SPHINX: Detecting Security Attacks in Software-Defined Networks

Mohan Dhawan
IBM Research
mohan.dhawan @in.ibm.com

Rishabh Poddar
IBM Research

Abstract—Software-defined networks (SDNs) allow greater
control over network entities by centralizing the control plane,
but place great burden on the administrator to manually ensure
security and correct functioning of the entire network. We list
several attacks on SDN controllers that violate network topology
and data plane forwarding, and can be mounted by compromised
network entities, such as end hosts and soft switches. We further
demonstrate their feasibility on four popular SDN controllers. We
propose SPHINX to detect both known and potentially unknown
attacks on network topology and data plane forwarding originat-
ing within an SDN. SPHINX leverages the novel abstraction of flow
graphs, which closely approximate the actual network operations,
to enable incremental validation of all network updates and
constraints. SPHINX dynamically learns new network behavior
and raises alerts when it detects suspicious changes to existing
network control plane behavior. Our evaluation shows that
SPHINX is capable of detecting attacks in SDNs in realtime
with low performance overheads, and requires no changes to
the controllers for deployment.

I. INTRODUCTION

The value of Software-Defined Networks (SDNs) lies
specifically in their ability to provide network virtualization,
dynamic network policy enforcement, and greater control over
network entities across the entire network fabric at reduced
operational cost. Protocols like OpenFlow [35] focus spe-
cially on the above aspects. However, by centralizing the
control plane, SDNs place great burden on the administrator
to manually ensure security and correct functioning of the
entire network. Compromised network entities can be used to
exfiltrate sensitive information, implement targeted attacks on
other users, or simply bring down the entire network. This
paper looks at the specific problem of detecting security attacks
on network topology and data plane forwarding originating
within SDNs in realtime.

Most prior work has looked at development and analysis
of SDN security applications and controllers [22], [25], [26],
[36], [38], [41], [43], and realtime verification of network con-
straints [20], [21], [24], [28]-[30], [34] separately. However,
no combination of the above solutions provide an effective de-
fense against the threat of attacks in SDNs due to compromised
end hosts or switches, which can be used to wrest control of the

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.

NDSS ’15, 8-11 February 2015, San Diego, CA, USA

Copyright 2015 Internet Society, ISBN 1-891562-38-X
http://dx.doi.org/10.14722/ndss.2015.23064

rishabh.poddar@in.ibm.com

Kshiteej Mahajan
IBM Research
kshiteej.mahajan@in.ibm.com

Vijay Mann
IBM Research
vijaymann@in.ibm.com

entire network or parts of it [31], [32]. This problem is further
exacerbated in the SDN context due to four main reasons.

First, operational semantics of OpenFlow-based SDNs
lower the barrier for mounting sophisticated attacks on both
control and data planes, since they allow any unmatched
packets to be sent to the controller (similar to how a layer-2
switch broadcasts all unknown packets). For example, the SDN
controller propagates and builds network topology using the
OpenFlow racker_1n messages. However, even end hosts can
send forged messages that would be relayed to the controller
as packeT_1n messages by the switches, thereby poisoning its
view of the network. Although OpenFlow supports optional
TLS authentication between switch and controller, TLS by
itself cannot prevent compromised switches from spoofing
packets. Thus, there is no built-in security for SDNs (even
with TLS enabled) that prevents malicious switches and hosts
from packet spoofing to corrupt controller state.

Second, attacks that affect traditional networks may also
afflict SDNs. However, solutions that work for traditional
networks may not be directly applicable for SDNs because
traditional defenses assume switches to be intelligent, whereas
separation of control and data planes forces SDN switches to
be dumb forwarding entities that forward packets based on
the rules installed by the SDN controller. Adapting traditional
defenses for SDNs will require either patching the controller
for specific vulnerabilities, or a fundamental redesign of the
OpenFlow protocol to provide a comprehensive defense, with-
out which many traditional attacks, including ARP poisoning
and LLDP spoofing, will continue to manifest in SDNs.

Third, enterprise network administrators often use pro-
grammable soft switches, like Open vSwitches [13] (or
OVSes), to provide network virtualization. These OV Ses, just
like hardware switches, must have direct connectivity to the
controller to provide desired functionality. Further, since these
soft switches run atop end host servers, they are attractive
targets for attackers. In contrast, in traditional networks, it is
relatively more difficult for a network attacker to physically
compromise hardware switches and modify routing rules that
govern network communication. Thus, the assumption that all
switches in an SDN are trustworthy does not hold true in
enterprise deployments.

Fourth, apart from potentially malicious switches, even
untrusted end hosts can easily bring down the entire network.
End hosts can initiate control plane flooding which can saturate
the out-of-band network and interrupt the controller, thereby
bringing down the entire network.

We tested four popular controllers: Floodlight [17], Mae-
stro [8], OpenDaylight (ODL) [14] and POX [16], and found
them vulnerable to diverse attacks originating within the

SDN . While it is possible for controllers to implement
defenses against known attacks or specific vulnerabilities,
such patching does not provide protection against unforeseen
security threats. In this context, we present the design and
implementation of SPHINX—a framework to detect attacks
on network topology and data plane forwarding. SPHINX
leverages the novel abstraction of flow graphs, which closely
approximate the actual network operations, to (a) enable in-
cremental validation of all network updates and constraints,
thereby verifying network properties in realtime, and (b)
detect both known and potentially unknown security threats
to network topology and data plane forwarding without com-
promising on performance. SPHINX can also be deployed with
minimal modifications to secure different controllers.

SPHINX analyzes specific OpenFlow control messages to
learn new network behavior and metadata for both topolog-
ical and forwarding state, and builds flow graphs for each
traffic flow observed in the network. It continuously updates
and monitors these flow graphs for permissible changes, and
raises alerts if it identifies deviant behavior. SPHINX leverages
custom algorithms that incrementally process network updates
to determine in realtime if the updates causing deviant behavior
should be allowed or not. SPHINX also provides a light-weight
policy engine that enables administrators to specify expressive
policies over network resources and detect security violations.
Unlike today’s controllers where each module implements
its own checks making policy enforcement buggy, SPHINX
provides a central point for enforcing complex policies.

