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1 Introduction

Recent years have witnessed very intense activity on the study of infrared modifications

of General Relativity (GR). This is motivated by the aim of explaining the present phase

of accelerated expansion of the Universe through a modification of gravity at distances

r ∼ H−1
0 (where H0 is the present value of the Hubble parameter), and also turns out to be

a rich and challenging theoretical subject. To modify GR in the far infrared it is natural to

introduce a mass parameter m ∼ H0. At first sight, this could be achieved by giving a mass

to the graviton. However, constructing a consistent theory of massive gravity turns out to

be remarkably difficult, and the problem has a long history that goes back to classic papers

by Fierz and Pauli in 1939 [1] and Boulware and Deser in 1973 [2]. In recent years there

has been significant progress in this direction, in particular with the construction of the

ghost-free dRGT theory [3, 4] (see also [5–8], and [9, 10] for reviews), although a number of

difficulties and open problems persist; the dRGT theory (as well as galileon theories) very

likely admits superluminal excitations over some backgrounds [11–19]. Furthermore, even

if the sixth ghost-like degree of freedom is absent in any background, the fluctuations of the

remaining five degrees of freedom can become ghost-like over non-trivial backgrounds [20–

22]. Another open problem of dRGT theory is that it is not clear whether a satisfying

cosmology emerges. Homogeneous and isotropic spatially flat Friedman-Robertson-Walker

(FRW) solutions do not exist, and are in fact forbidden by the same constraint that removes

the ghost [23]. There are open isotropic FRW solutions, which however suffer of strong

coupling and ghost-like instabilities [24]. It is presently unclear whether there are stable

and observationally viable inhomogeneous solutions in the full non-linear theory away from

the decoupling limit (see the discussion in [10]).

– 1 –
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A peculiar aspect of massive gravity theories is that they require the introduction of

an external reference metric. In the recent papers [25, 26] it has been proposed a different

approach, in which gravity is deformed by the introduction of a mass parameter m in such

a way that no external reference metric is introduced, and general covariance is preserved.

This can be achieved by adding nonlocal terms to the Einstein equations. The introduction

of nonlocal terms for producing IR modifications of gravity has been suggested by various

authors, following different lines of reasoning. In particular, nonlocal operators that modify

GR in the IR appear in the degravitation proposal [27, 28] (see also [29, 30]). Non-local

covariantizations of the Fierz-Pauli theory were discussed in [31]. A different nonlocal

cosmological model has been proposed in [32], and has been further studied in a number of

recent papers [33–43] (see [44] for a recent review). Another interesting nonlocal model has

been studied in [45–47]. The model that has been proposed by one of us in [26] is defined

by the classical equation of motion

Gµν −
m2

3

(

gµν�
−1
retR

)T
= 8πGTµν . (1.1)

The inverse of the d’Alembertian is defined with the retarded Green’s function, which

ensures causality. The superscript T denotes the extraction of the transverse part of the

tensor and ensures that the left-hand side of eq. (1.1) has zero divergence, and therefore

Tµν is automatically conserved. The extraction of the transverse part exploits the fact

that, in a generic curved space-time, any symmetric tensor Sµν can be decomposed as

Sµν = ST
µν +

1

2
(∇µSν +∇νSµ) , (1.2)

where ∇µST
µν = 0 [48, 49]. The factor 1/3 in eq. (1.1) is a convenient normalization of

the parameter m2 in d = 3 spatial dimensions (and becomes (d − 1)/(2d) for generic d).

Some conceptual aspects of this model have been discussed in [26, 50]. Its cosmological

consequences, at the level of background evolution, have been studied in [26, 51], while a

study of its cosmological perturbations will be presented in [52].

At the conceptual level, it is important to stress that the �
−1 operator in eq. (1.1) is

defined with the retarded Green’s function. This ensures causality, and also has the impor-

tant consequence that eq. (1.1) cannot be the equation of motion of a fundamental nonlocal

QFT. Indeed, the variation of an action involving �
−1 always gives rise to an equation of

motion involving a symmetrized Green’s function, rather than a retarded one [25, 32, 47].

Equation (1.1) should rather be understood as a classical effective equation of motion.

Non-local effective equations involving a retarded Green’s function govern for instance the

dynamics of the in-in matrix elements of quantum fields, such as 〈0in|φ̂|0in〉 or 〈0in|ĝµν |0in〉,
and encode quantum corrections to the classical dynamics [53, 54]. Thus, issues of quan-

tum vacuum decay induced by ghost instabilities, or non-linearities induced by quantum

corrections, cannot be addressed directly from a study of eq. (1.1), but should rather be

addressed in the fundamental underlying (local) QFT. This, however, is not conceptually

very different from what happens in dRGT, where the UV completion is needed to address

the causality issue.

– 2 –
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Observe that one can still in principle derive non-local causal equations from an action,

using the formal trick of replacing by hand �
−1 → �

−1
ret after performing the variation. This

is indeed the procedure used in [32, 55], in the context of non-local gravity theories with

a Lagrangian of the form Rf(�−1R), see also the recent discussion in [56]. However, any

direct connection to a fundamental quantum field theory is then lost. One can ask what is

the classical non-local action that, in the above sense, reproduce eq. (1.1). If one linearizes

eq. (1.1) over flat Minkowski space, writing gµν = ηµν + hµν , one gets [26]

Eµν,ρσhρσ − 2

3
m2PµνP ρσhρσ +O(h2) = −16πGTµν , (1.3)

where Eµν,ρσ is the Lichnerowicz operator,

Pµν = ηµν − ∂µ∂ν

�
, (1.4)

and � is now the flat-space d’Alembertian. This linearized equation can of course be

derived from the action

S =

∫

d4x

[

1

4
hµνEµν,ρσhρσ − 1

6
m2hµνP

µνP ρσhρσ +O(h3)

]

+ SM , (1.5)

where SM is the matter action. This can be rewritten in a covariant form, as

S =
1

16πG

∫

d4x
√−g

[

R− 1

6
m2R

1

�2
R+O(R3

µνρσ)

]

+ SM . (1.6)

Thus, the action corresponding to eq. (1.1) contains a full series of cubic and higher-order

terms in the curvature, and we do not have a compact closed-form expression. The model

obtained truncating eq. (1.6) to order R2 is interesting in its own right, and has been

studied in [57]. Observe that the cubic and higher order terms are suppressed by powers of

�
−1R = O(h) (and not of R/M2

Pl, where MPl is the Planck mass). They are therefore on

the same footing as the usual non-linearities of GR and cannot be neglected on non-trivial

backgrounds, e.g. in cosmological backgrounds. So, the model defined by

S ≡ 1

16πG

∫

d4x
√−g

[

R− 1

6
m2R

1

�2
R

]

+ SM , (1.7)

with no cubic and higher-order terms, and the model defined by eq. (1.1) are different. In

a sense, eq. (1.1) provides the simplest non-local equation of motion in this class of model

involving �
−1R and a mass scale m, while eq. (1.7) provides the simplest action.

At the phenomenological level, eq. (1.1) turns out to have rather interesting conse-

quences. In particular, at the level of background evolution it admits flat FRW solutions,

in which furthermore a dynamical dark energy emerges automatically. By fixing the free

parameter m to a value m ≃ 0.67H0 the model reproduces the observed value ΩDE ≃ 0.68.

This leaves us with no free parameter and we then get a pure prediction for the EOS pa-

rameter of dark energy. Using the standard fit of the form wDE(a) = w0+(1−a)wa [58, 59],

the model predicts w0 ≃ −1.04 and wa ≃ −0.02 [26], consistent with the Planck data [60],

and on the phantom side. This should be compared with models such as that of ref. [32],

– 3 –
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which involves an arbitrary function f(�−1R), which can be chosen so to reproduce any

expansion history. The model (1.1) is therefore very predictive, and passes remarkably the

non-trivial test of giving an equation of state consistent with the existing limits.1

The purpose of the present paper is to continue the investigation of the model defined

by eq. (1.1), addressing in particular the issue of its classical non-linearities by studying

the static spherically symmetric solutions. A typical issue of massive gravity theories

is that they become non-linear when r is smaller than the Vainshtein radius, which is

parametrically larger than the Schwarzschild radius rS of the source. For instance, in

the theory defined by adding a Fierz-Pauli mass term to the Einstein-Hilbert action, one

finds that the classical non-linearities become large below the Vainshtein radius rV =

(GM/m4)1/5 [61, 62]. In the dRGT theory [3, 4] the strong-coupling energy scale is raised

and the corresponding critical distance is lowered, to rV = (GM/m2)1/3 [63], which is still

of order of 100 pc for m = O(H0) and M = M⊙. In order to recover the successes of GR

at solar system and shorter scales, one must then show that a Vainshtein mechanism is at

work, i.e. that the inclusion of classical non-linearities restore continuity with GR at r ≪ rV .

Explicit examples of this type have indeed been found for the dRGT theory [64, 65].

