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Abstract—Massive MIMO is considered a key technology for
the future wireless communication systems. The promising prop-
erties in terms of higher spectral and transmit-energy efficiency
are brought by the large number of antennas at the base station
(BS). As the number of antennas increases, the aperture of
the BS antenna array may become much larger, as compared
to today’s antenna arrays. In this case, mobile stations (MSs)
and significant scatterers can locate inside the Rayleigh distance
of large arrays, and spherical wavefronts rather than planar
wavefronts are experienced over the arrays. In this paper, we
propose an analytical spherical-wave channel model for large
linear arrays, which is also compatible with conventional plane-
wave models. Based on the spherical-wave model, we investigate
how MSs can be spatially separated in simple line-of-sight (LoS)
scenarios. The results theoretically explain the observation in
experiments that spherical wavefronts help decorrelate the MS
channels more effectively than planar wavefronts.

I. INTRODUCTION

With the advent of massive MIMO [1], [2] for providing

a large spatial degrees of freedom, it comes to the questions

of better analyzing and modeling the spatial properties of the

radio channels. Classical MIMO channel models are usually

based on the planar wavefront assumption, and can provide

performance prediction in both line-of-sight (LoS) and non-

line-of-sight (NLoS) channel conditions [3]. However, as

shown in recent massive MIMO studies based on channel

measurements, the plane-wave assumption does not hold for

physically-large arrays [4]–[8]. When the number of antennas

at the base station (BS) increases to hundreds, the aperture of

the antenna array may become much larger, as compared to

conventional MIMO. In this case, mobile stations (MS) and

scatterers most likely locate inside the Rayleigh distance of

the large arrays.

The radiation field of antennas is usually divided into two

regions, the near-field region (Fresnel zone) and the far-field

region (Fraunhofer zone) [9]. The boundary between the two

regions is approximately the Rayleigh distance [10],

Z =
2D2

λ
, (1)

where D is the maximum dimension of the antenna or antenna

array, and λ represents the wavelength. In conventional MIMO

systems, for example, with up to 8 antennas in LTE [11],

we usually assume that the locations of MSs and scattering

objects are far beyond the Rayleigh distance of the BS antenna

array, i.e., d ≫ Z, where d is the distance between the MSs

or scatterers and the BS. In far-field region, the plane-wave

assumption is well-reasoned for MIMO channel models [12].

However, in massive MIMO with physically-large arrays, the

Rayleigh distance Z becomes large as the array aperture D
increases, thus we may have d<Z or d≈Z. For example, in

a semi-urban channel measurement campaign in the 2.6 GHz

band, as reported in [6] and [7], a 7.4 m uniform linear

array was deployed at the BS, giving the Rayleigh distance

about 950 m. All the MSs and significant scatterers are within

this distance. Spherical wavefronts over the large array were

observed, by referring to the angular power spectrum over

the array in the measured channels [4]. Therefore, planar

wavefront assumptions for conventional MIMO channels are

not suitable for physically-large arrays in massive MIMO

scenarios.

Motivated by the experimental results on massive MIMO

channels, the characteristics of the near-field propagation, i.e.,

spherical wavefronts over large arrays, should be taken into

consideration when analyzing and modeling massive MIMO

channels. In [13], the early research on MIMO capacity

considers spherical-wave aware models and briefly exploits the

relationship between channel capacity and array geometries. In

[14], the study empirically shows that spherical-wave model is

more accurate than plane-wave model for short-range MIMO

performance estimation, if the distance between the transmitter

and receiver is below the Rayleigh distance. Besides short-

range communication, [15] and [16] also consider spherical

wavefronts, and propose a technique for realizing high-rank

channel matrix in pure LoS conditions and thus achieving high

channel capacity, by optimizing antenna placement in uniform

linear arrays.

In this work, we propose an analytical channel model for

physically-large linear arrays, which takes spherical wave-

fronts into consideration. We characterize the spherical-wave

channel steering vector by a group of geometrical parameters.

