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ABSTRACT  Mitochondrial dysfunction is a hallmark of several neurodegenera-

tive diseases such as Alzheimer’s disease and Parkinson’s disease, but also of 

cancer, diabetes and rare diseases such as Wilson’s disease (WD) and Nie-

mann Pick type C1 (NPC). Mitochondrial dysfunction underlying human pa-

thologies has often been associated with an aberrant cellular sphingolipid 

metabolism. Sphingolipids (SLs) are important membrane constituents that 

also act as signaling molecules. The yeast Saccharomyces cerevisiae has been 

pivotal in unraveling mammalian SL metabolism, mainly due to the high de-

gree of conservation of SL metabolic pathways. In this review we will first 

provide a brief overview of the major differences in SL metabolism between 

yeast and mammalian cells and the use of SL biosynthetic inhibitors to eluci-

date the contribution of specific parts of the SL metabolic pathway in re-

sponse to for instance stress. Next, we will discuss recent findings in yeast SL 

research concerning a crucial signaling role for SLs in orchestrating mitochon-

drial function, and translate these findings to relevant disease settings such as 

WD and NPC. In summary, recent research shows that S. cerevisiae is an in-

valuable model to investigate SLs as signaling molecules in modulating mito-

chondrial function, but can also be used as a tool to further enhance our cur-

rent knowledge on SLs and mitochondria in mammalian cells. 
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INTRODUCTION 

Aberrancies in mitochondrial function generally termed 

mitochondrial dysfunction are characteristic of a plethora 

of human pathologies such as cancer [1, 2], Parkinson’s 

disease [3], Alzheimer’s disease [4], Friedreich’s ataxia [5], 

Wilson’s disease (WD) [6], metabolic syndrome and non-

alcoholic fatty liver disease [7-10], diabetes [11] and drug-

induced liver injury [12, 13]. Mitochondrial dysfunction 

originates from (i) inherited mutations in genes encoding 

subunits of the electron transport chain (ETC) located on 

both nuclear and mitochondrial DNA (mtDNA) [14, 15], (ii) 

acquired mutations that arise during the normal aging pro-

cess but also as a result of chronic hypoxia, viral infections, 

radiation, chronic stress or chemical pollution [16-25] and 

(iii) drug treatments such as antivirals and chemotherapeu-

tics [12, 13]. Interestingly, several mitochondrial dysfunc-

tion-related conditions are associated with a perturbed 

sphingolipid (SL) metabolism [26-34]. SLs are important 

components of cell membranes [35] and play a crucial role 

as signaling molecules orchestrating cell growth, differenti-

ation and apoptosis [36-38]. 

The yeast S. cerevisiae (baker’s or budding yeast) has 

been broadly exploited as a eukaryote model organism 

since the publication of its genome in 1996, resulting in the 

annotation of approximately 6000 genes located on 16 

chromosomes [39]. Sequencing of the mtDNA was per-

formed independently in 1998 [40]. In contrast, the human 

mtDNA sequence was already published in 1981 [41] and in 

1988 the first mtDNA mutation-related human pathology 

was identified as Leber’s hereditary optic neuropathy 

(LHON) [42]. LHON is characterized by optic nerve degen-

eration that leads to visual impairment or blindness [43]. 

Interestingly, approximately 31 % of the protein-coding 

genes in yeast have a mammalian orthologue [44] and 

30 % of the genes known to be involved in human diseases 

may have a yeast orthologue [45, 46]. Remarkably, path-

ways that modulate apoptosis and mitochondrial function, 

as well as SL metabolism, are well conserved from yeast to 
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higher eukaryotes [47-52]. These aspects make yeast an 

extremely useful tool to study human diseases.  

Given the numerous reports connecting SLs, mitochon-

drial (dys)function and human pathologies, and the posi-

tion of S. cerevisiae as a model organism, we here provide 

an overview of literature on the interplay between SLs and 

mitochondrial (dys)function in the yeast S. cerevisiae and 

will translate these findings to relevant diseases character-

ized by mitochondrial dysfunction and/or aberrant SL me-

tabolism. When we discuss yeast in this review, it typically 

refers to S. cerevisiae. 

 

MITOCHONDRIA, CELLULAR POWERHOUSES 

Mitochondria are double-membraned dynamic cell orga-

nelles that constantly change shape through fusion and 

fission [53, 54] and are present in the cytoplasm of all eu-

karyotic cells, except mature erythrocytes [23]. The mito-

chondrial membranes consist of a mixture of lipids with the 

most abundant species phosphatidylcholine (PC), phospha-

tidylethanolamine (PE) and to a lesser extent cardiolipin 

(CL) in mammalian cells, whilst in yeast the most abundant 

species are PC and PE, and to a lesser extent CL and phos-

phatidylinositol (PI) [55]. The primordial function of mito-

chondria is ATP production via oxidative phosphorylation 

(OXPHOS). However, mitochondria also play a crucial role 

in the regulation of cell processes such as apoptosis and 

cellular ion homeostasis. For more detailed descriptions on 

mitochondrial function and structure, the reader is re-

ferred to [56, 57].  

