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Abstract

Convolutional Neural Networks (CNNs) have been providing the state-of-the-art performance for 

learning-related problems involving 2D/3D images in Euclidean space. However, unlike in the 

Euclidean space, the shapes of many structures in medical imaging have a spherical topology in a 

manifold space, e.g., brain cortical or subcortical surfaces represented by triangular meshes, with 

large inter-subject and intra-subject variations in vertex number and local connectivity. Hence, 

there is no consistent neighborhood definition and thus no straightforward convolution/transposed 

convolution operations for cortical/subcortical surface data. In this paper, by leveraging the regular 

and consistent geometric structure of the resampled cortical surface mapped onto the spherical 

space, we propose a novel convolution filter analogous to the standard convolution on the image 

grid. Accordingly, we develop corresponding operations for convolution, pooling, and transposed 

convolution for spherical surface data and thus construct spherical CNNs. Specifically, we propose 

the Spherical U-Net architecture by replacing all operations in the standard U-Net with their 

spherical operation counterparts. We then apply the Spherical U-Net to two challenging and 

neuroscientifically important tasks in infant brains: cortical surface parcellation and cortical 

attribute map development prediction. Both applications demonstrate the competitive performance 

in the accuracy, computational efficiency, and effectiveness of our proposed Spherical U-Net, in 

comparison with the state-of-the-art methods.
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1 Introduction

Convolutional Neural Networks (CNNs) based deep learning methods have been providing 

the state-of-the-art performance for a variety of tasks in computer vision and biomedical 

image analysis in the last few years, e.g., image classification [8], segmentation [12], 
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detection and tracking [16], benefiting from their powerful abilities in feature learning. In 

biomedical image analysis, U-Net and its variants have become one of the most popular and 

powerful architectures for image segmentation, synthesis, prediction, and registration owing 

to its strong ability to jointly capture localization and contextual information [14].

However, these CNN methods are mainly developed for 2D/3D images in Euclidean space, 

while there is still a significant demand for models that can deal with data representation on 

non-Euclidean space. For example, the shapes of many structures in medical imaging have 

an inherent spherical topology in a manifold space, e.g., brain cortical or subcortical surfaces 

represented by triangular meshes, which typically have large inter-subject and intra-subject 

variations in vertex number and local connectivity. Hence, unlike in the Euclidean space, 

there is no consistent and regular neighborhood definition and thus no straightforward 

convolution/transposed convolution and pooling operations for cortical/subcortical surface 

data. Therefore, despite many advantages of CNN in 2D/3D images, the conventional CNN 

cannot be directly applicable to cortical/subcortical surface data.

To address this issue, two main strategies have been proposed to extend the conventional 

convolution operation to the surface meshes [2], including (1) performing convolution in 

non-spatial domains, e.g., the spectral domain obtained by the graph Laplacian [3,4,18]; (2) 

projecting the original surface data onto a certain intrinsic space, e.g., the tangent space 

(which is an Euclidean space with consistent neighborhood definition [17,15,5]). On one 

hand, recent advances in convolution in non-spatial domains [4,18] are mainly focusing on 

omnidirectional image data, which is typically parameterized by spherical coordinates α ∈ 
[0, 2π) and β ∈ [0, π]. While cortical/subcortical surface data are typically represented by 

triangular meshes, these methods still cannot be applicable, unless the surface is resampled 

to obtain another sphere manifold parameterized by α and β. This resampling process from 

the spherical surface with uniform vertices to another imbalanced sphere manifold with 

extremely non-uniform nodes is essentially hazardous and unnecessary for cortical surface 

data, because it would miss key structural and connectivity information, thus leading to 

inaccurate and ambiguous results. On the other hand, for cortical surface data analysis, 

existing researches typically adopting the second strategy also suffer from some inherent 

drawbacks. For example, the method in [17] first projected intrinsic spherical surface 

patches into tangent spaces to form 2D image patches, and then the conventional CNN was 

applied for classifying each vertex to derive the surface parcellation map. Seong et al. [15] 

designed a rectangular filter on the tangent plane of the spherical surface for sex 

classification. They resampled points in the rectangular patches for convolution operation. 

