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Abstract. The condition of a thermal balance of electrons is used in a linearization method of calculation of
spherically symmetric NLTE model atmospheres in hydrostatic and radiative equilibrium. Computational details
of the method are presented and discussed. The method is shown to be robust and powerful. It is superior to the
commonly used method based on the condition of radiative equilibrium.
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1. Introduction

In our previous papers (Kubát 1994 – hereinafter Paper I;
Kubát 1996 – hereinafter Paper II; Kubát 1997c – here-
inafter Paper III) we have presented a description of a
method for the calculation of static spherically symmet-
ric NLTE model atmospheres in radiative and hydrostatic
equilibrium. The code based on this method was applied
to checking the sphericity effects in a various number of
stars (e.g. Kubát 1995, 1997a, 1999) and to the study of
the effects of different H/He ratios in hot white dwarfs
(Kubát 1997b).

In Kubát et al. (1999 – hereinafter KPP) we presented
an extremely powerful method for calculation of tempera-
ture in the outer layers of NLTE model atmospheres. Our
method is based on the equation of thermal balance of
electrons and it was shown that this method is superior to
the standard method using the equation of radiative equi-
librium. Our method as described in Papers I to III and
in KPP is suitable for calculation of model atmospheres
of hot stars that are convectively stable.

In this paper, we present numerical details of the
method presented in KPP and we apply our method to
calculations of static spherically symmetric NLTE model
atmospheres.

Send offprint requests to: J. Kubát,
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2. Energy equilibrium in stellar atmospheres

2.1. Radiative equilibrium

The temperature structure in stellar atmospheres is usu-
ally determined using some condition of conservation of
energy or of an energy equilibrium. Let us assume that
energy is transported through the stellar atmosphere only
via radiation, i.e., we neglect convection. Therefore, we
restrict our calculations to hot stars, where atmospheric
convection is not important. The standard equation is the
equation of radiative equilibrium (see, e.g. Mihalas 1978),
which simply states that the total amount of radiative
energy absorbed in a particular region of a stellar atmo-
sphere is again reemitted in the same region. In other
words, the total radiative flux is conserved. Mathematical
expressions for these two statements differ a bit. The for-
mer one is the so-called integral equation of radiative equi-
librium

4π
∫ ∞

0

(κνJν − ην) dν = 0, (1)

whereas the latter one is the so-called differential equation
of radiative equilibrium

∇ · F = 0. (2)

The Eq. (2) ensures the flux conservation, but it is numer-
ically unstable for low optical depths. On the other hand,
Eq. (1) is stable but it does not guarantee the flux conser-
vation at large optical depths. Therefore it is convenient
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to use Eq. (1) in the outer parts and Eq. (2) in the inner
parts of the atmosphere. Both forms have been discussed
in detail in Paper II.

2.2. Thermal balance of electrons

An alternative to the Eq. (1) was suggested by KPP. It
is based on a method introduced by Hummer & Seaton
(1963) and Hummer (1963), which was then commonly
used in the studies of planetary nebulae (e.g. Williams
1967; Ferland & Truran 1981). The method was also dis-
cussed by Hoffmann (1995) and Škoda (1995). Only sev-
eral applications to calculations of NLTE model atmo-
spheres appeared (Drew 1985, 1989; Pauldrach et al. 1997;
Hillier & Miller 1998). It is possible to use the equation
of thermal balance of electrons which considers heating
and cooling of an electron gas by collisions with atoms, by
radiative ionization and recombination, and via free-free
transitions. All these processes may be summarized in the
following equation of thermal balance of electrons(
QH

c +QH
bf +QH

ff

)
−
(
QC

c +QC
bf +QC

ff

)
= 0. (3)

Here, QH
c is the heating of the electron gas by collisions

with atoms (this term corresponds to the collisional de-
excitation and recombination), QC

c is the cooling of the
electron gas by collisions (corresponding to collisional ex-
citation and ionization), QH

bf is the heating caused by a
part of a photon energy not absorbed in photoionization,
QC

bf is the cooling caused by photorecombination, QH
ff is

the heating by free-free absorption, and finally QC
ff is the

free-free cooling. Expressions for these quantities can be
found in KPP, Eqs. (3–12). This method was shown to
be powerful and more stable than the standard Eq. (1).
A detailed discussion can be found in KPP.