We have built a controller agnostic prototype of SPHINX,
which may even be implemented by SDN controllers as an
application. We have evaluated SPHINX with both Open-
Daylight and Floodlight controllers over a physical three-
tiered network testbed and the Mininet network emulator [10].
SPHINX successfully detected all the attacks, with a sub-
millisecond average detection time in presence of 1K hosts,
and reported no false alarms with three diverse but benign
real-world network traces [3], [4], [7]. We further evaluated
SPHINX’s performance with up to 10K Mininet hosts, which
is representative of a small enterprise. SPHINX is capable of
verifying 1K policies at every network update in just ~245us,
and imposes low CPU (~6%) and memory overheads (~14.5%)
in the worst case.

This paper makes the following contributions:

(a) We examine four popular SDN controllers and demon-
strate that they are vulnerable to a diverse array of attacks on
network topology and data plane forwarding (§ IIT and § VIII).

(b) We present incremental flow graphs (§ IV) as a novel
abstraction for realtime detection of security threats.

(c) We present the design and implementation of SPHINX (§ V
and § VII) and its policy engine (§ VI), which allows network
administrators to specify fine-grained security policies, and
enables easy action attribution.

(d) We evaluate SPHINX to show that it is practical and
involves acceptable overheads (§ IX-A and § IX-B). We also
report on experiences gained using SPHINX in four different
case studies (§ IX-C).

Unless specified, SDNs imply OpenFlow-based SDNs.

II. BACKGROUND

SOFTWARE-DEFINED NETWORK (SDN). SDNs decouple
network control and forwarding functions enabling (i) the
network to become directly programmable, and (ii) the un-
derlying infrastructure to be abstracted for applications and
network services. Network intelligence is logically centralized
in trusted software-based controllers that maintain a global
view of the network of hosts, and commodity hardware and
software switches, which are dumb forwarding entities.

OPENFLOW. The OpenFlow protocol defines commands and
messages that enable the controller to interact with the for-
warding plane. Every OpenFlow switch maintains a number
of flow tables, with each table containing a set of flow entries.
Each flow entry consists of (i) match fields against which
incoming packets are compared, (ii) a set of instructions that
define the actions to be performed on matched packets, and
(iii) counters for flow statistics [15]. Further, a match field
may either contain a specific value, or it may be wildcarded,
indicating that all packets match against it regardless of value.
When a switch receives a packet for which it has no matching
entry, it sends the packet to the controller as a packer_in
message. The controller then decides how to handle the packet,
and creates one or more flow entries in the switch using
rrow_Mop commands, directing the switch on how to handle
similar packets in the future.

Other switch-to-controller messages that are relevant to this
paper include reatures_repry and staTs_repLy messages. The
FEATURES_REPLY Mmessage notifies the controller of a switch’s
capabilities and port definitions. The controller builds its initial
view of the network topology using these messages, and
updates the view using certain pACKET_IN MeSSages. STATS_REPLY
messages communicate network statistics gathered at the
switch per port, flow, and table (such as the total number of
packets/bytes sent or received).

III. MOTIVATION

The correct functioning of an SDN requires that two
key network properties—network topology and data plane
forwarding—must always be preserved. In this section, we
motivate the need for SPHINX, which can detect both known
and potentially unknown security attacks on these two key
SDN properties in realtime.

First, we describe two scenarios that are representative of
the possible attacks on both the network topology and data
plane forwarding, launched from compromised hosts and/or
switches. While there can be other variants of these attacks,
the mechanisms to poison the controller’s view of the network
primarily remain the same. Note that none of these attacks
exploit any OpenFlow vulnerabilities or implementation bugs
in particular controllers.

Second, we argue that traditional solutions to defend
against known security threats in their exact form are not
portable to SDNs. Any adaptations of these solutions to SDN's
requires patching the controller. While it is possible for all
controllers to implement defenses against known attacks or
specific vulnerabilities, such selective signature-based security
mechanisms suffer from the same issues that afflict anti-virus
solutions and fail to protect against a broad class of malicious
attacks possible on SDN.

A. Host- and Switch-based Attacks

OpenFlow mandates that packets not matching a flow rule
must be sent by the switch to the controller. In spite of the
control and data plane separation, this protocol requirement
opens up possibilities for malicious hosts to tamper with
network topology and data plane forwarding, both of which
are critical to the correct functioning of the SDN. Specifically,
malicious hosts can (i) forge packet data that would then be
relayed by the switches as packer_in messages, and subse-
quently processed by the controller, (ii) implement denial of
service (DoS) attacks on the controller and switches, and (iii)
leverage side-channel mechanisms to extract information about
flow rules. Compromised soft switches can not only initiate
all the host-based attacks but also trigger dynamic attacks on
traffic flows passing through the switch, resulting in (i) network
DoS, and (ii) traffic hijacking or re-routing.

1) Network topology: SDN controllers process a variety of
protocol packets (ARP, IGMP, LLDP, etc.) sent by switches
as OpenFlow rpacker_1n messages to construct its view of the
network topology. Controllers process LLDP messages for
topology discovery and IGMP messages to maintain multicast
groups, whereas it forwards ARP requests and replies enabling
end hosts to build up ARP caches facilitating network commu-
nication. Compromised hosts can spoof the above messages to
tamper with the controller’s view of the topology, and fool it
into installing flow rules to carry out a variety of attacks on
the network.

EXAMPLE. A fake topology attack can be launched on an
SDN controller to poison its view of the network using
detrimental packer_1n messages sent by the switches. These
malicious packer_1n messages could be generated by untrusted
switches themselves or by end hosts, which can send arbitrary
LLDP messages spoofing connectivity across arbitrary network
links between the switches. When the controller tries to route
traffic over these phantom links, it results in packet loss, and if
this link is on a critical path, it could even lead to a blackhole.

2) Data plane forwarding: Malicious hosts and switches can
mount DoS by flooding the network with traffic to arbitrary
hosts to exhaust resources on vulnerable switches and/or the
SDN controller, thereby affecting forwarding in the data plane.