For a better comparison with our proposed method, we redraw their rectangular patch 

(RePa) convolution method in the bottom row of Fig. 2A. Overall, as in [17,15], this 

projection strategy would inevitably introduce feature distortion and re-interpolation, thus 

complicating the network, increasing computational burden and decreasing accuracy.

To address these issues, in this paper, we capitalize on the consistent structure of the 

regularly-resampled brain cortical surface mapped onto a spherical space, by leveraging its 

inherent spherical topology. The motivation is that the standard spherical representation of a 

cortical surface is typically a uniform sphere structure that is generated starting from an 

icosahedron by hierarchically adding a new vertex to the center of each edge in each triangle 

Zhao et al. Page 2

Inf Process Med Imaging. Author manuscript; available in PMC 2020 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[6]. Therefore, based on the consistent and regular topological structure across subjects, we 

suggest a novel intuitive and natural convolution filter on sphere, termed Direct Neighbor 

(DiNe). The definition of our DiNe filter is also consistent with the expansion and 

contraction process of icosahedron, in which vertices contribute to or ag-gregate from their 

direct neighbors’ information at each iteration process. With this new convolution filter, we 

then develop surface convolution, pooling, and transposed convolution in spherical space. 

Accordingly, we extend the popular U-Net [14] architecture from image domains to 

spherical surface domains. To validate our proposed network, we demonstrate the capability 

and efficiency of the Spherical U-Net architecture on two challenging tasks in infant brains: 

cortical surface parcellation, which is a vertex-wise classification/segmentation problem, and 

cortical attribute map development prediction, which is a vertex-wise dense regression 

problem. In both tasks, our proposed Spherical U-Net achieves very competitive 

performance in comparison to state-of-the-art algorithms.

2 Method

The key of the Spherical U-Net is to define a consistent neighborhood orders on the 

spherical space, similar to the filter window in the 2D image space. In the following parts, 

we will first introduce the consistent DiNe filter in spherical space and then the spherical 

surface convolution, pooling, transposed convolution operations, and finally the Spherical U-

Net architecture.

2.1 Direct Neighbor Filter

Since a standard sphere for cortical surface representation is typically generated starting 

from a regular icosahedron (with 12 vertices) by hierarchically adding a new vertex to the 

center of each edge in each triangle, the number of vertices on the sphere are increased from 

12 to 42, 162, 642, 2562, 10,242, 40,962, 163,842, and so on [6]. Hence, each spherical 

surface is composed of two types of vertices: 1) 12 vertices with each having only 5 direct 

neighbors; and 2) the remaining vertices with each having 6 direct neighbors. As shown in 

the top row of Fig. 2A, for those vertices with 6 neighbors, DiNe assigns the index 1 to the 

center vertex and the indices 2–7 to its neighbors sequentially according to the angle 

between the vector of center vertex to neighboring vertex and the x-axis in the tangent plane; 

For the 12 vertices with only 5 neighbors, DiNe assigns the indices both 1 and 2 to the 

center vertex, and indices 3–7 to the neighbors in the same way as those vertices with 6 

neighbors.

2.2 Convolution and Pooling on Spherical Surface

We name the convolution on the spherical surface using DiNe filter the DiNe convolution, as 

shown in the top row of Fig. 2A. With the designed filter, DiNe convolution can be 

formulated as a simple filter weighting process. For each vertex v on a standard spherical 

surface with N vertices, at a certain convolution layer with input feature channel number D 

and output feature channel number F, the feature data Iv(7 × D) from the direct neighbors 

are first extracted and reshaped into a row vector Iv′ (1 × 7D). Then, iterating over all N 

vertices, we can obtain the full-node filter matrix I(N × 7D). By multiplying I with the 
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convolution layer’s filter weight W(7D × F), the output surface feature map O(N × F) with F 

channels can be obtained.