3. Computational details

In order to obtain the atmospheric structure we have
to solve several additional equations to the temperature
equation (the equation of thermal balance), namely the
equation of hydrostatic equilibrium, the equations of sta-
tistical equilibrium, and the radiative transfer equation.
We shall not repeat the discussion of the above mentioned
equations that appeared in Papers I, II, and III, here we
shall only discuss some interesting details which we regard
to be important.

3.1. Determination of temperature

There are two options how to calculate the temperature
structure of the outer parts of the model atmosphere,
namely the equation of radiative equilibrium and the
equation of thermal balance of electrons, as described in
Sect. 2. The temperature at the inner parts is successfully
determined using the differential form of the equation of
radiative equilibrium (Eq. (2)).

During the last two years we have calculated a large
number of NLTE model atmospheres using both the

radiative equilibrium and thermal balance methods. We
can summarize our computational experience as follows.
The thermal balance method is faster and more efficient
for most of the models we have calculated (early B and
hotter, hot white dwarfs). The only problems came out
when we turned to cooler stars as late B and early A. For
these models the thermal balance method is numerically
unstable at few depth points “in the middle” of the at-
mosphere, mostly near the point where the temperature
of the NLTE model starts to rise with increasing radius.
This difficulty can be easily overcome by using the equa-
tion of radiative equilibrium for these few points.

3.2. Radiative transfer

The radiative transfer equation in the linearization step is
treated with the help of approximate lambda operators,
i.e. the mean intensity of radiation is expressed as

Jν = Λ∗νSν + (Λν − Λ∗ν)Sν = Λ∗νSν + ∆Jν . (4)

The approximate diagonal or tridiagonal lambda operator
Λ∗ν is calculated after the formal solution of the transfer
equation following the idea of Rybicki & Hummer (1991)
and Puls (1991). This ensures that the lambda operator
is numerically consistent with the formal solution of the
radiative transfer equation. Although tridiagonal opera-
tors were introduced into model atmosphere calculation
by Werner (1989) in order to make the calculations faster,
our experience shows that it is more useful to use a simpler
form of a diagonal operator. Calculations in each iteration
step are much faster and the benefit of more rapid con-
vergence of the tridiagonal operator is not significant.

The formal solution of the transfer equation in spher-
ical geometry is calculated using either 2nd order differ-
ences (Mihalas 1985), splines, or Hermite solution (Auer
1976) using Feautrier (1964) variables. More details about
the radiative transfer in our code can be found in Papers I
and II.

3.3. Linearization of model atmosphere equations

The resulting system of equations (hydrostatic equilib-
rium, thermal balance, radiative equilibrium, radiative
transfer, statistical equilibrium) is discretized and solved
using the Newton-Raphson method, which has been usu-
ally called the complete linearization method since its in-
troduction to model atmosphere calculations by Auer &
Mihalas (1969). The essence of this method is in itera-
tive calculation of corrections to the vector of variables
ψ = (T, ne, bl), where T is temperature, ne is the electron
density, and bl are the departure coefficients of particular
atomic levels. The iterations are repeated until conver-
gence is reached. The model is said to be converged if the
relative corrections δψ/ψ are less than some value. Our
experience shows that the value of 10−4 gives satisfactory
results.
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We would like to obtain (after some discretization and
linearization) a tridiagonal system of the standard form

Adδψd−1 + Bdδψd + Cdδψd+1 = Ld, d = 1 . . .ND, (5)

A1 = CND = 0 (ND is the total number of depth points).
This system can be solved by standard Gaussian elimina-
tion (see Paper I).