In mammalian cells, cellular energy is mainly produced 

via aerobic respiration, although energy can also be gener-

ated via glycolysis in absence of oxygen, which is however 

far less efficient [58]. In contrast, tumor cells display high 

rates of glycolysis in the presence of sufficient oxygen, also 

known as the Warburg effect [59, 60]. Interestingly, by 

using specific carbon sources, yeast metabolism can either 

be shifted towards high glycolysis, combined glycolysis and 

respiration, or respiration alone by forcing growth on glu-

cose, galactose or glycerol, respectively [61, 62], which is 

advantageous to investigate the role of respiration in a 

specific cellular process.  

 

SPHINGOLIPIDS 

In general, SLs are classified as lipids that contain a sphin-

goid base as the structural backbone, further decorated by 

a polar head group and a fatty acid side chain. Three major 

classes of sphingoid backbones are known: sphingosine 

(Sph), dihydrosphingosine or sphinganine (dhSph) and phy-

tosphingosine (phytoSph) [63]. Next to their function as 

membrane constituents, SLs act as important signaling 

molecules. Traditionally, the central SL ceramide (Cer), Cer-

1-phosphate (Cer-1-P), Sph and Sph-1-phosphate (Sph-1-P) 

are well characterized bioactive SLs with roles in cell 

growth, apoptosis, inflammation, proliferation, and others 

[64-66]. Intriguingly, SLs have been linked to mitochondrial 

function in both mammalian cells and yeast [67-74]. 

Several tools have contributed to our understanding of 

SL metabolism, signaling and composition in mammalian 

and yeast cells. For instance, mass spectrometry methods 

are commonly used to detect different SL species and 

quantify their abundance in response to various stimuli [75, 

76]. In addition, inhibitors of SL metabolism are routinely 

used to elucidate the role of SLs in various settings [77-86]. 

Despite the high degree of conservation of SL metabolic 

pathways between mammalian and yeast cells [52, 87, 88], 

there are still yeast- and mammalian-specific aspects, and 

particularly in biosynthetic pathways. The major yeast and 

mammalian SL metabolic pathways are outlined in Fig. 1.  

In the following part we subsequently describe both 

the mammalian and yeast SL metabolism, and discuss the 

use of SL biosynthetic inhibitors. 

 

Mammalian sphingolipid metabolism 

In mammalian cells, the central SL Cer can be generated via 

either de novo biosynthesis or the salvage pathway [89] 

(Fig. 1). De novo Cer biosynthesis typically starts with the 

condensation of serine and palmitoyl CoA to 3-

ketodihydrosphingosine by the serine palmitoyltransferase 

enzyme (SPT) [90]. 3-Ketodihydrosphingosine is subse-

quently reduced to dhSph by 3-ketodihydrosphingosine 

reductase [91]. Addition of a fatty acid side chain via an 

amide bond to dhSph then yields dihydroceramide (dhCer), 

which gets desaturated to Cer by Cer synthase [92] and 

dihydroceramide desaturase (dhCer desaturase) respec-

tively [93]. dhSph can also be generated from ceramidase 

(CDase)-mediated catabolism of dhCer [94]. Cer is convert-

ed to Sph by CDase [94] or Cer-1-P by the action of Cer 

kinase [95]. In addition, Cer serves as precursor for the 

formation of complex SLs such as sphingomyelin (SM) by 

SM synthase [96] or glucosylCer/galactosylCer by addition 

of phosphocholine or a carbohydrate, respectively, as polar 

headgroup. Glucose is incorporated by glucosylCer syn-

thase to yield glucosylCer [97], whereas galactose is incor-

porated by Cer galactosyl transferase to generate galacto-

sylCer[98, 99]. SM interacts with cholesterol in the plasma 

membrane forming SM-cholesterol-rich domains and regu-

lates cholesterol distribution in cellular membranes and 

cholesterol homeostasis in cells [100]. GlycoSLs can func-

tion as receptor for carbohydrate binding proteins on the 

membrane to initiate transmembrane signaling events as 

well as cell growth, differentiation and cell-to-cell commu-

nication [101-104]. GlucosylCer and galactosylCer can ei-

ther be catabolized to Cer by glucocerebrosidase [105] or 

galactosylceramidase [106], respectively, or serve as pre-

cursor in the formation of more complex glycoSLs. Cer also 

serves as precursor in the formation of low levels phy-

toceramide (phytoCer) by the action of dhCer desaturase 

[107, 108]. Sphingomyelinases (SMases) break down SM to 

Cer [109]. Sph and dhSph are phosphorylated by Sph ki-

nases to produce Sph-1-P and dhSph-1-phosphate (dhSph-

1-P), respectively [110]. Cleavage of Sph-1-P and dhSph-1-P 

into phosphoethanolamine and hexadecenal, catalyzed by 

Sph-1-P lyase [111-113], represents the only exit route 

from the SL pathway. In turn, Sph1-P and dhSph-1-P are 

dephosphorylated by Sph-1-P phosphatase to yield Sph 

and dhSph, respectively [112, 114], while Cer-1-P is 

dephosphorylated by Cer-1-P phosphatase generating Cer 
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[115]. The salvage pathway to generate Cer refers to the 

catabolism of complex SLs into Cer and then Sph by CDase-

mediated Cer breakdown. These Sph species can be reacyl-

ated by Cer synthase to Cer [89]. 

