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Abstract Novel static black hole solutions with electric
and magnetic charges are derived for the class of modified
gravities: f (R) = R + 2β

√
R, with or without a cosmo-

logical constant. The new black holes behave asymptotically
as flat or (A)dS space-times with a dynamical value of the

Ricci scalar given by R = 1
r2 and R = 8r2�+1

r2 , respec-
tively. They are characterized by three parameters, namely
their mass and electric and magnetic charges, and consti-
tute black hole solutions different from those in Einstein’s
general relativity. Their singularities are studied by obtain-
ing the Kretschmann scalar and Ricci tensor, which shows
a dependence on the parameter β that is not permitted to be
zero. A conformal transformation is used to display the black
holes in Einstein’s frame and check if its physical behavior is
changed w.r.t. the Jordan one. To this end, thermodynamical
quantities, as the entropy, Hawking temperature, quasi-local
energy, and the Gibbs free energy are calculated to investigate
the thermal stability of the solutions. Also, the casual struc-
ture of the new black holes is studied, and a stability analysis
is performed in both frames using the odd perturbations tech-
nique and the study of the geodesic deviation. It is concluded
that, generically, there is coincidence of the physical prop-
erties of the novel black holes in both frames, although this
turns not to be the case for the Hawking temperature.

a e-mail: elizalde@ieec.uab.es
b e-mail: nashed@bue.edu.eg
c e-mail: nojiri@gravity.phys.nagoya-u.ac.jp
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1 Introduction

The discovery of gravitational waves (GW) has shed light on
a new possibility to probe the laws of physics in strong gravi-
tational fields [1]. General relativity (GR) has been confirmed
to a very good precision on weak gravitational field back-
grounds [2]; however, the precise form of the anticipated,
necessary modification of GR to deal with strong gravita-
tional fields is not confirmed yet, although different possi-
bilities have been proposed. The discovery of GW definitely
provides an excellent chance to test those modified gravity
theories in the strong gravitational fields of black hole solu-
tions [3] and neutron stars [4].

The simplest generalizations of GR are the f (R) gravita-
tional theories, whose Lagrangian involves nonlinear terms
in R. A simple possibility is power-law gravity, described by
a Lagrangian of the form

f (R) = R +
Rn

6m2 ,

where n is an arbitrary number and with m2 being a positive
mass squared. The term R2 has a natural interpretation as
corresponding to the lowest order quantum perturbative addi-
tions to classical gravity, and it is, at the same time, responsi-
ble for cosmic inflation in the early Universe. In addition, this
term should be seriously considered when dealing with local
objects on the background of a strong gravitational field. In
relation with this, many research papers have been devoted
to the study of static spherically symmetric black hole solu-
tions, as e.g. [5–14], and neutron stars solutions [15–28]. It
is also known that f (R) theories can be matched to Brans–
Dicke theories [29], which involve a scalar and a potential
of gravitational origin [30,31]. Alike as for black holes, in
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Brans-Dicke theories having a potential with positive mass
squared there is a “no-hair (B theorem)”, which prevents the
appearance of non-trivial scalar hair [32,33], and this theo-
rem also forbids the presence of hairy black hole solutions
in the R2 model [6,7,12,13]. A number of black holes have
been already obtained in the framework of f (R) theories
[6,34–44], their physical properties having been discussed
in, e.g., [45–48].

The observation of the mathematical similarity between
gravitational and electromagnetic fields goes back at least
to the eighteenth century, when Coulomb constructed his
inverse square law to formulate the force between two
charges at a distance r [49]. Coulomb’s law is, in this sense, a
complete analogue of the gravitational law [50] for the force
acting on two masses separated by the same distance. The
similarity between this expression for the two forces led sci-
entists to conjecture that the gravitational force exerted by
the sun on the planets could be accompanied by a magnetic
force leading to the precession of their orbits and, thence,
they would investigate from this standpoint the discrepancy
found by Newton in the precession of Mercury’s orbit. In fact,
Mercury’s perihelion precession was definitely explained by
Einstein’s GR, sometime after this similarity between grav-
itational and electromagnetic fields had been exploited, in
some regimes. Moreover, it is known that gravitation involves
a gravitomagnetic field because of the mass current [51–54].
Additionally, Einstein GR forecasts a gravitomagnetic field
because of the proper rotation of the Sun that effects the plan-
etary orbits [55–57]. Those are well-known facts. The aim of
the present paper is to construct brand new black hole solu-
tions,1 possessing electric and magnetic charge, within the
family of f (R) modified gravities, to describe them in both
the Jordan and the Einstein frames, and to study a number of
their physical properties, by calculating associated thermo-
dynamical quantities. Moreover, we will study their causal
structure and perform a detailed stability analysis by using
odd perturbation techniques and the study of the geodesic
deviation.

The paper is organized as follows. In Sect. 2 a brief intro-
duction to the theory of Maxwell- f (R) gravity is given. In
Sect. 3, restricting to spherical symmetry, an exact solution of
the field equations of the Maxwell- f (R) theory is obtained.
In Sect. 4, the same derivation is performed for the case of the
Maxwell- f (R) theory involving a cosmological constant,
and a new black hole solution is constructed, which behaves
asymptotically as AdS or dS space. In Sect. 5, the characteris-
tic properties of the found black holes are analyzed in detail.
In Sect. 6, by using conformal transformation, we derive the

1 The form of f (R) presented in this study is different from the one
in [58]. Also the forms of the black holes derived here are different
from [58] because the charge term in this study does not depend on the
parameter of the higher order curvature while it depends in [58].

black hole solutions in the Einstein frame. In Sect. 7, basic
thermodynamical quantities, such as the entropy, quasi-local
energy, the Hawking temperature, and the Gibbs energy are
calculated in both the Einstein and the Jordan frames. These
calculations show that (with the sole exception of the Hawk-
ing temperature) the physical behavior of the black holes
obtained do not change generically in going from one to the
other frame. In Sect. 8 we study the linear stability of the
black hole solutions derived in Sects. 3, 4 and 6, by using
the odd perturbations technique. In addition, in Sect. 9, the
stability conditions when considering geodesic motion are
derived. In Sec. we discuss the causal structure of our solu-
tion obtained in Sect. 3. Finally, in Sect. 11 we present a
summary of the main results of this work, draw some com-
pelling conclusions, and discuss some ideas for future work.

2 Brief note on the Maxwell– f (R) theory

The theory of f (R) gravity is an extension of Einstein’s GR,
first discussed in [59–66]. The Lagrangian of this theory is

L := Lg + LE .M., (1)

its gravitational term being Lg , which is given by

Lg :=
1

2κ

∫

d4x
√

−g( f (R) − �), (2)

with � the cosmological constant, R the Ricci scalar, κ the
gravitational constant, g the determinant of the metric, and
f (R) an analytic function. Here, we have defined the energy-
momentum as L

E .M.
, the Lagrangian of the electromagnetic

field, which is given by

L
E .M.

:= −
1

2
F2, (3)

where F2 = Fμν Fμν and Fμν = 2ξ[μ,ν], with ξμ being the
gauge potential 1-form, while the comma denotes ordinary
differentiation2 [67].

Performing the variations of the Lagrangian of Eq. (1)
w.r.t. the metric tensor gμν and w.r.t. the strength tensor F ,
respectively, one gets the field equations of the Maxwell-
f (R) theory, in the form [68]

ζμν = Rμν fR −
1

2
gμν f (R) − 2gμν�

+gμν� fR − ∇μ∇ν fR − 8πTμν ≡ 0, (4)

∂ν

(√
−gFμν

)

= 0, (5)

2 The square brackets stand for anti-symmetrization, i.e. ξ[μ,ν] =
1
2 (ξμ,ν − ξν,μ) and the rounded ones for symmetrization ξ(μ,ν) =
1
2 (ξμ,ν + ξν,μ).
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where Rμν is the Ricci tensor3 and � is the d’Alembertian
operator, defined as � = ∇α∇α , where ∇α Aβ is the covariant

derivative of the vector Aβ , and fR =
d f (R)

dR
. Here, we

define the energy-momentum tensor, Tμν , as

Tμν :=
1

4π

(

gρσ Fν
ρFμ

σ −
1

4
gμν F2

)

. (6)

Taking the trace in Eq. (4), one gets

ζ = R fR − 2 f (R) − 8� + 3� fR = 0. (7)

In the following, we are going to assume a particular form for
the field Eq. (4), with and without a cosmological constant,
in order to be able to derive exact charged solutions asymp-
totically behaving as flat, respectively AdS/dS space-times.