In the nonlocal model (1.1) the situation seems however different. Indeed, lineariz-

ing the theory over flat space, one finds that the matter-matter gravitational interaction

mediated by this theory is given by [26]

Seff = 16πG

∫

d4k

(2π)4
T̃µν(−k)∆µνρσ(k)T̃ρσ(k) , (1.8)

where

∆µνρσ(k) =
1

2k2
(ηµρηνσ + ηµσηνρ − ηµνηρσ) +

1

6

m2

k2(−k2 +m2)
ηµνηρσ . (1.9)

The first term is the usual GR result due to the exchange of a massless graviton, while the

extra term vanishes for m → 0. Therefore this theory has no vDVZ discontinuity, and no

Vainshtein mechanism is needed to restore continuity with GR. Of course, the fact that

we do not need a Vainshtein mechanism does not necessarily mean that non-linearities will

remain small down to the Schwarzschild radius rS , where also the classical non-linearities

of GR become large. So, the purpose of this paper is to study static spherically symmetric

solutions in this theory, and compare with the corresponding solutions of GR. In our

problem we have two independent length-scales, the Schwarzschild radius rS of the source,

and the length-scale m−1. To have interesting and viable cosmological applications we

must have m = O(H0) (indeed, the analysis of [26] shows that the model generates a

dynamical dark energy with the observed value of ΩDE if we choose m ≃ 0.67H0). Thus,

between these two scales there is a huge separation, rS ≪ m−1. At scales r ∼ m−1 we

expect that the nonlocal theory (1.1) will differ from GR. Indeed, the motivation for such

1Similar interesting cosmological consequences follow from the model (1.7), and will be explored in [26,

52]. Of course, as always in model building, there is always a freedom in the choice of the model itself, and

in this sense the study of any single model in this class should be considered as an example of the typical

consequences of nonlocal terms that can be associated to a mass parameter m.

– 4 –
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a model is just to produce a modification of GR in the far infrared, that could account for

the observed acceleration of the Universe. The main motivation of this paper is to see if, in

the region rS ≪ r ≪ m−1, the theory remains linear and close to GR (while, of course, as

r → rS , even GR becomes non-linear), and to compute explicitly the deviations from GR

in the region r ∼ m−1, where they could become relevant for comparison with structure

formation.

The paper is organised as follows. In section 2 we write down the equations of motion

in spherical symmetry. In section 3 we solve these equations analytically in the regime

r ≪ m−1 using a low-m expansion. In section 4 we solve them in the region r ≫ rS ,

using the linearization over the Minkowski background, and we show that in the region

rS ≪ r ≪ m−1 the solution overlaps with that found in section 3. The results are confirmed

through a numerical analysis in section 5. Finally, in section 6 we give a discussion of the

radiative and non-radiative degrees of freedom of the nonlocal theory, which is useful for a

physical understanding of the results obtained. Section 7 contains our conclusions.

2 Basic equations

We look for static spherically symmetric solutions of eq. (1.1). As in [26], we define

U = −�
−1R , (2.1)

Sµν = −Ugµν = gµν�
−1R , (2.2)

Bµν =
1

2
(∇µSν +∇νSµ) , (2.3)

Then the original non-local equation (1.1) can be formally rewritten as a system of local

equations for the variables gµν , Sµ and U ,

Gµν +
m2

3

[

Ugµν +
1

2
(∇µSν +∇νSµ)

]

= 8πGTµν , (2.4)

�U = −R , (2.5)

and
1

2
(δµν�+∇

µ
∇ν)Sµ = −∂νU , (2.6)

where the latter equation is obtained taking the divergence of eq. (1.2). Some subtleties

involved in this localization procedure will be discussed below. We write the most general

static spherically symmetric metric in the form

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2(dθ2 + sin2 θ dφ2) . (2.7)

Observe that the nonlocal equation (1.1) is generally covariant. Therefore, just as in

GR, we can use the invariance under diffeomorphisms to set to one a function e2µ(r) that

otherwise, in the most general spherically symmetric solution, would multiply the term

– 5 –
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r2(dθ2 + sin2 θ dφ2), and that indeed must be kept in local massive gravity theories.2 We

use the labels (0, 1, 2, 3) for the indices (t, r, θ, φ) and we denote df/dr by f ′. The non-

vanishing Christoffel symbols in the metric (2.7) are

Γ0
01 = α′ , Γ1

00 = e2(α−β)α′ , Γ1
11 = β′

Γ1
22 = −re−2β , Γ1

33 = −re−2β sin2 θ , Γ2
12 = 1/r

Γ2
33 = − sin θ cos θ , Γ3

13 = 1/r , Γ3
23 = cos θ/ sin θ ,

(2.8)

plus those related by the symmetry Γρ
µν = Γρ

νµ. Using these expressions we can compute

Bµν . In a spherically symmetric spacetime, for symmetry reasons it is clear that S2 = S3 =

0, and S0 = S0(r), S1 = S1(r). Then, the non-vanishing components of Bµν are

B00 = −e2(α−β)α′S1 , B11 = S′
1 − β′S1 , B22 = re−2βS1

B33 = re−2β sin2 θ S1 , B01 = (1/2)S′
0 − α′S0 B10 = B01 .

(2.9)

To compute S0 and S1 we use eq. (2.6). The equations with ν = 2, 3 are automatically

satisfied by S2 = S3 = 0. Setting ν = 0 gives an equation that only involves S0,

{

∂r −
[

β′ − α′ − (2/r)
]} (

∂r − 2α′
)

S0(r) = 0 , (2.10)

which has the solution S0 = 0. In principle it also admits other solutions. For instance, the

non-vanishing solution of (∂r − 2α′)S0 = 0 is S0 = c0e
2α(r), with c0 a constant. However,

the correct solution is uniquely specified by the condition that S0 must be equal to zero

when U = 0, since for U = 0 we have Sµν = 0, which is already trivially transverse, and

a non-vanishing Sµ is in this case a spurious solution. Such spurious solutions typically

arise when writing the original nonlocal equation as a system of local differential equations,

introducing auxiliary fields such as, in our case, U and Sµ [41, 47, 50, 51, 66, 67] (see also

the discussion in section 6). Thus, in our case we only retain the solution S0 = 0, and the

only non-vanishing auxiliary fields are U(r) and S1(r). Taking the ν = 1 component of

eq. (2.6) we get

S′′

1 +

(

α′ − 3β′ +
2

r

)

S′

1 −
(

β′′ − 2β′2 + α′2 + α′β′ +
2

r
β′ +

2

r2

)

S1 = −e2βU ′ . (2.11)

The equation for U is obtained from eq. (2.1), written in the form �U = −R. In general,

on a scalar function U , �U = (−g)−1/2∂µ[
√−ggµν∂νU ]. However, on a function U(r)

in a diagonal metric such as (2.7), �U = (−g)−1/2∂r[
√−ggrr∂rU(r)] is just a covariant

Laplacian. In the metric (2.7) this gives

e−2β

[

U ′′ +

(

α′ − β′ +
2

r

)

U ′

]

= −R , (2.12)

2In massive gravity models, where there is both a dynamical metric and a reference metric, the assump-

tions of staticity and of spherical symmetry are not sufficient to put both of them in this form, and in one

of them remains a term 2D(r)dtdr [9]. As discussed in [64, 65] in dRGT there are two possible branches of

solutions: a branch with D(r) = 0, which is asymptotically flat, exhibits a vDVZ discontinuity at r ≫ rV ,

and recovers GR at r ≪ rV , thereby giving an explicit example of the Vainshtein mechanism; and a branch

where D(r) is a non-vanishing function, which corresponds to a Schwarzschild-de Sitter solution. In our

case, however, there is no reference metric, and for a static and spherically symmetric source we can set

D(r) = 0.

– 6 –
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where

R =
2

r2
− e−2β

[

2

r2
+

4

r
(α′ − β′) + 2(α′′ + α′2 − α′β′)

]

. (2.13)

Finally, the system of equations for the four functions {α, β, U, S1} is completed by tak-

ing any two independent components of the nonlocally modified Einstein equations (1.1).

Writing
(

gµν�
−1
g R

)T ≡ ST
µν = Sµν −Bµν , eq. (1.1) can be rewritten as

Rµν = 8πG

(

Tµν −
1

2
Tgµν

)

− m2

3

(

Bµν −
1

2
Bgµν − Ugµν

)

, (2.14)

where

B ≡ gµνBµν = e−2β

[

S′

1 +

(

α′ − β′ +
2

r

)

S1

]

. (2.15)

We now study these equation in the region outside the source, where Tµν = 0. Let us recall

that in GR one typically takes the combinations e2(β−α)R00 +R11 and R22 (see e.g. [68]).

In vacuum this gives e2(β−α)R00 + R11 = 0 and R22 = 0. The former equation gives

α = −β and then the latter gives a differential equations for α. In our nonlocal theory,

using eq. (2.14) we get instead

2

r
(α′ + β′) =

m2

3

[

(α′ + β′)S1 − S′

1

]

, (2.16)

1 + e−2β
[

r(β′ − α′)− 1
]

=
m2r2

6

{

2U + e−2β
[

S′

1 + (α′ − β′)S1
]

}

. (2.17)

Observe, from eq. (2.16), that now α 6= −β, unless S1 is constant. Equations (2.11), (2.12),
(2.16) and (2.17) provides four differential equations for the four functions α(r), β(r), U(r)

and S1(r).