EXAMPLE. TCAM is a fast associative memory that stores
flow rules. Malicious hosts may target a switch’s TCAM to
perform directed DoS attacks against other hosts. Malicious
hosts may send arbitrary traffic and force the controller into
installing a large number of flow rules, thereby exhausting
the switch’s TCAM. Subsequently, no other flow rules can
be installed on this switch, until the installed flows expire. If
this switch is on a critical path in the network, then it may
result in significant latency or packet drops.

In § VIII, we describe in detail several attacks, including
those listed above, that afflict popular SDN controllers, like
ODL, Floodlight, POX and Maestro.

B. Traditional attacks manifest in SDNs

Several attacks that afflict traditional networks also affect
SDNs, where these attacks are triggered in part due to the
intricacies of the SDN architecture, or the protocol involved
(i.e., ARP, LLDP, etc.). However, adapting traditional defenses

for these attacks in SDNs is non-trivial. This is because
traditional networks often rely on switch intelligence to im-
plement robust defenses against known security attacks. In
contrast, SDN switches are mere forwarding entities without
any intelligence. While patching SDN controllers to defend
against known specific vulnerabilities is possible, it is not a
comprehensive solution to detect all security attacks in SDNs.

EXAMPLES. In traditional networks, trustworthy verification
of packets from neighboring switches to defend against LLDP
spoofing requires cryptographic mechanisms, which is a heavy-
weight solution. In fact, message authentication amongst hosts
and switches (even with TLS enabled) will not provide defense
against corrupt routing rules in SDN switches, as is the case
in the fake topology attack.

As another example, traditional networks defend against
ARP poisoning either leveraging Dynamic ARP Inspection
(DAI) [5], or requiring hosts to run programs like arp-
watch [33] to set up static mappings. DAI mandates that
switches snoop on all DHCP messages that pass through, and
use that information to (i) prevent a rogue DHCP server from
serving clients, and (ii) build a table of valid MAC to IP
associations to validate ARP packets as they pass through. In
contrast, SDN switches are dumb and cannot trivially extend
DALI, while host based defenses are not comprehensive enough.

Both the above examples are representative of the fact that
even simple and well-known defenses for attacks in traditional
networks cannot be trivially extended to SDNs in a controller
agnostic manner.

IV. SPHINX: OVERVIEW
A. Threat model

Attackers often break into the network to leverage internal
vantage points, and subsequently launch attacks on the internal
network. Since our goal is to (i) verify onset of attacks
on network topology and data plane forwarding, and (ii)
detect violations of policies within SDNs, our threat model
focuses exclusively on scenarios where the adversary initiates
attacks from within the SDN. Thus, we model SDNs as a
closed system. Removing constraints on the unknown external
communication helps focus our analysis only on OpenFlow
control messages internal to the SDN.

We consider an enterprise SDN setup with no traffic across
OpenFlow and non-OpenFlow network entities. We assume a
trusted controller (which is required for the correct functioning
of the network), but do not trust either the switches or the end
hosts. This implies that the switches can lie about everything
except their own identity, since the switches connect with
the controller over separate TCP connections (possibly with
TLS enabled). However, we do assume an honest majority
of switches in the network. All prior art, including [28]-[30],
[34], had assumed trustworthy switches, while SPHINX’s threat
model relaxes this requirement. Finally, given that most SDN
applications run as modules as part of the controller binary,
they can be trusted as long as the controller itself is trusted.

The assumptions above imply that OpenFlow communi-
cation from controller to switches is trustworthy, while from
switches to controller is untrusted, and could be forged by a
malicious switch or in some cases by hosts.

= 57
£ E18 -l 55

) ® @ @
| S

(a) Flow with SRC A and DsT B.

| A —is1 58 j:—{ B

(b) Flow graph for flow A—B at 1;.

/ 52\ / 52\
A ——5] ——»/53 — S5 — B | A — 51 s ss

(¢) Flow graph for flow A—B at 1,. (d) Flow graph for flow A—B at 13.

Fig. 1: Example flow, and construction of corresponding flow graph.

B. Flow graphs

A flow is a directed traffic pattern observed between two
endpoints with distinct MAC addresses over specified ports.
A flow graph is a graph theoretic representation of a traffic
flow with edges as the flow metadata and switches being the
nodes in the graph. SPHINX uses these flow graphs to model
both network topology and data plane forwarding in SDNs.
It gleans flow metadata from OpenFlow control messages and
incrementally builds the flow graphs to closely approximate
the actual network operations, thereby enabling validation of
all network updates and constraints on every flow graph in
the network in realtime. Thus, flow graphs provide a clean
mechanism that aids detection of diverse constraint violations
for both network topology and data plane forwarding in SDNGs.

Flow paths are constructed only using rrow_mop messages
because they are issued by the trusted controller. Untrusted
staTs_repLy messages from each switch only update flow statis-
tics of the corresponding switch, and do not affect the flow
graph structure. Hence, the flow-specific network topology and
data plane forwarding state as embodied in the flow graph
remains uncorrupted even in the presence of untrusted switches
and hosts. Further, as will be described later in § VI-B2, the
presence of an honest majority of switches along the flow path
enables SPHINX to precisely detect any malicious updates to
flow statistics at any switch in the flow path.

As an example of the incremental construction of a flow
graph, consider a flow between hosts A and B as shown in
Figure la, that gets rerouted by the controller at different
time steps. Figures 1b, 1c and 1d depict the state of the
corresponding flow graph at each reroute, with the current path
in black. The flow is first established at time-step #;, with the
path as S1 — §2 — S§5. At 1,, the flow is rerouted by the
controller along S1 — S3 — S5, and the current path is
updated accordingly. Finally at #3;, the flow is rerouted once
more along S1 — §2 — §3 — S5. Note that expired nodes
and edges are never deleted from the flow graph, enabling
SPHINX to accurately determine the updated current path
during reroutes. This allows for the possibility that a reroute
might not result in the issuance of fresh rrow_moo commands
to all the switches on the new current path, as is the case
during the reroute at #3 (where switches S1 and S2 receive
fresh instructions from the controller while 3 does not).

