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Obesity and dyslipidemia are risk factors for metabolic dis-
orders including diabetes and cardiovascular disease. Sphin-
golipids such as ceramide and glucosylceramides, while being
a relatively minor component of the lipid milieu in most tis-
sues, may be among the most pathogenic lipids in the onset of
the sequelae associated with excess adiposity. Circulating fac-
tors associated with obesity (e.g., saturated fatty acids, in-
flammatory cytokines) selectively induce enzymes that pro-
mote sphingolipid synthesis, and lipidomic profiling reveals
relationships between tissue sphingolipid levels and certain
metabolic diseases. Moreover, studies in cultured cells and
isolated tissues implicate sphingolipids in certain cellular
events associated with diabetes and cardiovascular disease,

including insulin resistance, pancreatic �-cell failure, cardio-
myopathy, and vascular dysfunction. However, definitive ev-
idence that sphingolipids contribute to insulin resistance, di-
abetes, and atherosclerosis has come only recently, as
researchers have found that pharmacological inhibition or
genetic ablation of enzymes controlling sphingolipid synthe-
sis in rodents ameliorates each of these conditions. Herein we
will review the role of ceramide and other sphingolipid me-
tabolites in insulin resistance, �-cell failure, cardiomyopathy,
and vascular dysfunction, focusing on these in vivo studies
that identify enzymes controlling sphingolipid metabolism as
therapeutic targets for combating metabolic disease. (Endo-
crine Reviews 29: 381–402, 2008)
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I. Introduction

OBESITY PLACES INDIVIDUALS at risk for type 2 di-
abetes, hypertension, coronary heart disease, hyper-

coaguability, stroke, gallbladder disease, sleep apnea, osteo-
arthritis, osteoporosis, and certain types of cancer. With
almost two thirds of the American population overweight
and 30% clinically obese, obesity-related expenditures ac-
count for over 40% of health care costs and represent a
significant fraction of the gross national product (1, 2). With
the predicted increase in both obesity and costs of treating its
associated health abnormalities, these expenditures are pre-
dicted to double by 2025 (3). Moreover, as a result of the
myriad pathogenic consequences of nutrient oversupply, life
expectancy, which has risen steadily for two centuries, is
predicted to decline (4).
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Despite considerable attention, the mechanism by which
obesity impairs the function of peripheral tissues is unclear.
A hypothesis gaining credibility is that the delivery of lipids
to tissues in excess of their oxidative or storage capacities is
an underlying component of many of the pathogenic con-
ditions associated with obesity. Although sphingolipids are
a relatively minor component of the lipid milieu in most
mammalian cells, their accumulation in tissues such as the
liver, muscle, heart, pancreas, and vasculature has long been
speculated to play a role in the onset and development of
metabolic diseases.

First, unlike other more abundant lipids, sphingolipid lev-
els are selectively up-regulated by circulating factors asso-
ciated with obesity and metabolic disease. Indeed, ceramides
and related sphingolipids have been shown to accumulate in
obese humans and rodents (summarized in Table 1).

Second, the sphingoid backbone of sphingolipids relies on
the availability of saturated fatty acids (5, 6), which have
generally been regarded to be more pathogenic than unsat-
urated ones (7). Thus, excess intake or impaired oxidation of
saturated fat likely contributes to the accrual of sphingolipids
in tissues.

Third, bioinformatic strategies for conducting lipidomic
analysis have revealed particularly strong associations be-
tween hepatic ceramide levels and the extent of steatosis in
a rodent model of obesity (8).

Fourth, the addition of exogenous sphingolipids, includ-
ing ceramides and glucosylceramides, to isolated cells or
tissues recapitulates some of the cellular events associated
with metabolic disease.

Despite these observations, however, conclusive evidence

that aberrant sphingolipid accumulation contributes to met-
abolic disease has come only recently. Owing to the devel-
opment of pharmacological inhibitors of enzymes control-
ling sphingolipid synthesis and metabolism, coupled with
the recent cloning of genes encoding the enzymes that reg-
ulate ceramide accrual, scientists have recently demon-
strated that inhibiting enzymes controlling sphingolipid syn-
thesis has beneficial effects in rodent models of
atherosclerosis, insulin resistance, diabetes, and cardiomy-
opathy. A discussion of this in vivo work is the focus of this
review.

II. Regulation of Sphingolipid Synthesis and
Metabolism: Effect of Obesity

The recent advances in understanding the role of sphin-
golipids in metabolic disease have involved the manipula-
tion of enzymes controlling rates of ceramide synthesis, deg-
radation, and metabolism. A series of four sequential
reactions promote the synthesis of bioactive ceramide from
its precursors, free fatty acid (FFA) and serine (Fig. 1).

• Serine palmitoyltransferase (SPT) catalyzes the first reaction,
which condenses serine with palmitoyl-coenzyme A
(CoA) to produce 3-ketosphinganine (reviewed in Ref. 9).
Two gene products (Sptlc1 and 2) that physically associate
are necessary for enzyme activity. A putative third subunit
has recently been identified in both yeast (10) and mam-
mals (11). In all organisms, the enzyme is highly selective
for saturated fatty acyl-CoA containing 16 � 1 carbons.
The rate of this reaction is influenced largely by the avail-

TABLE 1. Ceramide levels in liver, muscle, and serum

Animal model Liver Muscle Serum Ref.

Female Zucker fa/fa rat 126% 152% 71
Male ZDF rat 140% 151% 1120% 12
Male Zucker fa/fa 143% NC* 1111%* 12
ob/ob mice 1987% NC* �1200% 73, 75
Lard oil-infused rat 161% 189% 12
Liposyn-infused rat NC NC 12,127
Intralipid-infused rat 145% 125
High-fat-fed rat (3 wk) 170–

100%
161,162

High-fat-fed rat (4 wk) 123% 294
Dexamethasone-dosed rat 1140% 194% 1310% 12
Streptozotocin diabetic rat 175–

250%
295

LPS-treated rats 1150% 60
LPS-treated hamsters 1150% 59
LPS-treated mice �11000% 58
Safflower oil diet in mice 29% 222% 296
Fish oil diet in mice NC 232% 296
Muscle LPL mice �145% 15
Obese humans 184% 76
Intralipid-infused humans 148% 128
Liposyn-infused humans NC 123
LPS-treated humans 11000% 58

Insulin-resistant rodents and humans often display elevated ceramide concentrations in liver, muscle, or serum as compared to lean or
untreated control subjects. The percentage of change and direction of change compared to controls are indicated in the relevant tissue categories.
The relevant studies are listed. Asterisks denote unpublished observations. Unpublished samples were enzymatically measured as previously
described from flash-frozen samples obtained from anesthetized animals. Muscle ceramide content was analyzed from soleus muscles of
dexamethasone-treated (400 �g/kg dexamethasone every 12 h for 36 h) male Sprague Dawley rats (250 g). Ceramide was measured in soleus
muscles 4 wk after male Sprague Dawley rats were made diabetic by streptozotocin (60 mg/kg). Ceramide was compared from gastrocnemius
muscles of marmots obtained in July (lean) or October (obese).
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ability of the FFA substrate (5), and this explains the mech-
anism by which saturated fats, but not unsaturated ones,
drive the synthesis of sphingolipids (12, 13). Inhibitors of
SPT include the sphingofungins lipoxamycin and myri-
ocin and the broad spectrum, and less specific, antibiotic
cycloserine (14).

• Ketosphingaine reductase reduces 3-ketosphinganine to pro-
duce sphinganine through an nicotinamide adenine dinu-
cleotide phosphate-dependent mechanism. The 3-keto-
sphinganine intermediate is only rarely observed in cells,
suggesting that this reaction occurs rapidly (15).

• (Dihydro)ceramide synthases (CerS) acylate sphinganine to
produce dihydroceramide (reviewed in Ref. 16). Recent
studies indicate that a large family of CerS isoforms exists,
each demonstrating selectivity for particular fatty acyl-
CoA substrates (16). Because of the existence of multiple
specific enzymes catalyzing this reaction, it is tempting to
speculate that individual ceramide subspecies will have
distinct biological functions, but this has not yet been
confirmed through experimentation. A number of fungi
metabolites have been shown to inhibit this step, with the
most widely-used reagent being fumonisin B1 (14).

• Dihydroceramide desaturases oxidize inactive dihydrocer-
amide into active ceramide. Two isoforms have been iden-
tified. Dihydroceramide desaturase 1 (Des1) inserts this
key double bond in most peripheral tissues (17), whereas
the Des2 isoform preferentially produces phytosphingo-
lipids and is largely restricted to the gut and kidneys (17).
The anticancer and antidiabetic agent fenretinide (18, 19),
a cyclopropene-containing sphingolipid (termed GT11),
and a rationally designed compound (termed XM642) are
inhibitors of this enzyme (14, 20).

Once generated, ceramide is the common precursor of
complex sphingolipids, and the molecule can be glucosy-
lated, phosphorylated, or deacylated to produce a wide array
of metabolites.

