
 Open access  Book Chapter  DOI:10.1007/978-3-7091-9430-0_24

Spherical Wavelets: Texture Processing — Source link 

Peter Schröder, Wim Sweldens

Institutions: University of South Carolina

Published on: 12 Jun 1995 - Eurographics

Topics: Wavelet, Smoothing, Image processing, Image texture and Multiresolution analysis

Related papers:

 Spherical wavelets: efficiently representing functions on the sphere

 The lifting scheme: a construction of second generation wavelets

 The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets

 Multiresolution analysis for surfaces of arbitrary topological type

 Ten lectures on wavelets

Share this paper:    

View more about this paper here: https://typeset.io/papers/spherical-wavelets-texture-processing-
3i6mqp6smo

https://typeset.io/
https://www.doi.org/10.1007/978-3-7091-9430-0_24
https://typeset.io/papers/spherical-wavelets-texture-processing-3i6mqp6smo
https://typeset.io/authors/peter-schroder-22wujvmwfa
https://typeset.io/authors/wim-sweldens-140iz1vpm8
https://typeset.io/institutions/university-of-south-carolina-2hzjdv31
https://typeset.io/conferences/eurographics-3140bbig
https://typeset.io/topics/wavelet-3i6lm2x1
https://typeset.io/topics/smoothing-195nhdk3
https://typeset.io/topics/image-processing-22uxqmf7
https://typeset.io/topics/image-texture-1aa0u3yb
https://typeset.io/topics/multiresolution-analysis-2ai535qg
https://typeset.io/papers/spherical-wavelets-efficiently-representing-functions-on-the-46wvt6frt0
https://typeset.io/papers/the-lifting-scheme-a-construction-of-second-generation-mfxuqws6rl
https://typeset.io/papers/the-lifting-scheme-a-custom-design-construction-of-23a3820et0
https://typeset.io/papers/multiresolution-analysis-for-surfaces-of-arbitrary-2ra9af7f8c
https://typeset.io/papers/ten-lectures-on-wavelets-3imjtn9y2j
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/spherical-wavelets-texture-processing-3i6mqp6smo
https://twitter.com/intent/tweet?text=Spherical%20Wavelets:%20Texture%20Processing&url=https://typeset.io/papers/spherical-wavelets-texture-processing-3i6mqp6smo
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/spherical-wavelets-texture-processing-3i6mqp6smo
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/spherical-wavelets-texture-processing-3i6mqp6smo
https://typeset.io/papers/spherical-wavelets-texture-processing-3i6mqp6smo


Spherical Wavelets: Texture Processing
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� Department of Mathematics y Department of Computer Science
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Katholieke Universiteit Leuven, Belgium

Abstract: Wavelets are a powerful tool for planar image processing. The resulting
algorithms are straightforward, fast, and efficient. With the recently developed
spherical wavelets this framework can be transposed to spherical textures. We
describe a class of processing operators which are diagonal in the wavelet basis and
which can be used for smoothing and enhancement. Since the wavelets (filters) are
local in space and frequency, complex localized constraints and spatially varying
characteristics can be incorporated easily. Examples from environment mapping
and the manipulation of topography/bathymetry data are given.

1 Introduction

Over the last few years, wavelets have proven themselves as a versatile tool for (planar)
image processing [13]. They have been used for applications such as image compres-
sion [4], image enhancement, feature detection [12], and noise removal [5]. Wavelets
are computationally attractive as the associated transform is linear in the number of
pixels. In the signal processing context the transform is often referred to as subband
filtering. The resulting coefficients describe the features of the underlying image in a
local fashion in both frequency and space. Once in the wavelet domain, operators such
as smoothing, enhancement, edge finding, and noise removal can be performed in a
straightforward fashion.

Recently, the authors introduced a construction of wavelets on the sphere [15]. Having
a fast wavelet transform on the sphere and a family of wavelets with various properties
to choose from, the present paper considers their use in the processing of spherical
texture maps.