Finally, it is convenient to trade S1 for a field V (r) defined by S1(r) = eβrV (r), and

work with the four dimensionless functions α(r), β(r), U(r) and V (r). In terms of V the

final form of our equations is

rV ′′ + [4 + r(α′ − β′)]V ′ +
(

α′ − β′ − rα′2
)

V = −eβU ′ , (2.18)

r2U ′′ + [2r + (α′ − β′)r2]U ′ = −2e2β + 2
[

1 + 2r(α′ − β′) + r2(α′′ + α′2 − α′β′)
]

, (2.19)

α′ + β′ = −m
2r2

6
eβ

[

V ′ +

(

1

r
− α′

)

V

]

, (2.20)

1 + e−2β
[

r(β′ − α′)− 1
]

=
m2r2

6

{

2U + e−β
[

rV ′ +
(

rα′ + 1
)

V
]

}

. (2.21)

Observe that replacing S1 by V eliminates the term β′′ from eq. (2.11), and therefore from

the whole system of equations.

3 Solution for r ≪ m
−1

We now study eqs. (2.18)–(2.21) in the region mr ≪ 1, performing a low-m expansion. We

assume that in the limit mr → 0 the terms on the right-hand side of eqs. (2.20) and (2.21)

– 7 –
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are negligible, and we will then check a posteriori the self-consistency of the assumption.

Consider first the equations in the external region, where Tµν = 0. In this case, to lowest

order eqs. (2.20) and (2.21) reduce to their standard GR form, whose solution is given by

α(r) =
1

2
ln
(

1− rS
r

)

, β(r) = −α(r) . (3.1)

Plugging these expressions into eq. (2.19) we get

U(r) = u0 − u1 ln
(

1− rS
r

)

, (3.2)

with u0, u1 some constants, that parametrize the solution of the associated homogeneous

equation. Observe that the inhomogeneous solution vanishes since the right-hand side of

eq. (2.19) is zero on the unperturbed Schwarzschild solution (as it is also obvious from the

fact that it is just r2R, and the Ricci scalar R vanishes on the Schwarzschild solution).

The choice of homogeneous solution is a delicate point that requires some discussion. As

discussed in detail in [26, 50, 51], this issue is related to the fact that, in order to complete

the definition of the nonlocal model (1.1), we must specify what we actually mean by �
−1.

In general, an equation such as �U = −R is solved by

U(x) = −�
−1R = Uhom(x)−

∫

d4x′
√

−g(x′)G(x;x′)R(x′) , (3.3)

where Uhom(x) is any solution of �Uhom = 0 and G(x;x′) is any a Green’s function of

the � operator. To define our nonlocal integro-differential equation we must specify what

definition of �−1 we use, i.e. we must specify the Green’s function and the solution of the

homogeneous equation. In our static setting the definition of G(x;x′) is irrelevant, since

if R(x′) and
√

−g(x′) are independent of t′, all possible definitions the above equation

reduce to

U(x) = Uhom(x)−
∫

d3x′
√

−g(x′)GL(x;x
′)R(x′) , (3.4)

where GL(x;x
′) =

∫

dt′G(x;x′) is the Green’s function of the covariant Laplacian. Still, the

definition of the �
−1 operator is completed only once we specify Uhom(x). In general, this

will be fixed by the boundary conditions of the specific problem that we consider, which

in our static case will therefore fix u0 and u1. Similarly, we must specify the homogeneous

solution associated to the definition of Sµ, eq. (2.6), which is equivalent to completely

define the nonlocal operation of taking the transverse part. In other words, u0 and u1 (and

the similar constants that characterize the homogeneous solution of Sµ) are not parameters

that can be varied and that classify all possible classical solutions of a given theory. Rather,

they are fixed once and for all by the definition of the original nonlocal theory and the

boundary conditions of the problem at hand.

In particular, a non-vanishing value of u0 corresponds to introducing a cosmological

constant term in the theory. Indeed, denote by Uold and Unew two different definitions of

U related by Unew = Uold + u0. Then the nonlocal theory using the definition Unew,

Gµν +
m2

3
(gµνUnew)

T = 8πGTµν , (3.5)
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is equivalent to

Gµν +
m2

3
(gµνUold)

T = 8πGTµν −
m2

3
u0gµν , (3.6)

and is therefore the same as the old theory, in which we add to the right-hand side a

cosmological constant Λ = −(1/3)m2u0. In this paper we consider the nonlocal model

defined by setting u0 = 0. For such a model, our aim is to show that the static spherically

symmetric solutions of the theory reduce to the Schwarzschild solution of GR as m → 0.

Of course, if we switch on Λ, we should rather show that they approach the corresponding

Schwarzschild-dS or (depending on the sign of Λ) Schwarzschild-AdS solutions. The ap-

propriate choice of u1 is more subtle. We will for the moment keep it generic, and we will

later see how it can be uniquely determined. We therefore write

U(r) = −u1 ln
(

1− rS
r

)

, (3.7)

We now plug these expressions for α, β and U into eq. (2.18), and we get

V (r) =
u1

6r5/2(r − rS)1/2

[

3r3S − 2r2Sr − rSr
2 + 2(r3 − r3S) log

r − rS
rS

− 2r3 log
r

rS

]

, (3.8)

plus the solutions of the corresponding homogeneous equation, that we set to zero on the

ground that, when U = 0, we must have V = 0, since in this case Ugµν = 0 and there

is no transverse part to extract. Observe that, for r ≫ rS , this expression reduces to

V (r) ≃ −u1rS/(2r). We have therefore obtained the solution for α, β U and V to zero-th

order in m. To get the first correction to α and β we plug these expression for U, V back

into eqs. (2.20) and (2.21) and solve them. In principle this can be done for generic r,

as long as r ≪ m−1, but the resulting solutions, involving polylog functions, are quite

long and not very illuminating, so we we write down the correction term only in the limit

rS ≪ r. Since we are treatingmr perturbatively, we are then actually studying the solution

in the region rS <∼ r ≪ m−1.

The region rS ≪ r ≪ m−1 is particularly interesting in view of the fact that, in

typical massive gravity theories, the classical theory becomes non-linear below a Vainshtein

radius rV parametrically larger than rS . Studying the solution in this region allows us to

investigate whether the same phenomenon happens in the nonlocal theory. In this regime

we can use the zero-th order expressions for α, β, U and V and expand them to leading

order in rS/r. Plugging these expressions on the right-hand side of eq. (2.20), to leading

order in rS/r we still find3

α′ + β′ = 0 , (3.9)

and, to first non-trivial order, eq. (2.21) becomes

2rβ′ − 1 = −e2β + e2β
u1m

2rSr

3
. (3.10)

3Keeping also the next-to-leading term we get α′ + β′ = −m2r2Su1/(6r). Repeating the analysis per-

formed below, we find that the term proportional to m2r inside the logarithm in eq. (3.12) becomes

m2r[1 +O(r−1 log r)]. This correction is therefore negligible at large r.
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Since we are computing them2 correction only in the limit r ≫ rS , in the term proportional

to m2 we can approximate e2β ≃ 1, so

2rβ′ − 1 ≃ −e2β +
u1m

2rSr

3
. (3.11)

To the order at which we are working, the solution can be written in the form

α(r) = −β(r) = 1

2
ln

(

1− rS
r

− u1m
2rS
6

r

)

. (3.12)

Thus, in the region rS ≪ r ≪ m−1,

A(r) ≡ e2α = 1− rS
r

(

1 +
u1m

2r2

6

)

, B(r) ≡ e2β(r) = 1/A(r) . (3.13)

The above result shows that our perturbative procedure is self-consistent, since the cor-

rections to linearized theory are indeed small, as long as mr ≪ 1. It is clear that the

procedure can be iterated, obtaining a systematic expansion in the small parameter (mr)2.

This should be contrasted with what happens in massive gravity, when one considers the

Einstein-Hilbert action plus a Fierz-Pauli mass term. Then the analogous computation

gives, to first order in the non-linearities, [9, 61]

A(r) = 1− 4

3

rS
r

(

1− rS
12m4r5

)

. (3.14)

The factor 4/3 in front of rS/r is due to the extra contribution coming from the exchange

of the helicity-0 graviton, and gives rise to the vDVZ discontiuity. In contrast, no vDVZ

discontinuity is present in eq. (3.13). Furthermore the correction terms are crucially dif-

ferent. In eq. (3.14) the correction explodes at low r, i.e. for r below the Vainshtein radius

rV = (GM/m4)1/5. In eq. (3.13), in contrast, the correction becomes smaller and smaller

as r decreases, and perturbation theory is valid at all scales r ≪ m−1, until we arrive at

r ∼ rS where also GR becomes non-linear. In summary:

• In the nonlocal theory defined by eq. (1.1) there is no vDVZ discontinuity. This

confirms the result that was found in [26] by expanding over flat space.