Flow graphs exploit the predictability and pattern in both
topological and data plane forwarding inferred from con-
trol messages to detect attacks originating within the SDN.
While flow graphs are an effective tool to verify normal

Other OpenFlow packsls i il)

'
i
v
: | Folicics i
I
-1 3 H | Relsytothe
n;»;.:k,w _flow mod J_ Wetadzta | ! controller
sacksts | Staws rephy I l teatlre zat | ! Werifier Alert | switches
. « ! 1 B L
I i . L Admin [,
| Ancker_in]:‘_I} [! - ¥ :
| Feztures_reply i Tapalagy | —Z |
H . Foodikack |
Parser Assimilztar ! Data Stere ’ :
” Intercept Op=nFlow Builcl Flow: ' 6 “elidate natwork E
kel Graph i ez i

Fig. 2: SPHINX flow diagram.

and predictable network operations, they are limited in their
capabilities by the nature of messages sent over the control
plane and the dynamism in the topology. If there is a majority
of tampered or untrusted messages, then flow graphs will
perceive incorrect messages as normal behavior and not raise
any alarms. Further, if the network topology changes very
frequently, then several of the learned invariants may be
violated, resulting in alarms.

C. High-level approach

KEY IDEA. SPHINX gleans topological and forwarding state
metadata from OpenFlow control messages to build incre-
mental flow graphs and verify all SDN state in realtime,
including detection of security attacks on topology and data
plane forwarding (such as those listed in § III-A and later in
§ VIII) or violations of administrative policies. Any deviant
behavior is flagged and reported.

Figure 2 shows SPHINX’s workflow, which involves three
stages. First, SPHINX monitors all controller communication
and identifies relevant OpenFlow messages required to build a
comprehensive view of the network. Second, SPHINX analyzes
these OpenFlow messages and extracts topological and for-
warding state metadata to incrementally build a network graph
complete with traffic flows. Specifically, SPHINX maintains
topological and forwarding state metadata captured from (i)
incoming OpenFlow packet headers, (ii) outgoing flow path
setup directives, and (iii) actual flow traffic measurements
over the network links, respectively. Third, SPHINX verifies
the flow’s current metadata against (i) a set of permissible
values of metadata gathered over the lifetime of a flow,
and (ii) administrative policies. SPHINX flags known attacks
using administrator-specified policies, while it leverages flow-
specific behavior acquired over time to detect unforeseen and
potentially malicious activity.

SPHINX does not raise alerts when it discovers new flow
behavior. Instead, SPHINX raises alerts when it detects un-
trusted entities triggering changes to existing flow behavior,
or the flow violates any administrator-specified security policy.
For example, SPHINX does not raise alarms when a switch
learns its neighbors. However, if any of the neighbors change
on any switch port, SPHINX will immediately flag the incident
since it alters the network topology and subsequently the flow
graph. Additionally, SPHINX will not raise alerts on flow re-
routes since they are triggered by rrow_vop messages from the
trusted controller. This significantly lowers alarms that may
be generated if detection of every new behavior is flagged,
which is possible in evolving networks. Such suppression of
alerts also implies that any malicious activity that precedes

genuine flow behavior will be treated by SPHINX as discovered
behavior, and will thus evade immediate detection. However,
the malicious activity will be detected retrospectively when
SPHINX later flags the genuine behavior as suspicious, only to
be negated by the administrator.

EXAMPLE. SPHINX detects the fake topology attack as de-
scribed in § III-A by extracting metadata from OpenFlow con-
trol messages to maintain a view of the topology with all the
active ports per switch. SPHINX observes the reaTurRES_REPLY
OpenFlow message to detect controller-switch connections and
port details per switch. SPHINX intercepts packeT_IN messages
that contain LLDP payload, and extracts metadata to identify
valid links between switches in the flow graph. It then val-
idates the extracted metadata against a set of acknowledged
invariants, such as (i) only a single neighbor is permitted per
active port at a switch , and (ii) links should be bidirectional.
This host-switch-port mapping enables SPHINX to detect fake
edges (from a single compromised switch or host) at the instant
malicious packer_in messages are received by the controller.

However, two or more colluding switches or end hosts
may still poison the controller’s view by creating a fake
bidirectional link, thereby possibly altering the shortest routing
path between other hosts on the network. SPHINX can detect
such fake links by verifying data plane forwarding metadata
per-flow, which captures the flow patterns of the actual network
traffic along a path in the flow graph. Specifically, SPHINX uses
a custom algorithm to monitor the per-flow byte statistics (by
intercepting stats_repLy messages) at each switch in the flow
path, and determines if the switches are reporting inconsistent
values of bytes transmitted.

D. Why SPHINX works?

SDNs provide three key features that enable SPHINX to
precisely detect security threats in realtime.

(a) Ease of analysis: SDNs are less dynamic than the Internet,
and OpenFlow is much simpler than traditional communication
protocols. All intelligence is centralized in the controller,
where the stream of all network updates is observable. This
significantly eases analysis of control messages within SDNs.

(b) Action attribution: Action attribution in SDNs is much
easier than in traditional networks because of the centralized
controller that has global visibility and the large amount of
statistics available at the controller.

(¢) Domain knowledge: If we do not consider SDNs to be
a black box, then we can leverage domain knowledge about
OpenFlow to develop a small, yet expressive, feature set that
captures the essence of all network communication. This helps
to easily detect changes in patterns of control messages.

V. SPHINX: DESIGN

SPHINX aims to provide accurate and realtime verification
of network behavior by providing three key features. First, it
monitors all relevant OpenFlow control messages originating
from the switches or the controller. Second, it leverages a
succinct feature set that enables efficient verification of these
messages. Third, it uses a custom algorithm for fast validation
of network updates as they are processed by the controller.

Netwaork 05
|
[SPHINX

= i T
R =7 A T B
s | P - :
= Sl Hrmware
s = T

T—‘-".I il

Controller

B - ==
... Firmware | |I'F-'.—] |
iy HE

=

Firmwre /Switches

| EeEL
Y

Fig. 3: SPHINX architecture.

[Src MAC/IP/port[Dst MAC/IP/port[Switch and in/oul—port[Flow match and slalistics]

Table 1: Feature set used to determine per-flow metadata.