• Ceramidases deacylate ceramide to produce sphingosine,
which can in turn be phosphorylated by sphingosine kinase
to produce sphingosine 1-phosphate (S1P). S1P often op-
poses ceramide action, leading researchers to propose the
existence of a ceramide:S1P rheostat that controls cellular
responses (21). Ceramidases, which can sometimes cata-
lyze the reverse reaction to convert sphingosine back into
ceramide, can be distinguished by their pH optima (22).
Collectively, ceramidases are ubiquitously distributed
throughout cellular membranes and are also secreted into
the extracellular milieu.

• Ceramide kinase phosphorylates ceramide to produce cer-
amide 1-phosphate, which activates intracellular enzymes
such as phospholipase A2 and certain phosphatases, and
may be important in eicosanoid biosynthesis (23).

• Glucosylceramide synthase tethers glucose with ceramide to
create glucosylceramide, which is the precursor of com-
pound gangliosides. These complex lipids are particularly
abundant in the brain but are less prevalent in other pe-
ripheral tissues (24, 25).

• Sphingomyelin synthase converts ceramide into sphingo-
myelin by catalyzing the addition of a phosphocholine

FIG. 1. Schematic diagram illustrating sphingolipid synthesis and me-
tabolism. 1) Serine palmitoyltransferase catalyzes the condensation of
serine and palmitoyl CoA. 2) 3-Ketosphinganine reductase catalyzes
sphinganine formation. 3) Dihydroceramide synthases add a second acyl
chain to sphinganine resulting in dihydroceramide formation. 4) Dihy-
droceramide desaturase catalyzes formation of bioactive ceramide. 5)
Ceramidase deacylates ceramide to form sphingosine and fatty acid. 6)
Ceramide kinase phosphorylates ceramide to form ceramide 1-phos-
phate. 7) Glucosylceramide synthase adds glucose, an initial step in
ganglioside formation. 8) Sphingomyelin synthase promotes the addition
of phosphocholine to ceramide. 9) Sphingomyelinase regenerates cer-
amide and choline from the breakdown of sphingomyelin.
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head group (26). Importantly, sphingomyelinase performs
the reverse reaction to rapidly regenerate ceramide and
choline from sphingomyelin (27).

In general, the de novo synthesis of ceramide occurs on
the outer leaflet of the endoplasmic reticulum. Ceramide
is then modified into complex sphingolipids in the golgi
complex. However, several lines of evidence suggest that
sphingolipid metabolism can also occur in the mitochon-
dria. First, several enzymes involved in ceramide synthe-
sis or metabolism (e.g., ceramide synthase, ceramidase,
sphingomyelinase, sphingomyelin synthase) are resident
in mitochondrial membranes (28 –34). Second, isolated mi-
tochondria were found to be capable of generating cer-
amide (34). Third, the inflammatory cytokine TNF� was
shown to directly stimulate ceramide production in this
organelle (35). So, although sphingolipids are ubiqui-
tously present in cell membranes, the intracellular cites of
production are of interest because sphingolipids produced
in different locales may have distinct functions (34).

A. Sphingolipids in the diet

Sphingolipids are present in all eukaryotes and many pro-
karyotes and thus are present in the diet. They are particu-
larly prevalent in meat, eggs, and dairy products and may
have significant roles within the digestive tract (36). Using
radioactive sphingolipid tracers, researchers have observed
the appearance of small amounts of label in blood, lymph,
and liver (37, 38). Moreover, supplementing the diet with
high levels of sphingolipids can increases serum sphingo-
myelin concentrations and be proatherogenic (39). However,
it is unlikely that increased intake of sphingolipids promotes
their accumulation during obesity. The vast majority of
sphingolipids are degraded in the gut by resident glucoce-
ramidases, sphingomyelinases, and ceramidases (37). About
25% of consumed sphingolipids resist degradation, only to
be secreted in the feces, predominantly in the form of cer-
amide (37).

B. Regulation of sphingolipid synthesis and metabolism
during obesity

A number of factors associated with obesity selectively
alter rates of ceramide synthesis. Long-chain saturated fats,
which are more poorly oxidized than their unsaturated coun-
terparts (40), are required for formation of the sphingoid
backbone and are sufficient to drive the formation of cer-
amide (6). Thus, increased saturated acyl chains within cir-
culating lipoprotein particles likely contribute to the induc-
tion of ceramide in peripheral tissues. In addition, obesity is
associated with a state of chronic low-level inflammation (41,
42), which likely contributes to the induction of ceramide
accumulation.

First, an expanded fat pad secretes a number of inflam-
matory cytokines, including TNF�, IL-1, IL-6, plasminogen
activator inhibitor 1 (PAI-1), and C-reactive protein. These
cytokines derive either from enlarged adipocytes or from
macrophages that infiltrate the tissue to consume dying adi-
pocytes, and knockout mice lacking PAI-1 or TNF� receptors
are protected from many of the metabolic consequences of

obesity (43, 44). A number of these factors promote lipolysis,
thus increasing delivery of fatty acids to other peripheral
tissues. Additionally, some of these pathogenic agents se-
lectively alter metabolic pathways to promote the incorpo-
ration of the incoming fat into ceramide. For example, TNF�
produces a rapid increase in ceramide by activating acidic
and neutral sphingomyelinase isoforms and effects a chronic
and sustained elevation in de novo ceramide synthesis (45–
47). TNF� also stimulates the production of gangliosides
(48–50). Similarly, IL-1 is a potent inducer of ceramide
(51–55).

Second, Flier and colleagues (56, 57) recently demon-
strated that fatty acids could activate toll-like receptors
(TLRs), which are involved in innate immune responses.
These TLRs produce TNF�, IL-6, and other cytokines ca-
pable of producing ceramide. Lipopolysaccharide (LPS), a
strongly immunogenic component of Gram-negative bac-
teria and an activator of TLR4, has been shown to induce
ceramide accumulation in serum, liver, kidney, and spleen
(58 – 60). Moreover, MyD88, an essential component of
TLR signaling pathways, has been shown to activate
sphingomyelinase (51). Supporting the hypothesis that
TLRs are essential for promoting ceramide accrual is the
observation that the subset of fatty acids that induce cer-
amide (13) are similar to those that activate TLRs (56, 57).

The mechanism(s) by which these factors influence cer-
amide synthesis or degradation is incompletely understood
because these factors could alter either the activity or the
expression of these biosynthetic intermediates.

Another factor associated with obesity-induced metabolic
derangements is cortisol, which has long been known to
induce adiposity, insulin resistance, hyperlipidemia, and hy-
pertension (Cushing’s syndrome). Circulating cortisol levels
are not elevated in the obese, but 11�-hydroxysteroid dehy-
drogenase type 1 (11HSD1), an enzyme that converts inactive
cortisone to active cortisol, is increased in sc tissue and cor-
relates with omental fat cell size (61). Transgenic overex-
pression of 11HSD1 in adipose tissue causes obesity, hyper-
tension, and insulin resistance (62, 63), and knockout mice
lacking the enzyme are protected from diabetes (64). Thus,
inhibitors of 11HSD1 are being developed as a means of
combating metabolic disease (65).

Glucocorticoids have long been known to have a large and
specific effect on sphingolipids. In tissue culture systems,
dexamethasone was demonstrated to increase membrane
sphingomyelin, sphingosine, or ceramide levels in a broad
range of cell types (66–70). Epididymal fat cell ghosts iso-
lated from adrenalectomized rats demonstrated decreased
sphingomyelin levels, which could be restored by the ad-
ministration of the synthetic glucocorticoid dexamethasone
(68). Moreover, dexamethasone treatment of rats induces
ceramide within the portal circulation and the liver, while
increasing the hepatic expression of various biosynthetic en-
zymes including SPT and CerS1 (12).

C. Quantification of sphingolipid levels during obesity

Given the number of factors predicted to induce cer-
amide during obesity, one would be surprised not to detect
selective increases in certain sphingolipids in rodent mod-
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els of the condition. Indeed, a growing number of inves-
tigators have described elevations in ceramide in muscle
and liver of obese rats or mice. For example, Turinsky et
al. (71) demonstrated that ceramide, as well as the glyc-
erolipid diacylglycerol, accumulates in muscle and liver of
female Zucker (fa/fa) rats. Other animals with increased
ceramide levels are summarized in Table 1. Advancements
in lipidomics technologies have made it possible to quan-
tify a broader range of lipid metabolites in a single sample,
as well as to assess differences in fatty acid chain length
and degree of saturation. Using such approaches, Samad
et al. (72) have reported detailed changes in the sphingo-
lipid metabolites produced in adipose tissue and serum of
leptin-deficient, diabetic ob/ob mice. Sphingomyelin and
ceramide levels were lower in adipose tissue but higher in
serum, whereas sphingosine levels were higher from both
locales in obese mice. Additionally, they reported in-
creases in sphingosine, SMase, and SPT abundance in ad-
ipose tissue of obese mice compared with lean controls.
Using a bioinformatics strategy to characterize a broader
array of lipid species, Yetukuri et al. (8) correlated a variety
of lipid metabolites with the induction of hepatic steatosis;
C16 ceramide positively correlated with liver triglycer-
ides, whereas a host of other lipid metabolites did not.

