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Abstract Introducing f (R) term in the five-dimensional
bulk action we derive effective Einstein’s equation on the
brane using Gauss–Codazzi equation. This effective equa-
tion is then solved for different conditions on dark radia-
tion and dark pressure to obtain various spherically sym-
metric solutions. Some of these static spherically symmetric
solutions correspond to black hole solutions, with parame-
ters induced from the bulk. Specially, the dark pressure and
dark radiation terms (electric part of Weyl curvature) affect
the brane spherically symmetric solutions significantly. We
have solved for one parameter group of conformal motions
where the dark radiation and dark pressure terms are exactly
obtained exploiting the corresponding Lie symmetry. Vari-
ous thermodynamic features of these spherically symmetric
space-times are studied, showing existence of second order
phase transition. This phenomenon has its origin in the higher
curvature term with f (R) gravity in the bulk.

1 Introduction

Our four dimensional world might be embedded in a five
dimensional space-time was proposed in [1,2] in order to
explain the observed hierarchy between Electroweak and
Planck scale. Such extra dimensional models also have their
origin in some suitable compactifications of ten dimensional
E8 × E8 heterotic string theory [3].

This scenario has attracted considerable attraction due
to its elegant nature and simplicity. In this brane world
scenario the standard model fields are confined on a 3-
brane, while gravity can propagate both in the brane and
the bulk. A single 3-brane, which is embedded in a five
dimensional bulk has the five dimensional line element,
ds2 = e−A(y)ημνdxμdxν + dy2. The warp factor e−A(y)

can be tuned properly to induce Einstein gravity on the brane
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as a leading order term. We could have also considered a two
brane system, which comes with an additional field known
as radion, representing separation between the branes, with
interesting features [4,5]. However we will restrict ourselves
only to the single brane system for the rest of the discussion.

However due to the presence of extra dimensions, we
should expect deviation from Einstein theory, which play
a significant role at high energies [6,7]. Gravity sector also
gets modified at electroweak scale ∼1 TeV, changing the cos-
mological implications, which have been extensively studied
in Ref. [8–12]. The effect of extra dimension on formation
of black hole has been studied in References [13–15]. Also
these models have very interesting properties from the point
of view of particle phenomenology [16–20].

In General Relativity the exterior space-time of a spher-
ically symmetric black hole or a compact object is stan-
dard Schwarzschild geometry. However due to the pres-
ence of an extra dimension in the brane world scenario
the Schwarzschild solution gets modified non-trivially. This
originates due to high energy corrections, Weyl stress on
gravitons propagating in the bulk. One such solution was
obtained in References [21], in the form of Reissner–
Nördstrom solution. The interior solution can be matched to
a brane world star having constant energy density [22–24].
A non singular solution for black holes in these models can
be obtained by relaxing the condition of zero scalar curva-
ture while retaining null energy condition [25,26]. Also the
Gauss–Codazzi equations can be solved in Randall–Sundrum
type II model to get exterior solution for spherically sym-
metric star [27]. The various classes of vacuum solutions has
been obtained in Reference [28] by solving the vacuum field
equations on the brane obtained from Gauss Codazzi equa-
tion. The results of various such calculations suggest that
brane world black hole horizons has the peculiar structure of
a “pancake”.

In recent years, there has been a new concept in Gen-
eral Relativity suggesting modifications of Einstein–Hilbert
action in order to explain the late time cosmic accelera-
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tion to inflation. This is achieved by introducing higher
curvature terms in the action, and a very promising candi-
date among such modifications is f (R) gravity theories (for
recent reviews see [29–31]). The main difficulties with these
modifications are, they become infected with ghost modes.
However f (R) theory on a constant curvature hyper surface
is shown to be ghost free [32–35]. The modification due to
introduction of f (R) term in the Lagrangian can address
variety of problems e.g. four cosmological phases [36,37],
late time cosmic acceleration [38,39], initial power law infla-
tion [40], rotation curves of spiral galaxies [41,42], detection
of gravitational waves [43–45] and many others. This theory
has also the potential to pass through all known tests of gen-
eral relativity.

Motivated by such striking properties of f (R) gravity it is
also introduced in brane world models, where the five dimen-
sional action is modified by introduction of f (R) term in the
bulk, with R being the Ricci scalar of the five dimensional
theory. In particular for bulk geometry with high curvature
∼ Planck scale, such higher order corrections to gravity are
expected to become extremely relevant. Effective gravita-
tional equations on the brane have been obtained in Refer-
ences [46–49] while perturbations on the scalar and tensor
modes on the brane has been studied in Reference [50]. Cos-
mology on these brane world models Reference [51] along
with brane world sum rules have also been discussed in these
f (R) gravity models [52]. The nature of warped geometric
models in this f (R) gravity theory with constant bulk cur-
vature has been obtained in Reference [53] and the graviton
KK mode masses in these models have been examined in the
light of recent ATLAS data in LHC.

Ever since the pioneering works of Regge and Wheeler
[54–56], the stability of a four dimensional black hole under
linear perturbation has been investigated extensively. The
importance of linear stability of a black hole can be under-
stood as follows: the black hole solutions should describe
the final state of gravitational collapse and thus they should
be stable against small fluctuations. Also technically, this
implies that at the order of linear perturbation, Einstein equa-
tion reduces to a simple set of wave equations. For the static
situation, these equations resemble Schrödinger equation
with time dependent Hamiltonian. Thus the stability analysis
becomes equivalent to a simple, quantum mechanical prob-
lem. We also mention that there are solutions which describe
naked singularity, and stability of a naked singularity is an
important issue from the viewpoint of cosmic censorship con-
jecture. In this work we will use the wave equations to study
the stability [57–60].

An important aspect of black hole physics, pioneered by
Bekenstein, shows a remarkable similarity between black
hole and a thermodynamic system. The similarity arises
from the fact that just like a thermodynamic system one can
attribute temperature to a black hole (known as Hawking

temperature) which is proportional to the surface gravity and
also an entropy proportional to the horizon area [61–66]. Any
arbitrary black hole can be characterized by three parame-
ters, its mass, charge and angular momentum. The thermo-
dynamic stability of such a system can be determined by the
sign of heat capacity just like any normal thermodynamic sys-
tem. For a black hole the criteria cv < 0 makes the system
thermodynamically unstable. However if the specific heat
changes sign as well as diverges in its parameter space, then
it indicates a second order phase transition [67,68]. Phase
transitions in various black hole solutions have been stud-
ied extensively in Einstein gravity as well as in alternative
gravity theories [69–75].