A. Intercept OpenFlow packets

SPHINX must intercept every network update to be able
to detect deviant behavior. Figure 3 presents a schematic
architecture of the system, which shows SPHINX as a shim
between the switches and the vanilla controller. An adversary,
i.e., an end host or a switch, can misuse only a subset of
all OpenFlow messages to poison the controller’s view of
the network. These messages include packer_1n, STATS_REPLY
and reatures_repry. In contrast, the trusted controller only
uses rrow_Mop messages to direct the switches to establish
connectivity between the endpoints. Thus, SPHINX actively
monitors just these four OpenFlow messages to extract relevant
metadata. All other messages are simply relayed through.

B. Build incremental flow graphs

SPHINX analyzes the OpenFlow control messages men-
tioned above to incrementally build and update flow graphs
corresponding to each flow in the network. It then detects
attacks or violations in security policies by identifying tan-
gible changes in the network’s topological and/or data plane
forwarding metadata associated with every flow graph.

There are three main entities in an SDN environment that
accurately characterize such metadata for each flow in the net-
work, i.e., end hosts, switches and flows. SPHINX extracts and
remembers the metadata associated with each entity to popu-
late a feature set described in Table 1. The source/destination
IP/MAC bindings provide a mapping for each host on the
network. The MAC/port bindings uniquely identify a flow
between endpoints. The flow match along with switch in- and
out-port determines the set of waypoints for a flow in the
data plane. Lastly, flow statistics provide bytes/packets trans-
ferred for every flow. Additionally, SPHINX assimilates and
remembers this flow-specific physical and logical topological
bindings for the end points, and the forwarding state specified
by rrow_mop messages at each intermediate switch in the flow
path, to detect potentially malicious metadata updates.

SPHINX relies on four OpenFlow messages—rron_mop,
PACKET_IN, STATS_REPLY and rEATUREs_ReEpLY—tO eXtract all rel-
evant metadata as observed at a particular switch and port.
Specifically, SPHINX determines onset of flows and topological
information (host IP-MAC, MAC-port or switch-port bindings)
when switches issue a packer_1n. The desired paths to be taken
by flows, and any subsequent updates, are determined when
the controller issues a rrow_mop for the switches. SPHINX uses

Feature | Description

Subject (SRCID, DSTID), where ¥V SRCID and DSTID € {CONTROLLER |
WAYPOINTID | HOSTID | =}

Object {COUNTERS | THROUGHPUT | OUT-PORTS | PACKETS | BYTES |
RATE | MATCH | WAYPOINT(S) | HOST(S) | LINK(S) | PORT(S) | etc.}

Operation | IN | UNIQUE | BOOL (TRUE, FALSE) | COMPARE (<, >, =, #) | etc.

Trigger PACKET_IN | FLOW_MOD | PERIODIC

Table 2: SPHINX’s policy language.

stats_repLy, Which is received periodically from the switches,
to extract flow-level statistics in the data plane, including
packets/bytes transferred. SPHINX intercepts FEATURES_REPLY
to glean switch configuration, including port status, when a
switch first connects to the controller.

C. Validate network behavior

Verification of constraints on network entities, resources
and flow properties is performed by SPHINX’s policy engine.
In most cases, SPHINX can quickly verify the diverse effects
of all network updates on individual flows by simply travers-
ing the flow graph and inspecting the associated metadata
for conformance with application- or administrator-specified
safety properties. However, processing the entire flow graph
on each network update is time consuming. Thus, SPHINX
caches the waypoints of the current path to determine if the
update satisfies the constraints or not. In case the network
updates modify the structure of the current path, such as VM
migrations in multi-tenant data centers, SPHINX discards the
cached waypoints, rebuilds the current path and traverses it to
check for consistency (such as waypoint dependencies, etc.),
and any administrator-specified security policies.

Incremental flow graphs along with the flow metadata
ensure that the validation process is quick, since at each update
SPHINX only has to reason about the metadata concerning a
specific network link for a single flow. This design not only
makes constraint verification extremely fast, but also makes
action attribution easier and precise.

We next describe SPHINX’s policy engine and its role in
the validation of network behavior in greater detail.

VI. SPHINX POLICY ENGINE
A. Constraint specification

SPHINX validates all flow graphs against a set of
constraints. These constraints are of two types—(i) any
administrator-specified security policies, and (ii) those ac-
quired over time for a specific flow. Administrator-specified
policies defend against known attacks or violations, while
constraints assimilated over time can detect even unanticipated
and harmful network updates.

SPHINX provides a light-weight policy framework that
enables administrators to specify validation checks on incre-
mental flow graphs. These administrator-specified constraints
must be expressed in a policy language as specified in Table 2.
Most modern controllers allow applications and modules to
implement separate checks making policy enforcement buggy
and hard. In contrast, SPHINX provides a pluggable framework
to enforce complex security checks at one central location.
Note that SPHINX assumes logical correctness of the policies.
Validation of policies is out of scope of the current work, and
is left for future work.

) <Policy PolicyId="Waypoints">

2) <Subjects><Subject value="H3, *" /></Subjects>
3 <Objects>

) <Object><Waypoint value="S2" /></Object>

®) <Object><Waypoint value="S3" /></Object>

©6) </Objects>

%) <Operation value="IN" />

8) <Trigger value="Periodic" />

©) </Policy>

Fig. 4: Example policy to check if all flows from host H3 pass through
specified waypoints S2 and S 3.

Each policy has four main components—subject, object,
operation and trigger. The subject identifies traffic flow(s)
between a source/destination pair in either the control or data
plane (where either or both can be wildcards) over which
constraints are expressed. An object is a keyword that specifies
a traffic property describing the nature of constraints, while the
operation specifies a relation describing the approved values
that the object can attain for the given traffic flow(s), as
specified by the subject. Lastly, the policy must also specify a
trigger instructing SPHINX when to schedule the check.

SPHINX feeds the policy to a verifier, which ensures that
the constraints are checked at the specified trigger. For each
policy, the verifier extracts the flow and the associated flow
properties, and invokes a built-in checker to evaluate the con-
straint. SPHINX provides several built-in checkers, including
those for enforcement of policies listed in Table 4. Figure 4
shows an example policy to check if all flows originating at
a host H3 in the network pass through specified waypoints,
such as a firewall. The policy applies to all destinations in
the network, as indicated by ‘x’ in the ‘DSTID’ field of the
subject. The objects define the set of waypoints, while the
operation ‘IN’ directs the verifier to check the waypoints for
membership within the objects specified by the policy. The
policy is checked ‘periodically’ as specified by the trigger.