 

Yeast sphingolipid metabolism 

De novo SL production is conserved from yeasts to mam-

mals up to the synthesis of dhSph (Fig. 1) [52]. In yeast, 

dhSph is hydroxylated to phytoSph by sphinganine C4-

hydroxylase (Sur2p) [116]. The sphingoid bases dhSph and 

phytosphingosine (phytoSph) are commonly referred to as 

long chain bases (LCBs) in yeast. Next, a fatty acid side 

chain is added to phytoSph or dhSph, both catalyzed by the 

yeast Cer synthase, i.e. Lag1p and Lac1p [117], generating 

phytoCer and dhCer, respectively. The former is the central 

SL in yeast. Sur2p-mediated hydroxylation of dhCer then 

generates phytoCer [116]. In addition, the yeast dihy-

droceramidase (Ydc1p) and yeast phytoceramidase (Ypc1p) 

hydrolyze dhCer to dhSph [118] and phytoCer to phytoSph 

[119], respectively. Polar headgroups can be added to phy-

toCer in order to generate different species of complex SL. 

In yeast, three major complex SL species exist: (i) inositol-

phosphoceramide (IPC) is created by extending phytoCer 

with phospho-inositol by IPC synthase (Aur1p and Kei1p) 

[120], (ii) addition of mannose to IPC by mannose inositol-

phosphoceramide (MIPC) synthase (Csg1p , Csg2p and 

Csh1p) generates MIPC [121], and (iii) addition of another 

phospho-inositol residue to MIPC, catalyzed by inositol 

phosphotransferase (Ipt1), leads to the generation of man-

nose diinositolphosphoceramide (M(IP)2C) [122]. Break-

down of the three complex SLs in yeast is catalyzed by ino-

sitol phosphosphingolipid phospholipase C (Isc1p) to gen-

erate phytoCer and dhCer [123, 124]. Next to their role as 

precursor in the formation of phytoCer, the LCBs dhSph 

and phytoSph can be phosphorylated by LCB kinases 

(Lcb4p and Lcb5p) to generate dhSph-1-P and phytoSph-1-

P, respectively [125]. The phosphorylated LCBs can then 

either be dephosphorylated back to dhSph and phytoSph 

by LCB-1-phosphate (LCB-1-P) phosphatases (Lcb3p and 

Ysr3p) [126-128], or catabolized by dhSph phosphate lyase 

(Dpl1) yielding phosphoethanolamine and hexadecenal 

[129]. For a more detailed description the reader is re-

ferred to [130]. 

 

Sphingolipid biosynthetic inhibitors 

To date, the best characterized and most used inhibitors of 

SL biosynthesis in yeast research include Myriocin (Myr), 

isolated from Myriococcum albomyces and Mycelia sterilia 

[131]; Aureobadisin A (Aur A), isolated from Aureobasidium 

pullulans [132]; and Fumonisin B1 (FB1), isolated from 

Fusarium monoliforme [133]. Myr inhibits de novo SL bio-

synthesis in all eukaryotes by binding the first biosynthetic 

enzyme SPT [90, 134-136], while Aur A inhibits yeast IPC 

synthase [137]. FB1 inhibits Cer synthase in yeast and 

 
 

FIGURE 1: Major yeast and mammalian SL metabolic pathways. Both overlapping parts (white square) and yeast- (green square) and mam-

malian (blue square)-specific processes are indicated as well as the targets of commonly used inhibitors of SL biosynthesis. Adapted from 

[87]. 
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mammalian cells (Fig. 1) [138, 139].  

Inhibitors of specific SL biosynthetic enzymes are 

broadly exploited to synthetically affect different parts of 

the SL metabolic pathway in order to elucidate the origin 

of SLs in specific settings. A well-studied case has been the 

unraveling of the role of de novo SL biosynthesis during 

heat stress in yeast. Heat stress induces a transient cell 

cycle arrest in yeast [140] followed by resumption of 

growth at the elevated temperature [141] and several 

studies have implicated SLs in the heat stress response. For 

instance, heat stress causes a transient 2-3-fold increase of 

C18-dhSph and C18-phytoSph levels, an over 100-fold transi-

ent increase in C20-dhSph and C20-phytoSph, a stable 2-fold 

increase in C18-phytoSph containing Cer and a 5-fold in-

crease in C20-phytoSph containing Cer [142]. Dickson and 

coworkers observed accumulation of the disaccharide tre-

halose, which is essential for protection against heat stress 

[143]. This effect is related to the LCB-induced expression 

of the trehalose biosynthetic gene TPS2 [144]. In addition, 

blocking synthesis of complex SLs by Aur A treatment, lead-

ing to an accumulation of LCBs and Cer, induces TPS2 ex-

pression at non-stressing temperatures. Furthermore, Aur 

A potentiates the effect of dhSph or heat stress on TPS2 

expression [142]. Similar findings regarding heat stress-

induced accumulation of LCBs and Cer were reported by 

Jenkins and coworkers but also that complex SLs are unaf-

fected while Cer levels are increased, which was partially 

abrogated by FB1 treatment [145]. Taken together, these 

findings indicate a role for de novo SL synthesis during heat 

stress.  