3 Black hole solutions with magnetic and electric charge

In this section we obtain a charged black hole solution for
the model

f (R) = R + 2β
√

R. (8)

To achieve this, we introduce the following spherically sym-
metric ansatz4

ds2 = −w(r)dt2 +
dr2

w(r)
+ r2(dθ2 + sin2 dφ2). (9)

The Ricci scalar of the line-element (9) is given by

R =
2 − r2w′′ − 4rw′ − 2w

r2 , (10)

where w ≡ w(r), w′ ≡ dw(r)
dr

, and w′′ ≡ d2w(r)

dr2 . Using
Eqs. (9) in (4), (5) and (7), after using Eq. (10) we get a sys-
tem of fourth order differential equations which are listed in
Appendix A. The off-diagonal components of these system,
(A · 2), (A · 4) and (A · 5), can be solved to determine the
unknown functions n, p, s, and k. Substituting the values of
these function into the diagonal components, as well as into
the trace field equation, we get the following exact solution

w(r) =
1

2
+

c1

r
+

q
E

2 + q
M

2

r2 , q =
q

E

r
, n = c2θ,

s = c2r, p = c3r, k = c4θ − q
M

cos θ, (11)

where the ci , i = 1 · · · 4, are constant, and q
E

and q
M

are
other constants related to the electric and magnetic charge,
respectively. The analytic solution (11) satisfies the system

3 The Ricci tensor is defined as

Rμν = R
ρ

μρν = 2Ŵρ
μ[ν,ρ] + 2Ŵρ

β[ρŴβ
ν]μ,

where Ŵρ
μν are the Christoffel symbols of the second kind.

4 We use this ansatz (9) to find an exact solution. Changing the ansatz
(9) will produce complicated field equations that are not easy to solve.

of differential equations presented in Appendix A, including
the trace of the field equations, provided that c1 = 1

3β
. Using

Eq. (10) we get the Ricci scalar, in the form

R =
1

r2 , (12)

which provides also a consistency check for the whole pro-
cedure. The metric of the solution (11) takes the form

ds2 = −
(

1

2
+

1

3βr
+

K2

r2

)

dt2

+
(

1

2
+

1

3βr
+

K2

r2

)−1

dr2 + r2d�2, (13)

where we have set q
E

2 + q
M

2 = K2. Equation (13) behaves
asymptotically as a flat space-time. Solution (11) coincides
with that obtained in [69] when K2 = 0, i.e. qE = qM = 0.
Also, the solution obtained (13) corresponds to the spheri-
cally symmetric space-time in f (R) gravitational theories,
and differs from the corresponding one in [58] by the more
general expression of the 1-form gauge potential (A. 9) and
by the parameter K that couples to electric and magnetic
fields.

4 Analytic AdS/dS charged solutions

To derive a charged black hole solution that behaves asymp-
totically as AdS/dS we assume f (R) to have the form

f (R) = R + 2β
√

R − 8�. (14)

Applying the ansatz (9) to the field Eqs. (4), (5), and (7),
after using (10), we get a system of fourth order differential
equations listed in Appendix B.

Using the previous procedure, namely solving the off-
diagonal components and substituting their values in the
diagonal ones, we get the following exact solution

w(r) =
1

2
−

2r2�

3
+

1

3βr
+

q
E

2 + q
M

2

r2 , q =
q

E

r
,

n = c2θ, s = c2r, p = c3r,

k = c4θ − q
M

cos θ. (15)

Introducing Eq. (15) into (10), we get the Ricci scalar, in the
form

R =
8r2� + 1

r2 . (16)

The metric of the above solution reads

ds2 = −
(

1

2
−

2r2�

3
+

1

3βr
+

q
E

2 + q
M

2

r2

)

dt2

+
(

1

2
−

2r2�

3
+

1

3βr
+

q
E

2 + q
M

2

r2

)−1

dr2 + r2d�2 ,

(17)
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and behaves asymptotically as AdS/dS space-time. The solu-
tion (15) is different from the one derived in [69], owing to
the same reason already discussed for the solution (11).

5 Physical significance of the new black holes

The metric of the solution (11) can be rewritten as

ds2 = −
(

1

2
−

m

r
+

K2

r2

)

dt2

+
(

1

2
−

m

r
+

K2

r2

)−1

dr2 + r2d�2 , where

m = −c1 = −
1

3β
. (18)

Equation (18) indicates that the dimensional parameter β

cannot vanish. Moreover, Eq. (18) shows that the line-
element coincides with the Reissner-Nordström space-time
when K = q

E
and q

M
= 0.

The line-element of the solution (15) can be written as

ds2 =
(

1

2
−

2r2�

3
−

m

r
+

K
2

r2

)

dt2

−
(

1

2
−

2r2�

3
−

m

r
+

K
2

r2

)−1

dr2 − r2d�2 , where, again

m = −c1 = −
1

3β
, (19)

which tells us that the line-element (19) does behave asymp-
totically as AdS/dS and that it coincides with the Reissner-
Nordström space-time when K = q

E
and q

M
= 0. Equa-

tions (18) and (19) show, in a clear way, that the dimensional
parameter β cannot vanish.

Let us study now the regularity of the solutions (11) and
(15), when w(r) = 0 [70]. For the solution (11), we evaluate
the scalar invariants and get

R
μνλρ

Rμνλρ =
4r2 − 4βr3 + 3r4β2 + K2[48rβ − 12r2β2 + 168β2] + 336βq2

M
q2

M

3β2r8 ,

R
μν

Rμν =
r4 + K2[4r2 + 8K2]

2r8 , R =
1

r2 , (20)

where RμνλρRμνλρ , RμνRμν , and R are the Kretschmann
scalars, the Ricci tensor square, and the Ricci scalar, respec-
tively. Equation (20) show that, at r = 0, the solutions
develop a true singularity and that the dimensional parameter
β �= 0. Also, Eq. (11), as well as Eq. (13), point out to the
fact that the dimensional parameter β cannot be zero, which
assures that the solution (11) cannot possibly reduce to one in
GR. In other words, this solution is a genuinely new one, an
exact, charged solution in the class of f (R) modified gravity
theories.

Using Eq. (15), we get the scalar invariants in the form

R
μνλρ

Rμνλρ =
4r2 − 4βr3 + 3r4β2 + K2[48rβ − 12r2β2 + 168β2] + 336βq2

M
q2

M
+ 8r6β2�[4r2� + 1]

3β2r8 ,

R
μν

Rμν =
r4 + K2[4r2 + 8K2] + 8r6β2�[4r2� + 1]

2r8 ,R =
8r2� + 1

r2 . (21)

The same considerations already done for the solution (11)
can also be applied now to the solution (15), what will insure
also that (15) is a brand new, charged solution constructed
in the class of f (R) gravities, and that it cannot possibly be
reduced to a GR solution.

6 Charged black hole solutions in the Einstein frame

In this section we will construct charged black holes in the
Einstein frame. We thus start with a brief description of f (R)

theories in the Einstein frame. It is rather well-know that
f (R) gravitational theories can be rewritten under the form
of a Brans-Dicke theory, by involving a subsidiary field, ψ ,
through a non-minimal coupling term, as

L :=
∫

d4x
√

−g

[

1

2κ
fψ (ψ)(R − �)

−
(

ψ fψ (ψ) − f (ψ)

2κ

)]

+ LE .M.
, (22)

where fψ (ψ) = f (ψ)
dψ

and LE .M.
is the Lagrangian of the

electromagnetic field, given by Eq. (3). Variation of Eq. (22)
w.r.t. ψ gives fψψ (R − � − ψ) = 0. For fψψ �= 0, one can
obtain ψ = R − � and the above action returns back to the
one of Eq. (1). This means that the field equations produced
by the action (22) exactly coincide with those previously
derived from the Lagrangian (1), namely (4) and (5).
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When choosing σ = fψ (ψ), the Lagrangian (22) is
termed as a Brans–Dicke’s like theory with a non-minimal
coupling term σ R and a scalaron potential V (σ ). It is well-
know that the non-minimal coupling term can be eliminated
from the Jordan frame, by moving to the Einstein frame,
using the following conformal transformation

gμν → ḡμν(x) = �2(x)gμν(x), (23)

where the space-time conformal factor has been chosen as
�2(x) = fR, what demands that fR > 0 [71,72]. From
the transformation (23), one can show that the Ricci scalar
transforms as R → R̄. Using now the canonical scalar field

ψ =
√

6

κ
ln � =

√

3

2κ
ln fR, (24)

and from the conformal transformation (23), the Lagrangian
(22) converts into a scalar-tensor theory in the Einstein frame,
as

LE :=
∫

d4x
√

−ḡ

[

1

2κ
(R̄ − �)

−
1

2
ḡμν∂μψ∂νψ − V (ψ)

]

+ L
E .M.