Examples of such textures in computer graphics include environment maps1 and
textures on spheres. While the former are defined over the set of directions, which forms
the sphere S2 in R3, the latter applies to the sphere as a geometric modeling primitive.
In this paper we consider examples of texture processing from both of these domains,
and show how spherical wavelets can be applied to these tasks.

We begin with an introduction to spherical wavelets including a description of the
resulting transform and its implementation. This is followed by a discussion of di-
agonal operators in the wavelet domain and how they relate to the common tasks of
smoothing and sharpening of images. We then give concrete examples of processing
environment maps and a spherical texture subject to complex localized constraints. The
paper concludes with a discussion and outlook to further applications.

1 Thanks to Paul Haeberli for suggesting this application domain.



2 Spherical Wavelets

In this section we first give the basic subdivision of a sphere which induces the hierarchy
needed as a foundation for multiresolution analysis. Next we explain the construction
of spherical wavelets. We limit ourselves to the construction of bases arising from
interpolating subdivision schemes. Other constructions are described in [15]. We present
the fast spherical wavelet transform and its implementation.

Figure 1 The geodesic sphere construction starting with the icosahedron on the left (subdivision
level 0) and the next 2 subdivision levels. Successive levels are generated cutting each triangle into
four children. This is accomplished by adding vertices at the midpoint of edges and connecting
them with geodetics.

2.1 Subdividing a Sphere

The construction of spherical wavelets in [15] relies on a recursive partitioning of the
sphere into spherical triangles. This is done starting from a Platonic solid of triangles
and recursive subdivision of the triangles (see Figure 1) and is known as the geodesic
sphere construction [6].

Denote the set of all vertices obtained after j subdivisions with Sj = fsj;k 2 S2 j
k 2 K(j)g;whereK(j) is an index set. The vertices of the original Platonic solid are in
S0; S1 contains those vertices and all new vertices on the edge midpoints (see Figure 1
left and middle). Since Sj � Sj+1 we also let K(j) � K(j + 1), so that sj;k = sj+1;k.
The index k of a vertex in S0 is retained when indexing the same vertex as a member of
S1 and so on. All new members of S1, the edge midpoints, get indicesm different from
the ones already taken by the vertices inherited from S0. Let M(j) = K(j + 1) nK(j)
be the indices of the vertices added when going from level j to j + 1. The vertices
on level j + 1 thus consist of two groups: the “old” ones inherited from Sj (sj+1;k
with k 2 K(j)) and the “new” ones (sj+1;m with m 2 M(j)). Indices will be used
consistently in the sense that k 2 K(j), l 2 K(j + 1), and m 2M(j).

Figure 1 shows this subdivision scheme for several levels, beginning with the icosa-
hedron. Choosing the icosahedron as the starting point, the resulting triangulation has
the least imbalance in area between its constituent triangles. Such imbalances, most
pronounced in the subdivision starting from the tetrahedron, can lead to visible ar-
tifacts. Here we will consider only the icosahedral geodesic subdivision for which
#K(j) = 10 � 4j + 2.

2.2 Multiresolution Analysis

We begin by defining the notion of multiresolution analysis on the sphere S2. Consider
the function space L2 = L2(S2) with the area measure d!, i.e., all functions of finite



energy. We define a multiresolution analysis as a sequence of closed subspacesVj � L2,
with j > 0, so that

1. Vj � Vj+1,
2.
S1
j=0 Vj is dense in L2,

3. for each j, scaling functions 'j;k with k 2 K(j) exist so that f'j;k j k 2 K(j)g
is a Riesz basis2 of Vj .