• The linearized expansion is fully under control for all distances rS ≪ r ≪ m−1.

Contrary to (local) massive gravity theories, the classical theory stays linear for all

distances down to r ∼ rS , where eventually also the usual GR non-linearities show

up. For rS ≪ r ≪ m−1 the corrections to GR are actually smaller and smaller as

r decreases, the classical theory never becomes strongly coupled, and recovers all

successes of GR at the solar system and lab scales.

The m2 expansion discussed in this section allowed us to obtain perturbatively the

solution in the region r ≪ m−1. As r approaches m−1, the corrections become of order

one and the small-m expansion breaks down. Furthermore we have written explicitly the

correction terms only in the limit r ≫ rS . However, this is not due to an intrinsic limitation
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of the perturbative expansion but is only done for simplicity, since the full expressions are

somewhat long. In any case, we found that the corrections are proportional to m2r2, and

becomes smaller and smaller as r decreases toward the horizon, so the terms that we have

omitted are in fact negligible even close to the horizon (as we will also check in section 5

comparing the perturbative solutions (3.13) to the result of the numerical integration).

Thus the results of this section are a good approximation to the exact solution in the

whole range rS <∼ r ≪ m−1.

4 Solution for r ≫ rS. The Newtonian limit

The solution in the region r ≫ rS , with no limitation of the parameter mr, can be obtained

with a different expansion, namely considering the effect of the source as a perturbation

of Minkowski space, adapting the standard analysis performed in GR to recover the New-

tonian limit. This will allow us to obtain analytically the solution in the region mr>∼ 1,

which is not accessible to the low-m expansion. Furthermore, in the region rS ≪ r ≪ m−1

both the low-mass and the Newtonian expansions are valid, and therefore we can match

the solutions. We will then confirm the validity of these expansions with the numerical

integration in section 5.

Thus, in this section we start from a background ḡµν = ηµν , Ū = 0 and S̄µ = 0, and

Tµν = 0, and we perturb it adding the energy-momentum tensor of a localized source. We

limit ourselves to a static non-relativistic source, in which case δT00 = ρ, while δT0i and

δTij vanish. We are interested in the scalar perturbations so, using the Newtonian gauge,

the perturbed metric can be written as

ds2 = −(1 + 2Ψ)dt2 + (1 + 2Φ)dx2 . (4.1)

We also expand the auxiliary fields as U = Ū + δU , Sµ = S̄µ + δSµ. Since the background

values Ū = S̄µ = 0, we simply write the perturbations as U and Sµ, keeping however in

mind that they are first-order quantities, just as Φ and Ψ. Furthermore, for a static source

we necessarily have S0 = 0, as before, both for the background and the perturbation. The

vector Si can instead be decomposed as usual as Si = ST
i + ∂iS where ST

i is a transverse

vector, ∂iS
T
i = 0, which only contributes to vector perturbations, while S is a scalar. Since

we are studying the scalar sector we only retain S, and we write Si = ∂iS. Thus, a static

source induces scalar perturbations which are described by the four functions Ψ,Φ, U and

S. Observe that we do not need to restrict to spherical symmetry. The vanishing of S0 is

just a consequence of the fact that the source is static, so in this problem nothing depend

on time, and ∂0U = 0, so eq. (2.6) with ν = 0 is a homogeneous equation that has the

solution S0 = 0.

Observe also that the radial coordinate used in this section is different from that used

in section 3, since we are in a different gauge. In fact, if we linearize eq. (2.7) we get

ds2 = −(1 + 2α)dt2 + (1 + 2β)dr2 + r2(dθ2 + sin2 θ dφ2) . (4.2)

This expression is not in the Newtonian gauge. In the Newtonian gauge the factor (1+2Ψ)

multiplies the whole term dx2, while in eq. (4.2) the factor (1 + 2β) only multiplies dr2.
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For clarity, we will continue to denote by r the radial coordinate of the metric (2.7), while

we denote by rN the radial coordinate in the Newtonian gauge, so eq. (4.1) reads

ds2 = −(1 + 2Ψ)dt2 + (1 + 2Φ)
[

dr2N + r2N (dθ2 + sin2 θ dφ2)
]

. (4.3)

As discussed above, in the region rS ≪ r ≪ m−1 both the low-mass expansion of the

previous section and the Newtonian expansion of this section hold, and we can therefore

match the results. In order to perform the matching, we will however need the relation

between the two coordinates, as well as between α, β and Ψ,Φ in this regime. This is easily

found observing that, when rS ≪ r ≪ m−1, the full Schwarzschild-like metric (2.7) can be

linearized and written as in eq. (4.2). We then rewrite the metric (4.3) as

ds2 = −(1 + 2Ψ)dt2 + (1 + 2Φ)

(

drN
dr

)2

dr2 + (1 + 2Φ)r2N (dθ2 + sin2 θ dφ2) . (4.4)

Comparing with eq. (4.2) we see that r = (1+Φ)rN and (1+Φ)drN/dr = 1+β. Inserting

here rN = (1 + Φ)−1r we get β = −rΦ′/(1 + Φ) which, to the linearized order at which

we are working, is equivalent to β = −rΦ′ (and, since rΦ′ is already a first-order quantity,

we do not need to distinguish r from rN here). In summary, in the overlapping region

rS ≪ r ≪ m−1 we can compare the results of the two approaches, using the relations

r = (1 + Φ)rN , α = Ψ , β = −rΦ′ . (4.5)

After these preliminary remarks, we perform the actual linearization. We write eq. (1.1)

in the form

Gµν +
m2

3
(gµνU)T = 8πGTµν . (4.6)

�U = −R . (4.7)

Linearizing the (00) components of eq. (4.6) and setting to zero all time dependences, as

appropriate for a static source, we get

∇
2Φ+

m2

6
U = −4πGρ . (4.8)

Observe that the Laplacian is in principle with respect to the coordinate rN , but since all

quantities in eq. (4.8) are first-order in the perturbations, we can equivalently use r. The

same will be true for all other equations below. The (0i) component of eq. (4.6) vanishes

identically on time-independent perturbations. The linearization of the (ij) equation gives,

setting again to zero all time derivatives,

− δij∇
2(Φ + Ψ) + ∂i∂j(Φ + Ψ)− m2

3
(Uδij + ∂i∂jS) = 0 , (4.9)

where, since we are working to linearized order over Minkowski space, we are free to write

all spatial indices as lower indices, and we have used the fact that, for a Newtonian source,
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T0i can be neglected. Applying to this equation the projector (∇−2∂i∂j − 1
3δij) to obtain

the traceless part, we get

∇
2

(

Φ+Ψ− m2

3
S

)

= 0 . (4.10)

One might be tempted to rewrite this equations as Φ + Ψ− (m2/3)S = 0, but this would

not be correct. In general, if a function f satisfies ∇2f = 0 over all of space, and we

further impose the boundary condition that f vanishes at infinity, then f = 0. However,

the equations that we are writing in this section are only valid for r ≫ rS . Of course, from

the fact that a function f satisfies ∇2f = 0 at large r we cannot conclude that f itself

is identically zero at large r. Indeed, any function that, at large r, approaches the form

f(r) = c0 + c1rS/r satisfies ∇2f = 0 at large r. In our problem, the constant term c0 is

eliminated requiring that the functions Φ, Ψ and S vanish at infinity. We remain however

with the possibility of a 1/r term. Thus, eq. (4.10) only implies that, at r ≫ rS ,

Φ + Ψ =
m2

3
S + c1

rS
r
, (4.11)

for some constant c1, which can be determined by matching the solution with those found

in section 3 for r ≪ m−1, as we will do below. Taking the trace of eq. (4.9) and combining

it with eqs. (4.10) and (4.8) we get

U = −∇
2S . (4.12)

This completes the linearization of the nonlocally modified Einstein equation. To complete

our system of equations we must also linearize eqs. (2.6) and (4.7). The linearization of

eq. (4.7) gives

∇
2U = ∇

2(2Ψ + 4Φ) . (4.13)

Again, this equation is only valid at r ≫ rS and only implies that, in such a region,

U = 2Ψ + 4Φ + c2
rS
r
, (4.14)

for some constant c2. The linearization of eq. (2.6) with ν = 0 is identically zero, while

that with ν = i gives a combination of the previous equations. In conclusion, eqs. (4.8),

(4.10), (4.12) and (4.13) are four equations for the four functions Φ,Ψ, U and S. Using

eqs. (4.10), (4.8) and (4.12) to transform the right-hand side of eq. (4.13) we get

(∇2 +m2)U = −8πGρ . (4.15)

This is an inhomogeneous Helmholtz equation, and we can solve it writing

U(x) = −8πG

∫

V
d3x′G(x− x′)ρ(x′) , (4.16)

where

(∇2 +m2)G(x) = δ(3)(x) . (4.17)
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The Green’s function of the inhomogeneous Helmholtz equation is well known. Writing