Several reports have suggested that glucosylceramides,
some of which are implicated in insulin resistance (see Section
IV) are also elevated in obese rodents: 1) Zucker fa/fa rats
and/or ob/ob mice display glucosylceramide in liver (73),
and GM3 synthase expression is elevated in adipose tissue
(48); 2) streptozotocin-induced diabetic rats have elevated
hepatic GM3 levels (74); and 3), Zucker diabetic fatty (ZDF)
rats have elevated muscle (quadriceps) GM3 ganglioside lev-
els (75). However, the latter finding is in contrast to that
reported by Aerts et al. (73), who found that neither glu-
cosylceramide nor GM3 gangliosides were elevated in mus-
cle or liver of ZDF rats.

Studies performed with insulin-resistant human sub-
jects similarly demonstrate aberrant ceramide accumula-
tion. Adams et al. (76) demonstrated that obese, insulin-
resistant subjects display significantly higher ceramide
content in vastus lateralis muscle than lean subjects with
no family history of diabetes. By contrast, they found no
significant differences in other sphingolipids. Gorska et al.
(77) demonstrated that serum sphinganine and sphin-
gosine were elevated in type 2 diabetics compared with
healthy control subjects, which may suggest elevations in
serum ceramide as well. Thus far, these studies have in-
volved analysis of relatively small numbers of people and
have not revealed whether ceramide accumulation pre-
dicts insulin resistance in lean individuals.

III. Sphingolipids in Atherosclerosis

Atherosclerosis is characterized by the deposition of ath-
eromatous plaques containing cholesterol and other lipids on
the innermost layer of arterial walls, and the condition is a
leading cause of death in the United States. Aggregation of

lipoproteins is a fundamental step in the formation of ath-
erosclerotic lesions.

A. Modulation of sphingolipid levels prevents plaque
formation in ApoE-deficient mice

The most abundant lipids within lipoproteins include cho-
lesterol, cholesterol esters, triglycerides, and sphingomyelin.
Noting that plasma sphingomyelin levels correlate with cor-
onary artery disease independently of cholesterol levels (78,
79) and that atherosclerotic lesions contained much higher
concentrations of ceramide when compared with plasma
low-density lipoproteins (LDLs) (80, 81), Park et al. (82) in-
vestigated whether inhibiting rates of sphingolipid biosyn-
thesis affected plaque formation. They demonstrated that in
apolipoprotein E (apoE)-deficient mice, which are a com-
monly used rodent model of atherosclerosis, SPT activity and
plasma sphingomyelin levels increased markedly during
high-fat feeding. Treating these animals with the SPT inhib-
itor myriocin dramatically lowered SPT activity and reduced
plasma sphingomyelin levels by 64%, bringing it to the level
of standard chow-fed animals. Interestingly, it also caused a
reduction in circulating cholesterol, very low-density li-
poproteins, and LDLs. Ultimately the treatment strategy led
to a 93% reduction in atherosclerotic lesion coverage within
the aorta, as well as substantial decrease in plaques in the
brachiocephalic artery and aortic valve area.

Shortly after Park et al. (82) published their findings, Hoj-
jati et al. (83) reported similar results including the lowered
SPT activity, decreased plasma sphingomyelin, ceramide,
and S1P levels, and decreased atherosclerotic lesion area in
fat-fed apoE mice treated with myriocin. Despite the similar
conclusions, this group reported substantial differences.
First, they used an ip injection approach for administering
the drug, claiming that oral administration caused gastro-
intestinal toxicity. Second, they found that the treatment had
no effect on circulating cholesterol and triglyceride levels.
Similar conclusions were reached by Glaros et al. (84), who
found that myriocin additionally decreased serum glycos-
phongolipid levels.

In a follow-up study, Park et al. (85) addressed the issue of
gastrointestinal toxicity, noting that their treatment protocol
had no deleterious consequences in their subset of animals.
In this work, they demonstrated that myriocin prevented the
formation of atherosclerotic-like lesions caused by acutely
placing a nonocclusive polyethylene cuff on the femoral ar-
tery of the apoE knockout mice. After 4 wk on a high-fat diet,
the animals developed macrophage-rich atherosclerotic-like
lesions, which were again reduced by 98% by myriocin.
Moreover, they again saw the decrease in circulating cho-
lesterol, which they attributed to a suppression of sterol
regulatory element-binding protein.

Despite the subtle discrepancies between the findings of
these groups, their work strongly suggests that one or more
sphingolipids contributes to atherosclerotic lesion formation
in this animal model. Moreover, these studies were pioneer-
ing because they established experimental paradigms that
would be repeated in subsequent studies evaluating the tox-
icity of ceramides in metabolic disease.

Holland and Summers • Sphingolipids and Metabolism Endocrine Reviews, June 2008, 29(4):381–402 385

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/29/4/381/2354966 by U

.S. D
epartm

ent of Justice user on 16 August 2022



B. Mechanism by which sphingolipids promote
atherosclerosis and thrombosis

A number of different mechanisms have been proposed to
explain how sphingolipids may contribute to lesion
formation.

First, aggregation of atherogenic lipoproteins is important
for the initiation and progression of atherosclerosis. Studies
with purified LDLs suggest that the strong tendency of cer-
amides to self-aggregate may contribute to the amalgamation
of ceramide-enriched LDLs (86, 87). In support of this, bac-
terial sphingomyelinase promotes LDL aggregation, and the
ceramide content of aggregated LDLs is much higher than
plasma LDLs (80).

Second, ceramides can induce apoptosis in vascular wall
cells, thus contributing to plaque erosion that can induce
thrombosis (88, 89). A more complete discussion of cer-
amides and apoptosis is included in Section V.

Third, by blocking access to apoE and lipoprotein lipase,
sphingomyelin may block LDL uptake (90). This is consistent
with the aforementioned data indicating that myriocin se-
lectively lowers LDL levels.

Fourth, S1P stimulates endothelial and smooth muscle cell
proliferation, thus contributing to thickening of the vascular
wall and plaque stabilization (91, 92)

And fifth, ceramide may regulate the synthesis of PAI-1,
which contributes to atherosclerosis and thrombosis. TNF�
has been shown to regulate PAI-1 levels in cultured cells
(93–96), rodents (97), and humans (98). However, ceramide
may mediate this effect because sphingomyelinase and short
chain ceramides stimulate PAI-1 release in human umbilical
vein endothelial cells (99, 100) or human astrocytes (101).

IV. Sphingolipids in Insulin Resistance

Canonical insulin target tissues include skeletal muscle,
adipose tissue, and the liver. In muscle and fat, insulin pro-
motes glucose uptake by facilitating the translocation of glu-
cose transporter 4 (GLUT4) from intracellular stores to the
plasma membrane. In the liver, insulin inhibits glucose efflux
by blocking gluconeogenesis. Simultaneously, insulin acti-
vates anabolic enzymes and inhibits catabolic ones to pro-
mote the storage of the incoming glucose as glycogen. Al-
though insulin has been viewed historically as being
primarily involved in glucose uptake, the hormone addi-
tionally facilitates the uptake and storage of amino acids and
fatty acids, converting them to protein and lipid, respectively
(102–105). Recent studies suggest that insulin may have ac-
tions on other tissues that enable it to effectively manage
postprandial nutrient disposal. In the brain, insulin has been
proposed to serve in the regulation of satiety and to initiate
central signaling events that modulate anabolic responses in
peripheral tissues such as the liver (106–108). In the vascu-
lature, insulin promotes vasodilation, an important compo-
nent in promoting glucose clearance (109). In the �-cell, in-
sulin inhibits apoptosis and drives survival (110–112). All of
these processes are mediated by a common intracellular sig-
naling pathway summarized in Section IV.B (Fig. 2).

Insulin resistance occurs when a normal dose of insulin is
incapable of eliciting these anabolic responses. The condi-

tion, along with central obesity, dyslipidemia, hyperglyce-
mia, glucose intolerance, and hypertension, predicts devel-
opment of cardiovascular disease and diabetes (113, 114). As
proposed initially by Reaven (113, 115), insulin resistance

FIG. 2. Schematic diagram illustrating the canonical insulin signal-
ing pathway. The insulin receptor (IR) phosphorylates itself as well
as IRS. PI3 kinase (PI3K) phosphorylates 3-phosphoinositides, which
produce binding sites for PIP3 dependent kinase (PDK) and Akt via
their PH domains. Akt is phosphorylated by PDK and mTOR-Rictor,
which lead to active Akt kinase activity and its pleiotropic effects. P
denotes key phosphorylation events.