The spherical-wave model is formulated in a general form,

and the closed-form steering vector can be easily used for

analytical study and extended to other types of antenna arrays.

Based on this, we show that our model is compatible with the

conventional plane-wave model. We theoretically study how

the number of BS antennas, antenna spacing and MS spacing

affect the spatial separability of the MSs in LoS conditions. We

also demonstrate how spherical wavefronts help decorrelate the

MS channels, especially for closely-spaced MSs. This effect

has been observed but is not explicit in previous studies based

on measured channels [4], [7].



The rest of the paper is organized as follows. In Sec. II,

we propose and formulate our spherical-wave channel model.

Then Sec. III and IV present theoretical analysis and sim-

ulation results, respectively. Finally, Sec. V summarizes the

paper.

II. SPHERICAL-WAVE CHANNEL MODEL

We first consider the channel from single-antenna MSs to

multiple-antenna BS with LoS components only, then we make

an extension by adding a reflected path to the pure LoS

channel.

A. Basic Model

Fig. 1 depicts the established coordinate system of the

spherical-wave channel model. We arbitrarily choose one

antenna position on the array at the BS side as the origin. The

number of antennas is Nr+1, and the antenna index i ranges

from −δNr to (1−δ)Nr, where δ>0 is defined as the antenna

index parameter and depends on the location of the origin. In

the figure, θ ∈ [0, π] is the angle of incidence from the MS

to the antenna at the origin, ∆r is the normalized BS antenna

spacing in wavelength λc, d is the distance from the MS to the

origin, and ϕi (namely angle variation) is the included angle

between the MS-origin direction and the direction of the MS

to the ith-antenna.

ith antenna i>0

Origin antenna

MS1

Mirror image for 

Origin antenna

ith antenna i<0

Mirror image for 

ith antenna

iϕ

θ

iθ ϕ−

d

p= p⊥

A Perfect Reflector

Spherical Wave Front

Fig. 1. Illustration of the spherical-wave model. The effect of a perfect
reflector is equivalent to having “virtual” BS antennas that are mirrored by
the reflector.

We first consider free-space transmission with only LoS

components in the radio channel. This means that there is

no scattering in the channel thus no small-scale or large-scale

fading. Hence, the spherical-wave eigenmode for the channel

coefficient h between the MS and the origin antenna is

h ∝ 1

d
e−j 2π

λ
d, (2)

where 1/d is the factor due to the free-space pathloss. After

some calculations in geometry, the corresponding spherical-

wave channel vector can be expressed as

hH ∝ [ e
j 2π

λc
L–δNr

L–δNr

e
j 2π

λc
L–δNr+1

L–δNr+1
. . . e

j 2π
λc

L(1−δ)Nr

L(1−δ)Nr

], (3)

where

Li =

{

∆rλci cos(θ − ϕi) + cos(ϕi)d, i ≥ 0
∆rλci cos(θ + ϕi) + cos(ϕi)d, i < 0

(4)

and

ϕi(∆r, d, θ) =

{

arctan( ri

1+ci
), i ≥ 0

arctan(– ri

1+ci
), i < 0

, (5)

ri = ∆riλc sin(θ)
d

, ci = ∆riλc cos(θ)
d

, and arctan(·) is the arc-

tangent function defined in interval [0, π]. Note that Li and ϕi

indicate the phase variation and angle variation over the array,

respectively.

Let us define the steering vector as the normalized channel

vector

a(̟) =
h

‖h‖ , (6)

where ̟ � (d, θ, δ;Nr,∆r). Note that δ and θ are not fully

independent. It is interesting to compare this spherical-wave

steering vector with the conventional MIMO steering vector

that assumes planar wavefronts [12], i.e.,

hi ∝
1

d
e−j2π∆ri cos(θ), (7)

where i ∈ [0, Nr]. Different from the plane-wave model,

the phase variation and pathloss variation over the array are

nonlinear in the spherical-wave model, as shown in (3). The

spherical-wave model is more general, and we will show in

Sec. III that it can be approximated to the plane-wave model

when BS-MS distance is large (d≫Z).