The pooling operation on the spherical surface is performed in a reverse order of the 

icosahedron expansion process. As shown in Fig. 2B, in a pooling layer, for each center 

vertex v, all feature data Iv(7×F) aggregated from itself and its neighbors are averaged or 

maximized, and then a refined feature Iv′ (1 × F ) can be obtained. Meanwhile, the number of 

vertices is decreased from N to (N + 6)/4.

2.3 Transposed Convolution on Spherical Surface

Transposed convolution is also known as fractionally-strided convolution, deconvolution or 

up-convolution in U-Net [14]. It has been widely used for its learnable parameters in 

conventional CNN, especially in semantic segmentation. From the perspective of image 

transformation, transposed convolution first restores pixels around every center pixel by 

sliding-window filtering over all original pixels, and then sums where output overlaps.

Inspired by this concept, for a spherical surface with the original feature map I(N ×D, where 

N denotes the number of vertices, and D denotes the number of feature channels) and the 

pooled feature map O(N′ × F, N′ = (N + 6)/4), we can restore I by first using DiNe filter to 

do transposed convolution with every vertex on the pooled surface O and then summing 

overlap vertices (see Fig. 3).

2.4 Spherical U-Net Architecture

With our defined operations for spherical surface convolution, pooling, and transposed 

convolution, the proposed Spherical U-Net architecture is illustrated in Fig. 1. It has an 

encoder path and a decoder path, each with five resolution steps, indexed by i, i = 1, 2,…, 5. 

Different from the standard U-Net, we replace all 3×3 convolution with our DiNe 

convolution, 2×2 up-convolution with our surface transposed convolution, and 2×2 max 

pooling with our surface max/mean pooling. In addition to the standard U-Net, before each 

convolution layer’s rectified linear units (ReLU) activation function, a batch normalization 

layer is added. At the final layer, 1×1 convolution is replaced by vertex-wise filter weighting 

to map C1-component feature vector in the second-to-last layer to the desired Cout at the last 

layer. We simply double the number of feature channels after each surface pooling layer and 

halve the number of feature channels at each transposed convolution layer. That makes Ci+1 

= Ci × 2 and Ni+1 = (Ni + 6)/4, as shown in Fig. 1. Note that we do not need any tiling 

strategy in the original U-Net [14] to allow a seamless output map, because all the data flow 

in our network is on a closed spherical surface.

3 Experiments

To validate the proposed Spherical U-Net on cortical surfaces, we conducted experiments on 

two challenging tasks in infant brain MRI studies: cortical surface parcellation and cortical 

attribute map development prediction. Both tasks are of great neuroscientific and clinical 

importance and are suffering from designing of hand-crafted features and heavy 
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computational burden. We show that our task-agnostic and feature-agnostic Spherical U-Net 

is still capable of learning useful features for these different tasks.

3.1 Infant Cortical Surface Parcellation

Dataset and Image Processing.—We used an infant brain MRI dataset with 90 term-

born neonates. All images were processed using an infant-specific computational pipeline 

[10]. All cortical surfaces were mapped onto the spherical space and further resampled. Each 

vertex on the cortical surface was coded with 3 shape attributes, i.e., the mean curvature, 

sulcal depth, and average convexity. The target is to parcellate these vertices into 36 cortical 

regions for each hemisphere. A 3-fold cross-validation was adopted and Dice ratio was used 

to measure the overlap between the manual parcellation and the automatic parcellation.

Architectures.—We used the Spherical U-Net architecture as shown in Fig. 1. We set Cin 

as 3 for the 3 shape attributes, Cout as 36 for the 36 labels of ROIs, N1 as 10,242, and C1 as 

64. For comparison, we created the following architecture variants.

As RePa convolution is very memory-intensive for a full Spherical U-Net experiment, we 

created a smaller variant U-Net18-RePa. It is different from the Spherical U-Net in three 

points: 1) It only consists of three pooling and three transposed convolution layers, thus 

containing only 18 convolution layers; 2) It replaces all DiNe convolution with RePa 

convolution; 3) The feature number is halved at each corresponding layer. Meanwhile, for a 

fair comparison, we created a U-Net18-DiNe by replacing all RePa convolution with DiNe 

convolution in U-Net18-RePa. Naive-DiNe is a baseline architecture with 16 DiNe 

convolution blocks (DiNe (64 convolution filters), BN, ReLU) and without any pooling and 

upsampling layers.