Several additional studies indicated that specific SL 

species fulfill different roles in the regulation of particular 

cellular responses. For instance, Jenkins and Hannun re-

ported that LCBs are likely to be the active species to trig-

ger cell cycle arrest during heat stress, which was con-

firmed as exogenous addition of either dhSph or phytoSph 

induces transient cell cycle arrest [146]. In addition, during 

heat stress de novo SL biosynthesis is responsible for LCBs 

and phytoCer production, while Isc1p-mediated hydrolysis 

of complex SLs accounts for dhCer production [147]. In 

addition, Δisc1 mutants display a similar cell cycle arrest as 

compared to the wild type strain during heat stress, indi-

cating that Isc1p-mediated SL generation does not affect 

cell cycle regulation during heat stress [147]. Montefusco 

and coworkers addressed the specific role of distinct Cer 

species in SL signaling in yeast via a lipidomic and tran-

scriptomic analysis of yeast cultures treated with different 

combinations of heat stress, Myr and the fatty acid 

myristate (C14) [148]. Their results indicate that long chain 

dhCer species (C14 and C16) affect the expression of genes 

related to iron ion transportation while very long chain 

dhCer species (C18, C18:1, C20 and C20:1) are involved in the 

vacuolar protein catabolic process. 

A role for stress-related SL signaling is not limited to 

heat stress in yeast, but has also been implicated in stress 

induced by toxic iron. Iron toxicity is directly related to the 

generation of deleterious reactive oxygen species (ROS) 

[149]. Lee and coworkers linked SLs to iron toxicity as high 

iron increases the levels of LCBs and LCB-1-Ps, and decreas-

ing these levels by Myr treatment increases yeast tolerance 

to high iron [150]. These data point to a signaling role for 

LCBs and LCB-1-Ps in iron toxicity. In yeast, LCBs are known 

to directly phosphorylate protein kinases such as Pkh1p, 

which is redundant with Pkh2p and related to mammalian 

3-phosphoinositide-dependent protein kinase PDK1 [151], 

and Ypk1p and its paralogue Ypk2p, related to serum- and 

glucocorticoid-inducible kinase (SGK) [151, 152]. Alterna-

tively, Ypk1/2p is phosphorylated by Pkh1p in response to 

LCBs. Regarding a signaling role for LCBs during iron toxici-

ty, loss of either Pkh1p or Ypk1p indeed increases yeast 

tolerance to high iron [150]. Hence, LCB-based SL signaling 

is involved in the cellular response during iron toxicity. For 

additional information concerning heat and iron stress in 

yeast and signaling pathways mediated by LCBs the reader 

is referred to [150, 153-156]. Taken together, these find-

ings suggest that SLs fulfil a crucial signaling role during 

various stress conditions and that specific SL species or-

chestrate differential responses. 

 

CLUES FROM YEAST RESEARCH THAT LINK SLs TO MI-

TOCHONDRIAL FUNCTION 

The use of SL biosynthetic inhibitors in the lower eukaryot-

ic model yeast, S. cerevisiae, has provided interesting in-

sights into the interplay between SLs and mitochondrial 

function. For instance, Myr does not induce killing in yeast 

cells lacking mitochondrial DNA [157], i.e. ρ0 cells, suggest-

ing that decreased de novo SL synthesis is detrimental for 

cell viability and requires functional mitochondria. In addi-

tion, in yeast lifespan regulation is linked to SLs as Myr 

treatment extends yeast chronological lifespan (CLS), 

which is associated with decreased levels of LCBs, LCB-1-Ps 

and IPCs [78]. The yeast protein kinase Sch9p is a known 

regulator of longevity in yeast [158] and is activated upon 

phosphorylation by LCBs directly or via LCB-induced activa-

tion of Pkh1/2p [151]. In addition, Sch9p is phosphorylated 

by the action of the Target of Rapamycin Complex 1 

(TORC1) [159], involved in nutrient signaling [159]. The 

reduction in SL levels upon Myr treatment during CLS was 

proposed to decrease activity of the Pkh1/2p-Sch9p signal-

ing axis resulting in an increased CLS. However, a Sch9p-

independent effect on CLS was also described as Myr 

treatment increases CLS of Δsch9 mutants [78]. Subse-

quently, the effect of Myr on CLS was shown to be related 

to its effect on the yeast transcriptome. Myr treatment 

during yeast ageing results in the upregulation of many 

genes linked to mitochondrial function and oxidative phos-

phorylation but also to stress responses and autophagy, 

and downregulation of genes related to ribosomes, cyto-

plasmic and mitochondrial translation, as well as to ER 

glycoprotein and lipid biosynthesis [160]. Hence targeting 

SL biosynthesis has provided insights in a link between SLs 

and regulating mitochondrial function. 

Next to S. cerevisiae, the use of higher eukaryotic mod-

el organisms such as Caenorhabditis elegans has also signif-

icantly contributed to our current understanding of mam-

malian SL metabolism, and has pointed to a connection 

between SLs and mitochondrial function. Mitochondrial 



Spincemaille et al. (2014)  Yeast models for sphingolipids and mitochondrial function 

 
 

OPEN ACCESS | www.microbialcell.com 214 Microbial Cell | July 2014 | Vol. 1 No. 7 

defects in C. elegans are detected by a surveillance path-

way, which causes the induction of mitochondrial chaper-

one genes such as hsp-6, but also drug-detoxification genes 

such as cyp-14A3 and ugt-61 [161-164]. As such, a RNA 

interference (RNAi) screen in C. elegans was conducted, 

thereby aiming at identifying genes that, upon their inacti-

vation, renders nematodes unable to activate the mito-

chondrial surveillance pathway in response to mitochon-

drial dysfunction induced by drugs or by genetic interrup-

tion. Among their hits was sptl-1, encoding the C. elegans 

SPT. For instance, Sptl-1 inactivation renders nematodes 

unable to upregulate hsp-6 in response to inhibition of the 

mitochondrial electron transport by Antimycin, while no 

effect on hsp-6 is observed in absence of Antimycin [164]. 