3.4. Thermal balance

Discretization and linearization of equations of hydro-
static, radiative, and statistical equilibrium were described
in detail in Papers I, II, and III. Here we concentrate on
the description of handling the thermal balance equation.

We aim at writing the discretized and linearized equa-
tion of thermal balance in the form(
AEE
T

)
d

(δT )d−1 +
(
AEE
ne

)
d

(δne)d−1

+
(
AEE
bl

)
d

(δbl)d−1 +
(
BEE
T

)
d

(δT )d +
(
BEE
ne

)
d

(δne)d
+
(
BEE
bl

)
d

(δbl)d +
(
CEE
T

)
d

(δT )d+1 +
(
CEE
ne

)
d

(δne)d+1

+
(
CEE
bl

)
d

(δbl)d+1 = LEEd . (6)

Details of this cumbersome procedure are presented in
Appendix A. The Eq. (6) is used at each depth point.
In addition, at large optical depths (τR & 2/3), where it
is necessary to guarantee the flux conservation, the lat-
ter equation is superposed with the differential form of
radiative equilibrium (2) (see Hubeny & Lanz 1995 and
Paper II).

3.5. Acceleration of convergence

It is very advantageous to use some technique to accel-
erate convergence of model atmosphere calculations. We
have implemented two basic methods, namely the Ng and
Kantorovich accelerations.

The Kantorovich acceleration (see, e.g., Kantorovich &
Akilov 1977) was brought into NLTE model atmosphere
calculations by Hubeny & Lanz (1992). It is based on a
fact that near the converged solution the Jacobians of the
Newton-Raphson method in subsequent iterations differ
only slightly and that this difference has very little in-
fluence on the convergence properties. The idea is not to
calculate all these Jacobians and to replace them by a
value found in one of the preceding iterations. Coding is
very simple and the saving of the compiler time is consid-
erable. In fact it is not a real acceleration of convergence in
a numerical sense (it does not lower the number of itera-
tions), it is rather a method of huge saving of the computer
time.

A second technique is the so-called Ng acceleration.
It was described by Ng (1974) and then first applied to
radiative transfer by Olson et al. (1986). This technique
calculates new solution of ψ using information not only
from previous iteration step, but also from earlier ones. It
accelerates the convergence significantly, but sometimes it

may lead to overestimates and divergence. A very useful
description of this method was written by Auer (1987).

We used the acceleration techniques in our inner iter-
ation cycle (see Fig. 1 in Paper I). Similarly to Rybicki &
Hummer (1991), our experience shows that it is useful to
switch the accelerations on after several (∼7) normal (i.e.
without acceleration) iterations. We found that using of
the Kantorovich acceleration always helps, whereas Ng’s
acceleration must be used with care, since it sometimes
leads to divergence. A useful method to overcome the dif-
ficulties with Ng acceleration is not to allow it until the
relative changes drop below 10−2.

4. Conclusions

We have implemented an important technique for the de-
termination of temperature in stellar atmospheres into our
static spherically symmetric code. This technique is the
determination of the temperature structure in the outer
layers using the method of thermal balance of electrons.
It was shown to be more powerful and more convenient
than the standard method of determination of tempera-
ture using the equation of radiative equilibrium.

Using this technique, we calculated a number of spher-
ically symmetric NLTE model atmospheres in hydrostatic
and radiative equilibrium. Detailed results of our calcula-
tions will be published elsewhere.
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Appendix A: Details of linearization
of the electron thermal balance equation

First, we shall derive discretized equations for net heating
rates. In the following d (d = 1, . . . , ND) is the depth
index and i is the frequency index. The equations from
KPP are denoted as (KPP.x) The expression for each net
free-free heating follows from Eqs. (KPP.3) and (KPP.4),
namely

(Qff)d = (Kff)d
NF∑
i=1

wi(αff)i(Td)Ydi (A.1)

where

(Kff)d = 4π(ne)d(bk)d(n∗k)d, (A.2)