In addition to the above variants, we also studied upsampling using Linear-Interpolation 

(SegNet-Inter) and Max-pooling Indices (SegNet-Basic). As shown in Fig. 4A, for each new 

vertex generated from the edge’s center, its feature is linearly interpolated by the two parent 

vertices of this edge using Linear-Interpolation. Max-pooling Indices, introduced by SegNet 

[1], uses the memorized pooling indices computed in the max-pooling step of the encoder to 

perform non-linear upsampling at the corresponding decoder. We accommodated this 

method to the spherical surface mesh as shown in Fig. 4B. For example, max-pooling 

indices 2, 3, and 6 are first stored for vertices a, b, and c, respectively. Then at the 

corresponding upsampling layer, the 2-nd neighbor of a, 3-rd neighbor of b, and 6-th 

neighbor of c are restored with a, b and c’s value, respectively, and other vertices are set as 

0. Therefore, SegNet-Basic and SegNet-Inter require no learning for upsampling and thus 

are created in a SegNet style. They are different from our Spherical U-Net in two aspects: 1) 

There is no copy and concatenation path in both models; 2) For up-sampling, SegNet-Basic 

uses Maxpooling Indices and SegNet-Inter uses Linear-Interpolation.

Training.—We trained all the variants using mini-batch stochastic gradient descent (SGD) 

with initial learning rate 0.1 and momentum 0.99 with weight decay 0.0001. Given different 

network architectures, we used a self-adaption strategy for updating learning rate, which 

reduces the learning rate by a factor of 5 once training Dice stagnates for 2 epochs. This 

strategy allowed us to achieve a gain in Dice ratio around 3% for most architectures. We 
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used the cross-entropy loss as the objective function for training. The other hyper-parameters 

were empirically set by babysitting the training process. We also augmented the training data 

by randomly rotating each sphere to generate more training samples.

Results.—We report the means and standard deviations of Dice ratios based on the 3-fold 

cross-validation, as well as the number of parameters, memory storage and time for one 

inference on a NVIDIA Geforce GTX1060 GPU, in Table 1. As we can see, our Spherical 

U-Net architectures consistently achieve better results than other methods, with the highest 

Dice ratio 88.87%. It is also obvious that RePa convolution is more time-consuming and 

memory-intensive, while our DiNe convolution is 7 times faster than RePa, 5 times smaller 

on memory storage and 3 times lighter on model size. Moreover, it outperforms the state-of-

the-art DCNN method [17] using a deep classification CNN architecture based on the 

projected patches on the tangent space. They reported the DCNN without graph cuts 

achieves the average Dice ratio 86.18%, and the DCNN with graph cuts achieves the average 

Dice ratio 87.06%. As in [17], we also incorporated the graph cuts method for post-

processing the output of our spherical U-Net, but this step has no further improvement in 

quantitative results. This may indicate that our Spherical U-Net is capable of learning 

spatially-consistent information in an end-to-end way without post-processing.

Fig. 5 provides a comparison of average Dice ratio of each ROI using different methods. We 

can see that the Spherical U-Net achieves consistent higher Dice ratio in almost all ROIs. 

Fig. 6 provides a visual comparison between parcellation results on a randomly selected 

infant by different methods. We can see that our spherical U-Net shows high consistency 

with the manual parcellation and has no isolated noisy labels.