386 Endocrine Reviews, June 2008, 29(4):381–402 Holland and Summers • Sphingolipids and Metabolism

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/29/4/381/2354966 by U

.S. D
epartm

ent of Justice user on 16 August 2022



and its associated compensatory hyperinsulinemia may con-
tribute to the etiology of both of these conditions.

A. Modulating sphingolipid levels impacts insulin
sensitivity in vivo

An abundance of studies have evaluated the role of cer-
amides in the control of insulin sensitivity, using a wide
variety of cultured cell and rodent models of the condition.
Conclusions from these studies have identified a subset of
biosynthetic enzymes as therapeutic targets for improving
insulin sensitivity.

1. Lipid-induced insulin resistance. The addition of lipids in
excess of a tissue’s oxidative or storage capacity is sufficient
to induce insulin resistance. Strategies that have been im-
plemented to model this condition include the following: 1)
incubating isolated muscle strips with FFAs (12, 116–120); or
2) infusing lipid emulsions into rodents or humans (12, 121–
125). In both of these model systems, pharmacological or
genetic ablation of enzymes controlling ceramide biosynthe-
sis prevents the induction of insulin resistance.

• Infusing lard oil emulsions (a lipid emulsion composed of
diverse triglyceride species, of which 37% are saturated
fat) into the bloodstream of Sprague-Dawley rats via jug-
ular catheters promotes ceramide accrual in skeletal mus-
cle and liver while inducing insulin resistance (as assessed
by hyperinsulinemic-euglycemic clamps). Coinfusing in-
hibitors of SPT (i.e., myriocin, cycloserine) prevented the
increases in ceramide accumulation and maintained in-
sulin-stimulated glucose disposal (12). The improvement
in glucose homeostasis was due to increased glucose dis-
posal into skeletal muscle and a restoration in insulin
suppression of hepatic glucose output.

• Administration of saturated fats to isolated rodent mus-
cles has also been shown to induce insulin resistance via
a ceramide-dependent mechanism. Administering cer-
amide or palmitate to isolated muscle strips impairs 2-de-
oxyglucose uptake. Treating muscles with SPT (12) or CerS
inhibitors (our unpublished observation) made them re-
fractory to palmitate inhibition of insulin-stimulated glu-
cose uptake in isolated soleus muscles. Similarly, isolated
soleus muscles from mice lacking one allele of dihydro-
ceramide desaturase 1 were impervious to palmitate-in-
duced insulin resistance (12).1

An elevated ratio of saturated fats to unsaturated fats is a
risk factor for metabolic complications (126). The experi-
ments described above suggest that ceramide derived from
saturated fats could be a primary contributor to insulin re-
sistance. However, an interesting observation in these stud-

ies was that unsaturated fats induce insulin resistance by a
distinct mechanism that is ceramide-independent. Specifi-
cally, infusion of soy- or safflower-based lipid emulsions
(Liposyn II or Intralipid) that are enriched in the unsaturated
fatty acid linoleate promotes insulin resistance but does not
reliably induce ceramide (123, 127). [Note: Some researchers
have detected significant increases in ceramide content after
Intralipid infusion (125, 128), and it is unclear what causes the
discrepancy in findings.] Moreover, coinfusing SPT inhibi-
tors fails to prevent their induction of insulin resistance (12).
Studies in the isolated muscle system confirmed that li-
noleate (i.e., the predominant fatty acid side-chain in In-
tralipid and Liposyn II) antagonized 2-deoxyglucose uptake
via a ceramide-independent mechanism (12). Linoleate-in-
duced insulin resistance is likely to involve a glycerolipid
intermediate because mice lacking an enzyme that attaches
fatty acids to the glycerol backbone (mitochondrial glycerol
phosphate acyl-transferase) are protected from Intralipid-
induced hepatic insulin resistance (129). Studies conducted
by the Shulman laboratory have correlated the production of
diacylglycerol with the induction of unsaturated fat-induced
insulin resistance, and serine phosphorylation of insulin re-
ceptor substrate (IRS)-1 by protein kinase C (PKC) � and/or
inhibitor of nuclear factor-�B kinase (IKK) appears to be
involved in these effects (reviewed in Ref. 130). The obser-
vation that down-regulation of diacylglycerol kinase elevates
diacylglycerol and exacerbates insulin resistance (131) is con-
sistent with this hypothesis. Paradoxically, recent studies in
cultured myotubes suggest that di-linoleoyl phosphatidic
acid, and not diacylglycerol, may be the primary lipid me-
tabolite that antagonizes insulin action (132).

2. Glucocorticoid-induced insulin resistance. Excess glucocorti-
coids have long been suspected to produce insulin resistance,
and studies over the last few decades have begun to elucidate
the importance of these effects. Although it is relatively rare
for obese patients to display elevated serum glucocorticoid
levels present in classical Cushing’s syndrome, numerous
studies have suggested that obese and/or diabetic individ-
uals may display an elevated response to circulating
glucocorticoids. 11�-Hydroxysterol dehydrogenase 1 (11-
HSD1) reactivates glucocorticoid precursors (11 dehydro-
corticosterone in rodents or hydrocortisone in humans) to
form functionally active glucocorticoids (corticosterone in
rodents or cortisol in humans). The expression of the enzyme
correlates with obesity and diabetes in rodents (133, 134) and
humans (135–137), and manipulating expression of this en-
zyme in vivo has a profound effect on obesity and insulin
resistance. Specifically, overexpression of 11�-HSD1 in ad-
ipose tissue promotes obesity and insulin-resistant diabetes
(62). By contrast, 11�-HSD1 null mice or mice with adipose-
specific overexpression of 11�-HSD type 2, which performs
the reverse reaction to deactivate active glucocorticoids, are
protected from diet-induced obesity and maintain superior
glucose homeostasis and insulin sensitivity when challenged
with high-fat diets (138, 139). Collectively, these studies have
established the potential for heightened glucocorticoid re-
sponses to contribute to insulin resistance.

Although glucocorticoids have long been known to pro-
mote ceramide biosynthesis, the role of ceramide in their

1 Unlike the in vivo studies described above, which involved the
addition of a complex mixture of lipid metabolites, purified fatty acids
were added to the isolated muscles. Advantages of this strategy are that
it allows researchers to gain insight into the metabolic fates of specific
fatty acids and to determine how differences in their utilization may alter
disease. However, these results should be viewed with some caution
because the experimental model is relatively nonphysiological. Validat-
ing the results using lipid infusion or high-fat feeding models is essential
for gauging the relative importance in the control of insulin sensitivity
in vivo.
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induction of insulin resistance was not evaluated until re-
cently. Specifically, pretreating rats with the SPT inhibitor
myriocin completely prevented glucose intolerance resulting
from the administration of the synthetic glucocorticoid dexa-
methasone (12). This was due to the ability of the compound
to maintain suppression of hepatic glucose output and pro-
mote whole body 2-deoxyglucose uptake. Mice heterozy-
gous for Des1 were similarly protected from dexamethasone-
induced insulin resistance.

Glucocorticoids may also employ ceramide-independent
mechanisms in their regulation of hepatic insulin sensitivity.
In liver, a glucocorticoid-responsive element in cAMP reg-
ulatory element binding protein induces phosphoenolpyru-
vate carboxykinase, which governs the rate-limiting step in
gluconeogenesis (140, 141). Moreover, numerous cell culture
studies suggest that dexamethasone can under certain con-
ditions repress expression of other insulin-signaling inter-
mediates (142–145). The Semenkovich laboratory completed
a particularly impressive series of studies demonstrating that
peroxisome proliferator activated receptor (PPAR) �, a mem-
ber of the nuclear receptor superfamily that promotes lipid
uptake and oxidation, is critical for glucocorticoid-induced
insulin resistance. Specifically, they demonstrated that ge-
netic ablation PPAR� or disruption of hepatic vagal nerves
(which decreases hepatic PPAR� expression) prevented
dexamethasone-induced glucose intolerance and hepatic
glucose output. Curiously, in other tissues, most notably in
the heart, PPAR� overexpression (146) or activation (147)
promotes ceramide accumulation. Thus, the existence of a
relationship between PPAR� and ceramide signaling re-
mains a formal possibility.

3. Obesity-induced insulin resistance. With animal models, it is
difficult (perhaps impossible) to differentiate between effects
caused by lipid oversupply, glucocorticoids, and inflamma-
tion. However, given the relative role of ceramide as a com-
mon molecular intermediate linking many of these metabolic
stresses to the induction of insulin resistance, one would
predict that inhibition of sphingolipid production would
improve insulin sensitivity in obese rodents. Indeed, recent
studies suggest that this is in fact the case.