Apart from validating the administrator-specified con-
straints, SPHINX automatically generates flow-specific con-
straints by observing updates to flow-specific topological and
forwarding states, i.e., IP-MAC or switch-port bindings, for-
warding actions at specific waypoints, etc., over time. These
topological and forwarding states are the default constraints for
that flow, and SPHINX checks for any atypical flow patterns
by identifying changes to the flow’s metadata. SPHINX raises
an alarm if any of these invariants are violated during the
duration of the flow. For example, if SPHINX receives flow-
level statistics from a switch not on the flow’s current path, it
raises an alarm because an intermediate switch on the current
path could be siphoning off flow traffic.

SDN controllers utilize graph theoretic algorithms to ensure
that the computed path between a pair of endpoints observes
certain standard properties, such as reachability, the absence of
loops or blackholes, etc. Since SPHINX trusts the controller,
the policy language currently does not allow specification
of constraints over the flow graph structure. However it can
easily be extended to do so, thereby enabling administrators
to express policies to verify flow graph properties, such as
loops, blackholes, reachability, etc.

B. Constraint verification

Algorithm 1 briefly describes the verification process. For
each untrusted OpenFlow message (packer_tn and sTATS_REPLY)
in the packet stream, SPHINX together determines three classes

Input: S : Stream of incoming OpenFlow packets.
Output: DataS tore : Data store for saving valid metadata for each flow.
function VERIFIER(S)
Initialize:
O := Allow /*Processing of packet by defaults/
DataS tore := 0
for all p € S do
MD := GET_PACKET_METADATA(p)
F := GET_FLOW_METADATA(MD)
FG := GET_PATH_METADATA(F)
/*Get policy and other constraints for packetx/
@ := GET_CONSTRAINTS(p, MD, F, FG)
/+Validate packet/path/flow metadata for px/
O := O A\ VALIDATE_PACKET(MD, ®) /\ VALIDATE_PATH(FG, @)
A\ VALIDATE_FLOW(F, ®)
if (DENY == Q) then
/*Raise alert for administrator*/
if (/*Administrator allows alertx/) then
/+*Save all metadata in data storex/
DataS tore := DataStore |] SAVE_METADATA(p, MD, F, FG)
else
/*Break from loop and stop the packet flowx/
return DataS tore

Algorithm 1: Verification of each incoming packet for each flow.

Metadata Verification Purpose Invariants
Packet spoofing MAC-IP-Switch-Port
PACKET Controller DoS PACKET_IN rate, etc.
PATH Flow graph consistency Routmg rules. path
waypoints
FLOW Switch DoS Flow counters, Tx/Rx
Flow statistics bytes, switch/out-port

Table 3: Example of some invariants verified by SPHINX.

of metadata—packet, path and flow—and verifies them against
the set of both learnt and administrator-specified constraints.
Packet-level metadata pertains to all metadata that are specific
to just one specific packer_1n, such as information about
a host’s IP/MAC binding, or link connection between two
switches. Path-level metadata refers to all metadata that de-
scribe the network’s actual forwarding state behavior, such
as the switch and port from which the packet was received.
Note that both packet- and path-level metadata, describing the
logical and physical topology and the flow paths, are obtained
exclusively from packer_1n messages. Flow-level metadata
quantify the actual data plane forwarding in the network,
and are extracted from the sTars_repry messages received
periodically.

The aforementioned metadata verification is either deter-
ministic or probabilistic. Topological state verification can
proceed even before the actual traffic has begun, i.e., it verifies
properties involved in setup of flow paths and is deterministic.
Verification of data plane forwarding state requires a flow to
be setup, and probabilistically verifies properties that quantify
the nature of the flow. Table 3 lists the three metadata classes
and some of the corresponding invariants observed during
verification. Table 4 lists the default policies that SPHINX
checks at each verification trigger. Note that SPHINX does
not verify the trusted rrow_mop messages. However, the effects
of these rrow_mop messages may violate some administrator-
specified policy, e.g., all flows must pass through a firewall.
Thus, SPHINX validates such policies on the specified trigger.

1) Topological state constraint verification: Topologi-
cal constraints, i.e., both network invariants as well as
administrator-specified, can be verified using the metadata
gleaned from the received packer_in. Once the default invari-
ants have been verified, the metadata are compared against
all applicable policies, and any deviant behavior is flagged.

Trigger Policy
IP-MAC binding is permissible.
PACRET_IN Network topology (physical/logical) change is permissible.
FLOW_MOD
Periodic Throughput for a flow/switch port is below a threshold.
Switch must not drop or siphon off packets in the flow.

Table 4: Default policies checked by SPHINX on every trigger.

Examples of such packet-level metadata verification include
the detection of packet spoofing for both logical and physical
topological tampering. All such verification is deterministic
and fast due to incremental flow graphs, which allows verifi-
cation to proceed over the last edge or metadata that was added
to the graph. This also enables precise action attribution.

2) Forwarding state constraint verification: Verification of
forwarding constraints in the data plane requires the valida-
tion of both packet- and flow-level metadata, which may be
either deterministic or probabilistic depending on the nature
of constraints involved. For example, if malicious switch(es)
tamper with existing flows, then such inconsistencies may not
be reflected in the analysis of flow graph structure alone.
Such cases may only be determined by using flow consistency
checks. Thus, SPHINX performs additional periodic checks
on the flow graphs and the associated metadata to determine
conformance with flow dependencies and constraints, like
detecting if a flow’s throughput is within a threshold, packet
drops or siphoning due to malicious switch(es), etc.