, (25)

where

VE (ψ) =
R fR − f

2κ fR
2 =

V (ψ)

f 2
R

, (26)

is the potential of the canonical scalar field ψ . The potential
VE (ψ) can be rewritten in terms of ψ by using the inverse
relation fR = e

√
2κ/3 ψ . Performing the conformal trans-

formation (23), the energy–momentum tensor converts into
[72–77]

Tμν → T̄μν = �(x)−2Tμν . (27)

In the following, we are going to apply the conformal trans-
formation (23) to the space-time metric (18), i.e. ds̄2

E =
�2ds2

J , where the conformal factor of the f (R) gravity (8)
is given by

�2 = fR = 1 + rβ. (28)

The relation between the scalar field � and the radial coordi-
nate r is plotted in Fig. 1. Finally, using Eq. (26), the potential
of this model reads

V (r) = −
β

2κ2r(1 + βr)2 ,

⇒ V (�) =
β2

2κ2�4(1 − �2)
. (29)

Equation (29) is plotted in Fig. 2.
Thus, we can write the Einstein frame metric as

ds̄2
E = �2

[

−w(r)dt2 +
dr2

w(r)
+ r2

(

dθ2 + sin2 θdφ2
)

]

,

Fig. 1 Schematic plot of the radial coordinate r versus the scalar field
�

Fig. 2 Schematic plot of the scalar field � versus the potential V

= −w̄(r̄)dt2 +
dr̄2

w̄1(r̄)
+ r̄2

(

dθ2 + sin2 θdφ2
)

, (30)

where

r̄ = �(r)r, w̄(r̄) = w(r(r̄)) = �2(r̄)w(r̄),

w̄1(r̄) = w1(r(r̄)) =
�2(r̄)[x2(r̄) + 12x(r̄) + 144]2

16x(r̄)[x2(r̄) + 6x(r̄) + 144]
, where

x(r̄) =
{

12
[

9βr̄ +
√

81β2r̄2 − 12
]

}2/3

. (31)

Equation (31) shows that the solutions (11) and (15) have
been deformed due to the conformal transformation (23) and
that the dimensional parameter β must satisfy β > 2

3
√

3r̄
.

Is this deformation effect conveying the physics in both the
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Jordan and the Einstein frames? We will answer this question
in the next section.

7 Black hole thermodynamics in the Jordan frame

The Hawking temperature is usually defined as [78–81]

T+ =
w′(r+)

4π
, (32)

where the event horizon r = r+ is the largest positive root
of w(r+) = 0 that satisfies w′(r+) �= 0. In the framework of
f (R) gravity, the entropy is given by [82,83]

S(r+) =
1

4
A fR(r+), (33)

with A being the area of the event horizon. The quasi-local
energy, in the framework of f (R) gravity is defined as [82,
83]

E(r+) =
1

4

∫ [

2 fR(r+) + r+
2
{

f (R(r+))

−R(r+) fR(r+)
}

]

dr+. (34)

The constraint w(r+) = 0 yields

r+
Eq.(11)

= −
1

3β

[

1 +
√

1 − 18β2K2

]

,

r−
Eq.(11)

=
1

3β

[

√

1 − 18β2K2 − 1

]

,

r+
Eq.(15)

= Root (4y4β� + 2y − 3βy2 − 6βK
2), (35)

where Root (4y4β� − 3βy2 + 2y + 2) are the roots of the
equation (4y4β�+2y−3βy2−6βK2 = 0), which is proven
to have one real root. The first equation of (35) shows that the
dimensional parameter β cannot be zero, which immediately
means that the solution (11) has no correspondence in the GR
limit. Moreover, Eq. (35) tells us that the parameter β should
be negative, so that the horizons have a positive real value
when there is no charge. Moreover, Eq. (35) puts constraints
on the parameter β, namely β < 1

3K
√

2
. The behavior of the

radial coordinate r via the parameter β is represented in Fig.
1a. Also, we plot there the behavior of the radial coordinate r

and the parameter β for the third equation of (35).5 Thus, we
continue our study of the thermodynamics assuming β < 0,
according to the previous analysis, and taking into account

5 The values of the electric and the magnetic fields, and of the cos-
mological constant � to be used in our discussion are, respectively:
K = −0.6, ı.e., q

E
= qm = −0.3, � = −3. The value of the

parameter K is consistent with the restriction β < 1
3K

√
2

. In Fig.

1b the plot is drawn against r , which is the positive real root of Eq.
Root (4y4β� − 3βy2 + 2y + 2).

the outer event horizon r+ only, which is consistent with
β < 0.

Using Eq. (33), the entropy of the black holes (11) and
(15) are computed as

S+
Eq.(11)

=
π

27β2

[

1 −
√

1 − 18β2K2

]2 [

2 +
√

1 − 18β2K2

]

,

S+
Eq.(15)

=
πr+2

4

[

1 + βr+
]

. (36)

The first of Eq. (36) shows that we always have a positive
entropy. The second of Eq. (36) tells us that β < − 1

r+
, in

order to get a positive entropy. Equation (36) are plotted in
Fig. 2. Note that the entropy S is not proportional to the area
of the horizon, due to Eq. (33). We also note that the entropy
S is indeed proportional to the area (as it should) provided
there is no Ricci scalar squared term, i.e., fR = 1 (Figs. 3,
4).

The Hawking temperatures associated with the black hole
solutions (11) and (15) are, respectively,

T+
Eq.(11)

= −
3β
[

1 − 18β2K2 −
√

1 − 18β2K2
]2

4π(1 −
√

1 − 18β2K2)3
,

T+
Eq.(15)

= −
2β[2�r+4 + 3K2] + r+

12πβr+3 , (37)

where T+ is the Hawking temperature at the event horizon.
We represent the Hawking temperature in Fig. 5. Figure 5a,
which is related to the black hole (11), shows that we do have
a positive temperature. As for Fig, 5b, which is related to the
black hole (15), the temperature is always positive.

Using Eq. (34), the quasi-local energy of the two black
holes (11) and (15) is calculated as

E+
Eq.(11)

= −
1 + 9β2K2 −

√

1 − 18β2K2

12β
,

E+
Eq.(15)

=
r+
8

(4 + 3βr+) . (38)

The first equation of (38) shows that the dimensional
parameter β �= 0 and the quasi-local energy is always posi-
tive as Fig. 6 shows.

The free energy in the grand canonical ensemble, namely
the Gibbs free energy, is defined as [83,84]

G(r+) = E(r+) − T (r+)S(r+) (39)

where where E(r+), T (r+) and S(r+) are the quasilocal
energy, the temperature and the entropy at the event hori-
zon, respectively. Using Eqs. (36), (37) and (38) in (39), we
get
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(a) Spherically symmetric space-time (b) Spherically symmetric AdS/dS space-times

Fig. 3 Schematic plot of the radial coordinate r versus the dimensional parameter β that characterizes the spherically symmetric black holes (11)
and (15)

(a) Entropy of the black hole solution (11) (b) Entropy of the black hole solution (15)

Fig. 4 Schematic plot of the entropy of the two black holes (11) and (15) versus the dimensional parameter β

G+
Eq.(11)

=
(5 + 9β2K2)

√

1 − 18β2K2 − 5 + 9β2K2

36β(1 −
√

1 − 18β2K2)
,

G+
Eq.(15)

=
r+(4 + 3βr+)

8

+
(r+ + 2β[2�βr+4 + 3βK2])(1 + βr+)

12βr+
.

(40)

The behavior of the Gibbs energy of our black holes is
depicted in Fig. 7a, b, for particular values of the parame-
ters of the model.

7.1 Black hole thermodynamics in Einstein’s frame

In this section we will to repeat the previous calculations but
this time in Einstein’s frame, i.e. using Eq. (31) to derive the
thermodynamics of the black holes and compare them with
the corresponding ones in (11) and (15).
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(a) Temperature of the black hole solution (11) (b) Temperature of the black hole solution (15)

Fig. 5 Schematic plot of the temperature of the black holes (11) and (15) versus the dimensional parameter β

(a) Quasilocal energy of the black hole solution (11) (b) Quasilocal energy of the black hole solution (15)

Fig. 6 Schematic plot of the quasilocal energy of the two black holes (11) and (15) versus the dimensional parameter α

The constraint w(r( ¯r+)) = 0 for the flat and AdS/Ad
cases gives

r̄+
Eq.(11)

= −
√

6

18β(2
√

36β2K2 + 324β4K4 − 3 − 2 − 36β2K2)3/4

×
[

√

2
√

36β2K2+324β4K4 − 3−2−36β2K2
(

1+18β2
K

2

+
√

36β2K2+ 324β4K4 − 3
)

− 4
]

,

(41)

and for the AdS/dS case one gets an algebraic equation of 8th.
order. Equation (41) shows that the dimensional parameter β

cannot be zero, as was already the case in the Jordan frame.
Moreover, Eq. (41) tells us that the parameter β must be
negative, so that the horizons can have a positive real value
when there is no charge. Also Eq. (41) shows that β < 1

3K
√

2
which is consistent with the restriction put on the dimensional
parameter β given in the Jordan frame after Eq. (35). The
behavior of the radial coordinate r vs the parameter β is
depicted in Fig. 8a. Also, we plot the behavior of the radial
coordinate r vs the parameter β for the AdS/dS case.
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(a) Free energy of the black hole solution (11) (b) Free energy of the black hole solution (15)