G(r) = −[1/(4πr)]f(r) one finds

(∇2 +m2)G(x) = δ(3)(x)f(0)− 1

4πr
(f ′′ +m2f) , (4.18)

and therefore f(0) = 1 and f ′′ +m2f = 0. The most general solution is then

f(r) = cos(mr) + β sin(mr) , (4.19)

with β arbitrary. The corresponding solution for U is

U(x) = 2G

∫

d3x′
ρ(x′)

|x− x′|
[

cos(m|x− x′|) + β sin(m|x− x′|)
]

. (4.20)

In the r ≫ rS limit this becomes

U(x) ≃ 2G

r

∫

d3x′ ρ(x′)
[

cos(m|x− x′|) + β sin(m|x− x′|)
]

. (4.21)

In particular, for ρ(x) =Mδ(3)(x), eq. (4.21) gives

U(r) =
rS
r

[cos(mr) + β sin(mr)] . (4.22)

More generally, even if ρ(x) is not a Dirac delta, at distances r much larger than the source

size we can write |x−x′| ≃ r−x′·n̂, where n̂ = x/r, so cos(m|x−x′|) ≃ cos(mr−mx′·n̂).
For m = O(H0), all over the source m|x′| is negligibly small with respect to one (and

not just with respect to mr) and we can replace cos(m|x − x′|) by cos(mr). Therefore,

at large distances the coefficient of the 1/r term for a generic ρ(x) is the same as for

ρ(x) =Mδ(3)(x), just as in GR.

The appropriate Green’s function, and therefore the value of β, is fixed by the boundary

conditions. In most problems in which the inhomogeneous Helmholtz equation appears,

the Green’s function is fixed imposing a no-incoming wave boundary condition at infinity,

which selects G(r) = −eimr/(4πr), i.e. β = i. However, such a boundary condition is not

appropriate to our problem, since U(r) is real. In our case, for an extended source, β must

rather be fixed by matching this large distance solution to the solution in the inner source

region, as we will discuss below.

We can now plug this solution for U into eq. (4.8). Using for simplicity ρ(x) =

Mδ(3)(x), we get

∇
2Φ = −2πrSδ

(3)(x)− m2rS
6r

[cos(mr) + β sin(mr)] . (4.23)

Once again, since the equation only holds at large r, we have the freedom of adding a term

proportional to 1/r to the solution. Observing that ∇2[cos(mr)/r] = −m2 cos(mr)/r and

∇2[sin(mr)/r] = −m2 sin(mr)/r, the solution can be written as

Φ =
rS
2r

{

cΦ +
1

3
[cos(mr) + β sin(mr)]

}

(4.24)
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for some constant cΦ. Similarly, plugging eqs. (4.22) and (4.24) into eq. (4.14) we get

Ψ =
rS
2r

{

cΨ +
1

3
[cos(mr) + β sin(mr)]

}

(4.25)

where cΦ = −(c2 + 2cΨ) is a second independent constant. To compare with the functions

A(r) and B(r) of the previous section we use the fact that, in the region rS ≪ r, A(r) =

1 + 2α(r) and B(r) = 1 + 2β(r). Using eq. (4.5) we therefore have A(r) = 1 + 2Ψ and

B(r) = 1− 2rΦ′, so

A(r) = 1 +
rS
r

{

cΨ +
1

3
[cos(mr) + β sin(mr)]

}

, (4.26)

B(r) = 1 +
rS
r

{

cΦ +
1

3
[cos(mr) + β sin(mr)] +

mr

3
[sin(mr)− β cos(mr)]

}

. (4.27)

In the limit mr ≪ 1 from eqs. (4.24) and (4.25) we get

A(r) = 1 +
rS
r

(

cΨ +
1

3
+ βmr − m2r2

6

)

, (4.28)

B(r) = 1 +
rS
r

(

cΦ +
1

3
+
m2r2

6

)

. (4.29)

Matching these expression with the solution (3.13), which is valid for r ≪ m−1, we get

β = 0, cΨ = −4/3 and cΦ = 2/3. On the other side, comparing the terms m2r2, allows us

to fix u1 in the solution (3.13), and we get u1 = 1. The latter result could have also been

derived more directly matching the small mr limit of eq. (4.22) to the large r/rS limit of

eq. (3.7).

In conclusion, plugging the value of these constant into the full solutions (4.26) and

(4.27) we find that, in the Newtonian limit,

ds2 = −A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2 θ dφ2) , (4.30)

where

A(r) = 1− rS
r

[

1 +
1

3
(1− cosmr)

]

, (4.31)

B(r) = 1 +
rS
r

[

1− 1

3
(1− cosmr) +

1

3
mr sinmr

]

, (4.32)

while the auxiliary field U = −�
−1R is given by

U(r) =
rS
r

cosmr . (4.33)

5 Numerical integration

We now study the equations numerically, in order to confirm the above analytic results. In

the numerical analysis it is convenient to trade U for a field W defined by U = W + 2α.
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Figure 1. Left: the function A(r) from the numerical integration (blue solid line), compared with

the zero-th order Schwarzschild solution A(r) = 1− rS/r (brown, dot-dashed) and with the result

of the first-order perturbative low-m expansion (3.13) (red, dashed). The variable r is measured in

units of rS , we set m−1 = 103 and we start the integration at rin = 200. Right: a zoom-in of the

intermediate region 600 < r < 1000, i.e. 0.6 < mr < 1.
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Figure 2. The function A(r) in the regime r ≫ rS from the numerical integration (blue solid line),

compared to the Newtonian solution (4.31) (red, dashed).

Then eqs. (2.18)–(2.21) become

rV ′′ + [4 + r(α′ − β′)]V ′ +
(

α′ − β′ − rα′2
)

V = −eβ(W ′ + 2α′) , (5.1)

r2W ′′ + [2r + (α′ − β′)r2]W ′ = 2(1− e2β)− 4rβ′ , (5.2)

α′ + β′ = −m
2r2

6
eβ

[

V ′ +

(

1

r
− α′

)

V

]

(5.3)

1 + e−2β
[

r(β′ − α′)− 1
]

=
m2r2

6

{

2W + 4α+ e−β
[

rV ′ +
(

rα′ + 1
)

V
]

}

. (5.4)

The advantage of this transformation is that now α′′ disappeared from eq. (5.2). To

integrate the equations we need to assign the initial conditions. To this purpose, we take

advantage of the fact that we know the zero-th order solution is quite close to the exact

solution in the region rS ≪ r ≪ m−1. We therefore choose a value rin in this region, and

we assign α(rin), β(rin), U(rin), U
′(rin) V (rin) and V

′(rin) using the zero-th solution given

by eqs. (3.1), (3.7) and (3.8), setting u1 = 1. We show for definiteness the results obtained

choosing rin = 200rS and m−1 = 103rS , so indeed rS ≪ r ≪ m−1.

The left panel in figure 1 shows the numerical result for the function A(r) (blue solid

line) and compares it with the zero-th order Schwarzschild solution A(r) = 1−rS/r (brown,
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Figure 3. The same as in figure 1 for the function B(r).
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Figure 4. The same as in figure 2 for the function B(r).

dot-dashed) and with the first-order perturbative solution obtained from the low-m expan-

sion, eq. (3.13) (red, dashed), over a broad range of values of r, rS ≤ r < 10m−1, i.e.

1 < r < 104 in units rS = 1. The numerical integration confirms that, at r ≪ m−1, the

analytic solutions obtained in a low-m expansion work well, and the first-order correction

improves on the zero-th order Schwarzschild solution. As mr becomes of order one, the

m = 0 Schwarzschild solution remains relatively close to the numerical result, while the

truncation (3.13) goes astray. This is not surprising, since the m2r2 correction in eq. (3.13)

is only valid in the regime where it is very small compared to one. On the right panel

of figure 1 we show in more detail the intermediate region 0.6 < mr < 1. We see that

here the first-order perturbative result improves on the zero-th order solution, confirming

the validity of the perturbative expansion. In figure 2 we show the function A(r) in the

regime r ≫ rS from the numerical integration (blue solid line), compared to the Newtonian

solution (4.31) (red, dashed). Again, we see that the analytic solution works well. Similar

results hold for B(r), and are shown in figures 3 and 4.

The numerical solution for U is shown in figure 5. On the left panel we show the

numerical integration (blue solid line) compared to the zero-th order low-m solution (3.7)

(red dashed line) and to the Newtonian solution (4.33) on a large scale that emphasizes the

region mr ≫ 1. Here the Newtonian solutions works well, as expected while, of course, the

low-m expansion is not accurate. As we move toward lower values of mr the two curves

approach each other. As shown in the right panel, close to the horizon the low-m expansion

works extremely well (on the scale of the figure it is indistinguishable from the numerical
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Figure 5. The numerical solutions for U compared to eq. (3.7) with u1 = 1 (red dashed line) and

to the Newtonian solution (4.33) (brown dot-dashed) in two different regions, at rm large (right

panel) and near the horizon (left panel).

result) while the Newtonian result becomes less accurate. These plots confirm that the

theory never becomes non-linear in the region rS ≪ r ≪ m−1. The exact numerical

solution follows the analytic solution obtained in an expansion in powers of mr, until mr

becomes of order one. There is no Vainshtein radius rV ≫ rS below which the low-mass

expansion fails.