In this paper we only consider interpolating scaling functions, i.e., scaling functions for
which

'j;k(sj;k0) = �k�k0 for k; k0 2 K(j) :

This can be visualized as a function centered around a given vertex where its value is 1
while it is 0 at all other vertices. Since 'j;k 2 Vj � Vj+1 we can write 'j;k in the basis
of Vj+1. Because of the interpolation property this linear combination, also known as
the refinement relation, takes the form

'j;k = 'j+1;k +
P

m2M(j) hj;k;m 'j+1;m : (1)

Note that the coefficients hj;k;m of this linear combination can be different for every
k 2 K(j) at a given level j > 0. The index m in the sum ranges over bases at new
vertices M(j) = K(j + 1) nK(j).

The easiest example of interpolating scaling functions are the hat functions; a hat
function 'j;k is 1 at sj;k and dies of linearly towards its immediate neighbors.
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Figure 2 Local neighborhoods for the Butterfly scheme. On the left are the vertex index sets A,
B, and C , whose values are used in determining the new value at the central edge midpoint. On
the right are the vertex index sets a, b, and c, of all new edge midpoints to which the value of the
central “old” vertex makes a contribution.

2.3 Subdivision Schemes

Interpolating scaling functions can be constructed using interpolating subdivision sche-
mes. The idea of an interpolating subdivision scheme is the following: given the “old”

2 A Riesz basis of a Hilbert space is a countable subset ffkg so that every element f of the
space can be written uniquely as f =

P
k
ck fk , and positive constants A and B exist with

A kfk2 6
P

k
jckj

2 6 B kfk2.



values �j;k of a function on Sj , find the “new” values on Tj = Sj+1nSj (while preserv-
ing the values at the vertices of Sj). A simple example of this is a linear subdivision,
which assigns each new edge midpoint the average of the values at the end points of its
parent edge. To make matters concrete we define the following two neighborhoods:

- n(j; k) �M(j): indices of the new values affected by the old value �j;k,
- N(j;m) � K(j): indices of the old values who determine a new value �j+1;m.

These two sets are related through n(j; k) = fm 2 M(j) j k 2 N(j;m)g. The
subdivision scheme can now be written as

�j+1;m =
P

k2N(j;m) hj;k;m �j;k :

The scaling function 'j;k itself can be generated by starting on level j, setting the value
�j;k0 of all vertices sj;k0 to zero except for sj;k whose value �j;k is set to 1, followed
by an application of the subdivision scheme ad infinitum. The resulting scaling function
satisfies 'j;k(sj+i;l) = �j+i;l, and the following refinement relation:

'j;k = 'j+1;k +
P

m2n(j;k) hj;k;m 'j+1;m : (2)

Note that the set N(j;m) defines the summation over the coefficients � while the set
n(j; k) defines the summation over the functions '. We may think of this as defining
an adjoint relationship between N and n: N(j;m) = nT (j; k). This property is useful
when changing the order of quantifiers since [8k 2 K(j) : 8m 2 n(j; k)] is equivalent
to [8m 2M(j) : 8k 2 N(j;m)].

Let us discuss two examples of interpolating subdivision schemes. Define for a vertex
sj+1;m the local neighborhoods A(j;m), B(j;m) and C(j;m), each of them subsets
of K(j), and for a vertex sj;k the neighborhoods a(j; k), b(j; k) and c(j; k), each
of them subsets of M(j) as in Figure 2. The upper and lower case notations for the
neighborhoods are each others adjoints (like n and N ). The uppercase sets have the
property that they are easier to implement than the lowercase ones. The chief reason
being that they are smaller and have a fixed size (#A = 2, #B = 2, #C = 4), while
the size of the lowercase ones depends on the connectivity of sj;k. The latter becomes
particularly relevant around the vertices of the original icosahedron, whose valence is 5
as opposed to 6 for all other vertices.

In a linear scheme �j+1;m gets as value the average of the values of the two neigh-
boring vertices in Sj .