The purpose of this work is to consider various spheri-
cally symmetric vacuum space-times on the brane obtained
from f (R) action on the bulk. In order to achieve this we
consider the decomposition of electric part of the Weyl ten-
sor into dark radiation and dark pressure terms. It turns out
that these determine the space-time geometry we are consid-
ering. Moreover some simple integrability conditions lead
to different classes of vacuum solutions. These issues are
addressed in Sects. 2 and 3. Then we have discussed stability
of black holes and naked singularities in these spacetime in
Sect. 4.

Next we consider vacuum space-time related to Lie groups
of transformation. As a simple situation we consider spher-
ically symmetric and static solutions with the metric tensor
admitting one parameter group of conformal motion. With
proper integrability condition an exact solution correspond-
ing to a brane with one parameter group of motions can be
obtained (see Sect. 5).

Finally we consider the thermodynamics of these black
hole solutions. As these solutions are induced on the brane
due to bulk action, the thermodynamic properties are related
to the dark pressure and radiation terms coming from the elec-
tric part of Weyl tensor and thus the thermodynamic prop-
erties of the brane black holes are directly related to those
of bulk space-time (see Sect. 6). We finally conclude with a
discussion on our results.

2 Static, spherically symmetric field equations
on the brane

To obtain the vacuum solution we start from the bulk action
with f (R) term as,

S =
∫

d5x
√−g[ f (R)+ Lm] (1)

where Lm is the matter Lagrangian, gAB is the bulk metric
and R is the bulk Ricci scalar. The bulk indices A, B runs
through 0 . . . 4 i.e. over all the space-time dimensions. The
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variation of the action S with respect to bulk metric gAB leads
to,

f ′(R)RAB − 1

2
gAB f (R)+ gAB� f ′(R)

−∇A∇B f ′(R) = κ2
5 TAB (2)

Here the negative vacuum energy density � on the bulk and
the brane energy-momentum tensor are the sources of the
gravitational field. Eq. (2) can be put into the form,

G AB ≡ RAB − 1

2
RgAB = T tot

AB

T tot
AB = 1

f ′(R)
×
[
κ2

5 TAB −
(

1

2
R f ′(R)− 1

2
f (R)+ � f ′(R)

)
gAB

+∇A∇B f ′(R)
]

TAB = −�gAB + δ(y)(−λT hμν + τμν)δ
μ
Aδ
ν
B (3)

where τμν is the brane energy-momentum tensor and λT is
the corresponding brane tension. Also the quantity hμν is the
induced metric on y = constant hypersurfaces.

The effective four-dimensional gravitational equations on
the brane are,

Gμν = −�4hμν + 8πG N τμν + κ2
5πμν + Qμν − Eμν (4)

where,

�4 = 1

2
κ2

5

(
�

f ′(R) + 1

6
κ2

5λ
2
)

(5)

G N = κ4
4

8π
(6)

πμν = −1

4
τματ

α
ν + 1

12
ττμν + 1

8
hμνταβτ

αβ

− 1

24
hμντ

2 (7)

Qμν =
[

g(R)hμν + 2

3

∇A∇B f ′(R)
f ′(R)

×
(

h A
μhB

ν + n AnBhμν
) ]

y=0
(8)

with,

g(R) ≡ 1

4

f (R)
f ′(R) − 1

4
R − 2

3

� f ′(R)
f ′(R) (9)

Note that for f (R) = R, we retrieve the usual Gauss–
Codazzi equation for a pure Einstein gravity in the bulk.
We now proceed to simplify the expression for Qμν . The
normal to y = constant hypersurface being n A = ∂A y,
we have nμ = 0. In addition if we assume that ∂μR = 0
then using the relations: ∇A∇B f ′(R) = f ′′(R)∇A∇BR

+ f ′′′(R)∇AR∇BR and ∇AR∇BRh A
μhB

ν = ∇μR∇νR
−∇μR∇BRnBnν −∇AR∇νRn Anμ−∇AR∇BRn AnBnμnν
along with a similar expression for ∇A∇BRh A

μhB
ν Eq. (8)

reduces to,

Qμν=
(

g(R)+ 2

3

∇A∇B f ′(R)
f ′(R) n AnB

)
y=0

hμν≡ F(R)hμν
(10)

Now the scalar curvature for the bulk must be a well
behaved quantity, and we can expand it in a Taylor series
around y = 0 hypersurface, as, R = R0 +R1 y +R2 y2/2+
O(y3). Since bulk curvature depends only on the extra dimen-
sion y, all the coefficients are constants. Thus all the deriva-
tives calculated at y = 0 yield a constant contribution which
does not depend on any of the brane coordinates.

The electric part of the Weyl tensor Eμν has its origin in
the nonlocal effect from free bulk gravitational field. This
is the projection of bulk Weyl tensor such that, E AB =
CABC DnC nD along with E AB = Eμνδ

μ
Aδ
ν
B on the brane

(y → 0). From the Gauss–Codazzi equation we also have
conservation of energy momentum tensor as, DμTμν = 0,
where Dμ is the brane covariant derivative. This also imposes
restrictions on projected Weyl tensor from Bianchi identities.
Following Reference [6] the projected Weyl tensor can be
expanded as,

Eμν = −k4
[

U (r)

(
uμuν + 1

3
ξμν

)
+ Pμν + 2Q(μuν)

]

(11)

with k = k5/
√

8πG N and ξμν = hμν+uμuν . This decompo-
sition is with respect to the four velocity field uμ. The respec-
tive terms in the above expression are, the “Dark Radiation”
term, U = − 1

k4 Eμνuμuν , which is a scalar, Qμ = 1
k4 ξ

α
μEαβ

is a spatial vector and Pμν = − 1
k4

[
ξα(μξ

β

ν) − 1
3 hμνhαβ

]
Eαβ

is a spatial, trace free, symmetric tensor. For static solu-
tions, Qμ = 0, while the constraint becomes dependent
on dark radiation U (r), vector Aμ = A(r)rμ and a ten-
sor Pμν = P(r)

(
rμrν − 1

3ξμν
)
. Here rμ is unit radial vec-

tor.
In order to obtain solution in a source free region on the

brane, brane energy momentum tensor appearing on the right
hand side of effective Einstein’s equation is taken to be zero.
Thus we readily obtain τμν = 0 = πμν . Also from the pre-
vious discussion it is evident that R is dependent only on y
and on the brane (at y = 0) all its derivatives with respect
to coordinates become constants. Then the Einstein equation
becomes,