It is also interesting to study the stability under perturbations of the solution that we

have found. Equation (4.20) and the discussion below eq. (4.22) show that, if we perturb

the source replacing ρ→ ρ+ δρ, while still preserving the fact that the source has compact

support, no instability develops, and the only effect of δρ is to replace the source mass M

by the corresponding value M + δM , just as in GR. Concerning the near-horizon region

of a BH solution, our analytic and numerical results indicate that the corrections to the

Schwarzschild solution near the horizon are O(m2r2S), which form ∼ H0 is negligibly small,

so we do not expect any instability to develop in the BH quasi-normal modes.

6 Degrees of freedom of the nonlocal theory

To better understand the meaning of the results obtained, it is useful to discuss what are

the radiative and non-radiative degrees of freedom of the theory. This issue has already

been examined in detail in refs. [26, 50] (see also [57] for a related analysis in a similar

nonlocal model). However, we find useful to summarize here the main results discussed in

the above papers, and compare them with what we have learned above.

Counting the propagating degrees of freedom in a nonlocal theory (or even in a local

theory when we transform to nonlocal variables) involves some subtleties, of which one

must be aware in order to get correct results. The simplest example of what can go wrong

with nonlocal transformations is provided by a theory in which, among other fields, also

appears a scalar field φ that satisfies a Poisson equation ∇2φ = ρ [50]. This field is clearly

non-radiative. If, in the classical equation, we set the source ρ = 0, we simply have φ = 0.

There are no associated plane waves freely propagating in empty space associated to this

field, and at the quantum level there are no creation and annihilation operators associated

to it. However, if we define a new field φ̃ from φ̃ = �
−1φ, the original Poisson equation
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can be rewritten as

�φ̃ = ∇
−2ρ ≡ ρ̃ , (6.1)

so now φ̃ looks like a propagating degree of freedom. However, for ρ = 0 our original

equation ∇2φ = ρ only has the solution φ = 0. If we want to rewrite it in terms of φ̃

without introducing spurious degrees of freedom we must therefore supplement eq. (6.1)

with the condition that, when ρ = 0, φ̃ = 0. In other words, the solutions of the associated

homogeneous equation �φ̃ = 0 must be discarded (or, more generally, is uniquely fixed

by the boundary conditions of the problem). Correspondingly, the coefficients ak, a
∗

k
of

the general plane-wave solution of the equations �φ̃ = 0 cannot be considered as free

parameters that, upon quantization, give rise to the creation and annihilation operators of

the quantum theory, and there are no propagating quanta associated to φ̃.

A similar situation also appears in general relativity. Consider GR linearized over flat

space, gµν = ηµν + hµν , and decompose as usual hµν as

h00 = 2ψ , h0i = βi + ∂iγ (6.2)

hij = −2φδij +

(

∂i∂j −
1

3
δij∇

2

)

λ+
1

2
(∂iǫj + ∂jǫi) + hTT

ij , (6.3)

where ǫi and βi are transverse vectors, ∂iβ
i = ∂iǫ

i = 0, and hTT
ij is transverse and trace-

less, ∂jhTT
ij = 0 and δijhTT

ij = 0. With these variables we can form the gauge-invariant

combinations Φ = −φ− (1/6)∇2λ and Ψ = −ψ + γ̇ − (1/2)λ̈, which describe two degrees

of freedom in the scalar sector, and the gauge-invariant transverse vector Ξi = βi− (1/2)ǫ̇i,

which describes two degrees of freedom in the vector sector. These gauge-invariant quan-

tities are the usual Bardeen’s variables specialized to flat space. The remaining degrees

of freedom (two in the scalar sector and two in the vector sector) can be set to zero with

a gauge transformation, while in the helicity-2 sector hTT
ij is gauge invariant. We have

therefore split the 10 components of hµν into four pure gauge modes and six physical (i.e.

gauge-invariant) degrees of freedom. Of course, not all these six degrees of freedom are

radiative. To see this, we decompose similarly the energy-momentum tensor as

T00 = ρ , T0i = Σi + ∂iΣ , (6.4)

Tij = Pδij +

(

∂i∂j −
1

3
δij∇

2

)

σ +
1

2
(∂iσj + ∂jσi) + σij , (6.5)

where ∂iσ
i = 0, ∂iΣ

i = 0, ∂iσij = 0 and δijσij = 0. The linearized equations of motion can

then be written as [69]

∇
2Φ = −4πGρ , (6.6)

∇
2Ψ = +4πG(ρ− 2∇2σ) , (6.7)

∇
2Ξi = −16πGΣi , (6.8)

�hTT
ij = −16πGσij . (6.9)

This shows that only the tensor perturbations obey a wave equation and are therefore

radiative. The gauge-invariant scalar and vector perturbations obey a Poisson equation,
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and therefore represent physical but non-radiative degrees of freedom. Now, compare this

result with that obtained decomposing hµν as

hµν = hTT
µν +

1

2
(∂µǫν + ∂νǫµ) +

1

3
ηµνs , (6.10)

where hTT
µν is transverse and traceless with respect to the Lorentz indices, ∂µhTT

µν = 0,

ηµνhTT
µν = 0, and therefore has five independent components. The 10 components of

the metric perturbations are therefore split into the five components of hTT
µν , the four

components of ǫµ, plus the scalar s. Under a linearized diffeomorphism hµν → hµν −
(∂µξν + ∂νξµ) we have ǫµ → ǫµ − ξµ while the tensor hTT

µν and the scalar s are gauge

invariant. We now plug this decomposition into the quadratic Einstein-Hilbert action,

S
(2)
EH =

1

2

∫

d4xhµνEµν,ρσhρσ , (6.11)

where Eµν,ρσ is the Lichnerowicz operator (and we rescaled hµν → κhµν , where κ =

(32πG)1/2, in order to have a canonically normalized kinetic term). The result is

S
(2)
EH =

1

2

∫

d4x

[

hTT
µν �(hµν)TT − 2

3
s�s

]

. (6.12)

Performing the same decomposition in the energy-momentum tensor, the interaction term

can be written as

Sint =
κ

2

∫

d4xhµνT
µν =

κ

2

∫

d4x

[

hTT
µν (T

µν)TT +
1

3
sT

]

, (6.13)

so the equations of motion derived from S
(2)
EH + Sint are

�hTT
µν = −κ

2
TTT
µν , (6.14)

�s =
κ

4
T . (6.15)

At first sight this result is surprising, because it seems to suggest that the five components of

the transverse-traceless tensor hTT
µν and the scalar s are all radiative fields. Note that these

degrees of freedom are gauge invariant, so they cannot be gauged away.4 Furthermore,

according to eq. (6.12) the scalar s should be a ghost! Of course these conclusions are

wrong, and the correct conclusion is the one drawn from eqs. (6.6)–(6.9), namely that in

GR there are two radiative and four non-radiative degrees of freedom. What went wrong

is the following. Eqs. (6.6)–(6.9) can be inverted, to give Φ, Ψ, etc. in terms of the original

field hµν . The inversion involves the inverse Laplacian, and is therefore nonlocal in space,

4Observe also that we have not used linearized gauge invariance to set ǫµ = 0 in the action (in which

case, one should have been worried that we might have lost the equations obtained performing the variation

with respect to ǫµ). Rather, ǫµ disappears automatically from the action, so there is no equation of motion

associated to it. The fact that ǫµ disappears automatically from the action is just a property of Eµν,ρσ

when applied to a tensor of the form ∂ρǫσ. Of course, this property of the Eµν,ρσ is just what guarantees

the invariance of the quadratic action under linearized gauge transformations hµν → hµν − (∂µξν + ∂νξµ).
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but is local in time. In particular this means that there is a one-to-one correspondence

between the initial condition assigned on hµν on a given time slice, and those assigned on

Φ,Ψ, etc. on the same time slice. In contrast, when we invert eq. (6.10), we find that the

inversion involves the inverse d’Alembertian, and is therefore non-local even in time. Thus,

this one-to-one correspondence on the initial conditions is lost, and the counting of degrees

of freedom goes wrong. In particular, the inversion of eq. (6.10) gives

s =

(

ηµν − 1

�
∂µ∂ν

)

hµν , (6.16)

and the relation between s and the Bardeen variables Φ and Ψ is

s = 6Φ− 2�−1
∇

2(Φ−Ψ) . (6.17)