�j+1;m = 1=2
P

k2A(j;m) �j;k :

This results in the hat function referred to earlier. In the Butterfly scheme [7] a new
value is found as:

�j+1;m = 1=2
P

k2A(j;m) �j;k + 1=8
P

k2B(j;m) �j;k � 1=16
P

k2C(j;m) �j;k :

The hat functions are continuous, but not differentiable. The Butterfly scheme can lead to
differentiable functions if a smooth map from the sphere to a regular planar triangulation
exists. This map is determined by the partitioning of the sphere. The geodesic sphere
construction presented here does not everywhere lead to such a smooth map. However,
visually the basis functions are quite smooth (see the left image in row 3 of the color
plate 5 for the correspondingwavelet). It is possible to build more elaborate partitionings
of the sphere which ensure the differentiability of the basis functions.



2.4 Wavelets

The basic idea of wavelets is that they form a basis for a space complementing Vj in
Vj+1. Such a space is denotedWj so that Vj+1 = Vj �Wj . Note that we do not require
Wj to be orthogonal to Vj as in the classical wavelet case. A basis of Wj is given by
wavelet functions f j;m j m 2M(j)g and we get

L2 = V0 �
L1

j=0 Wj ;

thus constructing a basis for L2 with

f'0;k j k 2 K(0)g [ f j;m j j > 0; m 2M(j)g :

A very simple construction for a complement space is given by  j;m = 'j+1;m for
m 2 M(j). However, this does not lead to a stable (Riesz) basis for L2. Part of the
problem is that the wavelets do not have a vanishing integral. Instead we propose
wavelets of the form

 j;m = 'j+1;m �
P

k2A(j;m) sj;k;m 'j;k: (3)

In words, we define the wavelet at the midpoint of an edge as a linear combination of
the scaling function at the midpoint (j+ 1;m) and two scaling functions on the coarser
level at the two endpoints of the parent edge (j; k1;2). The weights sj;k;m are chosen so
that the resulting wavelet has a vanishing integral

sj;k;m = Ij+1;m=2 Ij;k with Ij;k =
R
'j;k d! :

This construction of wavelets is a particular instance of a more general scheme called
the “lifting scheme” [18, 17]. To facilitate notation we define for the coarsest level
M(�1) := K(0),  �1;k := '0;k, and �1;k := �0;k. With this notation a function
f 2 L2 can be realized as

f =
P
�16j

P
m2M(j) j;m  j;m :

2.5 Fast Wavelet Transform

Consider a function f 2 Vj+1 given by its scaling function coefficients:

f =
P

l2K(j+1) �j+1;l 'j+1;l : (4)

Note that because of the interpolating property it holds that �j+1;l = f(sj+1;l). We can
also write this function as:

f =
P

k2K(j) �j+1;k 'j;k +
P

m2M(j) j;m 'j+1;m : (5)

Evaluating both expressions at sj;k confirms that we use the same �j+1;k coefficients.
The coefficients j;m can be found by evaluating (4) and (5) at a vertex sj+1;m:

�j+1;m = j;m +
P

k �j+1;k 'j;k(sj+1;m) = j;m +
P

k2N(j;m) �j+1;k hj;k;m : (6)

The latter follows from the refinement relation (2). We can also write this function as

f =
P

k2K(j) �j;k 'j;k +
P

m2M(j) j;m  j;m : (7)



This can be seen by substituting the lifting equation (3) in (7) and identifying components
with (5). This results in:

�j+1;k = �j;k �
P

m2a(j;k) sj;k;m j;m : (8)

One step in the analysis (decomposition) goes from the f�j+1;lg on one hand to the
f�j;kg and fj;kg on the other hand, while one step in the synthesis (reconstruction)
does exactly the opposite. A complete transform from some finest level j = n to j = 0
now follows from recursing on j.

The implementation of the Synthesis and Analysis is now straightforward and
consists of two phases. Note that it only uses the the neighborhoodsA,B, andC, which
are the easier ones to implement.