Gμν = −�4hμν + F(R)hμν − Eμν (12)
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Now we choose an ansatz for spherically symmetric solu-
tion in the form,

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2d�2 (13)

For this choice the effective Einstein’s equation and
energy-momentum conservation equation on the brane become,

−e−λ
(

1

r2 − λ′

r

)
+ 1

r2 = (�4 − F(R))+ 3

4πGλT
U

(14)

e−λ
(
ν′

r
+ 1

r2

)
− 1

r2 = F(R)−�4 + 1

4πGλT
(U + 2P)

(15)

e−λ
(
ν′′ + ν′2

2
+ ν′ − λ′

r
− ν′λ′

2

)
= 2(F(R)−�4)

+ 1

2πGλT
(U − P)

(16)

ν′ = −U ′ + 2P ′

2U + P
− 6P

r(2U + P)
(17)

where we have denoted a′ ≡ da/dr . Now Eq. (14) can be
solved for e−λ to yield,

e−λ = 1 − �4 − F(R)
3

r2 − Q(r)

r
− C1

r
(18)

where C1 is an arbitrary constant of integration. The quantity
Q(r) is defined as,

Q(r) = 48πG

k4
4λb

∫
r2U (r)dr (19)

We can interpret the term Q as equivalent to gravitational
mass originating from dark radiation and henceforth will be
referred as dark mass. In the limit f (R) → R, �4 → 0
as well as U → 0 we retrieve the standard Schwarzschild
solution. This helps us to identify the arbitrary constant as
C1 = 2G M , M being the constant mass of the gravitating
body. Also we can obtain the differential equations that are
satisfied by dark radiation U (r) and dark pressure P(r) in
static spherically symmetric space-time. Eliminating ν′ from
Eqs. (17) and (15) and using e−λ from Eq. (18) we obtain:

dU

dr
= −2

dP

dr
− 6

P

r

− (2U + P)[2G M + Q + {α(U +2P)+2χ/3}r3]
r2
(

1− 2G M
r − Q(r)

r −�4−F(R)
3 r2

)

(20)

dQ

dr
= 3αr2U (21)

where we introduce two extra parameters, α = (1/4πGλT )

andχ = F(R)−�4. Now we define the following quantities
in order to transform the above differential equation into a
more convenient form which will be used extensively later,

q = 2G M + Q

r
; μ = 3αr2U ; p = 3αr2 P;

θ = ln r; 2χr2 = � (22)

In terms of these variables the differential equations sat-
isfied by the dark radiation and dark pressure are,

dq

dθ
= μ− q (23)

dμ

dθ
= −(2μ+ p)

q + 1
3 (μ+ 2p)+ �

3

1 − q + �
6

− 2
d p

dθ
+ 2μ− 2p

(24)

Thus the Eqs. (14)–(17) are the effective field equations,
on the brane, while the Eqs. (23)–(24) represent equations
for the source terms in the bulk i.e. dark pressure and dark
radiation.

3 Various classes of solutions on the brane

Equations (20) and (21) can not be solved for dark radia-
tion U and dark pressure P simultaneously unless we have a
relation connecting them. We therefore choose some possible
relations between the dark radiation U and dark pressure P
which essentially define different equations of state. For dif-
ferent such choices we get different solutions. In this section
we impose certain conditions on dark radiation U and dark
pressure P , to obtain the corresponding solution. It turns out
that the solutions are very distinct for different choices.

3.1 Case-I: U = 0

This condition comes with vanishing dark radiation, which
imply readily Q = 0. In this scenario, one of the metric
elements can be given by,

e−λ = 1 + F(R)−�4

3
r2 − 2G M

r
(25)

The differential equation satisfied by the dark pressure
P(r) is given by,

dP

dr
+ 3

P

r
+ P(G M + αr3 P + (F(R)−�4)/3r3)

r2
(

1 − 2G M
r + F(R)−�4

3 r2
) = 0

(26)
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while the differential equation satisfied by ν is given by,

ν′ = 2(G M + αr3 P + (F(R)−�4)/3r3)

r2
(

1 − 2G M
r + F(R)−�4

3 r2
) (27)

Solution for these two differential equations give the pres-
sure and metric for this case. Note that in this situation
the metric element eν is solely determined from the pres-
sure, which can be seen directly from Eqs. (27) and (26) as,
ν′ = −2P ′/P − 6/r . This equation can be integrated to
yield, exp(ν) = C2/r6 P2, where C2 is an arbitrary constant
of integration. Thus once pressure equation is solved, the
metric element is also known.

In order to obtain the pressure two quantities r1 and d
would be important with the following expressions:

r1 =
3−2/3(F(R)−�4)+

(
−G M (F(R)−�4)

2 + √
3
√
(F(R)−�4)

3

27 + [−1 + 9 (F(R)−�4)G2 M2
])2/3

3−1/3 (F(R)−�4)

(
−G M (F(R)−�4)

2 + √
3
√
(F(R)−�4)

3

27 + [−1 + 9 (F(R)−�4)G2 M2
])1/3 (28)

d = 1

(F(R)−�4)2

×
⎡
⎣−35/6

√
(F(R)−�4)

3

27

[−1 + 9 (F(R)−�4)G2 M2
]

×
⎛
⎝− G M (F(R)−�4)

2 + √
3

×
√
(F(R)−�4)

3

27
+ [−1 + 9 (F(R)−�4)G2 M2

]
⎞
⎠

1/3

+ (F(R)−�4)

3

(
− 3G M (F(R)−�4)

2

+
√
(F(R)−�4)

3 [−1 + 9G2 M2 (F(R)−�4)
])2/3

+ (F(R)−�4)
2

3

(
1 + 3G M

{
− 3G M (F(R)−�4)

2

+
√
(F(R)−�4)

3 [−1 + 9G2 M2 (F(R)−�4)
]})1/3

⎤
⎦

With these variables the solution for the pressure is
obtained as:

P(r) = h(r)

[ ∫
αr3

r2(1 − 2G M/r + (F(R −�4)r2/3))

×h(r)+ C1

]−1

(29)

h(r) = 1

r3

(
1

r
− 1

r1

)− 3G M A
(F(R)−�4)r1d

exp

⎡
⎣− 3G M

(
d − r2

1

)
(F(R)−�4) r2

1 d
(
1 + d/2r2

1

)√
4d − r2

1

arctan

⎛
⎝r1 + 2d/r1√

4d − r2
1

⎞
⎠
⎤
⎦

×
(

1 + r1

r
+ d

r2

)− 3G M
2(F(R)−�4)r1d(1+d/2r2

1 ) (30)

From the above expression it is evident that at r = r1 the met-
ric element eν vanishes. Thus the space-time has an event

horizon located at r = r1 with its characteristic thermody-
namic features.

