (strongly) spherical m-tuples T such that $\operatorname{ker}\left(D_{T^{*}}\right)$ is finite-dimensional and is cyclic for T, in terms of some free parameters (similarly to Theorems 2.1 and 2.5). Can our results on the calculation of parts of the spectrum and on membership of cross-commutators $\left[T_{j}, T_{j}^{*}\right]$ in S_{p} be generalized to this subclass of spherical m-tuples?

5. Special Classes of Spherical Tuples

Recall that an m-tuple $S=\left(S_{1}, \cdots, S_{m}\right)$ of commuting operators S_{i} in $\mathcal{B}(\mathcal{H})$ is jointly subnormal if there exist a Hilbert space \mathcal{K} containing \mathcal{H} and an m-tuple $N=\left(N_{1}, \cdots, N_{m}\right)$ of commuting normal operators N_{i} in $\mathcal{B}(\mathcal{K})$ such that $N_{i} h=S_{i} h$ for every $h \in \mathcal{H}$ and $1 \leq i \leq m$.

An m-tuple $S=\left(S_{1}, \cdots, S_{m}\right)$ of commuting operators S_{i} in $\mathcal{B}(\mathcal{H})$ is jointly hyponormal if the $m \times m$ matrix $\left(\left[T_{j}^{*}, T_{i}\right]\right)_{1 \leq i, j \leq m}$ is positive definite, where $[A, B]$ stands for the commutator $A B-B A$ of A and B. It is not difficult to see that a jointly subnormal tuple is always jointly hyponormal [5], [14].

Definition 5.1 : Fix an integer $q \geq 1$ and put

$$
\begin{equation*}
B_{q}\left(Q_{T}\right):=\sum_{s=0}^{q}(-1)^{s}\binom{q}{s} Q_{T}^{s}(I) \tag{5.31}
\end{equation*}
$$

(see (3.17), (3.18)). We say that T is a joint q-contraction (respectively, joint q-expansion) if $B_{q}\left(Q_{T}\right) \geq 0$ (respectively, $B_{q}\left(Q_{T}\right) \leq 0$).

We say that T is a joint q-hyperexpansion if T is a joint k-expansion for all $k=1, \cdots, q$. Also, T is said to be a joint complete hyperexpansion if T is a joint q-hyperexpansion for all $q \geq 1$. If $B_{q}\left(Q_{T}\right)=0$, then T is a joint q-isometry. If $m=1$ then we drop the prefix 1- and term joint in all the above definitions.

The Bergman m-shift is jointly subnormal while the Drury-Arveson m-shift is a joint m isometry [24]. The Szegö m-shift being a joint isometry is jointly subnormal. It is also a joint q-isometry for any $q \geq 1$.

Remark 5.2 : Let T be a spherical m-tuple. Assume further that T is a joint p-isometry or a joint 2-hyperexpansion. Then the approximate point-spectrum $\sigma_{a p}(T)$ of T is a subset of the unit sphere [9, Proposition 3.4]. Since $\sigma_{a p}(T)$ is always non-empty, by its spherical symmetry, it must be the entire unit sphere.

Theorem 5.3. Let $T:\left\{w_{n}^{(i)}\right\}$ be a spherical m-variable weighted shift. Let $T_{\delta}:\left\{\delta_{k}\right\}_{k \in \mathbb{N}}$ be the one-variable weighted shift associated with T (see the Definition 2.3). Then we have the following statements:
(1) T is jointly subnormal if and only if T_{δ} is subnormal.
(2) T is a joint q-isometry if and only if T_{δ} is a q-isometry.
(3) T is a joint q-expansion if and only if T_{δ} is a q-expansion.
(4) T is a joint complete hyperexpansion if and only if T_{δ} is a complete hyperexpansion.
(5) T is jointly hyponormal if and only if T_{δ} is hyponormal.