Analysis Stage I: Calculate the j;m as follows (using (6)):

8m 2M(j) : j;m := �j+1;m � 1=2
P

k2A(j;m) �j+1;k �

1=8
P

k2B(j;m) �j+1;k + 1=16
P

k2C(j;m) �j+1;k :

Analysis Stage II: Calculate the �j;k using the j;m from Stage I (using (8)):

8k 2 K(j) : �j;k = �j+1;k

8m 2M(j) : 8k 2 A(j;m) : �j;k += sj;k;m j;m :

Synthesis Stage I: Calculate the �j+1;k :

8k 2 K(j) : �j+1;k = �j;k

8m 2M(j) : 8k 2 A(j;m) : �j+1;k �= sj;k;m j;m :

Synthesis Stage II: Calculate the �j+1;m using the �j+1;k from Stage I:

8m 2M(j) : �j+1;m := j;m + 1=2
P

k2A(j;m) �j+1;k +

1=8
P

k2B(j;m) �j+1;k � 1=16
P

k2C(j;m) �j+1;k :

It it immediately clear that Synthesis is the inverse of Analysis. This is one of
the advantages of the lifting scheme. The wavelets constructed here fall in the class of
biorthogonal wavelets. If so wanted, one can use the lifting scheme to construct the dual
scaling functions and wavelets. For the analysis in this paper, the dual functions are
not needed and one can derive the transform by simply making use of the interpolating
properties of the scaling functions.

2.6 Calculation of the Integrals

In order to find the coefficients sj;k;m, one needs to calculate the integrals Ij;k of the
scaling functions. This again can be done in a recursive fashion. At the finest level they
are approximated with a quadrature formula. Usually, a simple one point quadrature
is sufficient. Going from level j + 1 to level j is accomplished with the following
algorithm:



Calculate Integrals:

8k 2 K(j) : Ij;k := Ij+1;k

8m 2M(j) :

8><
>:

8k 2 A(j;m) : Ij;k += 1=2 Ij+1;m

8k 2 B(j;m) : Ij;k += 1=8 Ij+1;m

8k 2 C(j;m) : Ij;k �= 1=16 Ij+1;m

This construction ensures that for all levels j the integral of
P

k2K(j) �j;k 'j;k is the
same.

3 Operators in Wavelet Bases

Consider the computational aspect of applying some linear operator T to a given
function. This is easiest when we can find the eigenfunctions of the operator. For in the
basis formed by the eigenfunctions the operator itself becomes diagonal. The cost lies
mostly in the transformation back and forth to the eigenfunctions.

The typical example of an operator which is diagonal in space is multiplication with
a function. Examples of operators which are diagonal in frequency are convolution
(multiplication in the frequency domain), integration and differentiation (multiplication
with or division by a monomial), fractional integration and differentiation (multipli-
cation with an algebraic function). The latter relies on the fact that exponentials are
eigenfunctions of a differential operator. These operators are used frequently for im-
age processing. One can think of fractional integration as a smoothing operator and of
fractional differentiation as an enhancement operator.

Obviously spatially local operators do not need a basis transform. They can be
applied directly in the spatial domain. On the other hand, operators which are local in
the frequency domain are calculated using the Fourier transform. This picture changes
for more general operators. In that case it becomes computationally too expensive to
find the eigenfunctions (typically this requires an O(n3) algorithm).

Wavelets with their support being local in both space and frequency can provide
a straightforward and rapidly computable, but at times crude, approximation of more
general operators. Localization in space arises from their compact support, while lo-
calization in frequency is due to vanishing moments and smoothness. This means that,
roughly speaking, wavelets are approximate eigenfunctions to operators which exhibit
some locality in both space and frequency. A typical example are integral operators
whose kernels die off at a particular rate, so-called Calderón-Zygmund operators.

An example from the area of image processing might be an operator which does
smoothing or enhancement in different spatial locations. Those operators are typically
almost diagonal in the wavelet basis. By only considering the diagonal elements after
transformation to the wavelet basis, one can rapidly find a crude approximation to the
operator. In many cases, e.g., image processing, this is good enough. Indeed, in those
cases the issue is not so much the perfect computation of, for example, the derivative of
the given function. Rather, differentiation is pursued since it leads to enhancement. In
such cases an approximation of differentiation suffices.