Ydi = J̃di − Ẽdi, (A.3)

J̃d,i = Λ∗d,d−1,iSd−1,i + Λ∗d,d,iSd,i
+Λ∗d,d+1,iSd+1,i + ∆Jd,i (A.4)

and

Ẽdi =
(
J̃di +

2hν3
i

c2

)
e−hνi/kTd . (A.5)
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Similarly, we obtain the discretized expression for each net
bound-free heating from Eqs. (KPP.5) and (KPP.6)

(Qbf)d = (Kbf)d
NF∑
i=1

wi(αbf)iJ̃di

−(Kfb)d
NF∑
i=1

wi(αbf)iẼdi (A.6)

where

(Kbf)d = 4π(n∗l )d(bl)d(wk)d, (A.7)

(Kfb)d = 4π(n∗l )d(bk)d(wl)d (A.8)

and for net collisional heating from Eqs. (KPP.11) and
(KPP.12)

(Qc)d = [(bm)d − (bl)d]
×(n∗l )d(wm)d(ne)dqlm(Td)hνlm. (A.9)

A.1. Linearization coefficients

After linearization we arrive at the particular coefficients
for temperature and electron density of the form (x stands
for ne,T , or bl)(
AEE
x

)
d

=
∑

ff

∂(Qff)d
∂x

∣∣∣∣
d−1

+
∑
bf

∂(Qbf)d
∂x

∣∣∣∣
d−1

+
∑

c

∂(Qc)d
∂x

∣∣∣∣
d−1

(A.10)

(
BEE
x

)
d

=
∑

ff

∂(Qff)d
∂x

∣∣∣∣
d

+
∑
bf

∂(Qbf)d
∂x

∣∣∣∣
d

+
∑

c

∂(Qc)d
∂x

∣∣∣∣
d

(A.11)

(
CEE
x

)
d

=
∑

ff

∂(Qff)d
∂x

∣∣∣∣
d+1

+
∑
bf

∂(Qbf)d
∂x

∣∣∣∣
d+1

+
∑

c

∂(Qc)d
∂x

∣∣∣∣
d+1

(A.12)

where
∑

ff ,
∑

bf , and
∑

c mean sums over all free-free,
bound-free, and collisional transitions, respectively.

A.1.1. Free-free transitions

∂(Qff)d
∂x

∣∣∣∣
d−1

= (Kff)d
NF∑
i=1

wi(αff)i(Td)
∂Ydi
∂x

∣∣∣∣
d−1

(A.13)

∂(Qff)d
∂x

∣∣∣∣
d+1

= (Kff)d
NF∑
i=1

wi(αff)i(Td)
∂Ydi
∂x

∣∣∣∣
d+1

(A.14)

∂(Qff)d
∂T

∣∣∣∣
d

=
1

(n∗k)d
∂n∗k
∂T

∣∣∣∣
d

(Qff)d

+(Kff)d

(
NF∑
i=1

wi(αff)i(Td)
∂Ydi
∂T

∣∣∣∣
d

+
NF∑
i=1

wi
∂(αff)i(T )

∂T

∣∣∣∣
d

Ydi

− h

kT 2

NF∑
i=1

wi(αff)i(Td)Ẽdi

)
(A.15)

∂(Qff)d
∂bl

∣∣∣∣
d

=
(Qff)d
(bl)d

+ (Kff)d
NF∑
i=1

wi(αff)i(Td)
∂Ydi
∂bl

∣∣∣∣
d

(A.16)

∂(Qff)d
∂ne

∣∣∣∣
d

=
(Qff)d
(ne)d

+
1

(n∗k)d
∂n∗k
∂ne

∣∣∣∣
d

(Qff)d

+(Kff)d
NF∑
i=1

wi(αff)i(Td)
∂Ydi
∂ne

∣∣∣∣
d

(A.17)

where (D = d− 1, d, or d+ 1)

∂Ydi
∂x

∣∣∣∣
D

= Λ∗dDi
∂Si
∂x

∣∣∣∣
D

(
1− e−hνi/kTd

)
· (A.18)

A.1.2. Bound-free transitions

In this section, x stands only for ne or T , and

∂Y adi
∂x

∣∣∣∣
D

= Λ∗dDi
∂Si
∂x

∣∣∣∣
D

(A.19)

∂Y edi
∂x

∣∣∣∣
D

= Λ∗dDi
∂Si
∂x

∣∣∣∣
D

e−hνi/kTd (A.20)

(D = d− 1, d, or d+ 1).