Proof. The desired conclusions in (2)-(4) follow immediately from (3.19).
To see (1), without loss of generality, we may assume that $Q_{T}(I)=T_{1}^{*} T_{1}+\cdots+T_{m}^{*} T_{m} \leq I$. By [6, Theorem 5.2], an operator m-tuple T such that $Q_{T}(I) \leq I$ is jointly subnormal if and only if

$$
\sum_{j=0}^{p}(-1)^{j}\binom{p}{j} \sum_{|\alpha|=j} \frac{j!}{\alpha!}\left\|T^{\alpha} f\right\|^{2} \geq 0
$$

for every $f \in \mathcal{H}$ and every $p, k \in \mathbb{N}$. Now (1) may be derived from (3.19).
To see (5), let us recall first that T_{δ} is hyponormal if and only if and only if $\left\{\delta_{k}\right\}_{k \in \mathbb{N}}$ is an increasing sequence. Suppose first that T_{δ} is hyponormal. By [14, Theorem 6.1], T is jointly hyponormal if and only if the matrix

$$
P=\left(w_{n+\varepsilon_{j}}^{(i)} w_{n+\varepsilon_{i}}^{(j)}-w_{n}^{(i)} w_{n}^{(j)}\right)_{1 \leq i, j \leq m}
$$

is positive definite for every $n \in \mathbb{N}^{m}$. By (2.6),

$$
w_{n}^{(i)}=\delta_{|n|} \alpha_{n}^{(i)}\left(n \in \mathbb{N}^{m}, i=1, \cdots, m\right)
$$

where $\alpha_{n}^{(i)}:=\sqrt{\frac{n_{i}+1}{|n|+m}}$ is the weight multi-sequence of the Szegö m-shift. It is easy to see that the matrix

$$
Q=\left(\alpha_{n+\varepsilon_{j}}^{(i)} \alpha_{n+\varepsilon_{i}}^{(j)}-\alpha_{n}^{(i)} \alpha_{n}^{(j)}\right)_{1 \leq i, j \leq m}
$$

is positive definite for every $n \in \mathbb{N}^{m}$. Let $P_{i j}, Q_{i j}$ denote the (i, j) th entry of $m \times m$ matrices P, Q respectively. It follows that

$$
P_{i j}=\delta_{|n|+1}^{2} Q_{i j}+\left(\delta_{|n|+1}^{2}-\delta_{|n|}^{2}\right) \alpha_{n}^{(i)} \alpha_{n}^{(j)}
$$

Since $\left\{\delta_{k}\right\}_{k \in \mathbb{N}}$ is an increasing sequence, P is positive definite.
Conversely, suppose T is jointly hyponormal. Then it follows from [9, Lemma 4.10] that $Q_{T}^{2}(I) \geq Q_{T}(I)^{2}$, where $Q_{T}(X)=T_{1}^{*} X T_{1}+\cdots+T_{m}^{*} X T_{m}(X \in B(\mathcal{H}))$. It is immediate from (3.20) that $\left\{\delta_{k}\right\}_{k \in \mathbb{N}}$ is an increasing sequence.

Let $p>0$, and let $M_{z, p}$ be as introduced in Example 1.3. Note that the sequence δ_{k} there is given by $\delta_{k}^{2}=(k+m) /(k+p)$. It is now easy to deduce from Theorem 5.3(5) that the tuple $M_{z, p}$ is jointly hyponormal if and only if $p \geq m$. As we already mentioned there, for $p \geq m$, $M_{z, p}$ is actually jointly subnormal (see [33, Theorem 9.8] for a closely related fact). Here are a few more consequences of Theorem 5.3:
(1) $M_{z, p}$ is a spherical joint 2-expansion if and only if $m-1 \leq p \leq m$.
(2) $M_{z, p}$ is a spherical joint q-isometry if and only if p is a positive integer, $p \leq m$ and $q \geq m-p+1$ (see Proposition 5.5 below).
It is a trivial consequence of Corollary 4.5 and Theorem 5.3(5) that for a spherical hyponormal m-variable weighted shift T, the cross-commutators can belong to S_{p} only if $p>m$. We give an example of a spherical, jointly hyponormal 2 -variable weighted shift for which none of the self-commutators belongs to the Schatten class \mathcal{S}^{p} for any $p<\infty$.