Obese leptin (or leptin receptor) -deficient (e.g., Zucker

fa/fa rats, ZDF rats, ob/ob mice, and db/db mice) and high
fat-fed animals display evidence of increased inflammation
and dyslipidema. Treating ZDF and Zucker fa/fa rats with
the SPT inhibitor myriocin prevented aberrant ceramide ac-
cumulation in muscle, liver, and serum and improved glu-
cose tolerance and insulin sensitivity (12) (Table 2). Similarly,
diet-induced obese mice maintained on oral doses of myri-
ocin displayed vast improvements in insulin sensitivity, as
measured by circulating insulin levels during glucose toler-
ance tests (12). In fact, the improvement in insulin sensitivity
was on par with rosiglitazone, one of the most effective
insulin-sensitizing drugs currently marketed. Fenretinide, a
chemotherapeutic agent that lowers circulating retinol-bind-
ing protein levels, improves insulin sensitivity in high fat-fed
mice (148). This drug was recently identified as an inhibitor
of Des1 (19); thus, some of its insulin-sensitizing actions may
result from effects on ceramide synthesis.

Studies with GM3 synthase null mice and inhibitors of
glucosylceramide synthase suggest that gangliosides may
additionally contribute to obesity-induced insulin resistance.
Mice lacking the GM3 synthase gene display lower fasting
glucose levels and improved glucose tolerance (149). When
challenged with high-fat diets, the GM3 synthase null mice
maintained superior glucose tolerance, improved insulin-
stimulated glucose uptake, and enhanced suppression of
hepatic glucose output measured by hyperinsulinemic-eu-
glycemic clamps.

The enhanced glucose homeostasis of GM3 synthase null
mice strongly suggests that targeted pharmacological dis-
ruption of glucosylceramide-producing enzymes may pro-
vide an effective means of combating insulin resistance and
type 2 diabetes. Two recent reports confirm this hypothesis.
Using highly specific inhibitors of glucosyl ceramide syn-
thase (GCS), N-(5�-adamantane-1�-yl-methoxy)-pentyl-1- de-
oxynojirimycin (AMP-DNM), Aerts et al. (73) demonstrated
the ability to selectively decrease glucosylceramide content
in muscle and liver of ob/ob mice without affecting ceramide
content. Administration of the drug decreased fed blood
glucose and improved glucose tolerance in ob/ob mice.
Moreover, AMP-DNM increased whole body glucose clear-
ance, while decreasing hepatic glucose output, under hyper-

TABLE 2. A summary of the effects of in vivo prevention of aberrant sphingolipid accumulation on metabolic diseases

Metabolic condition Rodent model Treatment/knockout Ref.

Atherosclerosis ApoE-deficient mice Myriocin 82–85
Insulin resistance Lipid-infused, dexamethasone-treated,

and high fat fed mice; Zucker fa/fa
and dexamethasone-treated rats

Myriocin 12

Insulin resistance Dexamethasone-treated mice DES1 �/� 12
Insulin resistance Ob/ob mice AMP-DNM 73
Insulin resistance High fat fed mice Genz-123346 73, 149

GM3�/�
Diabetes (�-cell failure) ZDF Rats Myriocin, cycloserine, AMP-DNM 12, 73, 75, 236

Genz-123346
Diabetes (�-cell failure) NOD-Mice FTY720 243, 297
Diabetes (�-cell failure) DRBB Rats FTY720 244
Cardiomyopathy LPL-GPI Mice Myriocin, SPT �/� 281

The SPT inhibitors myriocin or cycloserine pharmacologically inhibit de novo ceramide biosynthesis. Glucosylceramide synthase is inhibited
by the drugs AMP-DNM or Genz-123346, thus decreasing ganglioside synthesis. FTY720 is a phosphorylatable analog of sphingosine, which
mimics sphingosine-1-phosphate. Knockout animals lacking SPT, Des1, and GM3 synthase improve various metabolic parameters. GPI,
Glycosylphosphatidylinositide.
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insulinemic conditions. Similar improvements were detected
in diet-induced obese mice because fasting glucose and in-
sulin were decreased in mice treated with the GCS inhibitor.
In a separate study, Zhao et al. (75) demonstrated that Genz-
123346, a GCS inhibitor derived from PDMP that doesn’t
stimulate ceramide accrual like the parent compound (150),
improves glucose homeostasis and insulin sensitivity in ZDF
rats and high fat fed mice (75).

4. Antidiabetic interventions decrease sphingolipid accumulation.
Insulin-sensitizing drugs are the most commonly prescribed
oral hypoglycemic agents. Although these drugs are given
for their beneficial effects on glucose homeostasis, their in-
sulin-sensitizing effects may come from lipid-partitioning
effects. Metformin, widely prescribed for over 40 yr in Eu-
rope, enhances AMP kinase activity via an unknown mech-
anism that requires the upstream kinase LKB1 (151). Al-
though the exact mechanisms of metformin action remain
unclear, the enhanced AMP kinase activity would likely pro-
mote lipid oxidation through regulation of acetyl CoA car-
boxylase, leading to decreased formation of ceramide or
other lipid metabolites (152, 153). The antidiabetic agent may
additionally decrease lipid uptake, because Smith et al. (154)
reported that metformin prevents increases in the fatty acid
transport protein CD36 as well as aberrant ceramide and
diacylglycerol content in skeletal muscle of ZDF rats.

Anorectic agents such as leptin and ciliary neurotrophic
factor appear to be protective against aberrant accumulation
of sphingolipids. Studies pioneered by the Unger laboratory
suggest that a primary function of leptin is to promote proper
lipid partitioning during times of nutrient excess (155). An-
imals that lack leptin or the functional leptin receptor display
aberrant triglyceride, diacylglycerol, and ceramide accumu-
lation in nonadipose tissues including muscle, liver, cardi-
omyocytes, and �-cells. In stark contrast, when leptin is ad-
ministered to leptin-sensitive animals, the adipokine
prevents aberrant accumulation of lipid metabolites in mus-
cle (156), cardiomyocytes (155, 157), and �-cells (158, 159).
Thus, leptin appears to oppose lipoapoptosis of �-cells and
cardiomyocytes. Ciliary neurotrophic factor, which works by
unknown mechanisms, prevents lipid-induced insulin resis-
tance and decreases ceramide accumulation without affect-
ing diacylglycerol (125).

Thiazolidinediones (TZDs) are also a widely prescribed
class of insulin-sensitizing agents that stimulate PPAR�, a
nuclear receptor that controls fat cell differentiation. A likely
mechanism of action of these drugs is that they promote
differentiation of preadipocytes, thus increasing the storage
capacity of adipose tissue and preventing lipid accumulation
in tissues not suited for fat storage (160). As predicted, treat-
ment with rosiglitazone or pioglitazone prevents aberrant
ceramide accumulation in muscles from rats or mice fed
normal chow or high-fat diets (161–163). However, TZDs fail
to protect from insulin resistance induced by acute lipid
infusion, consistent with the idea that TZDs act by limiting
lipid exposure to nonadipocyte tissues (164, 165).

While TZDs lower sphingolipid levels in skeletal muscle,
the effects in cardiac muscle remain unclear. Troglitazone
was shown to normalize ceramide content in ZDF rat hearts
(166), but pioglitazone may actually increase SPT expression

and ceramide synthesis in this tissue (147). These observa-
tions are interesting because TZDs have come under recent
scrutiny over concerns that they may increase cardiac com-
plications in diabetics (167, 168).

Exercise, which has repeatedly been shown to improve
insulin sensitivity and glucose homeostasis, also decreases
ceramide accumulation. Acute bouts of exhaustive exercise
in rats (169) or routine exercise training increase lipid oxi-
dative capacity and diminish ceramide accumulation in rats
and humans (154, 170). Ceramide degradation may also be
enhanced during exercise because sphingosine content in-
creased in many of these studies (171, 172).

B. Mechanism by which sphingolipids antagonize insulin
action

Insulin binding to its cognate receptor induces autophos-
phorylation via the receptor’s intrinsic tyrosine kinase. The
activated receptor phosphorylates a family of IRS proteins
that recruit and activate multiple intracellular effector path-
ways (173). Notably, IRS proteins provide binding sites for
the p85 subunit of 3-phosphoinositide kinase (PI3K), which
is requisite for most of the hormone’s anabolic and anti-
apoptotic actions. PI3 kinase, which is a dimer consisting of
a regulatory subunit (p85) and a catalytic p110 subunit, phos-
phorylates the membrane lipid phosphatidylinositol 4,5
bisphosphate, producing phosphatidylinositol 3,4,5
trisphosphate (PIP3). PIP3 is not a substrate for phospho-
lipases, but rather serves as a binding site for proteins con-
taining pleckstrin homology (PH) domains. Akt/protein ki-
nase B (PKB) and phosphatidylinositol-3-phosphate
dependent kinase 1 (PDK1) are serine/threonine kinases that
are brought into close proximity with each other by their
interactions with PIP3. Additionally, the membrane lipid
helps to activate Akt/PKB, by inducing conformational
changes that expose two regulatory phosphorylation sites
(174). The mammalian target of rapamycin (mTOR)-Rictor
protein complex phosphorylates a regulatory serine (S473)
on the C terminus of Akt/PKB (175, 176). Subsequently,
PDK1 phosphorylates a regulatory threonine residue (T307)
of Akt/PKB that is requisite for enzyme activity (177).