In addition, knockout of both Cer synthase genes decreases 

hsp-6 induction upon mitochondrial damage while Myr 

prevents Antimycin-induced hsp-6p expression. Strikingly, 

exogenous addition of C24-Cer, but not dhCer or C16-, C20- or 

C22-Cer, restores the ability of sptl-1(RNAi) animals to trig-

ger hsp-6 expression in presence of Antimycin, but not in 

absence of Antimycin [164]. Hence, this indicates that SLs 

are involved in the cellular response to mitochondrial dys-

function and that distinct SLs do serve an important signal-

ing role in modulating mitochondrial function in higher 

eukaryotes in general.  

In mammalian cells, the specific underlying mecha-

nisms that connect SLs, and more specifically Cer to mito-

chondrial function mainly remain unclear. Nevertheless, 

Cer species are present in mitochondria and there are vari-

ous reports that link Cer species to mitochondrial function 

as (i) Cer species are required for ETC complex activity, but 

can also inhibit ETC complexes and induce the formation of 

reactive oxygen species (ROS), (ii) Cer species reduces the 

Δψm by mitochondrial pore formation, triggers mitochon-

drial outer membrane permeabilization and thus initiates 

apoptosis, and (iii) Cer species are determinants for the 

induction of mitophagy [67]. Mitophagy is a mitochondrial 

quality control mechanism that eliminates dysfunctional 

and aged mitochondria [165]. Next to these aspects (i-iii) 

that were recently reviewed [67], other reports that link 

Cer species to mitochondrial function in mammalian cells 

include (iv) the presence of Cer-producing enzymes in the 

mitochondria. El Bawab and coworkers described the iden-

tification of a human CDase that localizes to the mitochon-

dria and is ubiquitously expressed, with the highest expres-

sion levels in the kidneys, skeletal muscles and heart [166]. 

Also, purified mitochondria and the mitochondria-

associated membrane from rat liver synthesize Cer in vitro 

via Cer synthase or reverse CDase activity [167] and there 

are studies describing the identification of a novel SMase 

that displays mitochondrial localization in zebrafish and 

mice as discussed below [168, 169]. Lastly, in addition to 

the above-mentioned links between Cer and mitochondrial 

function (i-iv) there are (v) reports that link Cer species to 

mitochondrial fission events. Mitochondrial fusion is a 

compensatory mechanism to decrease stress by mixing the 

contents of partially damaged mitochondria, while mito-

chondrial fission is referred to as mitochondrial division in 

order to create new mitochondria. Both mitochondrial 

fusion and fission are closely involved in cell processes such 

as mitophagy, cell death and respiration [170]. As de-

scribed by Parra and coworkers, in contrast to C2-dhCer, C2-

Cer induces rapid fragmentation of the mitochondrial net-

work in rat cardiomyocytes and increased mitochondrial 

content of the mitochondrial fission effectors Drp1 and 

Fis1 [171, 172]. Additionally, inhibition of Cer synthase 

decreases recruitment of Drp1 and Fis1 to the mitochon-

dria and concomitantly also reduces mitochondrial fission 

[173]. Moreover, Smith and coworkers showed that C2-Cer 

addition causes rapid and dramatic division of skeletal 

muscle mitochondria, which is characterized by increased 

Drp1 expression and reduced mitochondrial respiration. 

Interestingly, these effects are abrogated by Drp1 inhibi-

tion [174]. These reports directly link Cer species to mito-

chondrial fission. Taken together, there is abundant evi-

dence that links SLs to mitochondrial function in mammali-

an cells. 

In the following part we will first describe novel find-

ings with regard to the SL-mitochondria connection using 

yeast as a model and translation of these findings to rele-

vant higher eukaryotic settings related to mitochondrial 

(dys)function. We will hereby focus on Isc1p and Ncr1p, 

the yeast orthologue of the Niemann Pick type C1 (NPC) 

disease protein [175]. Also, in the context of WD, a patho-

logical condition characterized by excess Cu and mitochon-

drial dysfunction [176], we will describe the potential of 

yeast as a model to identify novel compounds that can 

inhibit Cu-induced apoptosis in yeast.  

 

Inositol phosphosphingolipid phospholipase C (Isc1p) and 

mitochondrial function in S. cerevisiae  

In S. cerevisiae, several reports have linked SLs to mito-

chondrial function via the action of Isc1p [68-73]. Report-

edly, Isc1p mainly resides in the ER, but localizes to the 

outer mitochondrial membrane during the late exponential 

and post-diauxic growth phase [68, 71, 177, 178]. Isc1p is 

homologous to the mammalian neutral SMases (nSMase) 

[124]. Interestingly, a novel SMase in zebrafish cells was 

identified that localizes to the intermembrane space 

and/or the inner mitochondrial membrane [168]. Further-

more, a novel murine nSMase was reported to localize to 

both mitochondria and ER termed mitochondria-associated 

nSMase (MA-nSMase) [169]. MA-nSMase expression varies 

among tissues and like Isc1p in yeast [123, 179] its activity 

is highly influenced by phosphatidylserine and CL [169]. 