We see that the situation is exactly the same as that illustrated by eq. (6.1): the non-

radiative field Φ − Ψ is transformed into an apparently radiative field s by the nonlocal

relation (6.17), which involves �−1. The bottom-line is that, if in GR we wish to use the

decomposition (6.10) and the fields s and hTT
µν we can do it, provided that we supplement

eq. (6.15) with the condition that, when ρ = σ = 0, we must have s = 0, i.e. we must

discard the solution of the homogeneous equation �s = 0, since when ρ = σ = 0 we see

from eqs. (6.6) and (6.7) that Φ = Ψ = 0 (and similarly for the component hTT
µν with

helicities 0 and ±1). So, again, there are no creation and annihilation operators associated

to these fields in the quantum theory, and they cannot appear in external lines nor in

loops.5

Having understood these simple but important points in the familiar context of GR, we

are now well-armed for understanding the situation in the nonlocal theory. As we discussed

in section 2, using the auxiliary field U = −�
−1R as well as the auxiliary four-vector field

Sµ that enters in the extraction of the transverse part in eq. (1.2), eq. (1.1) can be rewritten

as

Gµν +
m2

3

[

Ugµν +
1

2
(∇µSν +∇νSµ)

]

= 8πGTµν , (6.18)

together with U = −�
−1R and

∇
µSµν =

1

2
(δµν�+∇

µ
∇ν)Sµ , (6.19)

which is obtained taking the divergence of eq. (1.2). Naively, one would say that U =

−�
−1R is equivalent to �U = −R, and therefore the original nonlocal model can be written

as a set of local equations for gµν , U and Sµ, given by eqs. (6.18) and (6.19) together with

�U = −R. However, it is just in this “localization” step then one is introducing spurious

solutions. The point is that, as we already discussed in section 3, an equation such as

�U = −R is solved by eq. (3.3), where Uhom(x) is the general solution of �Uhom = 0 and

5Observe that, if s could appear on external lines, it would induce vacuum decay processes such as

the decay of vacuum into gravitons and would-be ghosts fields s. Such diagrams could not be canceled

by diagrams where the s lines are replaced by the helicity-0 component of hTT

µν , since they correspond to

different final states. See also the more extended discussion in section 3.1 of ref. [50].
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G(x;x′) is any a Green’s function of the � operator, and the definition of the nonlocal

model is completed only once we have fully specified the definition of �−1, by specifying

Uhom(x). The specific choice of Uhom(x) can depend on the specific problem that we are

studying, e.g. a different choice will appropriate for the study of a static solution, or for

the study of FRW solutions, simply because the boundary conditions of these problems

are different. In any case, in any given problem a choice must be performed, and this

fixes the homogeneous solution. The solutions of the equations in the local formulation

are also solutions of the original integro-differential equations only for this specific choice

of Uhom(x), and all other solutions are spurious. Thus the solution of the homogeneous

equation �U = 0 cannot be interpreted as a free field, which is expanded in plane wave,

and whose coefficients ak, a
∗

k
are then interpreted as creation and annihilation operators in

the corresponding quantum theory. Indeed, we have seen in section 4 that in the specific

problem of a static spherically symmetric solution, the homogeneous solutions is fixed to

the expression given in eq. (4.33). This is similar to what happens for the scalar metric

perturbations Φ and Ψ, which are also fixed by the boundary conditions. In contrast, for

the tensor perturbations, on any given background we always have the freedom to add

gravitational waves freely propagating to infinity, i.e. to add to the solution of eq. (6.9) an

arbitrary solution of the homogeneous equation �hTT
ij = 0.

A similar choice must be made when we define what it means exactly to extract the

transverse part in eq. (1.1). Indeed, the solution of the homogeneous equation Dµ
νSµ = 0,

where Dµ
ν = (1/2)(δµν�+∇µ∇ν), is not a free radiative degree of freedom, but it is part of

the definition of extraction of the transverse part. In this case the most obvious definition

is to set this homogeneous solution to zero, corresponding to the fact that, if Sµν = 0, there

is no transverse part to extract, and ST
µν = 0, so we define the extraction of the transverse

part so that, when Sµν = 0, also Sµ = 0.

Having realized that the fields U and Sµ do not carry radiative degrees of freedom,

it becomes clear that the content of eq. (6.18), as far as radiative degrees of freedom are

concerned, is the same as in GR, namely two massless graviton states with helicities ±2,

which are now coupled also to extra non-radiative fields. This can be checked explicitly by

looking at the linearized version of the theory. Linearizing eq. (1.1) over Minkowski space

we get

Eµν,ρσhρσ − 2

3
m2PµνP ρσhρσ = −16πGTµν , (6.20)

where

Pµν = ηµν − ∂µ∂ν

�
, (6.21)

and � is now the flat-space d’Alembertian. Let us examine first the scalar sector. In

the linearized limit we can put the theory in a local form in an even simpler way, namely

introducing two auxiliary scalar fields U = −�
−1R and S = −�

−1U . Then, writing

again the metric in terms of the Bardeen variables and the energy-momentum tensor as

in eqs. (6.4) and (6.4), the equations of the linearized theory in the scalar sector can be

rewritten as [57]

∇
2
[

Φ− (m2/6)S
]

= −4πGρ , (6.22)
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Φ+Ψ− (m2/3)S = −8πGσ , (6.23)

(�+m2)U = −8πG(ρ− 3P ) , (6.24)

�S = −U . (6.25)

The equations for U is just the linearization of �U = −R and, as explained above, we must

discard its homogeneous solution. Hence, it does not describe radiative degrees of freedom.

The same holds for S, which plays the role that in the full nonlinear theory is played by the

four-vector Sµ, and is defined so that S = 0 when U = 0. The Bardeen variables Φ and Ψ

still satisfy Poisson equations, as in GR, and therefore remain non-radiative. This should

be contrasted with what happens in massive gravity with a Fierz-Pauli mass term, where

Φ becomes radiative and satisfies a massive Klein-Gordon equation (� −m2)Φ = 0 [69–

71]. Thus, in the nonlocal theory there is no radiative degree of freedom in the scalar

sector, while the vector and tensor sector are obviously not affected by the presence of U

and S. In particular, the graviton remains massless, as we see from eqs. (1.8) and (1.9).

Indeed, the first term in eq. (1.9) describes the matter-matter interaction induced by a

massless helicity-2 field, while the second term contributes to the matter-matter interaction

T̃µν(−k)D̃µνρσ(k)T̃ρσ(k), with a term

1

6
T̃ (−k)

[

1

k2
− 1

k2 −m2

]

T̃ (k) . (6.26)

These two terms are induced by the massless field S and by the massive field U , respectively.

If U were a radiative field, its contribution would be ghost-like, and one should worry about

vacuum decay in the quantum theory. However, we have seen that U is not radiative, and

at the quantum level there are no creation and annihilation operators associated to it, and

no quantum vacuum instability.6

Another way to understand this result, again discussed in [50], is to observe that,

linearizing around flat space, gµν = ηµν + hµν , we have R = R(1) + O(h2), where R(1) =

∂µ∂ν(h
µν − ηµνh). Therefore in the linearized theory

U = −�
−1R(1) = h− 1

�
∂µ∂νh

µν

=

(

ηµν −
1

�
∂µ∂ν

)

hµν . (6.27)

Comparing with eq. (6.16) we see that, in the linearized theory, U is the same as the

non-radiative field s. The quadratic Lagrangian corresponding to the linearized equa-

6Of course, such a field can induce instabilities at the classical level. However, while the quantum vacuum

decay would be a disaster for the consistency of the theory, classical instabilities must be examined on a

case-by-case basis, and can in fact even be welcome. This is particularly true in a cosmological setting,

where the emergence of a phase of accelerated expansion is in a sense a classical instability. Indeed, the

result of [26] show that, at the background level, the cosmological evolution of this theory is perfectly viable.

In [52] we will examine the cosmological perturbations in these nonlocal models, and we will see again that

they are perfectly viable, and in agreement with the observation. Similarly, the results of the present paper

showed that no dangerous instability develops in static solutions, and that GR is smoothly recovered at

r ≪ m−1.
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tion (6.20) is

L2 =
1

2
hµνEµν,ρσhρσ − 1

3
m2 (Pµνhµν)

2 , (6.28)

and we see that the term proportional to m2 is just a mass term for s = Pµνhµν . Writing

the metric as in eq. (6.10), instead of eq. (6.12) we now obtain [50]

S(2) =
1

2

∫

d4x

[

hTT
µν �(hµν)TT − 2

3
s(�+m2)s

]

. (6.29)

We see that the effect of the non-local term at the linearized level can be described as

follows. In usual massless GR we have six physical (i.e. gauge-invariant) degrees of freedom,

that can be described by the five degrees of freedom of the transverse-traceless tensor hTT
µν ,

plus the scalar s. Out of them, only two are radiative, i.e. the helicity ±2 components

of hTT
µν . The helicity-(±1) components of hTT

µν , the helicity-0 component of hTT
µν and the

scalar s are all non-radiative, and all these six fields are massless. In the matter-matter

interaction, the contribution from s has the opposite sign, compared to the one coming

from the helicity-0 component of hTT
µν , and the two cancel, while the helicity ±1 components

of hTT
µν , are coupled to ∂µTµν , which vanish, and therefore do not contribute. Thus, we

only remain with the contribution from the helicity-(±2) components. In the nonlocal

theory, the field s remains non-radiative, but becomes massive. Therefore, the cancelation

with the helicity-0 component of hTT
µν is only approximate, and only holds for |k2| ≫

m2. Thus, for m ∼ H0, well inside the horizon we recover GR and there is no vDVZ

discontinuity, as indeed the computation of the previous sections showed explicitly. In

contrast, at cosmological scales, there are departures from GR, but no new propagating

degree of freedom.