The Akt/PKB kinase includes three family members, each
a product of a different gene. Studies involving the intro-
duction of dominant-negative Akt/PKB, small interfering
RNA sequences, and/or neutralizing antibodies have con-
firmed that the kinase, particularly the Akt2/PKB� isoform,
is a central regulator of insulin-stimulated anabolic metab-
olism, cell survival, and GLUT4 translocation (178, 179).
Knockout mice lacking this isoform develop a diabetes-like
syndrome consisting of insulin resistance in skeletal muscle
and liver (180). A comprehensive analysis of Akt/PKB sub-
strates is beyond the scope of this review, but an abbreviated
list includes the following:

• Akt substrate 160 (AS160), a rab-GTPase activating protein
that regulates the subcellular localization of GLUT4
(181–183);

• Endothelial nitric oxide synthase (eNOS), which regulates
vasodilation (184);

• Glycogen synthase kinase 3� (GSK3�), which regulates gly-
cogen synthase (185–187);
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• Tuberous sclerosis complex 2 (TSC2), a component of the
tuberous sclerosis heterodimer that deactivates the small
GTP-binding protein Rheb. Akt/PKB thus inhibits the
Rheb-GTPase-activating function of the TSC1/TSC2 com-
plex, which facilitates Rheb activation of the mammalian
target of rapamycin. This is an essential pathway in pro-
tein synthesis and the regulation of cell growth (188);

• Phosphodiesterase-3� (PDE3�), which hydrolyzes cAMP to
block the effects of glucagon on gluconeogenesis, glyco-
genolysis, and lipolysis (189, 190);

• BAD, a Bcl2 family member involved in apoptosis
(191–193);

• Proliferator-activated receptor-coactivator 1a (PGC-1a), a tran-
scriptional coactivator peroxisome that is a global regu-
lator of hepatic gluconeogenesis and fatty acid oxidation
(194, 195);

• and FOXO, a transcription factor that regulates glucone-
ogenesis, the detoxification of reactive oxygen species
(ROS), cell cycle, cell survival, and energy homeostasis
(196).

The majority of studies evaluating the mechanisms of
sphingolipid-induced insulin resistance have employed cul-
tured cell systems. Although a number of sphingolipid en-
tities have been identified as potential inhibitors of insulin
signal transduction, ceramide and GM3 gangliosides have
received the most attention. Using analogs of these lipids or
various approaches to increase endogenous accumulation,
researchers have delineated several potential mechanisms by
which these lipids impair insulin action (Fig. 3). Despite
years of attention, the precise mechanisms governing the
effects of these lipids are not fully resolved.

1. Ceramide. When added to cultured myotubes, hepatocytes,
or adipocytes, ceramide analogs acutely inhibit glycogen
synthesis or glucose uptake (197). The mechanism underly-
ing this effect appears to be the inhibition of Akt/PKB, which
is accomplished by one of two mechanisms.

• Ceramide blocks the translocation of Akt/PKB to the
plasma membrane (198). Under these conditions, the lipid
fails to inhibit insulin signaling through PI3-kinase, the
accumulation of 3�-phosphoinositides, or the translocation
of PDK1. Studies by Powell et al. (199) may have uncov-
ered the mechanism underlying this ceramide action. Spe-
cifically, this group demonstrated that ceramide inactiva-
tion of Akt/PKB requires the atypical PKC isoform PKC�.
Impressively, they found that PKC� phosphorylates serine
34 of the Akt/PKB PH domain. Using dot blot assays, they
further demonstrated that phosphorylation of the PH do-
main on this residue blocked its ability to interact with
PIP3, blocking its net translocation. In the L6 myotube cell
system used in this assay, ceramide inactivation of Akt/
PKB was negated by the administration of PKC� inhibitors
or the expression of dominant-negative PKC� constructs
(200). Moreover, an Akt/PKB isoform with the S34 site
converted to an alanine was resistant to ceramide effects.
Similar findings were obtained in vascular smooth muscle
(201, 202), where it was further demonstrated that cer-
amide stabilized interactions between Akt/PKB and PKC�
by recruiting the enzymes to detergent-resistant mem-

brane fractions (e.g., membrane rafts or caveolae) (202,
203).

• Among the earliest known ceramide targets was protein
phosphatase 2A (PP2A) (204, 205), which was shown by
the Olefsky group to dephosphorylate Akt/PKB and alter
insulin stimulation of glucose uptake (206). These obser-
vations prompted the hypothesis that ceramide would
promote dephosphorylation and inactivation of Akt/PKB.
Indeed, several groups have demonstrated that ceramide
promotes the dephosphorylation of Akt/PKB by protein
phosphatase 2A (13, 207–209). In C2C12 myotubes (13),
PC12 neurons (207), brown adipocytes (208), or a human
glioblastoma cell line (209), the PP2A inhibitor okadaic
acid obviates the effects of ceramide on Akt/PKB. Simi-
larly, overexpressing the SV40 small T antigen, which
impairs PP2A activity by displacing regulatory subunits
that target PP2A to specific substrates, negates ceramide
effects on Akt/PKB in certain cell types (13).

In some cell types, such as 3T3-L1 adipocytes, both mech-
anisms are present (210, 211), whereas in other cultured cell
systems (C2C12 myotubes or A7r5 vascular smooth muscle
cells) either PP2A or PKC� appears to play the dominant role
(13, 201). It remains unclear which pathway plays the pri-
mary role in mammalian insulin resistance because their
relative importance has not been assessed in vivo.

Although these studies were generally done using cer-

FIG. 3. Schematic diagram depicting the multiple mechanisms by
which sphingolipids impair insulin action. Top, GM3 gangliosides
present in detergent-resistant microdomains (DRD) displace the in-
sulin receptor from these domains and prevent insulin receptor ac-
tivation. Ceramide (CER) may lead to activation of IKK and c-Jun
N-terminal kinase, which inhibit IRS via serine phosphorylation (S-
P). Bottom, Ceramide activates PKC�, which via phosphorylation on
Akt’s PH domain prevents binding to 3-phosphoinositides that aid in
Akt activation. Additionally, ceramide activates PP2A, which impairs
Akt activity via removal of activating phosphate residues.
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amide analogs, a number of groups subsequently demon-
strated that relatively small increases in endogenous cer-
amide (�50%) were sufficient to activate both of these
pathways (13, 199, 200). Schmitz-Peiffer et al. (118) first dem-
onstrated that exposing cultured myotubes to palmitate, the
most abundant saturate fatty acid in the circulation, in-
creased ceramide accumulation while simultaneously inhib-
iting Akt/PKB. Blocking ceramide accumulation using myri-
ocin, cycloserine, or fumonisin B1 restores insulin-stimulated
Akt and GSK3� phosphorylation, even in the presence of
excess palmitate (13, 200). This system was later recapitu-
lated in cultured human myotubes (212, 213). Interestingly,
in these studies, coadministering oleate shunted palmitate
into triglyceride synthesis pathways, thus preventing aber-
rant ceramide accumulation and insulin resistance.

As an alternative strategy for manipulating endogenous
ceramide, treating cultured cells with inhibitors of ceramide
deacylation (NOE) or glucosylation (PDMP) exacerbated
palmitate-induced insulin resistance (214), whereas overex-
pressing acid ceramidase negated these palmitate effects (13,
200). These studies confirmed the requirement for ceramide,
rather than another sphingolipid metabolite, in the inhibition
of Akt/PKB.

Relatively few studies have addressed the mechanisms by
which ceramide impairs insulin action in live animals. We
recently demonstrated that treatments (dexamethasone or
lipid infusion) that promote ceramide accumulation in mus-
cle and liver of live rats impair insulin signaling to Akt
without affecting PI3 kinase (12). These effects on Akt were
reversed by SPT inhibition, suggesting that endogenous cer-
amide impairs insulin action at the level of Akt in bona fide
muscle and liver.

The concept that PKC� impairs Akt/PKB, thus inhibit-
ing glucose uptake and anabolic metabolism, is difficult to
reconcile with numerous reports identifying the enzyme
as an obligate intermediate in insulin effects. Several prior
reports revealed that PKC� and its related isoform PKC�
are inducers of glucose transport. In cultured L6 myo-
tubes, PKC� or PKC� inhibition impairs insulin-stimu-
lated glucose uptake, whereas overexpression of either
enzyme stimulates glucose uptake (215–217). Moreover,
Farese et al. (218) demonstrated that muscle-specific
PKC-� knockout mice were glucose intolerant due to mus-
cle insulin resistance. A more intriguing role for ceramide
affiliating with PKC� may be in the liver, where glucose
uptake is governed differently. Interestingly, Ron Kahn’s
group has demonstrated that PKC� is requisite for insulin
induction of lipogenesis in the liver (219). Thus, should
ceramide activate this enzyme in the liver, an attractive
hypothesis is that ceramide could simultaneously antag-
onize insulin repression of glucose output (i.e., by inhib-
iting Akt/PKB) while maintaining the lipogenic pathways
that promote hepatic steatosis (i.e., by activating PKC�).
Indeed, bioinformatic strategies for conducting lipidomic
analysis have revealed particularly strong associations be-
tween hepatic ceramide levels and the extent of steatosis
in a rodent model of obesity (8). The potential for aberrant
ceramide accumulation to promote fatty liver disease is an
intriguing concept, but it hasn’t been experimentally
validated.