Though a human MA-nSMase has not yet been character-

ized, a putative human MA-nSMase encoding gene has 

been identified [180]. It is therefore conceivable that the 

MA-nSMase is the mammalian counterpart of yeast Isc1p, 

though this has yet to be elucidated as well as a putative 

role for human MA-nSMase in regulating mitochondrial 

function by modulating SL-levels. 

Isc1p and its associated SL species have been extensive-

ly studied as regulators of mitochondrial function as sever-

al studies demonstrated that Δisc1 mutants display several 

markers of mitochondrial dysfunction such as a decreased 

CLS [70], the inability to grow on a non-fermentable carbon 

source [69, 71, 72, 181, 182], increased frequency of petite 
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formation [178], mitochondrial fragmentation [72] and 

abnormal mitochondrial morphology [73]. Furthermore, 

Δisc1 mutants display an aberrant cellular and mitochon-

drial SL composition as Δisc1 mutants exhibit decreased 

levels of all SLs with the most striking decreases in α-OH-

C24-phytoCer and α-OH-C26-phytoCer species, while α-OH-

C14-phytoCer and C26-phytoCer levels are increased [178]. 

In addition, Δisc1 mutants are characterized by decreased 

dhSph and α-OH-phytoCer levels and increased C26-dhCer 

and C26-phytoCer levels during CLS [181]. Strikingly, exoge-

nous addition of C12-phytoCer allows Δisc1 mutants to 

grow on a non-fermentable carbon source [71]. In line with 

Cowart and coworkers who reported that Δisc1 mutants 

display aberrant gene regulation [147], Kitagaki and 

coworkers revealed that mitochondrial dysfunction related 

to loss of Isc1p is caused by a misregulation of gene ex-

pression rather than an inherent mitochondrial defect as 

Δisc1 mutants are unable to up-regulate genes that are 

involved in non-fermentable carbon source utilization, and 

down-regulate genes related to nutrient uptake and amino 

acid metabolism [182]. This points to an important signal-

ing role for Isc1p-mediated SL generation in regulating mi-

tochondrial function in yeast. 

Currently identified downstream signaling proteins re-

lated to perturbed mitochondrial function in Δisc1 mutants 

include the type 2A-related serine-threonine phosphatase 

Sit4p [183], the mitogen-activated protein kinase Hog1p, 

involved in response to hyperosmotic stress [184-187], and 

the TORC1/Sch9p pathway [69, 72, 177, 181]. The 

TORC1/Sch9p signaling pathway however is proposed as 

the central signaling axis to pass upstream SL signals to 

downstream effectors such as Hog1p and Sit4p that affect 

mitochondrial function [72]. It is likely that additional sig-

naling pathways are also involved in modulating mitochon-

drial function in response to SLs, however, these pathways 

have yet to be identified. For more information concerning 

our current knowledge on how SLs related to the action of 

Isc1p are implicated in regulating mitochondrial function, 

and the role of the aforementioned signaling proteins the 

reader is referred to [74].  

 

S. cerevisiae Δncr1 mutants, a model for Niemann Pick 

type C1 

NPC is a fatal lipid storage disease with progressive neuro-

degeneration that affects 1/150.000 live births [188]. While 

neurodegeneration is the most prominent feature of NPC, 

organs such as the liver, ovaries and lungs also display ab-

errant lipid storage [189]. NPC is typically caused by muta-

tions in the genes encoding NPC1 and NPC2 accounting for 

95 % and 5 % of all cases, respectively [190-192]. NPC1 and 

NPC2 remove cholesterol from the late endo-

somes/lysosomes (LE/LY) [191, 192]. Cholesterol is a sterol 

involved in membrane function modulation and precursor 

to steroid hormones, oxysterols and vitamin D [193]. NPC1-

deficient cells tend to accumulate lipids such as cholesterol, 

glycoSL and Sph in the LE/LY [79, 194, 195]. Despite the 

facts that the specific mechanisms leading to neurodegen-

eration in NPC are not well established, mitochondrial dys-

function and oxidative stress are found to be key charac-

teristics of NPC [196-200]. Intriguingly, a pharmacological 

approach targeting glycoSL synthesis alleviates symptoms 

in NPC animal models [201], however, an underlying effect 

on mitochondrial function was not addressed. Hence, tar-

geting SL homeostasis might be a promising approach in 

treatment of NPC. 

Given the conservation of NPC1 and NPC2 in eukary-

otes, several non-mammalian models are available to study 

NPC including the model yeast S. cerevisiae [202]. In yeast, 

Ncr1p (NPC1 related gene 1) is the orthologue of NPC1 

[175] and localizes to the membrane of the vacuole [203]. 

The role of Ncr1p has been described as fundamentally 

linked to SL homeostasis with sterol movement as a conse-

quence [175, 202]. Yeast does not synthesize cholesterol, 

but the structural relative ergosterol [204]. Whether or not 

the loss of Ncr1p in yeast causes ergosterol accumulation 

has to be clarified yet, as Malathi and coworkers showed 

that Δncr1 mutants do not exhibit aberrancies in sterol 

metabolism [175] while more recently two independent 

research groups showed the contrary [205, 206]. Still, in-

tracellular sterol transport has been linked to mitochondri-

al function in yeast [207]. In contrast to Δncr1 mutants, 

mutations in the putative sterol-sensing domain of Ncr1p 

causes several phenotypes such as impaired growth at 

elevated temperatures, increased salt sensitivity and low 

growth on acetate and ethanol as carbon source [175]. 