Fig. 7 Schematic plot of the free energy of the black holes (11) and (15) versus the dimensional parameter β

(a) Spherically symmetric space-time (b) Spherically symmetric AdS/dS space-time

Fig. 8 Schematic plot of the radial coordinate r versus the dimensional parameter β that characterizes the spherically symmetric black holes (31)

The Hawking temperature for each of these black holes
(31) is given by a lengthy expression, but their behaviors can
be easily plotted, see Fig. 9. As is clear from Fig. 9, one
gets a negative temperature for both black holes in Einstein’s
frame. If we compare the results of the temperatures in the
Jordan and Einstein frames we conclude that the physics of
the two frames are not equivalent. This investigation shows in
a clear way that in spite of the equivalence of the two frames
from a mathematical viewpoint, and their sharing of many
physical properties, the black hole thermodynamics are not
equivalent. The entropy of the black hole (31) in the Einstein
frame is defined as

S+ = π r̄+
2. (42)

Using Eq. (42) we compute the entropy of the solutions (31)
as

S+ =
π

54β2(2
√

36β2K2 + 324β4K4 − 3 − 2 − 36β2K2)3/2

×
[

− 4 +
√

2
√

36β2K2 + 324β4K4 − 3 − 2 − 36β2K2

(

1 + 18β2
K

2 +
√

36β2K2 + 324β4K4 − 3
)]2

,

×S+
Ad S/d S

= π r̄+
2. (43)
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(a) Temperature of the black hole solution in Einstein’s frame (b) Temperature of the AdS/dS black hole solution

Fig. 9 Schematic plot of the black hole temperature in Einstein’s frame versus the dimensional parameter β

Equation (43) are plotted in Fig. 10, showing that we have a
positive entropy. We note that the entropy S is proportional to
the area of the horizon, due to the fact that we are in Einstein’s
frame.

Using Eq. (34), the quasi-local energies of the two black
holes (31) are calculated as

E+
Eq.(11)

= −
1 + 9β2K2 −

√

1 − 18β2K2

12β
,

E+
Eq.(15)

=
r̄+
8

(4 + 3βr̄+) . (44)

The behavior of the quasi local energy is plotted in Fig. 11,
which shows that we obtain a positive quasi local energy. The
first equation of (44) shows that the dimensional parameter
β �= 0.

The free energy is given by

G(r+) = E(r̄+) − T (r̄+)S(rr̄+) (45)

where E(r̄+), T (r̄+) and S(r̄+) are the quasilocal energy,
the temperature and the entropy at the event horizon, respec-
tively. Using Eqs. (43) and (44) in (45), we get

G+
Eq.(11)

=
(5 + 9β2K2)

√

1 − 18β2K2 − 5 + 9β2K2

36β(1 −
√

1 − 18β2K2)
,

G+
Eq.(15)

=
r̄+(4 + 3βr̄+)

8

+
(r̄+ + 2β[2�αr̄+4 + 3βK2])(1 + βr̄+)

12βr̄+
.

(46)

The behavior of the functions in (46) is depicted in Fig. 12a,
b for particular values of the parameters of the model.

8 Stability of the black hole solutions in the Jordan and

Einstein frames

To study the stability of the black hole solutions derived in the
Jordan and Einstein frames, we will rewrite f (R) gravity in
terms of the corresponding scalar-tensor theory. Neglecting
the cosmological constant, the Lagrangian (2) can be recast
as

S =
1

2κ

∫

d4x
√

−g [ψ R − V (ψ)], (47)

with ψ being a scalar field coupled to the Ricci scalar R and
V (ψ) the potential of the system (see [60] for details). For
our discussion of the stability of the solutions, we shall look
at the behavior of the perturbations about a static spherically
symmetric vacuum background, endowed with a metric of
the form

ds2 = gBG
μν dxμdxν = −w(r) dt2

+
dr2

w1(r)
+ r2(dθ2 + sin2 θ dφ2). (48)

where gBG
μν is the background metric. The stability of the

black holes obtained in the Jordan and Einstein frames pro-
ceeds by using linear perturbations and discussing what is the
value of the speed of propagation of the scalar gravitational
modes. The background equations of motion read
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(a) The entropy of the black hole solution in

the Einstein frame

(b) The entropy of the AdS/dS black hole solution in

the Einstein frame

Fig. 10 Schematic plot of the entropy of the two black holes in the Einstein frame versus the dimensional parameter α

(a) Quasilocal energy of the black hole solution (11) (b) Quasilocal energy of the black hole solution (15)

Fig. 11 Schematic plot of the quasilocal energies of the two black holes (11) and (15) versus the dimensional parameter α and r+, respectively

V = −
4w1 ψ ′

r
−

2ψ w′w1

wr
−

ψ ′w′w1

w
+

2ψ

r2 −
2w1 ψ

r2 ,

ψ ′′ = −
w′

1ψ
′

2w1
−

ψw′
1

rw1
+

w′ψ ′

2w
+

ψw′

rw
, R=

dV

dψ
. (49)

The ′ stands for differentiation w.r.t r .

8.1 Brief review of the Regge–Wheeler–Zerilli prescription

We shal now give an outline of the prescription developed by
Regge, Wheeler [85], and Zerilli [86] to decompose the met-

ric perturbations according to their transformation proper-
ties under two-dimensional rotations. Although these authors
studied the perturbations of the Schwarzschild black hole in
GR, the prescription mainly depends on the properties of
spherical symmetry and, therefore, it can be used in modi-
fied f (R) gravity, as well.

We start from the slightly perturbed metric corresponding
to a static spherically symmetric space-time, gμν = gBG

μν +
hμν , where hμν stands for an infinitesimal quantity. In the
linear approximation, the perturbations are assumed to be
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(a) Free energy of the black hole solution (11) (b) Free energy of the black hole solution (15)

Fig. 12 Schematic plot of the free energy and the free energy of the black hole (11)) versus the dimensional parameter α and r+, respectively

small w.r.t the background, i.e., g0
μν >> hμν . Therefore,

under two-dimensional rotations on a sphere, the components
ht t , htr and hrr transform as scalars, while the components
hta and hra transform as vectors, and hab transforms as a
tensor (here a, b are either θ or φ). Any scalar quantity �

can be written in terms of spherical harmonics Yℓm(θ, φ),
thus

�(t, r, θ, φ) =
∑

ℓ,m

�ℓm(t, r)Yℓm(θ, ϕ). (50)

In a spherically symmetric space-time the solution will
be independent of the index m, so that this index can be
neglected and we can just consider the index ℓ, which
describes the multipole number and appears due to the sep-
aration of the angular variables through the expansion into
spherical harmonics

�θ,φYℓ(θ, φ) = −ℓ(ℓ + 1)Yℓ(θ, φ). (51)

By the way, this is similar to what happens for the hydrogen
atom problem in quantum mechanics when dealing with the
Schrödinger equation. Any vector Va can be decomposed
into a divergent part and a divergence-free part, as

Va(t, r, θ, φ) = ∇a�1 + Eb
a∇b�2, (52)

with �1 and �2 being two scalars and Eab ≡
√

det γ ǫab,
where γab is the two-dimensional metric on the sphere and
ǫab is the usual totally anti-symmetric symbol, with ǫθϕ = 1.
Here, ∇a stands for the covariant derivative w.r.t. the metric
γab. Given that Va is a two-component vector, it is completely
specified by the quantities �1 and �2. Therefore, one can
apply the scalar decomposition (50) to �1 and �2 in order
to express the vector quantity Va in spherical harmonics.

Finally, any symmetric tensor Tab can be decomposed as

Tab(t, r, θ, φ) = ∇a∇b�1 + γab�2

+
1

2

(

Ea
c∇c∇b�3 + Eb

c∇c∇a�3
)

, (53)

where �1, �2 and �3 are three scalar quantities. Since Aab

has three independent components, �1, �2 and �3 com-
pletely specify Aab. Therefore, one can use the scalar decom-
position (50) with �1, �2 and �3, in order to decompose
the tensor quantity Aab into spherical harmonics. We refer to
the variables corresponding to Eab as odd-type variables and
to the rest as even-type ones. What does make this decom-
position useful is the fact that, in the linearized equations
of motion for hμν , odd-type and even-type perturbations are
fully decoupled. This fact sheds light on the invariance of
the background space-time under parity transformations. In
the following subsection we are going to study the odd-type
perturbations.

8.2 Perturbations in f (R) gravity

The odd modes

There are two kinds of vector spherical harmonics (polar
and axial), which are build out of combinations of the Levi-
Civita volume form and of the gradient operator acting on the
scalar spherical harmonics. The essential difference between
the two types is their parity. Under the parity operator π ,
a spherical harmonic with index ℓ transforms as (−1)ℓ, the
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polar class of perturbations transforming in the same way, as
(−1)ℓ, and the axial perturbations as (−1)ℓ+1.