3.2 Case-II: P = 0

In this situation Eqs. (23) and (24) reduces to the following
form,

dq

dθ
= μ− q (31)

dμ

dθ
= 2μ

[
6 − �− 2μ− 12q

6 + �− 6q

]
(32)

These two equations can be combined to yield a single
differential equation such that,

(6 + �− 6q)
d2q

dθ2 + (26q − 6 − �)
dq

dθ

+ 4

(
dq

dθ

)2

+ 2q(14q − 6 − �) = 0 (33)

The transformations dq/dθ = 1/v and v = w(6 − 6q +
�)−2/3 lead to the following differential equation,

dw

dq
− (26q − 6 − �)(6 − 6q + �)−5/3w2

−2q(14q − 6 − �)(6 − 6q + �)−7/3w3 = 0 (34)

The above differential equation has a particular solution,
w = − 1

q (6 − 6q + �)2/3. However for a wider class of
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solutions we define a new variable η = (6 − 6q + �)−1/3.
This leads to the differential equation,

dw

dη
− 10η3 + 10/13�η3 − 13/16

η2

+[η3(1 + �/6)− 1][7/3 − η3(10 + 4�/3)]
η3 w3 = 0 (35)

It is hard to find an exact solution of this differential equa-
tion. Therefore we resort to approximated methods. For that
purpose we choose the differential equation (33) and making
Laplace transform of this equation we get,

L
(

[3 + χe2θ ]d2q

dθ2 − [3 + χe2θ ]dq

dθ
− 4q[3 + χe2θ ]

)

= L
(

3q
d2q

dθ2 − 13q
dq

dθ
+ 4

(
dq

dθ

)2

− 14q2

)
(36)

Then using the convolution theorem in the form,

L−1( f̃ (s)g̃(s)) =
∫ b

a
f (t − u)g(u)du (37)

we readily obtain the following integral solution,

q(θ) = q0(θ)+
∫ θ

θ0

f (θ − y)

×
[

3q
d2q

dθ2 − 13q
dq

dθ
+ 4

(
dq

dθ

)2

− 14q2

]
dx (38)

where we have the following functions,

f (x − y) = 1

9

(
e2(x−y) − e−(x−y)

)
(39)

q0(θ) = A1e−θ + A2e2θ (40)

A1 = [(3q0 − μ0)+ ((3 + 2χ)q0 − μ0)]eθ0/3 (41)

A2 = μ(θ0)e
−2θ0/3 (42)

Having obtained an integral solution we now move for-
ward to determine the metric. However the solution is usu-
ally obtained by successive approximation methods, which
invokes iterations. At zeroth order we get the solution by
using only the linear part of the differential equation (33)
and will be denoted by q0. Then we can write our full solu-
tion as a limiting process, such that q(θ) = limm→∞ qm(θ).
In this situation for m ∈ N , we have the iterative solution
at mth order connected to (m − 1)th order by the following
integral equation,

qm(θ) =
∫ θ

θ0

F(θ − y)

[
3qm−1

d2qm−1

dθ2 − 13qm−1
dqm−1

dθ

+ 4

(
dqm−1

dθ

)2

− 14q2
m−1

]
dy + qm−1(θ) (43)

Then following Ref. [28] the zeroth order static and spher-
ically symmetric solution to the field equations turn out to
be,

eν = C0

√
α

A2
(44)

e−λ = 1 − A1

r
− A2r2 (45)

U = A2

α
(46)

where we have C0 as an arbitrary integration constant. After
using one more iteration i.e. up to first order approximation
the metric components are obtained as,

eν = C0

√
αr0

2

√
r

A2(r0 − r)[A1 + A2rr2
0 + A2r0r2] (47)

e−λ = 1 + A2r2
0 [(4A2r2

0/5)+ A1]
r

− 3A1 A2r

−2A2(2A2r2
0 − A1/r0)r

2 + 6A2
2r4/5 (48)

Note that the dependence on f (R) gravity appears
through the A1 factor. However the dependence is quiet com-
plicated and affects both the metric elements.

3.3 Case-III: 2U + P = 0

For this choice Eq. (20) yields,

P(r) = P0

r4 (49)

U (r) = − P0

2r4 (50)

where P0 is an arbitrary integration constant. Also the dark
mass can be calculated from Eq. (21) as,

Q(r) = Q0 + 3αP0

2r
(51)

where again Q0 is an integration constant. For this particular
choice we have from Eqs. (14) and (15) ν′ = −λ′. Hence the
metric elements are given by,

eν = e−λ = 1 − 2G M + Q0

r
− 3αP0

2r2 + F(R)−�4

3
r2

(52)

This solution has several interesting features which we dis-
cuss now. Firstly this solution is asymptotically dS (AdS)
or flat depending on the sign of (F(R) − �4) being neg-
ative (positive) or zero. Then there is an analogous charge
term which is the coefficient of 1/r2 term and is given
by −3αP0/2. Finally we have a mass term given by,
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2G M + Q0. Thus we note that the charge term is com-
ing solely from the dark pressure term and thus has its ori-
gin in the bulk geometry. Similar argument hold true for
the mass term also. However the effect of f (R) gravity on
the bulk actually induces a dS (AdS) nature to the vacuum
solutions.

3.4 Case-IV: U + 2P = 0

Here we consider a different condition on the dark radiation
and dark pressure terms. In this case Eq. (20) leads to the
expression for the dark mass Q as,

Q = 2r

3
− 2G M (53)

along with the the solution for dark radiation term and dark
pressure term as,

U (r) = −2P(r) = 2

9αr2 (54)

The metric elements in this case can be evaluated as,

e−λ = 1

3
+ F(R)−�4

3
r2 (55)

eν = C0r2 (56)

Note that this solution actually represents a naked sin-
gularity since the event horizon is determined by the equa-
tion, eν = 0. Thus though the f (R) model modifies the eλ

term however it yields a naked singularity solution. Moreover
e−λ = 0 determines the null surface, however in this situation
the null surface exists only if�4 > F(R) and is located at, rh

= √
�4 − F(R). Hence by imposing appropriate conditions

we obtain either black hole solution with event horizon or
solution with naked singularity.