We previously demonstrated that overexpression of a con-
stitutively active isoform of Akt/PKB negated ceramide’s
inhibitory actions toward glucose uptake (210). These data
were consistent with the hypothesis that ceramide-induced
insulin resistance is due to its effects on early signaling
events. However, JeBailey et al. (220) recently found that low
doses of ceramide inhibited glucose uptake independently of
these effects on Akt/PKB in L6 myotubes. They concluded
that ceramide independently blocked actin remodeling by
preventing activation of Rac and thus attenuated GLUT4
translocation. Interestingly, Long and Pekala (221) found that
ceramide decreased GLUT4 transcription, suggesting an-
other mechanism in 3T3-L1 adipocytes by which the lipid
induces insulin resistance.

Another mechanism by which ceramide may impair in-
sulin action is by facilitating signaling pathways initiated by
inflammatory cytokines, such as TNF�, that activate serine/
threonine kinases (e.g., c-Jun N-terminal kinase, IKK) known
to impair insulin signaling. Moreover, TNF� alters the ex-
pression of genes that modulate insulin signaling, including
suppressor of cytokine signaling-3, an insulin receptor/IRS
interacting protein. Lastly, TNF� alters rates of lipid hydro-
lysis in adipocytes while decreasing lipid oxidation in skel-
etal muscle, which likely exacerbates rates of formation of
deleterious lipid metabolites. TNF� rapidly generates cer-
amide via the hydrolysis of sphingomyelin and subsequently
induces a sustained elevation in ceramide by promoting its
de novo synthesis (222–224). The acid sphingomyelinase con-
taining death domain of the 55-kDa TNF receptor, which
catalyzes this reaction, is required for TNF�’s antagonism of
insulin action (225). Intriguing work by the Gulbins group
indicates that local production of ceramide within membrane
microdomains promotes receptor clustering, which is im-
portant for signal transmission (225).

2. Glucosylceramide derivatives. Exogenous GM3 gangliosides
inhibit insulin receptor tyrosine phosphorylation and IRS-1
tyrosine phosphorylation in cultured 3T3-L1 adipocytes.
Mechanistically, gangliosides impair dimerization and acti-
vation of tyrosine kinase receptors (226). Similar findings
were obtained in cultured cells treated with TNF�, which
induces GM3. In these studies, treating with the aforemen-
tioned GCS inhibitors negates TNF� effects on IRS-1 (48, 73).
The mechanism underlying this effect appears to be that
ganglioside production within detergent-resistant raft do-
mains displaces insulin receptors, thus antagonizing insulin
receptor signaling to IRS-1 (49, 50).

Studies in vivo support the idea that gangliosides impair
insulin activation of its receptors. The GM3 synthase knock-
out mice demonstrate enhanced tyrosine phosphorylation of
the receptor when compared with wild-type mice (149). Sim-
ilarly, the various GCS inhibitors augment insulin-stimu-
lated phosphorylation of the insulin receptor, as well as
Akt/PKB and/or the mTOR phosphorylation, in skeletal
muscle (75) and liver (73) of obese rodents.

V. Sphingolipids in Pancreatic �-Cell Failure

Diabetes mellitus results from insulin availability that is
insufficient to meet tissue insulin needs (227), and recent
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studies suggest that both the type 1 and type 2 forms of the
disease are associated with decreased �-cell mass resulting
from decreased proliferation and increased apoptosis (228).
Moreover, the susceptibility of �-cells to both apoptosis and
necrosis during isolation or transplantation has hindered
attempts to utilize islet transplantation as a treatment for
these diseases (229). Numerous findings suggest that �-cell
apoptosis, perhaps resulting from increased exposure to glu-
cose, saturated fats, TNF�, or islet-associated amyloid
polypeptide could account for this decline in �-cell function
(227, 230–232).

Several different sphingolipid metabolites have emerged
as potentially important regulators of �-cell survival, pro-
liferation, and function. Ceramide, which can be produced in
response to inflammatory cytokines (e.g., TNF� or IL1) or by
excessive deposition of saturated fats, inhibits insulin gene
expression, blocks �-cell proliferation, and induces �-cell
apoptosis (233–237). Gangliosides, which are glycosylated
derivatives of ceramide, have been speculated to be antigens
implicated in the onset of the autoimmune response (238). In
contrast, S1P promotes �-cell growth and survival and aug-
ments glucose-stimulated insulin secretion (101, 239–241).

A. Modulating sphingolipid levels impacts the �-cell in
rodent models of diabetes

In rodent models of type 2 diabetes, increases in islet
ceramide and triglyceride precede �-cell dysfunction and
destruction (230, 242). The Unger group, in the first study to
evaluate the consequences of ceramide depletion on meta-
bolic disease in vivo, reported that treating Zucker diabetic
fa/fa (ZDF) rats with cycloserine reduced islet apoptosis
(236). In subsequent studies, the SPT (12) or GCS (73, 75)
inhibitors, which have more substantial and specific effects
on sphingolipid levels, were shown to preserve �-cell func-
tion and prevent onset of frank diabetes in this animal model.

FTY720 is a novel immunosuppressant that functions as an
S1P receptor agonist. The compound has shown particular
efficacy in preventing the demise of �-cells in rodent models
of type 1 diabetes (NOD mice and DRBB rats) (243, 244) and
during islet transplantation (241, 245–251). Its primary mech-
anism of action is attributable to its ability to prevent the
infiltration of effector lymphocytes into islets. However, al-
though many such immunosuppressive compounds are of-
ten toxic to �-cells, S1P actually enhances �-cell function
(241). Moreover, studies in vitro (discussed in Section V.B)
suggest that S1P may have insulinotropic capabilities, which
render it particularly suited for work in islet transplantation.
Moreover, these findings suggest that S1P may in fact be a
novel endogenous modulator of �-cell homeostasis.

B. Mechanism of ceramide-mediated �-cell failure

Although inhibition of ceramide production clearly pre-
serves �-cell function in ZDF rats, it is difficult to know
whether this was a direct effect of ceramide depletion in
�-cells, was due to global alterations in inflammatory re-
sponses, or was a consequence of enhanced peripheral in-
sulin sensitivity in liver and muscle (12). Ultimately this will
require experiments investigating conditional ablation of

ceramide in selected cell types. Nonetheless, numerous in
vitro studies suggest that ceramide may directly alter �-cell
responsiveness.

Noting that palmitate, but not oleate, affected insulin gene
transcription in isolated and cultured islets, the Poitout lab-
oratory (233, 252, 253) investigated the hypothesis that cer-
amide was an intermediary linking the excess lipid to the
regulation of the insulin gene. They found that ceramide
analogs decreased insulin gene transcription and inhibitors
of de novo ceramide synthesis prevented the antagonistic
effects of palmitate (233, 252, 253). The ceramide effects result
from the inhibition of binding of the transcription factors
pancreatic/duodenal homeobox-1 and mammalian homolog
of avian MafA/L-Maf (MafA) to the insulin promoter. These
effects appear to result from the ability of the sphingolipid
to inhibit glucose stimulation of the nuclear translocation of
pancreatic/duodenal homeobox-1, coupled with its ability to
block glucose induction of the MafA transcript, but direct
targets of ceramide that account for this action are unknown
(233, 252, 253).

Ceramides induce apoptosis in cultured islets or isolated
�-cells (234, 236, 237, 254, 255), and inhibitors of de novo
ceramide synthesis partially prevent palmitate induction of
�-cell death in vitro (233, 234, 236, 255, 256). Intracellular
mechanisms by which ceramide induces apoptosis have been
detailed in other cell types (257, 258), but their relevance to
the �-cell is only partially elucidated. Briefly, ceramide in-
duces a variety of independent effects, which could ulti-
mately contribute to programmed cell death.