B. Choice of Origin

With the defined spherical-wave steering vector in (6), one

issue is how to choose the ordinate origin. In general, for each

MS, we can choose a different antenna position on the array

as the origin, and derive the relation between the parameters

for different MSs. For example, for two groups of parameters

̟1 = (d1, θ1, δ1;Nr,∆r) and ̟2 = (d2, θ2, δ2;Nr,∆r) of

the same channel vector, i.e., h(̟1)=h(̟2), assuming δ1 >
δ2, the angle variation ϕ1,i and ϕ2,i, where i∈ [−δkNr, (1−
δk)Nr], k=1, 2, follow the relation

ϕ1,i = ϕ2,i+(δ1−δ2)Nr
, (8)

for ∀i∈ [−δ1Nr, (1−δ1)Nr].
In this paper, we have two choices of the coordinate origin

for different purposes of analysis. The two choices are as

follows.

1) The first antenna position is set as the origin, thus we

have δ = 0 and ̟=(d, θ, 0;Nr,∆r). With this setting,

we demonstrate that the proposed model is compatible

with the conventional plane-wave model in Sec. III.

2) We set the origin at the antenna position that is close

to the point of the normal incidence from the MS to

the BS antenna array, so ̟ =(d, π
2 , δ′;Nr,∆r), where

δ′ is the corresponding antenna index paramter. Without

loss of generality, we assume there is always an antenna



position at the point of the normal incidence. Therefore,

using (4) and (5), we have

Li =

√

(∆rλci)
2

+ d2 sin(ϕi + ωi), (9)

ϕi = arctan(
∣

∣

∆rλci
d

∣

∣), ωi = arccos( |∆rλci|√
(∆rλci)2+d2

), for

i∈ [−Nrδ
′, Nr(1−δ′)]. Since ϕi+ωi =

π
2 , (9) is simplified

to

Li =

√

(∆rλci)
2

+ d2. (10)

By using (10), the analysis of the orthogonality between

different MS channels is tractable, and we present the

analysis results in Sec. III.

C. Model Extension

The proposed model can be easily extended from single-user

to multi-user case. With Nt single-antenna users, the channel

matrix is

H ∝
[

h(̟1) h(̟2) . . . h(̟Nt
)

]

, (11)

where h(̟k) is the channel vector of the kth MS to the BS.

We can also extend the model to include a perfect reflector,

as illustrated in Fig. 1. The effect of the reflection path is

equivalent to having “virtual” BS antennas that are mirrored

by the perfect reflector (see Fig. 1). We can see this effect as

increasing the number of BS antennas. Using the principle of

superposition [12], the channel vector becomes

h ∝
√

κh(Nr,∆r, dr1, θr1) + h(Nr,∆r, dr2, θr2), (12)

where the subscript 1 and 2 indicate the actual BS antennas

and the virtual BS antennas, respectively, and the first term is

the channel of the LoS path, the second term is the channel

of the reflected path. The factor κ is the power ratio between

the LoS path and the reflected path. Note that dr2 and θr2 are

calculated according to the principle of specular reflection.

III. MODEL ANALYSIS

We consider multi-user MIMO (MU-MIMO) with two

single-antenna MSs (Nt = 2), as illustrated in Fig. 2. The

analysis and obtained results can be easily extended to the

case of more MSs. In the uplink the received signal at BS can

be expressed as

y = h1x1 + h2x2 + n, (13)

where x1, x2 are the complex transmitted symbols by the two

MSs, with the same energy E

{

|xk|2
}

=Ex. The instantaneous

uplink channel capacity is

Cinst =

Nt
∑

k=1

log2(1 +
Ex

N0
σ2

k), (14)

where N0 is the complex Gaussian noise variance, and σk is

the kth singular value of matrix H = [ h1 h2 ]. It can be

proved that Cinst reaches the maximum when σ1 = σ2. If

h1 and h2 have the same norm, this condition that σ1 = σ2

is called “favorable” propagation conditions that the two MS

channels are fully orthogonal [17].