In this context we should mention that naked singularities
are just not some artifact, these can be used to probe structures
as well. For example we can use naked singularity to take
part in gravitational lensing and time delay, with centroid
deformation of astrophysical objects [76,77].

4 Stability of the solutions

Stability of black holes under linearized perturbation is con-
sidered as an important problem in black hole physics. Here
we consider gravitational perturbation in a static spherically
symmetric background. Gauge invariant formalisms were
developed in an arbitrary static background metric having
the form −gtt = grr = f (r). It turns out that for certain
ranges of the parameter space the Hamiltonian is positive
guarantying the self-adjoint extension of it under suitable
boundary condition.

The perturbation can be grouped into three types: scalar,
vector and tensor perturbations. Expansion of each of these
perturbations in harmonic functions leads to a set of equa-
tions expressed in terms of gauge covariant variables. Fur-
ther reduction of these equations then reduces them to a set
of decoupled wave equation in the form:

(
� − 1

f (r)
V

)
� = 0 (57)

where as usual, � represents the d’Alembertian operator with
respect to the two dimensional metric. Also� = �S,�V and
�T represent scalar, vector and tensor perturbations respec-
tively. The potential function for each of these perturbation
modes corresponds to [57]:

VT = f (r)

r2

(
r

d f (r)

dr
+ �(�+ 1)

)
(58)

VV = f (r)

r2

(
2 f (r)− r

d f (r)

dr
+ (�− 1)(�+ 2)

)
(59)

VS = f (r)U (r)

16r2(m + 3x)2
(60)

where we have used the following expressions:

U (r) = 144x3 + 144mx2 + 48mx + 16m3 (61)

x ≡ 1 − f (r), m ≡ (�− 1)(�+ 2) (62)

It should be noted that the total number of independent
components of the scalar, vector and tensor modes adds up to
2, the number of independent degrees of freedom for graviton
in the brane. Since the tensor mode has no degrees of free-
dom we need to concentrate only on the vector and scalar
modes.

Let us now consider the black hole and naked singular-
ity solutions obtained in the previous section using effec-
tive gravitational field equation on the brane. Most of these
solutions are quiet complex and we shall focus into some
appropriate limiting cases.

• We start with the choice of vanishing dark radiation i.e.
U = 0. From the previous section it is evident that in
general the solution is complex and not in closed form.
Thus we consider the limit F(R) → �4, where from Eq.
(25) it is evident that this leads to Schwarzschild form for
e−λ. However in this limit eν becomes (1 − 2M/r) with
some correction factors of O(α). Thus in the smallα limit
the solution is Schwarzschild in nature. Hence all the
potentials VT, VV and VS are positive implying existence
of self adjoint operators and hence the stability. Thus
for small F(R)−�4 the deviation from Schwarzschild
solution would indeed be small resulting into stability of
the solution.
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• Next we discuss the case of vanishing dark pressure.
In this case the solutions are not exact and even the
zeroth order solution for e−λ looks like Schwarzschild
de-Sitter. However the other one is merely a constant.
Thus from the expressions for the potential it turns
out they depend on the e−λ at the outside and thus
will represent stable solution for the range of param-
eter space where f (r) > 0. From large r limit we
observe that stability requires the condition A2 > 0,
which is acceptable since this in turn implies that dark
radiation to be positive from Eq. (46). Thus positivity
of the dark radiation term ensures stability of this solu-
tion at zeroth order. Since we have higher order solu-
tions in a perturbative form, the stability of the full solu-
tion is expected to be dominated by the zeroth order
term.

• The most important case in our hand is the situation
where dark pressure and dark radiation satisfies the con-
straint relation 2U + P = 0. In this case we can
determine stability exactly. For this solution it turns out
that VT and VS are positive for all choices of F(R) −
�4. However though VV is positive for F(R) > �4

it becomes negative for the other choice. Hence All
these modes are positive ensuring stability of the solu-
tion for the parameter space: F(R) > �4. Other-
wise, the solution is though stable under the tensor and
scalar perturbations, is not so under vector perturba-
tion.

• Another important aspect of this solution comes into
picture when P0 = 0. Then the solution represents
a Schwarzschild (A)de-Sitter spacetime, which under
proper limit leads to the Nariai spacetime. This has
the peculiar property that a black hole in Nariai space-
time has increasing surface area due to quantum cor-
rections as shown by Bousso and Hawking [78–80].
This phenomenon of antievaporation was then gener-
alized for Nariai black holes in f (R) gravity [81],
with f (R) gravity playing the role of anomaly induced
effective action leading to anti evaporation. In our case
as well with P0 = 0, we have Nariai black hole as
one limit and thus our solutions will also exhibit anti-
evaporation. However for P0 
= 0, our solution can-
not be reduced to the Nariai form and thus in gen-
eral the solution presented here will not exhibit anti-
evaporation.

• Finally we consider the solution which corresponds to the
other constraint relation with U + 2P = 0. In this case
we have both black hole and naked singularity depend-
ing on �4 > F(R) or otherwise. In this case at large r
limit both the solutions can be taken as 1 + Cr2. It turns
out that, VT and VV are positive for all choices between
F(R) and�4, however VV ensures stability for the black
hole solution not for the naked singularity. Thus the black

hole solution is stable under all these perturbation, while
the global naked singularity is stable only under tensor
and scalar perturbation, but not under vector perturba-
tion.

Thus we observe that the solutions present here are mostly
stable under perturbations, except in some specific cases
where the vector mode of the perturbation shows instabil-
ity. Also we have pointed out that our solution reduces to
the Nariai form and thus exhibits anti-evaporation in f (R)
gravity, similar to previously obtained results.