Such phenotypes were ascribed to alterations in SL metab-

olism [175], as observed in NPC [79]. Although initial stud-

ies with Δncr1 mutants did not show any observable phe-

notype specifically related to loss of Ncr1p but rather asso-

ciated with Ncr1p mutations, Berg and coworkers reported 

that Δncr1 mutants are resistant to the ether lipid drug 

edelfosine [208].  

Nevertheless, Vilaça and coworkers reported very re-

cently on phenotypes of Δncr1 mutants that at least partly 

resemble cellular alterations/aspects observed in NPC pa-

tients. For instance, Δncr1 mutants display increased hy-

drogen peroxide sensitivity and shortened CLS, with in-

creased prevalence of oxidative stress markers [205]. Also, 

their results indicate that Δncr1 mutants display mitochon-

drial dysfunction as these mutant cells are for instance 

unable to grow on a non-fermentative carbon source, dis-

play decreased Δψm and mitochondrial fragmentation [205]. 

In addition, Δncr1 mutants display aberrant SL homeostasis 

as such mutants accumulate LCBs due to increased turno-

ver of complex SLs [205]. Taken together, in line with NPC 

[79, 196-200], Δncr1 mutants display markers of oxidative 

stress, mitochondrial dysfunction and accumulate SLs. 

Mitochondrial function in Δncr1 mutants is suggested 

to be regulated by SLs. Characteristic for Δncr1 mutants is 

the increased Pkh1p-dependent activation of Sch9p. Con-

comitantly, Δncr1Δpkh1 and Δncr1Δsch9 mutants display 

restored mitochondrial function as these double mutants 

are for instance able to grow on a non-fermentable carbon 

source [205]. Thus, as suggested for Δisc1 mutants [74], 

this indicates that Sch9p is involved in regulating mito-

chondrial function in response to SLs in Δncr1 mutants. 

Taken together, these results suggest that SLs indeed are 
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essential determinants of mitochondrial dysfunction asso-

ciated with NPC. 

Next to the above described study, yeast studies have 

shed light on new potential targets for treatment of NPC. 

Munkacsi and coworkers identified 12 pathways and 13 

genes that are of importance for growth of Δncr1 mutants 

during anaerobis in presence of exogenous ergosterol 

[209]. S. cerevisiae cells become auxotrophic to sterol in 

absence of oxygen [210]. Based on their results, they hy-

pothesized that histone deacetylation contributes to the 

pathogenesis of NPC and indeed confirmed this in NPC-

derived fibroblasts: genes encoding histone deacetylases 

(HDACs) are upregulated in NPC-derived fibroblasts. His-

tone deacetylase (HDAC) plays a key role in gene regulation 

by removing acetyl groups from specific lysine residues on 

histones, which increases DNA condensation and thus 

thereby decreases gene expression. The opposite reaction 

is catalyzed by histone acetyltransferases and this increas-

es gene expression [211, 212]. Intriguingly, Sph kinase 2 

(SphK2), one of the two Sph kinase isoforms which mainly 

localizes to the nucleus [213], has been shown to associate 

with HDAC1 and HDAC2, two class I HDACs [214], in re-

pressor complexes as well as histone H3 and thereby in-

creasing H3 acetylation and transcription. This increase in 

H3 acetylation and transcription is attributed to the SphK2-

dependent Sph-1-P production in the nucleus which direct-

ly binds to the active site of HDAC1 and HDAC2, and there-

by inhibits their activity and linking SLs to gene expression 

[215]. In addition, Munkacsi and coworkers could reverse 

aberrant HDAC function and show concomitant improved 

NPC characteristics such as decreased accumulation of 

cholesterol and SLs [209]. In line, HDAC inhibitors were 

recently suggested as a promising therapeutic in treatment 

of NPC [216]. Hence, the study by Munckacsi and cowork-

ers indicates that S. cerevisiae is a powerful tool to identify 

novel pathways involved in the pathogenesis of NPC and 

for selecting novel therapeutic targets and therapies. 

 

S. cerevisiae as a model to study Cu toxicity in context of 

Wilson disease 

WD is a relevant human pathology (incidence 1/30.000) 

caused by mutations in the gene encoding the Cu-

transporting ATPase ATP7B resulting in the accumulation 

of excess Cu in the liver and increased intracellular Cu lev-

els [176, 217-219]. This results in acute liver failure or cir-

rhosis but also neurodegeneration [217, 218, 220]. Inter-

estingly, the yeast CCC2 gene, encoding a P-type Cu-

transporting ATPase, is homologous to ATP7B [221]. Cu 

uptake in yeast is mediated by the high-affinity Cu trans-

porter Ctr1p [222] and Cu is subsequently delivered to 

Ccc2p by the action of the Cu metallochaperone Atx1p 

[223]. Ccc2p transports Cu to the Golgi lumen for Cu incor-

poration into Fet3p, which is required for iron uptake [224]. 