OpenFlow’s asynchronous nature may cause messages to
arrive in an out-of-order manner at the controller. While
packet-level metadata (e.g., rate of packer_In messages) re-
mains unaffected, a key challenge for SPHINX is to accurately
determine flow-level statistics in the presence of unsynchro-
nized messages from multiple different switches in the flow
path, which may report flow-level statistics at different time
granularity. SPHINX overcomes the above challenge using a
custom algorithm that relies on an honest majority of switches
along a flow path to approximate the byte and packet statistics
at the flow-level. Since undesirable behavior by a malicious (or
misconfigured) switch may manifest itself in traffic flowing
across the switches, SPHINX generates a metric called Sim-
ilarity Index (X) at each switch to represent the nature of
the traffic flow. The £ of a switch at timestep ¢ is calculated
as: X, = X1 + (A, — A_p)/p, where A, = s, — s,-1, and
s, represents the latest (n'") byte-level statistics available at
timestep 7. X is thus calculated as a moving average of the
difference in byte-level statistics reported for each flow per
switch in the current flow path. SPHINX chooses the last p = 4
statistics reported by stars_repry messages, which span a few
seconds and are controller dependent. This interval is sufficient
to even out traffic bursts, congestion at waypoints and account
for out-of-order messages, thereby avoiding false alarms. X
also enables SPHINX to check for the presence of malicious
switches that may add/drop packets at coarse timescales (at
most equal to the frequency of stars_rerry messages).

For a particular flow, £ must be similar for honest switches
on its path till the flow encounters a malicious (or misconfig-
ured) switch, which may inject or siphon off traffic. However,
it is still possible that the malicious switch fakes the statistics
with ¥ similar to honest switches. Even in this case, the
switches downstream would report higher (or lower) X if the
switch is injecting or siphoning off traffic. Since offending

Input: F : Flow, 7 : threshold
Output: O : {S} Set of contentious switches along the flow F
function FLOW_CONSISTENCY_ VALIDATOR(F, T)
Initialize:
FG := GET_FLOWGRAPH(F) : The complete flow graph for flow F
CurrP := GET_CURRENTPATH(FG) : The active current flow path for FG
Zavg := 0 : Initialize running average of Similarity Index for FG

/+Validate byte consistency for switches on CurrPx/
for all S € CurrP do

M := GET_METADATA(S)

X := SIMILARITY_INDEX(M)

/*Check if X is an outlierx/

if FALSE == CHECK_VIOLATION(Z,, X, 7) then

T := UPDATE_RUNNING_AVERAGE_INDEX(Z,y,, T)

else OU=({S}/+«Add S to output setx/
/*Validate inactivity of switches not on CurrPx/
for all S € FGAS ¢ CurrP do

M := GET_METADATA(S)

T := GET_THROUGHPUT(M)

/*Check if switch § is not inactivex/

if 7!'=0then OU={S}/+«Add S to output set=/
return O

Algorithm 2: Checking byte consistency across a flow.

switches cannot fake their identity (as switches connect with
the controller over separate TCP connections), they would
thus be pinpointed. Note that X will not change if malicious
switch(es) compromise the integrity of the flow packets, or
inject and remove an equal amount of packets from the flow
traffic. To prevent such attacks on integrity of flow traffic,
SDNSs can leverage cryptographic mechanisms.

Algorithm 2 describes the steps to perform byte consistency
checks for a given flow graph. The algorithm takes as input a
flow graph and computes the current path for the flow. It then
iterates over all switches in the current path to access the byte
and packet statistics, and calculates the for each switch. The
algorithm reports a violation if it determines that a switch in
the flow path reports X much different from the moving average
X for the flow. The algorithm also checks for inactivity of all
switches not in the current path. This verifies that no switch
off the current flow path is injecting or siphoning off traffic.
Further, the algorithm takes as input a threshold (7), which
is a margin of similarity used to perform outlier detection. A
7 = x means that X at each switch along the flow path must lie
between X/x and X * x. Lesser 7 means lesser variability in X,
implying stricter consistency checks. However, a lesser 7 may
lead to false alarms, whereas a higher T may lead to lack of
genuine alarms. 7 = 1 allows no margin for variability in X.

SIMILARITY INDEX, LINK LOSS AND 7. If two adjacent
switches §, and S,,; share a link with loss rate p, and the
average similarity index for the flow path till §, is X,
then X, for the next switch in the flow, i.e., S,+1, will be
proportional to the loss rate: X, o X4 * (1 — p). SPHINX
raises an alarm if X, is not within the threshold 7. In other
words, SPHINX will not raise an alarm if the following holds
true: 1/7 < (11 / Zavg) < 7. Solving the above equations, we
get T < k/(1 — p), where k is the proportionality constant.

C. Handling alarms

If a violation is detected during verification, SPHINX
raises an alarm for vetting by the administrator. SPHINX
also automatically generates reports that pinpoint the cause
of the alarm. For deterministic verification, SPHINX lists the
offending packet and the link/waypoint responsible for the
alarm. For probabilistically verified invariants, SPHINX gives

Attack
ARP poisoning
Fake topology
Controller DoS
Network DoS
TCAM exhaustion
Switch blackhole

ODL Floodlight POX Maestro

AR NINENEN
AENEESENN
AENENENESEN
AEENENENEN

Table 5: Comparison of controller vulnerability.

the exact switch/out-port along the flow where the validation
failed. Once the alarm is vetted by the administrator, SPHINX
learns the new behavior and incorporates it in its metadata
store, preventing further alerts. If the administrator marks a
flow as suspicious, the metadata for that run is discarded.

VII. IMPLEMENTATION

We envision SPHINX to be integrated within the SDN
controller as a module/application. However, to demonstrate
SPHINX’s broad utility and compatibility with different con-
trollers, and also for ease of implementation, we implement it
as a controller-agnostic proxy that sits between the controller
and the switches. SPHINX is written in ~2100 lines of JAVA,
and leverages the Netty I/O library [11]. It implements separate
queues for switch to controller communication (packeT_1n,
FEATURES_REPLY and staTs_repLy) and controller to switch com-
munication (rrow_mop), for enhanced performance.

SPHINX is compatible with OpenFlow v1.1.0, and works
with both OpenDaylight v0.1.0 (ODL) and Floodlight v0.90
controllers. SPHINX can easily be integrated with other con-
trollers such as Maestro and POX, and requires no significant
changes. However, we needed to modify just 30 lines in
ODL to ensure conformance with our design. Specifically,
ODL installs flow rules based on destination IP only. Since
SPHINX defines flow rules as a MAC-MAC address pair of the
endpoints, we modified ODL to output source and destination
MAC addresses in the rrow_mop messages.