5 Static spherically symmetric brane with conformal
motion

We can use symmetries to explore the connection between
geometry and matter through Einstein’s equation. The most
important of such symmetries can be realized through the use
of conformal Killing vectors. The symmetry under which
the space-time manifold admits conformal Killing vectors
are known as, conformal motion. In this section we derive a
particular metric which admits conformal motions. For the
spherically symmetric and static solutions on the brane if one
requires to have one-parameter group of conformal motion,
the following condition results,

Lξhμν = ξμ;ν + ξν;μ = φ(r)gμν (63)

In the above relation ξ is the conformal Killing vector and
φ(r) is the conformal factor, while the above symmetry of
the metric is known as conformal motion. The above rela-
tion should hold for all the individual metric components.
In this relation hμν is the metric determining the vacuum
space-time configuration, ξμ is a vector field in this space-
time with respect to which the Lie variation has been taken
and φ(r) is an arbitrary function of the radial coordinate.
Then following the procedure adopted in Reference [82] to
determine interior structure of stellar objects, here also we
can impose some symmetry requirement like, ξμuμ = 0.
This symmetry enables one to determine all the unknowns
exactly using the effective Einstein’s equation. Thus using
the metric ansatz given by Eq. (13), the above equation is
shown to be equivalent to [82],

eν = A2r2

φ(r) = Ce−λ/2 (64)

ξμ = Dδμ0 + φr

2
δ
μ
1

where A, C and D are arbitrary constants. With the above
results the Einstein equations (14), (15) and (16) reduce to,
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1

r2

[
1 − φ2(r)

C2

]
− 2φφ′

rC2 = 3αU − [F(R)−�4] (65)

1

r2

(
1 − 3

φ2

C2

)
= −α (U + 2P)− [F(R)−�4] (66)

1

C2

φ2

r2 + 2

C2

φφ′

r
= α(U − P)+ (F(R)−�4) (67)

From Eqs. (66) and (67) we obtain the dark radiation and
dark pressure in terms of the unknown function φ as,

P(r) = − 1

3α

[
2

C2

φφ′

r
+ 1

r2

(
1 − 2

φ2

C2

)]
(68)

U (r) = 1

3α

[
4

C2

φφ′

r
− 1

r2

(
1 − 5

φ2

C2

)
− 3(F(R)−�4)

]

(69)

Then from Eq. (65) and the expression for dark radiation,
the differential equation satisfied by φ(r) turns out to be,

3

C2 φφ
′ = 1

r

(
1 − 3

φ2

C2

)
+ 4r(F(R)−�4) (70)

This can be solved with little effort to yield the general
solution as,

φ2 = C2

3

[
1 + B

r2 + 2(F(R)−�4)r
2
]

(71)

where, B is an integration constant. Thus full solution corre-
sponding to this one parameter symmetry group of conformal
motion leads to,

eν = A2r2 (72)

e−λ = 1

3

[
1 + B

r2 + 2(F(R)−�4)r
2
]

(73)

U (r) = 1

9αr2

[
2 + B

r2 + 9(F(R)−�4)r
2
]

(74)

P(r) = 1

9αr2

[
−1 + 4B

r2

]
(75)

There exists another important properties of the field equa-
tions. Having obtained a single solution we can make a trans-
formation such that, r → r̄(r), U → Ū (U ), P → P̄(P)
and Q → Q̄(Q) [83], called homology transformations.
The homology properties of the equations determining dark
radiation and dark pressure can be simplified by assuming
γ = P(U )/U = constant and cs = dP/dU = constant.
The above transformations are being generated with the
infinitesimal generator as, L̂ = ζ(r)∂/∂r + ψ1(U )∂/∂U +
ψ2(Q)∂/∂Q. Then in order to have consistent solutions we
must have, ζ = 0, ψ1 = U and ψ2 = Q + 2G M . Thus with
inclusion of f (R) gravity the infinitesimal generator for the
homologous transformation becomes restricted compared to
that in Einstein gravity.

6 Some thermodynamic features

In this section we will discuss thermodynamics associated
with these spherically symmetric vacuum spacetime. Our
main motive is to observe if there exists any thermodynamic
interpretation which is induced solely by the bulk. We focus
on the line element obtained for the condition 2U + P = 0
which has the following expression,

ds2 =−
(

1 − 2G M + Q0

r
− 3αP0

2r2 + F(R)−�4

3
r2
)

dt2

+
(

1 − 2G M + Q0

r
− 3αP0

2r2 + F(R)−�4

3
r2
)−1

×dr2 + r2d�2 (76)

The horizon is determined by setting coefficient of gtt to
zero, which in turn leads to the equation,

1 − 2G M + Q0

r
− 3αP0

2r2 + F(R)−�4

3
r2 = 0 (77)

Then the mass term equivalent to internal energy of a ther-
modynamic system can be obtained in terms of the horizon
radius as,

M(rh) = rh

2
− Q0

2
− 3αP0

4r
+ F(R)−�4

6
r3 (78)

The surface area of the event horizon is given by, A =
πr2

h , while the entropy for the black hole is given by, S =
kB A/4h̄ = kBπr2

h/4h̄r . Choosing h̄ = 1 and Boltzmann
constant appropriately we readily obtain,

S = r2
h (79)

Thus the mass of the black hole in terms of the entropy
becomes,

M(S) =
√

S

2
− Q0

2
− 3αP0

4
√

S
+ F(R)−�4

6
S3/2 (80)

This leads to the first law of black hole mechanics as,

dM = T dS +�d(F(R)−�4) (81)

from which the black hole temperature turns out to be:

T = 1

4
√

S
+ 3αP0

8S3/2 + F(R)−�4

4

√
S (82)

while the chemical potential has the following expression:

� = S3/2

6
(83)
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(a)

(c)

(b)

Fig. 1 The above figures show variation of three thermodynamic quan-
tities: a specific heat, b temperature, c potential with entropy and
F(R) − �4. a Clearly shows the existence of phase transition in this
black hole spacetime through the discontinuity and divergence of the

specific heat on some surface in entropy and F(R)−�4. While conti-
nuity of both temperature and thermodynamic potential in b and c show
that this phase transition is of second order

From the expression of temperature as a function of
entropy it turns out that the specific heat has the following
behavior:

CV = T

(
∂S

∂T

)
F(R)−�4

=
1

4
√

S
+ 3αP0

8S3/2 + F(R)−�4
4

√
S

F(R)−�4

8
√

S
− 1

8S3/2 − 9αP0
16S5/2

(84)

Figure 1 shows that while temperature T and potential φ
are continuous with both the entropy and the quantity F(R)−
�4, specific heat shows discontinuity indicating a second
order phase transition. The surface of discontinuity in the
specific heat is given by,

F(R)−�4 = 1

S
+ 9αP0

2S
(85)

In order to understand the physics behind these results,
it is always illuminating to discuss some limiting cases.
For example, if we assume pure Einstein gravity, where
F(R) = 0, then with the assumption of�4 ∼ 0, we arrive at
the Reissner–Nordström solution. From Eq. (84) the specific

heat turns out to be Cv = −S(6αP0 + 4S)/(2S + 9αP0).
This can also be divergent, provided the entropy satisfies the
criteria: S = −(9αP0/2). In general P0 is taken to be posi-
tive and thus the above relation cannot be satisfied in general.
Hence the bulk term with positive dark pressure cannot lead
to second order phase transition. However the other limit is
interesting. For P0 = 0, we get the divergence of specific
heat to correspond to the condition: S = 1/(F(R) − �4).
Thus for F(R) > �4 we have second order phase transi-
tion. Our calculations therefore confirm that Schwarzschild
anti-de Sitter solution shows second order phase transition.