1
d

1
θ

ith antenna i>0

ith antenna i<0

Origin antenna

r cλΔ {

MS1

MS2

2
θ

ωΔ

u cλΔ

2
d

Spherical Wave 

Front

Spherical Wave 

Front

Horizontal 

Direction

Vertical 

Direction

Fig. 2. Illustration of the spherical-wave model with two single-antenna MSs.

Here we assume that the MS channels have the same

pathloss, and the channel vectors are normalized, i.e., hk =
a(̟k), k = 1, 2. Denote the correlation coefficient between

the two channels by f =
∣

∣aH(̟1)a(̟2)
∣

∣, we have

σ1

σ2
=

√

1 + f

1 − f
, (15)

where σ1/σ2 =1 if and only if f =0. To reach higher channel

capacity, we expect the channel correlation coefficient f to be

close to 0. Next, we investigate the correlation between the

MS channels in the proposed spherical-wave model.

The channel correlation f(Nr,∆r, δ; θ, d, ∆u,∆ω) is a

function of a group of geometric parameters. Here we choose

different origins for the two MSs, and the geometric parame-

ters for MS 1 is used as a reference to derive the parameters for

MS 2, as in this way our theoretical analysis can be simplified.

Thus, we have the antenna index parameter δ = (δ1, δ2), the

BS-MS distance d = d1, the angle of incidence θ = θ1, and

∆u is the spacing between MSs in wavelength, ∆ω is the

included angle between MSs’ connecting direction and the

vertical direction (see Fig. 2). The geometric parameters for

MS 2 are

d2 =
√

d2 + ∆2
uλ2

c + 2d∆uλc sin(θ − ∆ω) (16)

and

θ2 =
π

2
− arctan(

d
∆uλc

cos(θ) − sin(∆ω)
d

∆uλc
sin(θ) + cos(∆ω)

). (17)

In the far-field region and when the MS spacing is too small,

i.e., d ≫ ∆uλc, from (17) we have θ1−θ2 → 0, where it is

difficult to spatially separate the MSs as the angles of arrival

are similar. However, in the near-field region, even if the MS

spacing is small, it is possible to spatially separate the MSs

due to spherical wavefronts are experienced over the array. We

show this effect later in this section.



Using the relation in (8), we can decompose the channel

correlation coefficient

f(Nr,∆r, δ; θ, d, ∆u,∆ω) =

∣

∣

∣

∣

∣

∣

(1−δ1)Nr
∑

i=−δ1Nr

fi

∣

∣

∣

∣

∣

∣

, (18)

where fi = a∗
1,ia2,i, a1,i and a2,i are the channel coefficients

between the MSs and the ith BS antenna, and satisfies

∠fi ∝ L1,i−L2,i+(δ1−δ2)Nr
, |fi| ∝ 1

/

|L1,iL2,i+(δ1−δ2)Nr
|, for

i∈ [−δ1Nr, (1−δ1)Nr]. Note that ∠fi indicates the variation

of the phase differences between the two MSs over the array.

With relatively large variation in phase difference, we expect

relatively better spatial separation of the MS channels.

A. Angle and Phase Variations

In the proposed model, we can see that the angle variation

factor ϕi in (5) determines the phase variation over the array,

see (3) and (4), and therefore the channel correlation f . We

next discuss the angle and phase variations over the array in

two extreme cases – when the MSs are very far from the BS

and when the MSs are very close to the BS, as follows.

• If the MSs are very far from the BS, i.e., in the far field

of the BS antenna array, d≫Z, as discussed in Sec. I,

sufficiently we have d ≫ ∆rλcNr. In this case, in (5),

ri → 0 and ci → 0, thus there is neither angle variation

nor pathloss difference over the array as

ϕi(∆r, d, θ) = 0,

1

Li

≈ 1

d
.