More generally, in numerical analysis applications, one can often use approximate
inverses of operators in iterative schemes that converge to the true inverse or one can use
them to build inexpensive preconditioners. For historical reasons, it is interesting to point



out that people working in abstract mathematics and harmonic analysis already realized
some of this in the sixties and at the same time anticipated wavelet-like basis functions.
When wavelets came about in the eighties, they provided the perfect computational
framework for these ideas. This accounts for part of their immediate success.

Let us go into a little more detail for the case of differentiation. To begin with,
consider the classical case where the wavelets are formed by translates and dilates of
one “mother” wavelet (x), j;m(x) =  (2jx�m). Now assume thatD (x) �  (x).
Note that this approximation has to be thought of as very crude. It says nothing more
than that a wavelet is a smooth, local “wiggle”, and so is its derivative. This now implies
that the derivative of a function in the wavelet basis can be approximated as

D
P

j;m j;m  j;m �
P

j;m 2j j;m  j;m :

The approximate derivative in the wavelet basis is thus simply a multiplication with
powers of two. Conversely, approximate integration is a multiplication with 2�j . Frac-
tional differentiation and integration would be multiplication with 2�j�. Now assume
that we would like to calculate an operator which smoothes in one particular area while
performing an enhancement in another area. This would simply result in multiplying
the coefficients of the wavelets, whose center of support lies in the former area with a
negative power, and the ones whose support lies in the latter area with a positive power.
Any number of hybrid schemes can be derived depending on the application.

Spherical wavelets are not formed as translates and dilates of one particular function.
In fact they are a typical example of so-called “second generation wavelets” [17]. The
idea behind this development is precisely to give up the translation and dilation structure
of wavelets, without compromising on the desirable aspects such as localization and
fast transforms. This allows construction of wavelets in much more general settings.

For the approximate calculation of operators in this more general context a similar
reasoning can be applied. Therefore we consider operators T� of the form

T�

�P
j;m j;m  j;m

�
=
P

j;m �j+1 j;m  j;m :

These smooth out if � < 1 and enhance if � > 1, and always leave the scaling functions
on the coarsest level ('0;k =  �1;k) untouched. More advanced operators with space and
frequency localization can be built by letting � be space dependent. Since the wavelets
with j > 0 are constructed to have a vanishing moment, it immediately follows that

R
S2 T� f d! =

R
S2 f d! :

This insures a desirable property in image processing: the overall brightness of an image
is invariant under enhancement and smoothing.

4 Spherical Textures

In this section we consider concrete examples of spherical texture processing and
present results achieved with our implementation applying some of the ideas described
above. All computations were performed with the lifted Butterfly basis on a spherical
icosahedral base mesh subdivided n = 8 levels, yielding 10 � 48 + 2 vertices on 20 � 48

triangles. Environment mapping images were ray traced while the texture mapping
images were rendered with RenderMan.



4.1 Environment Mapping

A common technique employed in the rendering of highly reflective objects is the use
of an environment map [2]. In this technique the radiance reflected across a mirror like
surface in the direction of the viewer is approximated by a table lookup in a texture map.
The texture map corresponds to a sphere at infinity, giving the incoming radiance as a
function of direction. While being only an approximation, which for example, fails with
respect to objects close to the reflecting object, impressive effects can be achieved with
it. The use of environment maps exhibits the classical tradeoff between computation
time and fidelity. Efficiency is bought at the expense of sometimes gross simplification
which is deemed acceptable so long as the results are still plausible.