∂(Qbf)d
∂x

∣∣∣∣
d−1

= (Kbf)d
NF∑
i=1

wi(αbf)i
∂Y adi
∂x

∣∣∣∣
d−1

−(Kfb)d
NF∑
i=1

wi(αbf)i
∂Y edi
∂x

∣∣∣∣
d−1

(A.21)

∂(Qbf)d
∂x

∣∣∣∣
d+1

= (Kbf)d
NF∑
i=1

wi(αbf)i
∂Y adi
∂x

∣∣∣∣
d+1

−(Kfb)d
NF∑
i=1

wi(αbf)i
∂Y edi
∂x

∣∣∣∣
d+1

(A.22)
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∂(Qbf)d
∂x

∣∣∣∣
d

=
1

(n∗k)d
∂n∗k
∂x

∣∣∣∣
d

(Qbf)d

+(Kbf)d
NF∑
i=1

wi(αbf)i
∂Y adi
∂x

∣∣∣∣
d

−(Kfb)d
NF∑
i=1

wi(αbf)i
∂Y edi
∂x

∣∣∣∣
d

−δTx(Kfb)d
h

kT 2

NF∑
i=1

wi(αbf)iẼdi (A.23)

where δTx = 1 for x = T , otherwise it is 0.

∂(Qbf)d
∂bl

∣∣∣∣
d−1

= (Kbf)d
NF∑
i=1

wi(αbf)i
∂Y adi
∂bl

∣∣∣∣
d−1

(A.24)

∂(Qbf)d
∂bl

∣∣∣∣
d

= (Kbf)d
NF∑
i=1

wi(αbf)i

(Jdi
bl

+
∂Y adi
∂bl

∣∣∣∣
d

)
(A.25)

∂(Qbf)d
∂bl

∣∣∣∣
d+1

= (Kbf)d
NF∑
i=1

wi(αbf)i
∂Y adi
∂bl

∣∣∣∣
d+1

(A.26)

∂(Qbf)d
∂bk

∣∣∣∣
d−1

= −(Kbf)d
NF∑
i=1

wi(αbf)i
∂Y edi
∂bk

∣∣∣∣
d−1

(A.27)

∂(Qbf)d
∂bk

∣∣∣∣
d

= −(Kbf)d
NF∑
i=1

wi(αbf)i

(
Edi
bk

+
∂Y edi
∂bk

∣∣∣∣
d

)
(A.28)

∂(Qbf)d
∂bk

∣∣∣∣
d+1

= −(Kbf)d
NF∑
i=1

wi(αbf)i
∂Y edi
∂bk

∣∣∣∣
d+1

. (A.29)

A.1.3. Collisions

∂(Qc)d
∂ne

∣∣∣∣
d

=
(

1
(ne)d

+
1

(n∗l )d
∂n∗l
∂ne

∣∣∣∣
d

)
(Qc)d (A.30)

∂(Qc)d
∂T

∣∣∣∣
d

=
(

1
qlm(Td)

∂qlm(T )
∂T

∣∣∣∣
d

+
1

(n∗l )d
∂n∗l
∂T

∣∣∣∣
d

)
× (Qc)d (A.31)

(Qc)d = −(n∗l )d(wm)d(ne)dqlm(Td)hνlm (A.32)

(Qc)d = (n∗l )d(wm)d(ne)dqlm(Td)hνlm. (A.33)
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