1. Recruitment of Bax to the mitochondria. Bax is a proapoptotic
member of the Bcl2 family that functions by promoting cy-
tochrome c release from the mitochondria. As a monomer,
Bax is an inactive, largely cytosolic protein. However, after
stimulation of cells with apoptotic stimuli, Bax undergoes a
conformational change causing it to oligomerize and subse-
quently induce cytochrome c release from mitochondria.
Two recent studies support a role for mitochondrial cer-
amide in the recruitment and conformational change of Bax.
Kashkar et al. (259), using small interfering RNA strategies or
ASMase (�/�) fibroblasts, found that ASMase was requisite
for the induction of a Bax conformational change after UV
stimulation. By contrast, they found that treating cells or
isolated mitochondria with ceramide, but not dihydrocer-
amide, induced the conformational shift and effected cyto-
chrome c and Smac release. Similarly, Birbes et al. (31–33)
found that overexpressing a bacterial sphingomyelinase tar-
geted to mitochondria induced Bax translocation in intact
cells, or that treating mitochondria with recombinant sphin-
gomyelinase promoted recruitment of Bax to mitochondria
in a cell free system. Collectively, these studies suggest that
ceramides induce the recruitment of Bax to the mitochondria,
thus eliciting a conformational change, oligomerization, and
permeabilization of the mitochondria to cytochrome c/Smac.

2. Creation of ROS. Although ROS have generally been re-
garded as toxic byproducts of aerobic metabolism, scientists
now appreciate their roles as signaling intermediates that
regulate cell growth or death (260). The major source of ROS
in most cells is leakage of electrons from the mitochondrial
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respiratory chain to produce O2
	 . Ceramide may directly

regulate respiration in isolated mitochondria by inhibiting
the mitochondrial ubiquinone pool of complex III (35, 261).
Alternatively, ceramides also could generate ROS through
the regulation of nicotinamide adenine dinucleotide phos-
phate oxidase (262, 263).

3. Direct effects on mitochondrial membrane permeability. Siskind
et al. (40) additionally proposed that ceramide, but not di-
hydroceramide, has the capacity to form channels in the
mitochonrdrial membrane, thus increasing the permeability
of organelles to cytochrome c (264–270).

C. Mechanism of glucoslyceramide-mediated �-cell failure

In addition to perhaps serving as an intracellular regulator
of �-cell mitogenesis and apoptosis, ceramide is a precursor
for galactolipids, which are speculated to serve as autoan-
tigens that target T-lymphocytes to the �-cell in type 1 dia-
betes. The involvement of gangliosides was prompted by the
initial finding of circulating antibodies against ganglioside
GT3 in about 30% of newly diagnosed type 1 diabetics (271).
Subsequent studies revealed that antibodies toward other
gangliosides were also elevated in either prediabetics or di-
abetics (238). In particular, anti-GM2–1 autoantibodies were
expressed in a high percentage (71%) of newly diagnosed
type 1 subjects (238).

D. S1P as a regulator of �-cell growth and survival

Little attention has been placed on understanding the
mechanism by which S1P regulates insulin secretion (101,
241) and �-cell survival (239). The best known effects of S1P
result from its ability to activate a family of G protein-linked
receptors (S1P1, -2, -3, -4, -5, formerly EDG1, -3, -5, -6, and -8),
which initiate the MAPK and PI3-kinase-Akt/PKB signaling
pathways to regulate cell growth and survival (Fig. 4). In

addition to serving as an extracellullar agonist of S1P recep-
tors, S1P may also function as an intracellular messenger. For
example, the overexpression of sphingosine kinase, which
produces S1P from sphingosine, stimulates cell proliferation
and survival of S1P-receptor null fibroblasts (272). Moreover,
dihydro-S1P, which binds to and activates all S1P receptors,
does not mimic the effects of S1P on cell survival in some cell
types (273). Thus, some S1P actions may be receptor
independent.

Four of the five S1P receptors thus far identified are
present in mouse pancreatic islets, and three of them are
expressed in Ins-1 insulinoma cells (240). Glucose acutely
increases expression of the S1PR1 isoform in freshly isolated
islets (e.g., after a 2-h treatment), whereas chronic glucose
decreased S1PR1 expression (e.g., after 7 d of treatment).
These data suggest that physiological regulation of this sig-
naling pathway could underlie nutrient regulation of �-cell
proliferation.

VI. Sphingolipids in Cardiomyopathy

Lipid accumulation in the heart is associated with im-
paired contractile function (166, 274). Transgenic approaches
to produce excessive lipid uptake into the heart have allowed
for the creation of rodent models of lipotoxic cardiomyop-
athy (275–280). In some cases this was shown to be associated
with increases in ceramide (146, 280).

A. Modulating sphingolipid levels ameliorates cardiac
dysfunction in a rodent model of lipotoxic cardiomyopathy

To determine whether ceramide could contribute to the
progressive decline in cardiac function associated with a
fatty heart, Ira Goldberg’s laboratory recently completed a
study (281) investigating the functional consequences of cer-
amide depletion in mice expressing a glycosylphosphatidy-

FIG. 4. This schematic depicts the production of S1P by sphingosine kinase and its resulting roles as both an extracellullar ligand for S1P
receptors and a putative intracellular messenger. Akt/PKB and MAPK are serine/threonine kinases shown previously to stimulate �-cell survival
or proliferation, respectively.
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linositide-anchored lipoprotein lipase exclusively in the
heart. As they described previously (279), these animals ex-
hibit enlarged myocytes with abnormal architecture, which
led to cardiac hypertrophy, left ventricular dilatation, and
reduced fractional shortening. Treating these animals with
myriocin selectively decreased heart ceramide levels without
impacting diacylglycerol, triacylglycerol, cholesterol, and
FFA levels; restored heart size to normal; and improved
fractional shortening. Ultimately, the lipoprotein lipase
(LPL) transgenics had decreased survival resulting from the
developing cardiomyopathy, which myriocin partially re-
versed (281).

An important component of the study by the Goldberg
laboratory was the demonstration that haploinsufficiency for
SPT also rendered mice resistant to lipotoxic cardiomyopa-
thy. Specifically, when the LPL transgenics were crossed
onto a background strain lacking a single allele encoding the
LCB1 subunit of SPT (282), they demonstrated improved
systolic function and fractional shortening when compared
with the LPL transgenics. This is a particularly important
observation because it demonstrates a genetic complement
for the findings with myriocin.

B. Mechanism by which ceramides promote cardiomyocyte
dysfunction and apoptosis

Progressive contractile dysfunction and apoptotic cell loss
are key features of heart failure (283). Saturated FFAs, not
other FFAs, are sufficient to induce cardiomyocyte apoptosis
or damage myofibrils (255, 284–287), which C2-ceramide
recapitulates and CerS inhibition negates (255). Moreover,
altering the ceramide/S1P ratio has been shown to contribute
to apoptosis in other models, including that resulting from
ischemia or ischemia reperfusion (288–290). In the studies by
the Goldberg laboratory, myriocin decreased expression of
some apoptotic genes, but there was no evidence of increased
2-deoxyuridine 5-triphosphate nick end labeling staining in
the LPL hearts. Ceramide induction of ROS is implicated in
cardiomyocyte apoptosis (287, 288, 291) and to induce HERG
potassium channel dysfunction, which depresses cardiac re-
polarization (292). Moreover, ceramides stimulate mitochon-
drial fission, which is associated with early activation of
cardiomyocyte apoptosis (293).

In the aforementioned study by Park et al. (281), blocking
ceramide synthesis appeared to alter mitochondrial energet-
ics. Specifically, heart-specific LPL overexpression led to a
switch in substrate utilization, including an increased reli-
ance on FFAs for energy. Myriocin reversed this by increas-
ing rates of glucose oxidation. A potential mechanism for this
was that it prevented LPL-induced increases in pyruvate
dehydrogenase kinase-4, which increases phosphorylation
of pyruvate dehydrogenase and decreases rates of glucose
oxidation. In hearts isolated from the LPL transgenics, myri-
ocin normalized cardiac efficiency, enhancing mitochondrial
energetic by maintaining cardiac performance at a lower
oxygen cost.

LPL and myriocin had paradoxical and surprising effects
on Akt/PKB. Specifically, LPL increased Akt/PKB activity
(281), which is consistent with the increase in heart size. By
contrast, myriocin prevented this defect. Thus, these results

are in opposition to those seen in liver and muscle, where
ceramide inhibits Akt/PKB and myriocin enhances activa-
tion of the enzyme, in rodent models of obesity.

VII. Conclusions and Considerations

Inhibition of ceramide synthesis has beneficial effects in
rodent models of atherosclerosis, insulin resistance, diabetes,
and cardiomyopathy. Although myriocin has been a work-
horse for these studies, due to its ability to markedly reduce
ceramide levels in vivo, work involving other pharmacolog-
ical agents (e.g., cycloserine, fumonisin B1, AMP-DNM, or
Genz-123346) and genetic approaches (SPT, Des1, and GM3
knockout mice) have confirmed that the beneficial effects of
myriocin likely result from its ability to impact specific sphin-
golipid levels. Although more work must be done to deter-
mine the mechanism of sphingolipid action and to elucidate
the regulatory networks controlling rates of sphingolipid
synthesis, these studies have identified ceramide and its me-
tabolites as particularly toxic lipids that contribute to obesity-
associated metabolic dysfunction.
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