Using the Regge-Wheeler formalism, the odd-type metric
perturbations can be written as

ht t = 0, htr = 0, hrr = 0, (54)

hta =
∑

ℓ,m

h0,ℓm(t, r)Eab∂
bYℓm(θ, ϕ), (55)

hra =
∑

ℓ,m

h1,ℓm(t, r)Eab∂
bYℓm(θ, ϕ), (56)

hab =
1

2

∑

ℓ,m

h2,ℓm(t, r)
[

E c
a ∇c∇bYℓm(θ, ϕ)

+E c
b ∇c∇aYℓm(θ, ϕ)

]

. (57)

Using the gauge transformation xμ → xμ + ξμ, where the
components ξμ are infinitesimal, we can show that not all
the metric perturbations are physical, and that some of them
can be actually set to vanish. For the odd-type perturbations,
we can consider the following gauge transformation

ξt = ξr = 0, ξa =
∑

ℓm

�ℓm(t, r)E b
a ∇bYℓm, (58)

where �ℓm can always be set to vanish, as h2,ℓm (Regge-
Wheeler gauge). By this procedure, �ℓm is completely fixed
and there are no remaining gauge degrees of freedom. Then,
after substituting the metric into the action (47) and perform-
ing integration by parts, we find that the action for the odd
modes becomes

Sodd =
1

2κ

∑

ℓ,m

∫

dt dr Lodd

=
1

4κ

∑

ℓ,m

∫

dt dr j2
[

φ
√

w1√
w

{

(

ḣ1 − h′
0

)2 +
8h0ḣ1

r

}

+
h2

0

r2

{

4r

[

φ
√

w1√
w

]′
+ 4

φ
√

w1√
w

+
( j2 − 2)φ
√

ww1

}

−
( j2 − 2)

√
ww1 φ h2

1

r2

]

, (59)

where we have dropped the suffix ℓ for the fields, and j2 =
ℓ (ℓ + 1). Variation of (59) w.r.t. h0 yields

[

φ

√

w1

w
(h′

0 − ḣ1)

]′
=

h0

r2

{

4r

[

φ
√

w1√
w

]′
+ 4

φ
√

w1√
w

+
( j2 − 2)φ
√

ww1

}

+
4φ

√

w1
w

ḣ1

r
, (60)

that cannot be solved for h0. Therefore, we are going to
rewrite the action (59) as

Lodd =
j2 φ

√
w1

2
√

w

(

ḣ1 − h′
0 +

2 h0

r

)2

−
j2
(

φ
√

w1√
w

+ r

{

φ
√

w1√
w

}′)

h0
2

r2

+
j2 h2

0

r2

{

4r

[

φ
√

w1√
w

]′
+ 4

φ
√

w1√
w

+
( j2 − 2)φ
√

ww1

}

−
j2 ( j2 − 2)

√
ww1 φ h2

1

r2 , (61)

so that all the terms containing ḣ1 are inside the first squared
term. Using a Lagrange multiplier, Q, Eq. (61) can be rewrit-
ten as follows

Lodd =
j2 ψ

√
w1

2
√

w

[

2 Q

(

ḣ1 − h′
0 +

2 h0

r

)

− Q2
]

−
j2
(

ψ
√

w1√
w

+ r

{

ψ
√

w1√
w

}′)

h0
2

r2

+
j2 h2

0

r2

{

4r

[

ψ
√

w1√
w

]′
+4

ψ
√

w1√
w

+
j2( j2 − 2)φ

√
ww1

}

−
j2 ( j2 − 2)

√
ww1 φ h2

1

r2 . (62)

Eq. (62) shows that both fields, h0 and h1, can be integrated
out by using their own equations of motion, which can be
written as

h1 = −
r2 Q̇

( j2 − 2)w
, (63)

h0 =
r

[(

2φ
√

w1√
w

+ r

{

ψ
√

w1√
w

}′)

Q + r ψ
√

w1

2
√

w
Q′
]

2

(

ψ
√

w1√
w

+ r

{

ψ
√

w1√
w

}′)

−
(

ψ
√

w1√
w

+ r

{

ψ
√

w1√
w

}′) .

(64)

These relations link the physical modes h0 and h1 to the
auxiliary field Q. Once Q is known, also h0 and h1 are.
After substituting these expressions into the Lagrangian and
performing an integration by parts for the term proportional
to Q′ Q, one gets the Lagrangian in the canonical form

Lodd =
s1

2

s2
Q̇2 −

s1
2 r2

s3r2 − 2rs′
1 − 2s1

Q′2 − ν1
2 Q2 , (65)

where
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s1 =
j2ψ

√
w1

2
√

w
, s2 =

j2ψ( j2 − 2)
√

ww1

2r2 ,

s3 =
j2

r2

(

ψ
√

w1√
w

+ r

{

ψ
√

w1√
w

}′
+

( j2 − 2)ψ

2
√

ww1

)

,

ν1
2 =

s1r2
[

r2s′
1s′

3 − r2s′′
1 s3 + 2s1s3 + 4s′

1
2 + r2s3

2 − 2s1s′′
1 + 2rs1s′

3 − 4rs′
1s3

]

(2s1 + 2rs′
1 − r2s3)2 . (66)

From Eq. (65), we can derive the no ghost conditions

s2 ≥ 2 , that leads to j2 ≥ 2 .

For solutions proportional to ei(ωt−kr) with large k and ω, we
have the radial dispersion relation

ω2 = ww1 k2,

where we have made use of the background equations of
motion. Finally the expression for the radial speed reads

c2
odd =

(

dr∗
dτ

)2

= 1 ,

where the radial tortoise coordinate (dr2
∗ = dr2/w1) and the

proper time (dτ 2 = w1 dt2) have been employed.

9 Black hole stability analysis using geodesic deviations

in Jordan’s frame

Test particle trajectories in a gravitational field are obtained
from the geodesic equations

d2xσ

dτ 2 +
{

σ
μν

} dxμ

dτ

dxν

dτ
= 0, (67)

with τ being the affine connection parameter along the
geodesic. The geodesic deviation takes the form [87,88]

d2ξσ

dτ 2 + 2
{

σ
μν

} dxμ

dτ

dξ ν

dτ
+
{

σ
μν

}

, ρ

dxμ

dτ

dxν

dτ
ξρ = 0, (68)

where ξρ is the deviation 4-vector. Introducing (67) and (68)
into (9), we get for the geodesic equations

d2t

dτ 2 = 0,
1

2
w′(r)

(

dt

dτ

)2

− r

(

dφ

dτ

)2

= 0,

d2θ

dτ 2
= 0,

d2φ

dτ 2
= 0, (69)

and for the geodesic deviation

d2ξ1

dτ 2 + w(r)w′(r)
dt

dτ

dξ0

dτ
− 2rw(r)

dφ

dτ

dξ3

dτ

+
[

1

2

(

w′2(r) + w(r)w′′(r)
)

(

dt

dτ

)2

−
(

w(r) + rw′(r)
)

(

dφ

dτ

)2
]

ξ1 = 0,

d2ξ0

dτ 2 +
w′(r)

w(r)

dt

dτ

dζ 1

dτ
= 0,

d2ξ2

dτ 2 +
(

dφ

dτ

)2

ξ2 = 0,

d2ξ3

dτ 2 +
2

r

dφ

dτ

dξ1

dτ
= 0, (70)

where w(r) is defined by the metric (18) or (19), w′(r) =
dw(r)

dr
. Using the circular orbit

θ =
π

2
,

dθ

dτ
= 0,

dr

dτ
= 0, (71)

we get

(

dφ

dτ

)2

=
w′(r)

r [2w(r) − rw′(r)]
,

(

dt

dτ

)2

=
2

2w(r) − rw′(r)
. (72)

Equation (70) can be rewritten as

d2ξ1

dφ2 + w(r)w′(r)
dt

dφ

dξ0

dφ
− 2rw(r)

dξ3

dφ

+
[

1

2

[

w′2(r) + w(r)w′′(r)
]

(

dt

dφ

)2

−
[

w(r) + rw′(r)
]]

ζ 1 = 0,

d2ξ2

dφ2 + ξ2 = 0,
d2ξ0

dφ2 +
w′(r)

w(r)

dt

dφ

dξ1

dφ
= 0,

d2ξ3

dφ2 +
2

r

dξ1

dφ
= 0. (73)

The second equation of (73) corresponds to a simple har-
monic motion, what means that the motion on the plane
θ = π/2 is stable. Assuming the solutions of the remain-
ing equations of (73) have the form

ξ0 = ζ1eiσφ, ξ1 = ζ2eiσφ, and

ξ3 = ζ3eiσφ, (74)

where ζ1, ζ2 and ζ3 are constant and the variable φ has to be
determined. Substituting (74) into (73), we get

3ww′ − σ 2w′ − 2rw′2 + rww′′

w′ > 0, (75)
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(a) Stability of (76) when Λ = 0 (b) Stability of (76) when Λ ≠ 0

Fig. 13 Schematic plot of Eq. (76), namely σ 2 versus the coordinate r

which is the stability condition for any charged static spheri-
cally symmetric space-time. The condition (75) for the black
holes (18) and (19) can be rewritten as

σ 2 =
2r2 + βr3 + 18K2βr + 48β2K4 + 4r4β�[5r + 4r2β + 24βK2]

2βr2(r + 6βK2 + 4r4β�)
> 0. (76)

Figure 13 is a plot of Eq. (76) for particular values of
the models. It exhibits the regions where the black holes are
stable and the regions where there is no possible stability.