(19)

The channel steering vector then becomes the conven-

tional steering vector under the assumption of planar

wavefronts over the array, as in (7).

• If the MSs are very close to the BS, we have ri→∞ and

ci→∞, resulting in

ϕi(∆r, d, θ) = θ, (20)

and Li ∝∆rλci. In this extreme case, there is again no

angle variation over the array.

For the phase variation, from (10) we see that when i ∈
(0, (1−δ′)Nr], Li monotonically increases with respect to i,
and when i ∈ [−δ′Nr, 0), monotonically decreases. Thus, Li

is a quasi-convex function of the antenna index i. Generally,

for any antenna with incident angle θ, we have ϕi∗ = θ− π
2

and Li∗ =d sin(θ) for some i∗>0 when θ> π
2 .

B. Phase Difference and Spatial Decorrelation

As explained by (18), the phase difference ∠fi determines

the channel correlation. Here we focus on the geometric factors

related to ∠fi and try to predict the channel correlation.

Specifically, we investigate the phase difference ∠fi in the

two extreme cases – when the MSs are very far from or very

close to the BS, as follows.

• When d1 ≪ |∆rλci| and d2 ≪ |∆rλci|, using (10) we

have

∠fi≈

⎧

⎪

⎨

⎪

⎩

2π∆r(δ
′
1−δ′2)Nr, when i>(δ′1−δ′2)Nr

2π∆r(δ
′
2−δ′1)Nr, when i<0

− 4π∆ri+2π∆r(δ
′
2−δ′1)Nr, others.

(21)

The channel correlation f in (18) can also be written as

f =

∣

∣

∣

∣

∣

∣

0
∑

i=−δ′

1Nr

fi +

(δ′

1−δ′

2)Nr
∑

i=1

fi +

(1−δ′

1)Nr
∑

i=(δ′

1−δ′

2)Nr+1

fi

∣

∣

∣

∣

∣

∣

. (22)

We see that if the antenna index i is outside the inter-

val [1, (δ′1 − δ′2)Nr], the phase difference ∠fi remains

constant, see (21). These antennas contribute little to

reduce the channel correlation f . This indicates that we

cannot always separate the MS channels by increasing

the number of antennas in this extreme case. Hence, we

call this phenomenon as a saturation of phase variation

in large number of antennas, when MSs are very close to

BS array.

• When d1≫|∆rλci| and d2≫|∆rλci|, we have

∠fi = 2π(cos θ1 − cos θ2)∆ri, (23)

where i=0, ..., Nr , and θ1 is the angle of incidence from

MS 1 to the first antenna, similarly θ2. We can see that the

decorrelation of the MS channels relies on the difference

in the angles of incidence. When θ1 = θ2, i.e., two MSs

are in the same vertical direction (Fig. 2), ∠fi = 0, it

is thus impossible to spatially separate the MSs. In this

extreme case that the MSs are very far from the BS, the

channel correlation is given by

f ∝
∣

∣

∣

∣

sin(π(Nr + 1)(cos θ1 − cos θ2)∆r)

sin(π(cos θ1 − cos θ2)∆r)

∣

∣

∣

∣

, (24)

as discussed in [12].

Generally, in between the two extreme cases, we have

spherical wavefronts over the array. From (10), the phase

difference ∠fi over the array can be written as

∠fi ∝
√

(∆rλci)
2

+ (d1)
2

−
√

(∆rλc(i + (δ′1 − δ′2)Nr))
2

+ (d2)
2
.

(25)

We evaluate the phase difference ∠fi as described in the

theorem below.

Theorem 1: If δ′1 = δ′2, ∠fi is a quasi-concave function of

i and its value ranges from 2π
λc

(d2−d1) to 0. If d1 =d2, ∠fi

monotonically increases with respect to i, and is bounded in

[−2π∆r(δ
′
1−δ′2)Nr, 2π∆r(δ

′
1−δ′2)Nr].