Example 5.4. Define inductively the sequence $\left\{\rho_{k}\right\}_{k \in \mathbb{N}}$ as follows:

$$
\rho_{0}=1, \rho_{k+1}=\rho_{k}+\eta_{k}(k \in \mathbb{N}),
$$

where $\eta_{k}=1 / 2^{l}$ if k is of the form $2^{2^{l}}$; and 0 otherwise. Obviously, $\left\{\rho_{k}\right\}_{k \in \mathbb{N}}$ is increasing. We next define $\tilde{\beta}_{k}$ inductively by setting $\tilde{\beta}_{0}=1$ and $\tilde{\beta}_{k+1}=\tilde{\beta}_{k} \sqrt{\rho_{k}}(k \in \mathbb{N})$. Then the 2-variable weighted shift $T=\left(T_{1}, T_{2}\right)$ with weight multi-sequence

$$
w_{n}^{(i)}=\frac{\tilde{\beta}_{|n|+1}}{\tilde{\beta}_{|n|}} \sqrt{\frac{n_{i}+1}{|n|+2}}\left(n \in \mathbb{N}^{2}, i=1,2\right)
$$

is bounded, spherical and jointly hyponormal. Note that

$$
\sum_{k=1}^{\infty} k\left|\frac{\tilde{\beta}_{k+1}^{2}}{\tilde{\beta}_{k}^{2}}-\frac{\tilde{\beta}_{k}^{2}}{\tilde{\beta}_{k-1}^{2}}\right|^{p}=\sum_{k=1}^{\infty} k \eta_{k}^{p} \geq 2^{2^{l}} \frac{1}{2^{l p}} \rightarrow \infty
$$

as $l \rightarrow \infty$. By Theorem [4.2. $\left[T_{j}^{*}, T_{j}\right]$ does not belong to the Schatten class \mathcal{S}^{p} for any $p<\infty$ and any $j=1,2$.

In a similar way, one give an example of a non-compact spherical 2-variable weighted shift T such that the corresponding one-variable shift T_{δ} is a contraction (or, equivalently, the sequence $\left\{\tilde{\beta}_{k}\right\}$ decays), but the cross-commutators do not belong to S_{p} for any p.

For a sequence $\left\{f_{k}\right\}_{k=0}^{\infty}$, we put $\nabla f_{k}=f_{k+1}-f_{k}$. In what follows, we denote

$$
\gamma_{k}=\tilde{\beta}_{k}^{2} .
$$

The following is certainly known (see, for instance, [45, pg 50]). We include a short proof for reader's convenience.

Proposition 5.5. Let $\left\{\tilde{\beta}_{k}\right\}_{k=0}^{\infty}$ be a 1-variable sequence and M_{z} the multiplication operator by z acting on the (1-variable) space $H^{2}(\tilde{\beta})$.
(1) M_{z} is a q-isometry if and only if there is a polynomial S of degree $q-1$ or less such that $\gamma_{k}=S(k)$ for all $k \in \mathbb{N}$.
(2) M_{z} is a q-expansion if and only if $(-1)^{q} \nabla^{q} \gamma_{k} \leq 0$ for any $k \in \mathbb{N}$.

Proof. (1): By the definition, M_{z} is a q-isometry if and only if $\sum_{s=0}^{q}(-1)^{s}\binom{q}{s} M_{z}^{* s} M_{z}^{s}=0$. The left hand part is a diagonal operator in the basis $\left\{z^{k}\right\}$ (for any weights $\left\{\tilde{\beta}_{k}\right\}$). Hence M_{z} is a q-isometry iff $\sum_{s=0}^{q}(-1)^{s}\binom{q}{s}\left\langle M_{z}^{s} z^{k}, M_{z}^{s} z^{k}\right\rangle=0$ for any $k \in \mathbb{N}$, which happens iff $\nabla^{q} \gamma_{k} \equiv 0$. This gives (1).
(2): This can be proved along the lines of the verification of (1), and hence we skip it.

Now it follows from Theorem 5.3(2) that a spherical m-tuple M_{z} is a q-isometry if and only if the corresponding scalar sequence $\left\{\tilde{\beta}_{k}\right\}$ satisfies $\tilde{\beta}_{k}^{2}=S(k), k \in \mathbb{N}$, for some polynomial S, whose degree is less or equal than $q-1$. In particular, we get the following fact.

Corollary 5.6. Let M_{z} be a spherical q-isometry. Then $\left[M_{z_{j}}^{*}, M_{z_{l}}\right]$ is in S_{p} for all j, l if and only if $p>m$.