The case for which the dark radiation vanishes, i.e. U = 0
also exhibits the appearance of black hole horizon. The actual
calculations are quiet complex, and we have presented them
in Appendix A. However here we consider some limiting
cases and discuss the corresponding thermodynamic fea-
tures. The first case corresponds to F(R) − �4 = 0. In
this situation the solution for the metric elements resem-
ble Schwarzschild solution with no associated phase tran-
sition. We cannot take P = 0 as in that case the metric ele-
ments would diverge. Thus another obvious choice is M = 0.
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Then also horizon appears and the specific heat diverges for
�4 > F(R). Thus this configuration exhibits an opposite
effect in respect to 2U + P = 0 case.

We therefore observe that in both the black hole solutions
the specific heat diverge showing second order phase transi-
tion, due to the presence of F(R) gravity in the bulk. Thus
bulk F(R) gravity plays a crucial role in determining the
thermodynamic feature of the brane world black holes.

7 Discussion

In this work we have considered a bulk action with a f (R)
term, where R is the bulk curvature. Starting from the bulk
action we have derived the full effective Einstein’s equation
on the brane located at y = 0, which under f (R) → R
limit goes to the usual Gauss Codazzi equation in Ein-
stein gravity. In order to get spherically symmetric solu-
tions we have assumed that in the region of interest there
is no matter field present on the brane and also the four
dimensional scalar curvature is constant. Under these con-
ditions the Einstein equation simplifies considerably, how-
ever the Weyl tensor on bulk has non trivial decomposi-
tion on the brane leading to the appearance of dark pres-
sure and dark radiation in the effective Einstein’s equation.
Also the induced four dimensional cosmological constant
and contribution from f (R) term have significant effects
on the solutions of the effective Einstein’s equation on the
brane.

Due to the presence of f (R) gravity in the bulk, Einstein’s
equation on the brane picks up an extra contribution which
acts as an effective cosmological constant having expression:
F(R) − �4. Thus though the four dimensional parameter
�4 is not small, an effective small cosmological constant
can be generated by fine tuning �4 and F(R). Hence we
can argue that the observed smallness of four dimensional
cosmological constant is due to a fine tuning of induced cos-
mological constant on the brane with the f (R) term in the
bulk.

From the effective Einstein’s equation we can solve for the
metric elements as well as for dark radiation and dark pres-
sure term provided a relation between dark pressure and dark
radiation term is assumed. For four such choices the equa-
tions get sufficiently simplified such that analytic solutions
can be obtained. We have derived all the metric elements for
these four choices. Among the four solutions two of them
show the presence of event horizon and thus is important
from thermodynamic point of view. On the other hand the
other two solutions lead to naked singularity and thus does
not have much astrophysical importance. The important fea-
tures of these solutions are the asymptotic non-flatness due
to presence of f (R) term. This might be of some relevance
in the context of AdS-CFT correspondence.

After obtaining various solutions leading to either a black
hole or a naked singularity, we have performed a stability
analysis of our solutions in some appropriate limit. It turns
out that the solutions are stable under tensor and scalar pertur-
bations, while under certain choices of parameters the vector
mode leads to instability. Also some solutions can be reduced
to Nariai form, where the well known anti-evaporation in
f (R) gravity takes place leading to an increase in the area of
the event horizon. However we have argued that in general
the solutions are stable under perturbations.

In order to get some idea about solutions representing
stellar interior, a symmetry transformation, known as con-
formal motion is invoked. For this particular symmetry class
we can solve the field equations exactly. This leads to direct
evaluation of dark pressure and radiation using these sym-
metries. Also there exists another class of transformations
known as homology transformations. For this class of solu-
tions the homology operator has been evaluated and it turns
out that f (R) term makes the homology class restricted com-
pared to that in Einstein gravity.

Finally we consider thermodynamical behavior of these
spherically symmetric space-times. Since thermodynamics
is intimately connected to existence of a horizon, we consider
only the two relevant cases. Here also the f (R) term plays a
dominant role in determining the thermodynamic behavior.
In both the cases, the temperature and chemical potentials
are found to be continuous, while the specific heat turns out
to be discontinuous along a surface indicating a second order
phase transition. Such features of these spherically symmet-
ric solutions have their origin in the f (R) term in the bulk
action and only because of the presence of higher curvature
terms in the action, the black hole solutions exhibit a phase
transition, which, is second order in nature.
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Appendix A: Some detailed expressions

Here we present general expressions for various thermody-
namic quantities for the case U = 0 which have been dis-
cussed in Sect. 3.

Under the condition of vanishing dark radiation also we
have a horizon structure to our solution. Therefore we can
work out the thermodynamic features. In this case, the hori-
zon radius turns out to be in terms of the mass M and the
parameter F(R)−�4 with unit G = 1 as:
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r1 =
3−2/3(F(R)−�4)+

(
−M(F(R)−�4)

2 + √
3
√
(F(R)−�4)3

27 + [−1 + 9(F(R)−�4)M2]
)2/3

3−1/3(F(R)−�4)

(
−M(F(R)−�4)2 + √

3
√
(F(R)−�4)3

27 + [−1 + 9(F(R)−�4)M2]
)1/3 (A1)

Then by the previous conditions: h̄ = 1 and an appropriate choice of Boltzmann constant we get entropy to be S = r2
h .