When δ′1 = δ′2, it means that two MSs are located in the

same vertical direction perpendicular to the BS array, i.e.,

∆ω = 0◦, and d1 = d2 indicates that two MSs are in the

same horizontal direction parallel to the BS array, ∆ω =90◦,

see Fig. 2. In the former case |d1−d2| represents the physical

spacing of the MSs in the vertical direction, and in the latter

case |(δ′1−δ′2)Nr| is proportional to the MS spacing in the

horizontal direction. Fixing the MSs spacing in the two cases,

i.e., |∆rλc(δ
′
1−δ′2)Nr| = |d1−d2|, from Theorem 1, we can

see that the range of ∠fi is larger in the latter case than in

the former case, as 2π∆r |(δ′1−δ′2)|Nr = 2π
λc

|d1−d2|. Thus it

is more efficient to decorrelate MS channels by increasing

the number of antennas in the latter case, i.e., when the

MSs are in the same horizontal direction parallel to the BS



array. Furthermore, the saturation on phase variation still exists

in these two cases. We illuminate this phenomenon with

simulations in Sec. IV.

C. Pathloss Difference and Spatial Decorrelation

Due to analytical tractability, we have f ≤∑(1−δ)Nr

i=−δNr
|fi|≤

1, and the equality holds if and only if L1,i =
L2,i+(δ′

1−δ′

2)Nr
. Note that |fi| ∝ 1

/

|L1,iL2,i+(δ′

1−δ′

2)Nr
| rep-

resents product of pathloss from each MS to the ith an-

tenna, and
∑(1−δ)Nr

i=−δNr
|fi| is the normalized inner prod-

uct of the vectors
[

1
∣

∣

∣
L1,−δ′1Nr

∣

∣

∣

· · · 1
∣

∣

∣
L1,(1−δ′1)Nr

∣

∣

∣

]

and
[

1
∣

∣

∣
L2,−δ′2Nr

∣

∣

∣

· · · 1
∣

∣

∣
L2,(1−δ′2)Nr

∣

∣

∣

]

, which measures the differ-

ence between two MSs’ pathloss over the array. In this section,

our aim is to bound the channel correlation coefficient by this

inner product and we have the results in the following.

Theorem 2 (Upper bound of correlation function): When

δ′1 �=δ′2 and δ′1 >δ′2, we have

1) f(Nr,∆r, δ; θ, d, ∆u,∆ω)<A+B, if (δ′1−δ′2)>1/Nr,

2) f(Nr,∆r, δ; θ, d, ∆u,∆ω)<A+B′, if (δ′1−δ′2)=1/Nr,

3) f(Nr,∆r, δ; θ, d, ∆u,∆ω)<B′, if (δ′1−δ2
′)<1/Nr,

where

A = C0(
d2

√

d2
2 + G2

+
d1

√

d2
1+G2

),

B =
d1d2

∆rλcG
(ln (

G

∆rλc

+ 1)C1(
G

∆rλc

− 1)C2) + C3,

B′ = C1
d1d2

(∆rλc)
2 + C3,

G = ∆rλc(δ
′
1 − δ′2)Nr, (26)

and C0, C1, C2 and C3 are constants.

The term 1/Nr is related to the angular resolution of a linear

array which describes the ability of the array to resolve two

rays. With spherical wave, if two MSs’ horizontal spacing is

smaller than ∆rλc, their channel correlation is determined by

their vertical spacing. For d1d2 in B and B′, by mean value

inequality, when d1 = d2, d1d2 will be maximized subject to

a fixed value of d1+d2

2 . Thus decreasing the average BS-MS

distance d1+d2

2 and at the same time increasing the vertical

spacing of the MSs are beneficial to spatial decorrelation of the

MS channels. We also observe that increasing the BS antenna

spacing ∆rλc rather than the antenna number can decrease

the channel correlation.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we investigate the channel correlation of two

single-antenna MSs in LoS, using the proposed spherical-wave

model. We study two typical scenarios – the included angle of

two MSs 1) ∆ω =90◦, where the MSs are on the line parallel

to the BS antenna array, and 2) ∆ω =0◦, where the MSs are

on the line perpendicular to the BS antenna array, see Fig. 2.