9.1 Black hole stability analysis using geodesic deviation
in Einstein’s frame

Introducing (67) and (68) into (31), we get for the geodesic
equations

d2t

dτ 2 = 0,
1

2
w′

1(r̄)

(

dt

dτ

)2

− r̄

(

dφ

dτ

)2

= 0,

d2θ

dτ 2 = 0,
d2φ

dτ 2 = 0, (77)

and for the geodesic deviation

d2ξ1

dτ 2 + w(r̄)w′
1(r̄)

dt

dτ

dξ0

dτ
− 2r̄w(r̄)

dφ

dτ

dξ3

dτ

+
[

1

2

[

w′(r̄)w′
1(r̄) + w(r̄)w′′

1(r̄)
]

(

dt

dτ

)2

−
[

w(r̄) + r̄w′(r̄)
]

(

dφ

dτ

)2
]

ξ1 = 0,

d2ξ0

dτ 2 +
w′

1(r̄)

w1(r̄)

dt

dτ

dζ 1

dτ
= 0,

d2ξ2

dτ 2 +
(

dφ

dτ

)2

ξ2 = 0,
d2ξ3

dτ 2 +
2

r̄

dφ

dτ

dξ1

dτ
= 0,

(78)

where w(r̄) is defined by the metric (31) w′(r̄) =
dw(r̄)

dr̄

and w′
1(r̄) =

dw1(r̄)

dr̄
. Using the circular orbit

θ =
π

2
,

dθ

dτ
= 0,

dr̄

dτ
= 0, (79)

we get

(

dφ

dτ

)2

=
w′

1(r̄)

r̄ [2w(r̄) − r̄w′(r̄)]
,

(

dt

dτ

)2

=
2

2w(r̄) − w′(r̄)
.

(80)
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(a) Stability of (81) when Λ = 0 (b) Stability of (81) whenΛ ≠ 0

Fig. 14 Schematic plot of Eq. (81), namely σ 2 versus the coordinate r

Equation (78) can be rewritten as

d2ξ1

dφ2 + w(r̄)w′
1(r̄)

dt

dφ

dξ0

dφ
− 2r̄w′(r̄)

dξ3

dφ

+
[

1

2

[

w′(r̄)w′
1(r̄) + w(r̄)w′′

1(r̄)
]

(

dt

dφ

)2

−
[

w(r̄) + r̄w′(r̄)

]]

ζ 1 = 0,

d2ξ2

dφ2 + ξ2 = 0,
d2ξ0

dφ2

+
w′(r̄)

w(r̄)

dt

dφ

dξ1

dφ
= 0,

d2ξ3

dφ2 +
2

r̄

dξ1

dφ
= 0. (81)

The second equation of (81) corresponds to simple harmonic
motion, which means that the motion on the plane θ = π/2
is stable. Now, the solutions of the remaining equations of
(81) are

ξ0 = ζ1eiωφ, ξ1 = ζ2eiωφ, and ξ3 = ζ3eiωφ,

(82)

where ζ1, ζ2 and ζ3 are constant and the variable φ has to
be determined. Substituting (82) into (81) one gets a quite
lengthy expression, which is depicted in Fig. 14. This plot
shows that black holes in the Einstein frame have always
some non-void stability region.

9.2 Causal structure of the solutions

We shall now discuss the causal structure of the space-time
(13). For that purpose, we start from the metric

ds2 = −e2ν(r)dt2 + e−2ν(r)dr2 + r2
2
∑

i, j=1

g̃i j dx i dx j , (83)

with

e2ν = C2 −
M

r
, C > 0 , (84)

the metric of the unit sphere being g̃i j , and we consider the
region where r ≫ M . Then, the metric in (83) reduces to

ds2
as = −C2dt2 +

dr2

C2 + r2
2
∑

i, j=1

g̃i j dx i dx j . (85)

Redefining,

t =
t̃

C
, r = Cr̃ , (86)

we find

ds2
as = −dt̃2 + dr̃2 + C2r̃2

2
∑

i, j=1

g̃i j dx i dx j , (87)

which is not Lorentz invariant unless C = 1. In order to
clarify the situation, we choose g̃i j as

2
∑

i, j=1

g̃i j dx i dx j = dθ2 + sin2 θdφ2 , (88)

with 0 ≤ θ ≤ π and 0 ≤ φ < 2π , and we consider the
hypersurface with θ = π

2 . Then, the metric reads

ds2
hyp = −dt̃2 + dr̃2 + C2dφ2 . (89)
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Fig. 15 Structure of the spatial part for C = 3
4 < 1. We identify two

arrows and glue the space there

Fig. 16 Structure of the spatial part for C = 5
4 > 1. We identify two

arrow and glue the space there

If we redefine,

φ = C−1φ̃ , (90)

the metric acquires the following form

ds2
hyp = −dt̃2 + dr̃2 + dφ̃2 , (91)

which is nothing but the metric of flat three-dimensional
space-time. We should note, however, that 0 ≤ φ̃ ≤ 2Cπ ,
and therefore if C < 1, a deficit angle appears, while if C > 1
a surplus angle shows up (see Fig. 15 for the case C = 3

4 < 1
and Fig. 16 for the case C = 5

4 > 1). For C < 1 the light
emitted from a point reaches another point in two orbits of
the light trajectory (see Fig. 17) and, therefore, multiple light-
cone surfaces are formed. On the contrary, in the other case
the light ray emitted from a point φ̃ = π and r̃ = r0 (r0 is
a constant) does not reach the region 2π < φ̃ < 2Cπ (see
Fig. 18) and, therefore, the light-cone surface has a bound-
ary. In such space-time, one cannot separate time-like regions
from space-like ones and all kind of problems with causality
may show up.

A

B

B

Fig. 17 The point B ′ is identified with the point B. When C = 3
4 < 1,

the light emitted at point A may reach point B = B ′ along two different
paths

A

Fig. 18 When C = 5
4 > 1, the light emitted at point A (φ̃ = π and

r̃ = r0, r0 is a constant) cannot reach the shaded region (2π < φ̃ <
5
2 π = 2Cπ

10 Alternative black hole description from a

generalized fluid model

10.1 Relation between the space-time geometry and an
equation of state

We will here consider the relation existing between the space-
time geometry and an equation of state for General Relativity
with a cosmological fluid. We start from the space-time met-
ric (83), from where we have

Rt t =
1

2

(

C +
r2

l2 −
M

r
+

q2

r2

)(

6

l2 +
2q2

r4

)

,

Rrr = −
1

2

(

C +
r2

l2 −
M

r
+

q2

r2

)−1 (
6

l2 +
2q2

r4

)

,

Ri j =
(

1 − C −
3r2

l2 +
q2

r2

)

g̃i j ,

R = −
12

l2 −
2 (C − 1)

r2 . (92)
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Using now the Einstein equation

Rμν −
1

2
gμν R = κ2Tμν , (93)

we find

κ2Tt t = − κ2Trr

=
(

C +
r2

l2 −
M

r
+

q2

r2

)(

−
3

l2 −
C − 1

r2 +
q2

r4

)

,

κ2Ti j =
(

3r2

l2 +
q2

r2

)

g̃i j (94)

We now define the energy density ρ, the pressure in the radial
direction pr , and the pressure in the angular direction pa , as

Tt t = −gt tρ , Trr = grr pr , Ti j = gi j pa , (95)

with the result

κ2ρ = −
(

−
3

l2 −
C − 1

r2 +
q2

r4

)

,

κ2 pr = −
(

−
3

l2 −
C − 1

r2 +
q2

r4

)

,

κ2 pa =
3

l2
+

q2

r4
, (96)

which yields the following equation of state (EoS) for the
cosmic fluid

ρ = pr = −pa +
6

κ2l2 +
C − 1

κ2q

√

κ2 pa −
3

l2 . (97)

In particular, when 1
l

= 0, we find

ρ = pr = −pa +
C − 1

κq

√
pa . (98)