An environment map is typically given as a cubic map, i.e., as six faces of a cube.
Since the reflection vector is used as an index into these maps they are effectively point
sampled. As with all point sampling techniques care must be taken to avoid aliasing
artifacts. Greene [9] suggested the use of MIP maps [19] on each face of the cubic
map. The basic idea of a MIP map is to build an image pyramid by recursive averaging
over 4 neighboring pixels. Readers familiar with wavelets can think of it as a Haar
transform (with only the low pass and not the high pass filters). Filtering each face of
the cube separately, however, leads to obvious artifacts at the cube face boundaries.
The problems are exacerbated by the fact that proper filtering of a cubic map implies
spatially variant filtering, since the desired filter is a function of the distortion between
the sphere of directions and its cubic projection. To address this problem, Greene and
Heckbert [10] proposed the use of weighted elliptical average filters. They did not,
however, use prefiltered environment maps but instead computed each convolution
directly. For small filter kernels this is acceptable, but for large filter geometries the
performance can degrade quickly and one of the goals of using environment maps,
speed, is compromised.

Another application of appropriately filtered environment maps is the approximation
of glossy (or mixed diffuse and directional) reflection as pointed out by Greene [9].
Assume a BRDF which is centered around the mirror direction with a symmetric fall-
off away from it. Integrating such a BRDF against the environment map is equivalent
to the convolution of the map with an appropriately shaped filter. For simple reflection
models these convolutions can be precomputed, in effect resulting in an appropriately
smoothed environment map. Greene [9, Figure 8] demonstrated this idea for smooth
transitions between mirror reflection and diffuse reflection.

The basic task of prefiltering texture maps has received much attention in computer
graphics. Examples include MIP mapping [19], filtering by repeated integration [11],
summed area tables [3], and decomposition into basis functions [8]. All of these tech-
niques were designed for the processing of planar textures.

The main difficulty in applying these techniques to environment maps is that we
seek to filter a spherical map, not a planar one. Any mapping from the sphere onto the
plane will yield large distortions, e.g., at the poles. Consequently correct filtering implies
grossly distorted filter footprints. What is needed instead is a preprocess which filters the
original spherical map on a sphere. Typically, this is done for a sequence of increasingly
larger filter sizes, not unlike a MIP map. For convenience these filtered maps can then be
resampled onto cubic environment maps at appropriate resolution yielding the desired
successively smoothed versions of the original map without artifacts introduced by the
mapping onto the faces of a cube.

One way to compute these successively smoothed versions is through the use of



spherical harmonics. Given an expansion of the texture in terms of spherical harmonics
smoothing and enhancement can be applied by proper scaling of the coefficients. How-
ever, a number of difficulties are associated with the use of spherical harmonics. Due
to their global spatial support they require many high order coefficients to adequately
represent sharp features. This also accounts for the high cost of computing expansions of
functions in spherical harmonics. Specifically, every sample contributes to every basis
function, requiring work which is approximately quadratic in the number of samples.
Furthermore application of spatially varying operators would be very difficult.

We have processed an environment map using the ideas of Section 3. In order to
visualize the entire environment map we have computed images of the environment
reflected in a sphere. This in effect shows the entire map including extreme distortion
around the silhouette of the reflective sphere. The original map is shown on the left of
the top row in Figure 5. To its right is an enhanced version with � = 1:5. Note the
increased contrast overall and the enhancement of detail in the floor and ceiling. On the
right of the top row is an extreme enhancement of � = 2:0, which brings out much of
the noise in the original texture, as one would expect. All images in the top row reflect
the processed environment off a perfectly specular sphere. The images in the second
row show the simulation of the transition from mirror reflection to diffuse. The model
is a mixed model of diffuse plus blurred specular, (1 � �)T0 + �T� , with � = 0:75,
� = 0:5, � = 0 (left to right).

4.2 Localized Processing of Textures

To demonstrate the ideas of the local processing of spherical textures we chose a
topography/bathymetry data set (ETOPO5) obtained from the NOAA. It gives the
height/depth in meters from 0 for the earth. The resolution of the original data set is 5
arc minutes. Due to its large size we first resampled it to 10 arc minutes. A piecewise
linear pseudo coloring of the data set is shown on the bottom left of the color plate 5.
Note that the height displacements are grossly exaggerated for visualization purposes.