Loss of Ccc2p results in respiration defects and defective 

iron uptake [224, 225]. Also, Δccc2 mutants exhibit defec-

tive growth on low iron-containing growth media which 

can be rescued by overexpression of wild type ATP7B or 

WD-related ATP7B mutants [226, 227]. However, ATP7B 

mutants do not restore Δccc2 mutant growth on low iron-

containing growth medium to the same extent as wild type 

ATPB [226, 227]. Mechanistic events that are characteristic 

for Cu-induced toxicity in liver cells is Cu-induced mito-

chondrial dysfunction [6] and Cu-induced increased acid 

SMase (aSMase) activity [30]. The latter study showed that 

Cu increases aSMase acitivity resulting in increased levels 

of pro-apoptotic Cer [30, 228]. In addition, their results 

show that aSMase inhibition, either by pharmacological 

intervention or genetic disruption prevents Cu-induced 

apoptosis [30]. Interestingly, there is an increased constitu-

tive activation of aSMase in plasma of WD patients. Thus, 

Cu-induced toxicity is fundamentally linked to mitochon-

drial dysfunction and aberrant SL metabolism. 

We recently showed that the A. thaliana-derived 

decapeptide OSIP108 [229] prevents Cu-induced apoptosis 

and oxidative stress in yeast and human cells [230], but 

also prevents Cu-induced hepatotoxicity in a zebrafish lar-

vae model (unpublished data). Based on the observation 

that OSIP108 pretreatment of HepG2 cells was necessary in 

order to observe anti-apoptotic effects, we investigated 

the effect of OSIP108 on SL homeostasis in HepG2 cells and 

found that OSIP108-treated HepG2 cells displayed de-

creased levels of sphingoid bases (Sph, Sph-1-P and dhSph-

1-P), dhCer species (C12 and C14), Cer species (C18:1 and C26) 

and SM species (C14, C18, C20:1 and C24). Of note is that 

dhSph levels in OSIP108-treated HepG2 cells were also 

decreased but not to a significant level. These observations 

led to the hypothesis that OSIP108 might act as a 3-

ketodihydrosphingosine reductase inhibitor. Hence, we 

subsequently validated these observations in S. cerevisiae 

and found that exogenous dhSph addition abolished the 

protective effect of OSIP108 on Cu-induced toxicity in yeast 

cells [230]. As exogenous dhSph abolished this protective 

effect, this suggests that SLs are directly involved in Cu-

induced toxicity in yeast and mammalian cells, and that 

compounds that can rescue Cu-induced toxicity in yeast 

seem to specifically target SL homeostasis. There is howev-

er not yet conclusive evidence to support this hypothesis.  

In addition, our ongoing research is aimed at identify-

ing novel compounds that increase yeast tolerance to sug-

gested inducers of mitochondrial dysfunction, including Cu. 

As such, by screening the Pharmakon 1600 repositioning 

library, we identified at least 1 class of off-patent drugs 

that prevent Cu-induced toxicity in yeast (unpublished da-

ta). Thus far, this drug class has not been linked to Cu tox-

icity, nor does their mammalian target have a yeast coun-

terpart. We are currently translating these data to a higher 

eukaryotic setting. Hence, this indicates that our Cu-

toxicity yeast screen can result in the identification of new 

novel therapeutic options and unknown targets in treat-

ment of, for instance, WD.  

 

CONCLUSION 

In conclusion, several studies in S. cerevisiae indicate an 

important signaling role for SLs in maintaining correct mi-

tochondrial function. These data were confirmed in rele-

vant mammalian models for pathologies characterized by 

mitochondrial dysfunction. More specifically, knowledge 
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on the link between SLs and mitochondrial function gener-

ated in the model yeast S. cerevisiae advanced research in 

particular diseases such as WD and NPC. In addition, using 

yeast as screening model for these diseases, development 

of novel therapies seems feasible and promising. 

Noteworthy is, however, that different SL species clear-

ly have different roles as exemplified by the differential 

effect of Cer species with different chain length on the 

induction of the mitochondrial surveillance pathway in C. 

elegans [164]. Moreover, the differential role of Cer spe-

cies with different chain length in human diseases was 

discussed recently [231]. As for yeast research, the study 

by Montefusco and coworkers showed that specific groups 

of Cer species that vary in side chain and hydroxylation 

coordinate different sets of functionally related genes 

[148]. Thus, besides the fact that different Cer species are 

subjected to regulation by specific biochemical pathways in 

specific subcellular compartments, they also serve distinct 

roles, which was discussed previously by Hannun and 

Obeid [89]. In the latter review article, the interconnectivi-

ty of the SL metabolism was also highlighted, given the fact 

that manipulating one enzyme involved in SL metabolism 

not only leads to the perturbation of its derived SL metabo-

lite, but also to downstream derived SL species, denoted as 

the ‘metabolic ripple effect’. Hence, despite our extensive 

knowledge on SL metabolism and functioning, the concept 

of many ceramides and the interconnectivity of SL metabo-

lism introduces additional complexity in tackling the roles 

for specific SL species in SL signaling.  

In conclusion, basic yeast research has provided im-

portant clues for SL signaling events that impact on mito-

chondrial function, in higher eukaryotic and mammalian 

cells, as well as for novel therapeutic options for diseases 

in which mitochondrial dysfunction is critical. 
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