Equation (97) tells us that pa ≥ 3
κ2l2 , and so the quantity

inside the square root is positive. In particular, in the case
1
l

= 0, as in (98), we find pa ≥ 0. And, in order that ρ ≥ 0,

we get pa ≤ (C−1)2

κ2q2 . Then, it follows that

0 ≤ pa ≤ (C − 1)2

κ2q2 . (99)

In the case 1
l

�= 0, corresponding to Eq. (97), the restriction
associated to (98) becomes somehow involved, as follows

3

κ2l2 ≤ pa ≤
1

2

(

12

κ2l2 + (C − 1)2

κ2q2

+

√

12 (C − 1)2

κ4l2q2 + (C − 1)4

κ4q4

⎞

⎠ . (100)

For 1
l

= 0 in (98), the pressures pr and pa should be positive
if we assume that the energy density ρ is positive. We should
note, however, that when 1

l2 < 0 in (97), pa can be negative,

as indeed found from (101). Therefore, this fluid can act as
dark energy, what is indeed clear from the assumption (83),
where the metric behaves as the de Sitter space-time for large
r , when 1

l2 < 0.

p2
a −

12

κ2l2 +
36

κ2l2 pa = (C − 1)2

κ4q2

(

κ2 pa −
3

l2

)

×
3

κ2l2 ≤ pa ≤
1

2

(

12

κ2l2 + (C − 1)2

κ2q2

+

√

√

√

√

(

12

κ2l2 + (C − 1)2

κ2q2

)2

−
144

κ4l4 −
12 (C − 1)2

κ4l2q2

⎞

⎟

⎠
.

(101)

In summary, we have here derived the same BH solution as in
usual general relativity with a cosmological fluid, which may
be intrepreted as kin ad of dark energy. This is a clear indica-
tion of the universality of the BH solution under discussion
in this paper.

11 Discussion and conclusions

We have obtained, in this paper, a genuinely new type of
charged black holes, with electric and magnetic charges, in
the context of a particular class of f (R) modified gravity. We
have provided a detailed description of their physical prop-
erties, including their stability and causal structure, both in
the Jordan and in the Einstein frames. Being more specific,
we have worked with the following forms for f (R), namely
f (R) = R+2βsqrt R and f (R) = R+2β

√
R − 8�, to pro-

duce flat and AdS/dS space-times, respectively, and solved
the field equations of f (R) for a spherically symmetric space-
time in which gt t = 1

grr
.6 We have solved the resulting field

equations in an exact way and derived black holes, which are
characterized by three parameters: the mass, which depends
on the dimensional parameter β, bound to have a negative
value, and the electric and magnetic charges.

The Ricci scalar of the black holes here found is non-
trivial. It has the form R = 1

r2 , for the case of flat space-

time, and R = 1
r2 + 8� for the AdS/dS space-times. A most

remarkable result is that these black holes cannot be reduced
to the ordinary ones appearing in Einstein’s GR; in other
words, they are genuinely new black holes of the modified
f (R) gravities. We have calculate the scalar invariants of
these solutions and shown that the parameter β cannot be set
equal to zero. The calculations involving the scalar fields have

6 The reason for using a spherically symmetric space-time in which
gt t = 1

grr
was simply to make the process of solving the f (R) field

equations more accessible, but variants of the same method could have
been employed in less symmetric cases and more general situations.
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shown that one gets a true singularity at r = 0. Using confor-
mal transformation, we got charged black hole solutions in
the realm of the Einstein frame. An interesting feature of the
black holes obtained in this frame is the fact that gt t �= 1

grr
,

what does not happen for the corresponding black holes in
the Jordan frame. However, in spite of the fact that the black
holes have different gt t and grr components for the metric
in the Einstein frame, they have coinciding Killing and event
horizons.

It is well know that the Jordan and the Einstein frames
are mathematically equivalent. To check if their correspond-
ing associated physics are equivalent, too, we have calcu-
lated some thermodynamical quantities for the above black
holes, respectively obtained in one and in the other frame.
A detailed discussion has shown that the physics associated
with the entropy, quasi-local energy, and Gibbs free energy,
in both frames, turn out to be fully equivalent. However, the
physics associated to the Hawking temperature is not the
same in both frames: the temperature in the Jordan frame
is always positive, contrary to what happens in the Einstein
frame, which can lead to negative values of yhe same. This
may serve as an indication that the physics of the two frames
are not equivalent, at least concerning this important quan-
tity, the black hole temperature. An intriguing conjecture that
has come to our minds is the following: could this possibly
be related to the loss-of-information paradox?

Going more deeply into the black hole properties, we have
studied their stability using linear perturbations. Our calcu-
lations show that the radial propagation speed always equals
one, in both frames, which means that the constructed black
holes are stable. In addition, we have used the procedure of
geodesic deviation to study the stability of the black holes,
both in the Jordan and in the Einstein frames, and derived in
each case the stability condition. Finally, we have also stud-
ied the causal structure of our novel black holes. We have
shown that, in general, they are not invariant under Lorentz
transformations. Moreover, we have identified that there is
a (positive or negative) deficit angle associated with them.
It goes without saying that the black holes obtained in this
work need still to be analyzed in more depth, in order to unveil
all of their physical properties, a job we hope to undertake
elsewhere. Furthermore, an extension of this study to less
symmetric backgrounds and to a more general form of f (R)

is pending.
We now consider the possibility that the black hole cor-

responding to the solution (13) can be found by any obser-
vation. The analysis in Section IXB tell that the solution
(13) corresponds to C = 1√

2
in (83) with (84). Because

C = 1√
2

< 1, the solution makes the deficit angle. Then
Figure 17 tells that the black hole generates strong gravi-
tational lensing effects. In the usual black hole, the lensing
effects occur only in the region near the black hole but for the

geometry expressed by the metric (13) the effects occur in a
rather large region, say interstellar region, around the black
hole. Therefore the big ring much greater than the standard
Einstein ring or double images separated in a large angle
could be observed as in the observation of the standard weak
lensing as in [89–91] in future.
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Appendix A

The field equations of Ansatz (9) without cosmological con-
stant

Imposing the Ansatz (9) to Eqs. (4), (5) and (7), after using
Eq. (10), we get7

ζt
t =

1

4r6 sin2 θ
√

R5

{

4r2
√

R5
[

r2 sin2 θ(rw′ + wnθ
2

−2ws′nθ + q ′2r2 − 1 + w{1 + s′2})

+kθ
2 + r2wp′2

]

+ β sin2 θ
[

r6wRw′′′′

+3r6ww′′′2

−r3w′′′(r2w′′[rw′ − 12w] + 4r2w′2

+2rw′[31w − 1] − 48w[1 − w]) + 2r6w′′3

−4r4w′′2(4 − 6rw′ − 15w) + 2r2w′′(57r2w′2

+14r [3w − 5]w′ − 36w2 + 20 + 16w) + 200r3w′3

+4r2w′2(96w − 85) + 8rw′[w − 1][27w − 23]

+32[w − 1]2[2w − 1]
]}

= 0, (A. 1)

ζt
θ =

2q ′w(nθ − s′)

r2 = 0, ζt
φ =

2q ′ f p′

r2 sin2 θ
= 0,

7 Here in these calculations we set � = 0.
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ζr
θ =

2p′kθ

r4 sin2 θ
= 0, ζr

φ =
2(nθ − s′)kθ

r4 sin2 θ
= 0, (A. 2)

ζr
r =

1

4r4 sin2 θ
√

R3

{

4
√

R3
[

r2 sin2 θ(rw′ − wnθ
2

+2ws′nθ − ws′2 + [w − 1 + r2q ′2]) + k′2 − wr2 p′2
]

+β sin2 θ
(

r2w′′′[4w + rw′]

−2r4w′′2 + w′′[4r2(3 + w) − 16r3w′] − 50r2w′2

+4rw′(15 − 17w) − 16(1 − 3w + 2w2)
)}

= 0, (A. 3)

ζθ
t = 2q ′(nθ − s′) = 0, ζθ

r =
2wkθ p′

r2 sin2 θ
,

ζθ
φ =

2w(nθ − s′)p′

r2 sin2 θ
, ζφ

t = 2q ′ p′ = 0, (A. 4)

ζφ
r =

2w(nθ − s′)kθ

r2 = 0,

ζφ
θ =

2wp′(nθ − s′)

r2 = 0, (A. 5)

ζθ
θ =

1

2r6 sin2 θ
√

R5

{

2r2
√

R5
[

r2 sin2 θ
(r2w′′

2

+rw′ − wnθ
2 + 2wnθ s′ − q ′2r2 − ws′2

)

−kθ
2 + 2lφkθ + r2wp′2

]

− β sin2 θ
[

r6wRw′′′′

+
3r6ww′′′2

2
− r3w′′′(r2w′′[rw′ − 7w] + 4r2w′2

+2rw′[14w − 1] − 22w[1 − w]) + 2r6w′′3

−2r4w′′2
(

5 − 9rw′ − 18w
)