Now consider the following task: Smooth the texture but insure that all coastlines
are perfectly reconstructed. This implies that smoothing can only occur away from
coastlines. High spatial frequencies can be attenuated already a small distance from
a coastline, while low spatial frequencies can only be attenuated at further distances.
Coastlines were defined as the zero level set of the original texture �20m (each triangle
at level n = 8 has an approximate edge length of 26km).

The basic idea is to split the set of indices f(j;m) j �1 6 j 6 n; m 2 M(j)g into
two disjoint sets: U for the ones that stay untouched and T for the ones that can be
touched. The operator we use is diagonal in the wavelet basis and looks like

T�
�P

(j;m)2T[U j;m  j;m
�
=
P

(j;m)2U j;m  j;m +
P

(j;m)2T �
j+1 j;m  j;m :

The question now is how to find the sets T and U . The idea is the following: first
flag all finest level vertices which are close to the coastlines. Call this set fsn;k j k 2
K(n); (n; k) 2 Fg. We use the following rule to find F : if for a certain vertex sn;k the
sign of the given data is different at any of its immediate neighbors, or if the absolute
value of the data is below 20 meters, then (n; k) 2 F . The set U now can be found by
a recursive algorithm just like Analysis, observing that a coarser level basis is in U if
any of the bases in its refinement relation are in U . This construction assures that

8(n; k) 2 F : T�f(sn;k) = f(sn;k) ;



meaning none of the coastlines will have been altered after processing.
The middle image of the third row in Figure 5 shows all triangles at the finest level

(green and blue) which intersect the zero contour, i.e., all triangles whose vertices sn;k

have (n; k) 2 F . Approximately 40; 000 of the vertices (6:1%) fall into this category.
Next we determine all wavelets at all levels whose support overlaps the coastline. Their
centers, i.e., the sj;m with (j;m) 2 U , are shown on the right of the third row in
Figure 5. The image demonstrates how the density of basis functions which overlap the
coastlines decreases with distance from the coastline. Approximately 142 000 (22%)
of all basis functions have support which overlaps some coastline. Note for example
that in the Mediterranean most basis functions overlap some coastline. In fact all basis
functions at levels 0�3 overlap coastlines somewhere in their respective supports. Any
processing must leave these basis functions unchanged to ensure perfect reconstruction
of the coastlines.

The fourth row of Figure 5 shows the unprocessed texture (left) followed by a
smoothed version (� = 0:75). Note how the interior of continents and the bottom
of the Atlantic are smoothed out while coastlines are preserved in all their details. This
kind of processing would be very difficult to achieve in any non-local scheme. The last
image on the fourth row is a rendering of a “soccer-trophy” put (appropriately) in a bar
scene. It is a metal sphere that represents the earth; the continents are perfect mirrors
and the oceans are mate.

5 Summary and Discussion

We have shown how spherical wavelets can be used to facilitate common texture
processing tasks such as smoothing and sharpening for textures which are inherently
defined on the sphere. The examples considered the case of a texture defined over a set
of directions (environment mapping) and a texture defined over a spherical body (earth
topography/bathymetry). Transforming a texture from its nodal representation to the
wavelet basis is a linear operation in the resolution of the texture. After this step both
smoothing and sharpening operators can be efficiently applied pointwise. The inverse
transform then yields the desired result. The local support property of wavelets allows
us to apply smoothing or enhancement operators in complex, spatially varying ways.

We have only scratched the surface of the possible texture processing tasks one might
perform. It is hoped that the availability of this basic spherical technology will lead to
many other applications. Possible future work includes more accurate approximations
of BRDFs such as those proposed by Schlick [14] by a sequence of preprocessed envi-
ronment maps, in effect expressing them as small linear combinations of appropriately
shaped filters. Another direction would be segmentation based on wavelet probing [1]
as might be useful in satellite based remote sensing.
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Figure 3 Examples of processed environment maps and spherical textures.