It is also interesting to compare the above discussion with the results of refs. [72, 73],

where the author performed a very general analysis of ghost-free modified gravitational

actions, linearized over Minkowski space, by including the most general form factors de-

pending on the � operator, i.e. terms such as hµνa(�)hµν , hσµb(�)∂σ∂νhµν , etc. The

propagator can then be found in full generality, and one can impose conditions on the

form factors a(�), b(�), etc. such that no ghost-like pole appears, and furthermore the UV

behavior is improved. The analysis in [72, 73] was mostly tuned toward the UV behavior,

and therefore one is mostly concerned with positive powers of the � operator. What we

learn from our discussion in this section is that, when we apply this analysis to the IR,

where non-local operators such as �−1 become relevant, an apparent ghost-like pole in the

propagator is not yet necessarily a sign of a trouble, since it could simply correspond to a

non-propagating degree of freedom.

Observe also that, with our (−,+,+,+) signature, the operator (�+m2) that appears

in the linearized equation of motion for s (which is just eq. (6.24), given that at the

linearized level s = U) corresponds to a dispersion relation k20 = −m2 + k2. Therefore,

static solution do not decay at large distances with a Yukawa suppression r−1 exp{−mr},
but are instead oscillatory, r−1 cos(mr), as indeed we found in section 4.
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7 Conclusions

The analytic and numerical results discussed in this paper show that, in the nonlocal

theory defined by eq. (1.1), the linearized expansion is valid for all distances r in the range

rS ≪ r ≪ m−1, and in this region the corrections to GR are of the form 1+O(m2r2). This

is in sharp contrast with what typically happens in local theories of massive gravity, where

the linear expansion breaks down below a Vainshtein radius rV which is parametrically

larger than rS , and which diverges as m→ 0. In local massive gravity theories (whether in

a Fierz-Pauli or dRGT form) this breakdown of linearity is necessary for their observational

viability, since these theories have a vDVZ discontinuity at large distance. Without such

a breakdown of linearity, this discontinuity would persist down to the solar system scale,

and then the theory would be ruled out. In contrast, the nonlocal theory (1.1) has no

vDVZ discontinuity, and it remains linear down to the near-horizon region. Therefore, all

successes of GR at the solar system and lab scales are automatically recovered. This is an

important consistency check of the nonlocal theory which, together with its cosmological

properties discussed in [26, 51], makes it a interesting candidate for a dynamical explanation

of dark energy.

Furthermore, we have determined the behavior of the solution in the region (r ≫ rS and

mr generic) using a Newtonian expansion. Equations (4.31) and (4.32) provide an analytic

expression for the modifications of the static Newtonian forces at distances of order m−1

in the nonlocal model that we have studied, and could have potential applications in the

study of structure formation at large scales in such a model.
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language, Phys. Lett. B 711 (2012) 190 [arXiv:1107.3820] [INSPIRE].

[6] S.F. Hassan and R.A. Rosen, Resolving the Ghost Problem in non-Linear Massive Gravity,

Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].

[7] S.F. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free Massive Gravity with a General

Reference Metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].

[8] S.F. Hassan and R.A. Rosen, Confirmation of the Secondary Constraint and Absence of

Ghost in Massive Gravity and Bimetric Gravity, JHEP 04 (2012) 123 [arXiv:1111.2070]

[INSPIRE].

[9] K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671

[arXiv:1105.3735] [INSPIRE].

[10] C. de Rham, Massive Gravity, arXiv:1401.4173 [INSPIRE].

[11] S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, Null energy condition and

superluminal propagation, JHEP 03 (2006) 025 [hep-th/0512260] [INSPIRE].

[12] A. Nicolis, R. Rattazzi and E. Trincherini, Energy’s and amplitudes’ positivity, JHEP 05

(2010) 095 [Erratum ibid. 1111 (2011) 128] [arXiv:0912.4258] [INSPIRE].

[13] A. Gruzinov, All Fierz-Paulian massive gravity theories have ghosts or superluminal modes,

arXiv:1106.3972 [INSPIRE].

[14] C. de Rham, G. Gabadadze and A.J. Tolley, Comments on (super)luminality,

arXiv:1107.0710 [INSPIRE].

[15] S. Deser and A. Waldron, Acausality of Massive Gravity, Phys. Rev. Lett. 110 (2013) 111101

[arXiv:1212.5835] [INSPIRE].

[16] L. Berezhiani, G. Chkareuli and G. Gabadadze, Restricted Galileons, Phys. Rev. D 88 (2013)

124020 [arXiv:1302.0549] [INSPIRE].

[17] K. Izumi and Y.C. Ong, An analysis of characteristics in nonlinear massive gravity, Class.

Quant. Grav. 30 (2013) 184008 [arXiv:1304.0211] [INSPIRE].

[18] L. Berezhiani, G. Chkareuli, C. de Rham, G. Gabadadze and A.J. Tolley, Mixed Galileons

and Spherically Symmetric Solutions, Class. Quant. Grav. 30 (2013) 184003

[arXiv:1305.0271] [INSPIRE].

[19] K. Koyama, G. Niz and G. Tasinato, Effective theory for the Vainshtein mechanism from the

Horndeski action, Phys. Rev. D 88 (2013) 021502 [arXiv:1305.0279] [INSPIRE].

[20] A.E. Gumrukcuoglu, C. Lin and S. Mukohyama, Open FRW universes and self-acceleration

from nonlinear massive gravity, JCAP 11 (2011) 030 [arXiv:1109.3845] [INSPIRE].

[21] A.E. Gumrukcuoglu, C. Lin and S. Mukohyama, Cosmological perturbations of

self-accelerating universe in nonlinear massive gravity, JCAP 03 (2012) 006

[arXiv:1111.4107] [INSPIRE].

[22] K. Koyama, G. Niz and G. Tasinato, The Self-Accelerating Universe with Vectors in Massive

Gravity, JHEP 12 (2011) 065 [arXiv:1110.2618] [INSPIRE].

– 26 –

http://dx.doi.org/10.1103/PhysRevLett.106.231101
http://dx.doi.org/10.1103/PhysRevLett.106.231101
http://arxiv.org/abs/1011.1232
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1232
http://dx.doi.org/10.1016/j.physletb.2012.03.081
http://arxiv.org/abs/1107.3820
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3820
http://dx.doi.org/10.1103/PhysRevLett.108.041101
http://arxiv.org/abs/1106.3344
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.3344
http://dx.doi.org/10.1007/JHEP02(2012)026
http://arxiv.org/abs/1109.3230
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3230
http://dx.doi.org/10.1007/JHEP04(2012)123
http://arxiv.org/abs/1111.2070
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2070
http://dx.doi.org/10.1103/RevModPhys.84.671
http://arxiv.org/abs/1105.3735
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.3735
http://arxiv.org/abs/1401.4173
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.4173
http://dx.doi.org/10.1088/1126-6708/2006/03/025
http://arxiv.org/abs/hep-th/0512260
http://inspirehep.net/search?p=find+EPRINT+hep-th/0512260
http://dx.doi.org/10.1007/JHEP05(2010)095
http://dx.doi.org/10.1007/JHEP05(2010)095
http://arxiv.org/abs/0912.4258
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.4258
http://arxiv.org/abs/1106.3972
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.3972
http://arxiv.org/abs/1107.0710
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.0710
http://dx.doi.org/10.1103/PhysRevLett.110.111101
http://arxiv.org/abs/1212.5835
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5835
http://dx.doi.org/10.1103/PhysRevD.88.124020
http://dx.doi.org/10.1103/PhysRevD.88.124020
http://arxiv.org/abs/1302.0549
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.0549
http://dx.doi.org/10.1088/0264-9381/30/18/184008
http://dx.doi.org/10.1088/0264-9381/30/18/184008
http://arxiv.org/abs/1304.0211
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.0211
http://dx.doi.org/10.1088/0264-9381/30/18/184003
http://arxiv.org/abs/1305.0271
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0271
http://dx.doi.org/10.1103/PhysRevD.88.021502
http://arxiv.org/abs/1305.0279
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0279
http://dx.doi.org/10.1088/1475-7516/2011/11/030
http://arxiv.org/abs/1109.3845
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3845
http://dx.doi.org/10.1088/1475-7516/2012/03/006
http://arxiv.org/abs/1111.4107
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.4107
http://dx.doi.org/10.1007/JHEP12(2011)065
http://arxiv.org/abs/1110.2618
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.2618


J
H
E
P
0
8
(
2
0
1
4
)
0
2
9

[23] G. D’Amico, C. de Rham, S. Dubovsky, G. Gabadadze, D. Pirtskhalava et al., Massive

Cosmologies, Phys. Rev. D 84 (2011) 124046 [arXiv:1108.5231] [INSPIRE].
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