Proof. Assuming that the m-tuple M_{z} is a q-isometry, we get a polynomial S of degree $d \leq q-1$ such that $\beta_{k}^{2}=S(k), k \in \mathbb{N}$. Then $\delta_{k}^{2}-1 \sim d / k$, and we can apply Corollary 4.6 to get our statement.

Proposition 5.7. Let T be a m-variable spherical weighted shift and $\left\{\tilde{\beta}_{k}\right\},\left\{\delta_{k}\right\}$ be the corresponding 1-variable sequences. Suppose that $\delta_{k} \leq C$ and that the sequence $\left\{\delta_{k}\right\}$ does not tend to zero. Put $\gamma_{k}=\tilde{\beta}_{k}^{2}$ (as before).
(1) If $\nabla^{2} \gamma_{k} \leq 0$, then all commutators $\left[T_{j}^{*}, T_{k}\right]$ are in S_{p} iff $p>m$.
(2) If $\nabla^{3} \gamma_{k} \leq 0$ and $\tilde{\beta}_{k}>C>0$, then it is also true that all commutators $\left[T_{j}^{*}, T_{k}\right]$ belong to S_{p} iff $p>m$.

It will follow from the proof that it suffices to assume that the inequality $\nabla^{2} \gamma_{k} \leq 0$ or $\nabla^{3} \gamma_{k} \leq 0$ holds except for a finite number of indices.

Proof of Proposition 5.7. First observe that

$$
\begin{equation*}
\delta_{k+1}^{2}-\delta_{k}^{2}=\frac{\gamma_{k+2}}{\gamma_{k+1}}-\frac{\gamma_{k+1}}{\gamma_{k}}=\frac{\nabla^{2} \gamma_{k}}{\gamma_{k}}-\frac{\nabla \gamma_{k+1} \nabla \gamma_{k}}{\gamma_{k+1} \gamma_{k}} \tag{5.32}
\end{equation*}
$$

Proof of (1): Suppose that $\nabla^{2} \gamma_{k} \leq 0$. It follows from Richter's Lemma [30, Lemma 6.9] that $\nabla \gamma_{k} \geq 0$ for all k. Since $\left\{\gamma_{k}\right\}$ is a concave sequence,

$$
\nabla \gamma_{k}=\gamma_{k+1}-\gamma_{k} \leq \frac{\gamma_{k}-\gamma_{0}}{k} \leq \frac{\gamma_{k}}{k}
$$

for all $k \geq 1$. Hence

$$
\left|\nabla^{2} \gamma_{k}\right|=-\nabla^{2} \gamma_{k}=\nabla \gamma_{k}-\nabla \gamma_{k+1} \leq \nabla \gamma_{k} \leq \frac{\gamma_{k}}{k}
$$

Therefore, by (5.32),

$$
\left|\delta_{k+1}^{2}-\delta_{k}^{2}\right| \leq \frac{\left|\nabla^{2} \gamma_{k}\right|}{\gamma_{k}}+\frac{\left|\nabla \gamma_{k+1}\right|\left|\nabla \gamma_{k}\right|}{\gamma_{k+1} \gamma_{k}} \leq \frac{1}{k}+\frac{1}{k} \cdot \frac{1}{k+1} \leq \frac{2}{k}, \quad k \geq 2
$$

So the assertion (1) follows from Corollary 4.6.
Proof of (2): We are assuming that $\nabla^{3} \gamma_{k} \leq 0$ and that $\gamma_{k} \geq C>0$. Then there is an index k_{0} such that the sign of $\nabla^{2} \gamma_{k}$ is constant for $k \geq k_{0}$. If $\nabla^{2} \gamma_{k} \leq 0$ for all $k \geq k_{0}$, the proof is as above. So we can suppose that there is $k_{0} \in \mathbb{N}$ such that $0<\nabla^{2} \gamma_{k} \leq \nabla^{2} \gamma_{k_{0}}$ for $k \geq k_{0}$. Hence $\left\{\nabla \gamma_{k}\right\}_{k \geq k_{0}}$ is a growing sequence. Let us distinguish two opposite cases.