From the first law of black hole mechanics as presented in Eq. (81) the temperature turns out to be,

T −1 =
(
∂S

∂M

)
F(R)−�4

= 2rh

3

(
−M(F(R)−�4)

2 + √
3
√
(F(R)−�4)3

27 + [−1 + 9(F(R)−�4)M2]
)2/3

− 3−2/3(F(R)−�4)

(
−M(F(R)−�4)2 + √

3
√
(F(R)−�4)3

27 + [−1 + 9(F(R)−�4)M2]
)4/3

× 1

3−1/3(F(R)−�4)

[
−(F(R)−�4)

2 + 9
√

3M(F(R)−�4)√
(F(R)−�4)3/27 + (−1 + 9M2(F(R)−�4))

]
(A2)

while the potentialφ can be obtained by solving the equation:

0 =
⎡
⎢⎣3−1/3(F(R)−�4)

⎛
⎝−M(F(R)−�4)

2 + √
3

√
(F(R)−�4)3

27
+ [−1 + 9(F(R)−�4)M2]

⎞
⎠

1/3
⎤
⎥⎦

−1

×
⎡
⎢⎣31/3 + 2

3

⎛
⎝−M(F(R)−�4)

2 + √
3

√
(F(R)−�4)3

27
+ [−1 + 9(F(R)−�4)M2]

⎞
⎠

−1/3

×
⎧⎨
⎩−3φ (F(R)−�4)

2 − 6M (F(R)−�4)+
√

3

2

(F(R)−�4)
2 /3 + 27M2 + 54M (F(R)−�4) φ√

(F(R)−�4)
3

27 + [−1 + 9 (F(R)−�4)M2
]

⎫⎬
⎭

⎤
⎥⎦

−
⎡
⎢⎣3−2/3 (F(R)−�4)+

⎛
⎝−M (F(R)−�4)

2 + √
3

√
(F(R)−�4)

3

27
+ [−1 + 9 (F(R)−�4)M2

]
⎞
⎠

2/3
⎤
⎥⎦

×
⎡
⎢⎣3−1/3 (F(R)−�4)

⎛
⎝−M (F(R)−�4)

2 + √
3

√
(F(R)−�4)

3

27
+ [−1 + 9 (F(R)−�4)M2

]
⎞
⎠

1/3
⎤
⎥⎦

2

×
⎡
⎣32/3

⎛
⎝−M (F(R)−�4)

2 + √
3

√
(F(R)−�4)

3

27
+ [−1 + 9 (F(R)−�4)M2

]
⎞
⎠

+3−1/3 (F(R)−�4)

⎛
⎝−M (F(R)−�4)

2 + √
3

√
(F(R)−�4)

3

27
+ [−1 + 9 (F(R)−�4)M2

]
⎞
⎠

−2/3

×
⎧⎨
⎩−3φ (F(R)−�4)

2 − 6M (F(R)−�4)+
√

3

2

(F(R)−�4)
2 /3 + 27M2 + 54M (F(R)−�4) φ√

(F(R)−�4)
3

27 + [−1 + 9 (F(R)−�4)M2
]

⎫⎬
⎭
⎤
⎦
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In this case the specific heat becomes,

Cv = T

(
∂S

∂T

)
F(R)−�4

=
(
∂M

∂T

)
F(R)−�4

= 2rh

32/3 (F(R)−�4)

⎡
⎣− 1

32/3 (F(R)−�4)

+4

3

(
−M (F(R)−�4)

2 + √
3
√
(F(R)−�4)

3

27 + [−1 + 9 (F(R)−�4)M2
])1/3

(
−M (F(R)−�4)

2 + √
3
√
(F(R)−�4)

3

27 + [−1 + 9 (F(R)−�4)M2
])2/3

− 3−2/3 (F(R)−�4)

−2

3

(
−M (F(R)−�4)

2 + √
3
√
(F(R)−�4)

3

27 + [−1 + 9 (F(R)−�4)M2
])

{(
−M (F(R)−�4)

2 + √
3
√
(F(R)−�4)

3

27 + [−1 + 9 (F(R)−�4)M2
])2/3

− 3−2/3 (F(R)−�4)

}2

−

(
−M (F(R)−�4)

2 + √
3
√
(F(R)−�4)

3

27 + [−1 + 9 (F(R)−�4)M2
])4/3

(
−M (F(R)−�4)

2 + √
3
√
(F(R)−�4)

3

27 + [−1 + 9 (F(R)−�4)M2
])2/3

− 3−2/3 (F(R)−�4)

×
⎧⎨
⎩

9
√

3 (F(R)−�4)√
(F(R)−�4)

3 /27 + (−1 + 9M2 (F(R)−�4)
) −

√
381M2 (F(R)−�4)

2

(F(R)−�4)
3 /27 + (−1 + 9M2 (F(R)−�4)

)3/2
⎫⎬
⎭

×
⎡
⎣− (F(R)−�4)

2 + 9
√

3M (F(R)−�4)√
(F(R)−�4)

3 /27 + (−1 + 9M2 (F(R)−�4)
)
⎤
⎦

−2
⎤
⎥⎦

−1

(A3)

It is evident from the expression of the specific heat that it diverges at the surface given by:

4

3
×
⎛
⎝−M (F(R)−�4)

2 + √
3

√
(F(R)−�4)

3

27
+ [−1 + 9 (F(R)−�4)M2

]
⎞
⎠

1/3

=
⎛
⎝−M (F(R)−�4)

2 + √
3

√
(F(R)−�4)

3

27
+ [−1 + 9 (F(R)−�4)M2

]
⎞
⎠

4/3

×
⎧⎨
⎩

9
√

3 (F(R)−�4)√
(F(R)−�4)

3 /27 + (−1 + 9M2 (F(R)−�4)
) − 81

√
3M2 (F(R)−�4)

2

(F(R)−�4)
3 /27 + (−1 + 9M2 (F(R)−�4)

)3/2
⎫⎬
⎭

×
⎡
⎣− (F(R)−�4)

2 + 9
√

3M (F(R)−�4)√
(F(R)−�4)

3 /27 + (−1 + 9M2 (F(R)−�4)
)
⎤
⎦

−2

+

(
−M (F(R)−�4)

2 + √
3
√
(F(R)−�4)

3

27 + [−1 + 9 (F(R)−�4)M2
])2/3

− 3−2/3 (F(R)−�4)

32/3 (F(R)−�4)

+2

3

(F(R)−�4)

(
−M (F(R)−�4)

2 + √
3
√
(F(R)−�4)

3

27 + [−1 + 9 (F(R)−�4)M2
])

(
−M (F(R)−�4)

2 + √
3
√
(F(R)−�4)

3

27 + [−1 + 9 (F(R)−�4)M2
])2/3

− 3−2/3 (F(R)−�4)

(A4)

123
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This again shows that the black hole solution presented
by the condition of vanishing dark radiation has a divergent
behavior on the above surface which in turn indicates that
the black hole undergoes a second order phase transition on
this surface.
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