In Fig. 3, we show the channel correlation of the MSs when

the BS antenna spacing ∆r = 1/2 wavelengths and the MSs

are at the edge (Fig. 3(a) and (b)), and at the middle (Fig. 3(c)

and (d)) of a urban-macro cell. According to 3GPP TR36.873

[18], we choose the urban-macro cell radius to be 250 m, so the

BS-MS distance is 250 m at the edge and 125 m at the middle

of the cell. We see that the channel correlation between the

MSs reduces as we increase the MS spacing or the number

of BS antennas. As expected, the spatial separation is more

difficult in the second scenario than in the first scenario, even

with a very large number of antennas (up to a thousand), the

correlation is quite high. Besides, when the MSs are at the

middle of the cell, it is easier to separate them than when

whey are at the edge.
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Fig. 3. Channel correlation between two MSs in LoS conditions in the two
studied scenarios, when they are 250 m (at the edge of a cell) and 125 m (at
the middle of a cell) away from the BS.

Fig. 4 illustrates that the channel correlation reduces with

an increasing number of antennas, for different MS spacings.

We can rely on increasing the number of antennas to separate

the MSs before the saturation region is reached, as remarked

in Theorem 1. We also observe ripples on the correlation

coefficient as the antenna number increases. This is similar

to the plane-wave model where the correlation coefficient is a

sinc function of the antenna number [12].

In Fig. 5(a), we see that the MS channel correlation in-

creases as the BS-MS distance increases, and it becomes more

and more difficult to spatially separate the MSs, especially

when their spacing is relatively small. In Fig. 5(b), we fix the

aperture of the BS array to be 64λc and increase the number

of antennas. We can see that in this case adding antennas does

not help decorrelate the MSs.

Fig. 6 shows the MS channel correlation with LoS and one

reflection path. The power ratio between the LoS path and the

reflection path is set to κ=5 dB. Comparing with Fig. 3, the

reflection path helps reduce the channel correlation, especially

in the second scenario that is particular difficult to separate the

MSs. The effect of the reflection path is equivalent to having

“virtual” BS antennas (see Fig. 1) which also contribute to the

spatial separation.
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Fig. 4. Channel correlation as the number of antennas increases, for antenna
spacing ∆r =1/2 wavelengths and different MS spacings.
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Fig. 5. (a) Channel correlation of the MSs with the BS-MS distance. (b)
Channel correlation of the MSs with a fixed BS array aperture and varying
number of antennas.

MS spacing (unit of wavelength)

(c) mid cell(125m), the first scenario (d) mid cell(125m), the second scenario

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) cell edge(250m), the first scenario

N
u

m
b

e
r 

o
f 

A
n

te
n

n
a

s

(b) cell edge(250m), the second scenario

250

50 100 150 200 250

100

200

300

400

500

600

700

800

900

1000

50 100 150 200 250

100

200

300

400

500

600

700

800

900

1000

50 100 150 200 250

100

200

300

400

500

600

700

800

900

50 100 150 200 250

100

200

300

400

500

600

700

800

900

1000 11000

Fig. 6. Channel correlation in LoS condition with one reflection path, for the
two studied scenarios, when the MSs are 125 m (at the middle of a cell) and
250 m (at the edge of a cell) away from the BS.

V. CONCLUSION AND FUTURE WORK

Based on the proposed spherical-wave model, we investigat-

ed the channel correlation of two MSs in different settings. We

illustrated how the spherical wavefronts can help decorrelate

the MS channels. The spherical-wave model is compatible

with the conventional plane-wave model, and can be extended

to other types of array and the case of more MSs.
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