Case A: $\nabla \gamma_{k}>0$ for large indices $k>k_{0}$. Then $\nabla \gamma_{k}>C_{1}>0$, and therefore $\gamma_{k} \geq C_{2} k$ for large indices k, where $C_{2}>0$. Next let $k>2 k_{0}$. If k is even, then

$$
\gamma_{k}>\gamma_{k}-\gamma_{k / 2}=\sum_{\ell=k / 2}^{k-1} \nabla \gamma_{\ell} \geq \frac{k}{2} \nabla \gamma_{k / 2}
$$

Since $\left\{\nabla \gamma_{\ell}\right\}$ is concave,

$$
\frac{\nabla \gamma_{k}+\nabla \gamma_{0}}{2} \leq \nabla \gamma_{k / 2}<\frac{2 \gamma_{k}}{k}
$$

Therefore

$$
\frac{\nabla \gamma_{k}}{\gamma_{k}} \leq \frac{4}{k}+\frac{\left|\nabla \gamma_{0}\right|}{\gamma_{k}} \leq \frac{C_{3}}{k}
$$

In the same way, one gets that $\frac{\nabla \gamma_{k}}{\gamma_{k}} \leq \frac{C_{3}}{k}$ for odd $k, k>2 k_{0}$ (just replace indices $0, k / 2$ by $1,(k+1) / 2$ in the above estimates). Since $\left\{\nabla^{2} \gamma_{k}\right\}$ is bounded, (5.32) implies the estimate $\left|\delta_{k+1}-\delta_{k}\right| \leq C / k$, and we are done.

Case B: $\nabla \gamma_{k} \leq 0$ for all $k \geq k_{0}$. Hence $\left\{\left|\nabla \gamma_{k}\right|\right\}$ decays for $k \geq k_{0}$, and

$$
\left(k-k_{0}\right)\left|\nabla \gamma_{k}\right| \leq \sum_{\ell=k_{0}}^{k-1}\left|\nabla \gamma_{\ell}\right|=\gamma_{k_{0}}-\gamma_{k} \leq \gamma_{k_{0}}
$$

for $k>k_{0}$, so that $\left|\nabla \gamma_{k}\right| \leq C / k$. Next, for $k>k_{0}, \nabla^{2} \gamma_{k}=\left|\nabla \gamma_{k}\right|-\left|\nabla \gamma_{k+1}\right| \leq\left|\nabla \gamma_{k}\right| \leq C / k$, and once again, we obtain that $\left|\delta_{k+1}-\delta_{k}\right| \leq C / k$ by using (5.32) and the assumption $\tilde{\beta}_{k} \geq$ const >0.

Therefore in both cases A and B, Corollary 4.6 implies assertion (2).
Example 5.8. In the part 2) of the last Proposition, one cannot drop the assumption $\tilde{\beta}_{k} \geq$ $C>0$. Indeed, define $\left\{\tilde{\beta}_{k}\right\}$ by $\tilde{\beta}_{2 k}^{2}=12^{-k}$ and $\tilde{\beta}_{2 k+1}^{2}=12^{-k} / 3, k \geq 0$. Then $\left(\nabla^{3} \gamma\right)_{2 k}=$ $-(2 / 9) \cdot 12^{-k}$ and $\left(\nabla^{3} \gamma\right)_{2 k+1}=-(23 / 144) \cdot 12^{-k}, k \geq 0$, so that $\nabla^{3} \gamma_{k}<0$ for all k. On the other side, $\delta_{k+1}^{2}-\delta_{k}^{2}=(-1)^{k+1} / 12$ for any k, so that in this case, the tuple M_{z} is bounded, but is not essentially normal (and therefore the self-commutators do not belong to any S_{p}).
Remark 5.9 : Let $T:\left\{w_{n}^{(i)}\right\}_{n \in \mathbb{N}^{m}}$ be a spherical m-variable weighted shift and let $T_{\delta}:\left\{\delta_{k}\right\}_{k \in \mathbb{N}}$ be the shift associated with T. Suppose that $\left\{\delta_{k}\right\}_{k \in \mathbb{N}}$ converges to a non-negative number λ. Then by Remark 3.3, T is essentially normal. Moreover, by Theorem 3.4(5), the essential spectrum of T is $\partial \mathbb{B}_{\lambda}$. This happens whenever T is jointly hyponormal, a joint q-isometry or a joint 2-hyperexpansion. In case T is jointly hyponormal, $\lambda=\left\|T_{\delta}\right\|$ while in the remaining two cases λ is equal to 1 .