+ 2r2w′′(33r2w′2

+r [27w − 34]w′ − 18w2 + 8 + 10w)] + 104r3w′3

+2r2w′2(81w − 74) + 4rw′[15w − 16][w − 1]

−4(2 − 8w + 10w2 − 4w3)
}

= 0, (A. 6)

ζφ
φ =

1

2r6 sin2 θ
√

R5

{

2r2
√

R5
[

r2 sin2 θ
(r2w′′

2

+rw′ + wnθ
2 − 2wnθ s′ − q ′2r2 + ws′2

)

−kθ
2 − r2wp′2

]

− β sin2 θ
[

r6wRw′′′′

+
3r6ww′′′2

2
− r3w′′′(r2w′′[rw′ − 7w]

+4r2w′2 + 2rw′[14w − 1] − 22w[1 − w]) + 2r6w′′3

−2r4w′′2
(

5 − 9rw′ − 18w
)

+ 2r2w′′(33r2w′2

+r [27w − 34]w′ − 18w2 + 8 + 10w)] + 104r3w′3

+2r2w′2(81w − 74) + 4rw′[15w − 16][w − 1]

−4(2 − 8w + 10w2 − 4w3)
}

= 0, (A. 7)

ζ =
1

2r6
√

R5

{

2r6
√

R5

−3β
[

r6wRw′′′′ +
3r6ww′′′2

2
−r3w′′′(r2w′′[rw′ − 6w] + 4r2w′2

+2rw′[31w − 1] − 24w[1 − w]) + 2r6w′′3

−2r4w′′2
(

6 − 10rw′ − 17w
)

+ 2r2w′′(41r2w′2

+2r [16w − 23]w′ − 16w2 + 12 + 4w)

+136r3w′3 + 2r2w′2(117w − 106)

+8rw′[15w − 13][w − 1]
+16(2w − 1)(w − 1)2

]}

= 0, (A. 8)

where8 q(r), n(θ), s(r), l(φ), p(r), and k(θ) are the gauge
potentials, defined as

ξ := q(r)dt + n(θ)dr + s(r)dθ + [p(r) + k(θ)]dφ. (A. 9)

For brevity, we put w′ = dw
dr

, w′′ = d2w
dr2 , w′′′ = d3w

dr3 , w′′′′ =
d4w
dr4 , q ′ = dq

dr
, s′ = ds

dr
, p′ = dm

dr
nθ = dn

dθ
and kθ = dk

dθ
. We

must note that, when the magnetic fields vanish, i.e. n = s =
p = k = 0, we get ζθ

θ = ζφ
φ , and in this case the field Eqs.

(A. 1) ∼ (A. 8) coincides with the one derived in [58].

Appendix B

The field equations of Ansatz (9) with cosmological con-

stant

Now

ζt
t =

1

4r9 sin2 θ
√

R5

{

4r5
√

R5
[

r2 sin2 θ(rw′ + wnθ
2

−2ws′nθ + q ′2r2 − 1 + 2r2� + w{1 + s′2})

+kθ
2 + r2 + wp′2

]

+ β sin2 θ
[

r6wRw′′′′

+3r6ww′′′2 − r3w′′′(r2w′′[rw′ − 12w] + 4r2w′2

+2rw′[31w − 1 + 4r2�] + 48w[1 − w − 2r2�])

+2r6w′′3 − 4r4w′′2
(

4 − 6rw′ − 15w

−16r2�
)

+ 2r2w′′(57r2w′2 + 14r [3w − 5 + 8r2�]w′

−36w2 + 80[4r2� − 1]2 + 16w[1 + 9r2�])

+200r3w′3 + 4r2w′2
(

96w − 85

+324r2�
)

+ 8rw′
{

27w2 − 23

+2w(47r2� − 50) + 11w3 + 5w2(1 − 2r2�)

+w(2 + 24r4�2 − 11r2�) + (4r2� − 1)3
}]}

= 0,

(B. 1)

ζt
θ =

2q ′w(nθ − s′)

r2 = 0, ζt
φ = 2q ′wp′ = 0,

ζr
θ = 2p′kθ = 0, ζr

φ =
2(nθ − s′)kθ

r4 sin2 θ
= 0, (B. 2)

ζr
r =

1

2r7 sin2 θ
√

R3

{

r
√

R3
[

r2 sin2 θ(rw′ − wnθ
2

+2ws′nθ − ws′2 + r2q ′ + w − 1 + 2r2�)

8 We set w(r) = w, q(r) = q, n(θ) = n, s(r) = s, p(r) = p, and
k(θ) = k.
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+kθ
2 − r2 + wp′2

]

+β sin2 θr3
[

r3w′′′
(

4w + rw′
)

−2r4w′′2 + 4r2w′′(12r2� − 3 − w + 4rw′)

−50r2w′2 − 4rw′(56r2� − 15 + 17w)

−32w2 + 16w(3 − 16r2�)

+16(1 − 4r2�)2
]}

= 0, (B. 3)

ζθ
t = 2q ′(nθ − s′) = 0, ζθ

r =
2w(lφ − kθ )p′

r2 sin2 θ
= 0,

ζθ
φ =

2w(nθ − s′)p′

r2 sin2 θ
= 0, ζφ

t = 2q ′ p′ = 0, (B. 4)

ζφ
r =

2w(nθ − s′)kθ

r2 = 0,

ζφ
θ =

2wp′(nθ − s′)

r2
= 0, (B. 5)

ζθ
θ =

1

2r9 sin2 θ
√

R5

{

4r5
√

R5
[

r2 sin2 θ(r2w′′ + 2rw′

−2wnθ
2 + 4ws′nθ − 2ws′2

−2r2q ′2 + 4r2�) − 2kθ
2 + 2r2 + 2wp′2

]

−β sin2 θ
[

3r6ww′′′2 − 4r6ww′′′′R

−4r3w′′′([rw′ − 7w]r2w′′ + 4r2w′2

+2rw′[4r2� − 1 + 14w]
+2w[11w + 20r2� − 11])
+8r6w′′3 + 8r4w′′2[9rw′ + 18w − 5 + 24r2�]

+8r2w′′
(

33r2w′2 + rw′[32r2� − 34 + 27w]

−18w2 + 2w[5 + 33r2�]

+4[1 − 10r2� + 24r4�2]
)

+208r3w′3 + 8r2w′2[81w − 74 + 328r2�]
+32rw′(15w2 + w[156r2� − 31]
+8[2 + 82r4�2 − 19r2�])
+32w3 + 32w2[8r2� − 5] − 64w(6r2� − 1

−20r4�2) + 32(1 − 4r2�)2(8r2� − 1)
]}

= 0, (B. 6)

ζφ
φ =

1

2r9 sin2 θ
√

R5

{

4r5
√

R5
[

r2 sin2 θ(r2w′′ + 2rw′

+2wnθ
2 − 4ws′nθ + 2ws′2 − 2r2q ′2

+4r2�) − 2kθ
2 − 2r2 + 2wp′2

]

−β sin2 θ
[

3r6ww′′′2 − 4r6ww′′′′R

−4r3w′′′([rw′ − 7w]r2w′′ + 4r2w′2

+2rw′[4r2� − 1 + 14w]
+2w[11w + 20r2� − 11])
+8r6w′′3 + 8r4w′′2[9rw′ + 18w − 5

+24r2�] + 8r2w′′(33r2w′2

+rw′[32r2� − 34 + 27w]
−18w2 + 2w[5 + 33r2�]

+4[1 − 10r2� + 24r4�2]) + 208r3w′3

+8r2w′2[81w − 74 + 328r2�]
+32rw′(15w2 + w[156r2� − 31]
+2[8 + 321r4�2 − 76r2�])
+32w3 + 32w2[8r2� − 5] − 64w(6r2� − 1

−20r4�2) + 32(1 − 4r2�)2(8r2� − 1)
]}

= 0, (B. 7)

ζ =
1

4r6
√

R5

{

4r6
√

R7

+β
[

6r6Rww′′′′ + 9r6ww′′′2

−6r3w′′′([rw′ − 6w]r2w′′

+4r2w′2 + 2rw′[4r2� − 1 + 16w]
+24w[w − 1 + 2r2�]) + 12r6w′′3

+4r4w′′2[30rw′ + 51w − 18 + 80r2�]
+4r2w′′(123r2w′2 + 22rw′[296r2� − 69 + 48w] − 48w2

+4w[3 + 74r2�] + 4[9 − 80r2�

+176r4�2]) + 816r3w′3

+4r2w′2[351w − 318 + 1304r2�]
+16rw′(45w2 + w[344r2� − 84] + 39

+704r4�2 − 332r2�) + 192w3

+32w2[34r2� − 15] − 64w(37r2� − 6

−88r4�2) + 32(1 − 4r2�)2(16r2� − 3)
]}

= 0. (B. 8)
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