3.2 Infant Cortical Attribute Map Development Prediction

We have also applied our Spherical U-Net to the prediction of cortical surface attribute maps 

of 1-year-old brain from the corresponding 0-year-old brain using 370 infants, all with 

longitudinal 0-year-old and 1-year-old brain MRI data. All infant MR images were 

processed using an infant-specific computational pipeline for cortical surface reconstruction 

[10]. All cortical surfaces were mapped onto the spherical space, nonlinearly aligned, and 

further resampled. Following the experimental configuration in Meng et al. [13], we used the 

sulcal depth and cortical thickness maps at birth to predict the cortical thickness map at 1 

year of age. The reason to choose the cortical thickness map as the prediction target for 

validating our method is that cortical thickness has dynamic, region-specific and subject-

specific development and is highly related to future cognitive outcomes [7]. To have a robust 

prediction for the cortical thickness, we introduced the sulcal depth as an additional channel 

for leveraging the relationship between sulcal depth and cortical thickness maps [11,9].

Evaluation Metrics.—The evaluation metrics we adopted for the prediction performance 

are mean absolute error (MAE) and mean relative error (MRE) under a 5-fold cross-

validation. The 5-fold cross-validation uses 60% data for training, 20% data for validation, 

and 20% data for testing at each fold.
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Spherical U-Net and Hyper-parameters.—Here we still consider a basic and simple 

architecture and training strategy to validate the effectiveness of our Spherical U-Net. We 

used the Spherical U-Net architecture as shown in Fig. 1, with Cin = 2 (representing sulcal 

depth and cortical thickness channels at birth), Cout=1 (representing cortical thickness at 1 

year of age), C1=64, and N1=40,962. We trained the Spherical U-Net using Adam 

optimization algorithm and L1 loss. We used an initial learning rate 0.0001 and reduced it by 

10 every 3 epochs. The whole training process had 15 epochs and lasted for 30 minutes in a 

NVIDIA Geforce GTX1080 GPU.

Comparison with Feature-based Approaches.—For the feature-based approaches, 

we extracted 102 features for each vertex on 0-year-old cortical surface. Same as in Meng et 

al. [13], the 1st and 2nd features are sulcal depth and cortical thickness, respectively, 

providing local information at each vertex. The 3rd to 102nd features are contextual features, 

providing rich neighboring information for each vertex, which are composed of 50 Haar-like 

features of sulcal depth and 50 Haar-like features of cortical thickness. The Haar-like 

features were extracted using the method and hyper-parameters in [13].

We then trained the following machine learning algorithms on the 102 features in a vertex-

wise manner: Linear Regression, Polynomial Regression, and Random Forest [13]. Linear 

Regression assumes that cortical thickness at each vertex is linearly increased, and 

Polynomial Regression assumes that it has a two-order polynomial relationship with the age. 

Random Forest is an effective method for high dimensional data analysis, which has shown 

the state-of-the-art performance for cortical thickness prediction [13]. Herein, each above 

algorithm would generate 40,962 models, each for predicting the thickness of a certain 

vertex at 1-year-old, while our Spherical U-Net just generates one model for all vertices. All 

the machine learning algorithms were trained on a campus-wide cluster and the training 

process all lasted an extremely long time (2-3 days).

Results.—Table 2 presents the 5-fold cross-validation results. Our Spherical U-Net 

outperforms all other machine learning algorithms both in terms of MAE and MRE. While 

the main competitors, Random Forest is involved with complex hand-crafted features 

extraction step and heavy vertex-wise computational burden, our task-agnostic and feature-

agnostic Spherical U-Net still achieves better results. The Linear Regression and Polynomial 

Regression results reveal that the cortical thickness development is more like in a linear 

pattern than a polynomial pattern from birth to 1 year of age, which is consistent with the 

finding in [13].