References

[1] J. Arazy and G. Zhang, Homogeneous multiplication operators on bounded symmetric domains, J. Funct. Anal. 202 (2003), 44-66.
[2] W. Arveson, Subalgebras of C^{*}-algebras. III. Multivariable operator theory, Acta Math. 181 (1998), 159228.
[3] W. Arveson, p-summable commutators in dimension d, J. Operator Theory 54 (2005), 101-117.
[4] W. Arveson, D. Hadwin, T. Hoover and E. Kymala, Circular operators, Indiana Univ. Math. J. 33 (1984), 583-595.
[5] A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc. 103 (1988), 417-423.
[6] A. Athavale, Model theory on the unit ball in \mathbb{C}^{n}, J. Operator Theory 27 (1992), 347-358.
[7] B. Bagchi and G. Misra, Homogeneous tuples of multiplication operators on twisted Bergman spaces, J. Funct. Anal. 136 (1996), 171-213.
[8] H. Boas, Holomorphic reproducing kernels in Reinhardt domains, Pacific J. Math 112 (1984), 273-292.
[9] S. Chavan and V. Sholapurkar, Rigidity theorems for spherical hyperexpansions, Complex Analysis and Operator Theory. Advance online publication. doi: 10.1007/s11785-012-0270-6.
[10] M. Chō and W. Żelazko, On the geometric radius of commuting n-tuples of operators, Hokkaido Math. J. 21 (1992), 251-258.
[11] J. Conway, A Course in Functional Analysis, Springer-Verlag, New York 1997.
[12] R. Curto, Fredholm and invertible n-tuples of operators. The deformation problem, Trans. Amer. Math. Soc. 266 (1981), 129-159.
[13] R. Curto, Applications of several complex variables to multiparameter spectral theory. Surveys of some recent results in operator theory, Vol. II, 25-90, Pitman Res. Notes Math. Ser. 192, Longman Sci. Tech., Harlow, 1988.
[14] R. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, Proc. Symposia Pure Math. 51 (1990), 69-91.
[15] R. Curto and N. Salinas, Spectral properties of cyclic subnormal m-tuples, Amer. J. Math. 107 (1985), 113-138.
[16] R. Curto and K. Yan, The spectral picture of Reinhardt measures, J. Funct. Anal. 131 (1995), 279-301.
[17] R. Curto and J. Yoon, Spectral pictures of 2-variable weighted shifts, C. R. Acad. Sci. Paris, Ser. 343 (2006), 579-584.
[18] R. Douglas and K. Yan, A multi-variable Berger-Shaw theorem, J. Operator Theory 27 (1992), 205-217.
[19] R. Douglas and D. Voiculescu, On the smoothness of sphere extensions, J. Operator Theory 6 (1981), 103-111.
[20] R. Douglas and J. Sarkar, Essentially reductive weighted shift Hilbert modules, J. Operator Theory 65 (2011), 379-401.
[21] J. Eschmeier, Essential normality of homogeneous submodules. Integr. Equ. Oper. Theory 69 (2011), 171-182.
[22] Q. Fang and J. Xia, Commutators and localization on the Drury-Arveson space, J. Funct. Anal. 260 (2011), 639-673.
[23] R. Gellar, Circularly symmetric normal and subnormal operators, J. Analyse Math. 32 (1977) 93-117.
[24] J. Gleason and S. Richter, m-Isometric commuting tuples of operators on a Hilbert space, Integr. Equ. Oper. Theory 56 (2006), 181-196.
[25] J. Gleason, S. Richter and C. Sundberg, On the index of invariant subspaces in spaces of analytic functions in several complex variables, J. Reine Angew. Math. 587 (2005), 49-76.
[26] K. Guo, Essentially commutative C^{*}-algebras with essential spectrum homeomorphic to $S^{2 n-1}$. J. Aust. Math. Soc. 70 (2001), 199-210.
[27] K. Guo, J. Hu, and X. Xu, Toeplitz algebras, subnormal tuples and rigidity on reproducing $\mathbf{C}\left[z_{1}, \ldots, z_{d}\right]-$ modules, J. Funct. Anal. 210 (2004), 214-247.
[28] K. Guo, K. Wang, G. Zhang, Trace formulas and p-essentially normal properties of quotient modules on the bidisk, J. Operator Theory 67 (2012), 511-535.