Fig. 7 shows a visual comparison on the vertex-wise mean error map between the ground 

truth at 1 year of age and predicted cortical thickness based on 0-year-old data using 

different methods. We can see that the Spherical U-Net obtains smoother and smaller mean 

errors than other methods. Fig. 8 provides the vertex-wise predictions of a randomly selected 

infant using different methods and their corresponding error maps. As we can see, the 

Spherical U-Net predicts the cortical thickness map more precisely than other methods.
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4 Conclusion

In this paper, we propose the DiNe filter on spherical space for developing corresponding 

operations for constructing the Spherical CNNs. The DiNe filter has a natural and intuitive 

definition, making it interpretable for recognizing patterns on spherical surface. We then 

extend the conventional U-Net to the Spherical U-Net by deploying respective surface 

convolution, pooling, and transposed convolution layers. Furthermore, we have shown that 

the Spherical U-Net is computationally efficient and capable of learning useful features for 

different tasks, including cortical surface parcellation and cortical attribute map development 

prediction. The experimental results on these two challenging tasks confirm the robustness, 

efficiency and accuracy of the Spherical U-Net both visually and quantitatively. In the 

future, we will extensively test our Spherical U-Net on other cortical/subcortical surface 

tasks and also make it publicly available.
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Fig. 1. 

Spherical U-Net architecture. Blue boxes represent feature maps on spherical space. The 

number of features Ci is denoted above the box. The number of vertices Ni is at the lower 

left edge of the box. Ni+1 = (Ni + 6)/4, Ci+1 = Ci × 2. For example, N1 can be 10,242, 

40,962, or 163,842, and C1 is typically set as 64. In our applications, the output surface is a 

cortical parcellation map or a cortical attribute map.
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Fig. 2. 

Top in A: Our proposed DiNe convolution. Bottom in A: The Rectangular Patch (RePa) 

convolution in Seong et al. [15]. Both convolutions transfer the input feature maps with D 

channels to the output feature maps with F channels. B: Illustration of the spherical surface 

pooling operation.

Zhao et al. Page 11

Inf Process Med Imaging. Author manuscript; available in PMC 2020 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 

Illustration of transposed convolution on the spherical surface.
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Fig. 4. 

Illustration of Linear-Interpolation and Max-pooling Indices upsampling methods.
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Fig. 5. 

Average Dice ratio of cortical parcellation results for each ROI by different methods.
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Fig. 6. 

Visual comparison of cortical parcellation results of a randomly selected infant using 

different methods.
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Fig. 7. 

Visual comparison of vertex-wise average error maps using different methods.
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Fig. 8. 

Prediction of the vertex-wise cortical thickness map (mm) of a randomly selected infant by 

different methods. The first row shows the input at 0-year-old, ground truth, and the 

predicted cortical thickness maps by different methods. The second row shows the error 

maps (mm).
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Table 1.

Comparison of different architectures for cortical surface parcellation. The p-values are the results of paired t-

test vs. Spherical U-Net.

Architectures
Parameters

(MB)
Storage
(MB)

Inference
time (ms)

Dice (%) p-value

Learning for upsampling

Spherical U-Net 26.9 1635 18.3 88.87±2.43 N.A.

Spherical U-Net18-DiNe 1.7 955 8.9 88.05±2.46 1.96 × 10−3

Spherical U-Net18-RePa 5.2 5047 64.5 88.28±2.50 4.92 × 10−2

No learning for upsampling

Spherical Naive-DiNe 0.4 1499 15.8 81.74±4.96 4.87 × 10−11

Spherical SegNet-Basic 14.5 1341 113.5 78.31±4.62 5.87 × 10−18

Spherical SegNet-Inter 22.0 1533 20.1 75.12±8.39 4.57 × 10−11
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Table 2.

5-fold cross-validated cortical thickness prediction performance in terms of MAE and MRE using different 

methods with standard deviations. The p-values are the results of paired t-test vs. Spherical U-Net.

Methods MAE (mm) MRE (%)
p-value for

MAE
p-value for

MRE

Linear Regression 0.3605 ± 0.0337 15.01 ± 1.92 9.47 × 10−43 1.94 × 10−41

Polynomial Regression 0.6068 ± 0.0900 26.76 ± 4.52 2.01 × 10−43 1.21 × 10−41

Random Forest 0.2959 ± 0.0382 12.63 ± 2.06 2.52 × 10−24 1.80 × 10−16

Spherical U-Net 0.2812± 0.0406 12.14±2.05 N.A. N.A.
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