[29] E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities. Courant Lecture Notes in Mathematics, 5. New York Univ., Courant Inst. Math. Sciences, New York; AMS, Providence, R.I., 1999.
[30] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Springer-Verlag, New York 2000.
[31] S. Janson, Th. H. Wolff, Schatten classes and commutators of singular integral operators, Ark. Mat. 20 (1982), 301-310.
[32] N. Jewell and A. Lubin, Commuting weighted shifts and analytic function theory in several variables, J. Operator Theory 1 (1979), 207-223.
[33] H. T. Kaptanoğlu, Aspects of Multivariable Operator Theory on Weighted Symmetric Fock Spaces, to appear in Commun. Contemp. Math.
[34] M. Kennedy, O. M. Shalit, Essential normality and the decomposability of algebraic varieties, New York J. Math. 18 (2012), 877-890. s
[35] S. G. Krantz, Function Theory of Several Complex Variables (second edition), AMS Chelsea Publishing Series, vol. 340, Wadsworth \& Brooks/Cole math. ser., AMS, Providence, R.I., 2001.
[36] K. B. Laursen, M. M. Neumann, An introduction to local spectral theory. London Math. Soc. Monographs. New Series, 20. The Clarendon Press, Oxford Univ. Press, N.Y., 2000.
[37] H. Li, Schatten class Hankel operators on the Bergman spaces of strongly pseudoconvex domains, Proc. Amer. Math. Soc. 119 (1993), 1211-1221.
[38] W. Mlak, Note on circular operators. I, II, III, IV, Univ. Iagel. Acta Math. 29 (1992) 145-152, 153-162, 163-170, 171-175.
[39] V. Müller and A. Soltysiak, Spectral radius formula for commuting Hilbert space operators, Studia Math. 103 (1992), 329-333.
[40] S. Ôta, q-deformed circular operators, Integr. Eqn. Op. Th. 54 (2006), 555-569.
[41] W. Ridge, Approximate point spectrum of a weighted shift, Tran. Amer. Math. Soc. 147, (1970), 349-356.
[42] W. T. Ross, W. R. Wogen, Common cyclic vectors for normal operators, Indiana Univ. Math. J. 53, (2004), 1537-1550.
[43] M. Sepanski, Compact Lie Groups, Springer, New York, 2007.
[44] A. Shields, Weighted shift operators and analytic function theory, in Topics in Operator Theory, Mathematical Surveys and Monographs, Volume 13, 49-128 (American Math. Soc., Providence, RI, 1974).
[45] V. Sholapurkar and A. Athavale, Completely and alternatingly hyperexpansive operators, J. Operator Theory 43 (2000), 43-68.
[46] R. Sibilev, A uniqueness theorem for Wolff-Denjoy series, Algebra i Analiz, 7 (1995), 170-199, Engl. transl. in St. Petersburg Math. J. 7 (1996), 145-168.
[47] A. Volberg, B. D. Wick, Bergman-type singular integral operators and the characterization of Carleson measures for Besov-Sobolev spaces and the complex ball, Amer. J. Math. 134 (2012), 949-992.
[48] R. Wallstén, Hankel operators between weighted Bergman spaces in the ball, Ark.Mat. 28 (1990), 183-192.
[49] G. Weiss, The Fuglede commutativity theorem modulo operator ideals, Proc. Amer. Math. Soc. 83 (1983), 113-118.
[50] D. Yakubovich, Book Review: Operator theory in function spaces by Kehe Zhu, St. Petersburg Math J. 5 (1994), 1023-1044.
[51] K. Zhu, Schatten class Hankel operators on the Bergman space of the unit ball, Amer. J. Math. 113 (1991), 147-167.
[52] K. Zhu, Spaces of holomorphic functions in the unit ball, Springer, 2005.
Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, India
E-mail address: chavan@iitk.ac.in
Department of Mathematics, Universidad Autónoma de Madrid, Spain
E-mail address: dmitry.yakubovich@uam.es

[^0]: 2010 Mathematics Subject Classification: Primary 47A13, 47B32, 46E20; Secondary 47B20, 47B37, 47 B 47.
 Key words and phrases: spherical tuple, Taylor spectrum, essential p-normality, jointly hyponormal, joint q-isometry