SPHINX may also be implemented as a passive monitoring
tool that replicates all control traffic at the switches and
analyzes them separately. This is feasible as all switches are
equipped with port mirroring. However, since the switches are
untrusted and port mirroring provides no reliability, i.e., it may
drop traffic, we did not implement this mechanism.

VIII. STUDY OF CONTROLLER VULNERABILITIES

We now describe empirical studies to demonstrate the
relative ease of launching attacks against four commonly
used SDN controllers—ODL, Floodlight, POX and Maestro.
We also describe how SPHINX successfully detects each of
the attacks. While, some of the attacks were detected using
administrator-specified policies, others were automatically de-
tected by SPHINX using flow-specific permissible behavior as-
similated over time. Table 5 lists the results of our experiments.
It indicates that popular controllers are vulnerable and can
be easily exploited. The vulnerabilities described here afflict
SDNs in general and are not specific to a particular controller.

A. Attacks on Network Topology

1) ARP Poisoning: Compromised hosts can spoof physical
hosts by forging ARP requests, i.e., ARP poisoning, fooling
the controller into installing malicious flow rules to divert

(4] <Policy PolicyId="ARP-poisoning">

2) <Subject value="H5, *" />

3) <Object><Host value="IP, MAC" /></Object>

@ <Operation value="9.12.34.56, 60:67:20:f1:b7:4c" />
5) <Trigger value="PACKET_IN" />

(6) </Policy>

Fig. 5: Example policy to detect ARP poisoning by validating host
H5’s IP/MAC bindings.

traffic flows, possibly for eavesdropping, thereby allowing a
malicious host to intercept traffic intended for another host.
Malicious hosts along with an accomplice can also initiate
arbitrary flows to fool the switch and the controller into
installing flow rules that create loops or blackholes in the
network or mount an IP splicing attack. We implement the
attack using a topology of three hosts connected to a switch—
a malicious host A, and two benign hosts B and C. The attack
involves sending spoofed ARP requests ‘Who has B, tell C’
but with A’s MAC address. These malicious ARP requests are
relayed as packer_1n messages to the controller, and ultimately
corrupt B’s ARP cache along with the controller’s view of the
topology, which then routes traffic from B (intended for C) to A
instead. We test the attack by sending repeated PING requests
to B from C. Instead of observing the responses at C, we
observed the responses at A. Note that variants of this attack
are possible with any packet triggering a packer_in message,
and not just the ARP packet. This attack works across all the
controllers we tested. Our video demo shows a variant of this
attack for ODL [1].

DETECTION. SPHINX builds a flow graph that maintains and
updates MAC-IP bindings for all hosts in the network along
with a list of possible switch-ports they can be located at.
It extracts this metadata when a pacxer_in arrives. If any
deviation from these permissible bindings is observed during
a packeT_1N, SPHINX flags it and raises an alarm. In case the
administrator permits a flagged binding, SPHINX updates its
list accordingly to prevent further alarms. ARP poisoning can
also be detected using custom policies written using SPHINX’s
policy language. Figure 5 shows an example policy that raises
alarms if SPHINX detects a different binding for host H5 in
its metadata store other than as specified by the policy.

2) Fake topology: We implement the host-based variant of the
attack as described in § III-A, where a single malicious host
tries to create a fake network link, using a linear topology
of three switches X, Y and Z, with server A connected to
switch X, and server B connected to switch Z. Server A sends a
malicious LLDP packet, spoofing it to have come from switch
Z. The attack creates a fake unidirectional edge from Z to
X in the controller’s view, which results in recomputation of
routing paths. Our video demo shows a variant of this attack
for ODL [6]. Following the addition of the fake edge, PING
responses from B will not reach A (for the corresponding
PING requests from A to B). While ODL, Floodlight and
Maestro allow the creation of fake unidirectional edges, POX
validates a link only if adjacency is both ways. Thus, except
POX, other controllers can be tricked using a single malicious
end host. For POX, an accomplice will suffice to trick the
controller. Similarly, compromised soft switches can also fool
the controller by sending spoofed LLDP packets.

DETECTION. As described earlier, SPHINX extracts metadata
from packer_tn and rEaTURES_REPLY Messages to build a flow
graph that learns and maintains a view of the topology with

(6] <Policy PolicyId="LLDP-spoofing">

%)) <Subject value="S1, S2" />

3) <Object><Link value="SrcPort, DstPort" /></Object>
@) <Operation value="P3@S1l, P5@S2" />

[6) <Trigger value="PACKET_IN" />

6) </Policy>

Fig. 6: Example policy to detect LLDP spoofing by checking if a
link between switches S1 and S2 exists on valid ports.

a <Policy PolicyId="Controller-DoS">

2 <Subject value="«, Controller" />

3 <Object><Throughput value="50" /></Object>
) <Operation value="<" />

®) <Trigger value="Periodic" />

() </Policy>

Fig. 7: Example policy to detect controller DoS.

all the active ports per switch. These metadata are validated
against invariants such as the bidirectionality of a network edge
between switches, and the presence of only a single neighbor
per active port at a switch. Thus, the host-switch-port invariant
ensures that no fake edges are ever added to the network.
LLDP spoofing can also be detected using custom policies
written using SPHINX’s policy language. Figure 6 shows an
example policy that raises alarms if SPHINX detects different
switch-port bindings for a link between switches S1 and §2
in its metadata store other than as specified by the policy.

NOTE 1. The default flow-specific invariants provide compre-
hensive detection of unanticipated changes in the topological
and forwarding state behavior over the entire network. In
addition, the policies provide the administrator with control
to specify fine-grained constraints over the flow-specific topo-
logical and forwarding state of specific network entities. Thus,
the two mechanisms complement each other.

NOTE 2. While ARP poisoning and LLDP spoofing corrupt
the physical topological state, fake IGMP messages from a
malicious host can corrupt the logical topological state. In
§ IX-C, we discuss how malicious entities can spoof logical
topological state and how SPHINX detects against such attacks.

B. Attacks on Data Plane Forwarding

1) Controller DoS: OpenFlow requires the switches to send
complete packets to the controller if the ingress queues are
full. Such control plane flooding may significantly increase
the computational load on the controller and even bring it
down. We tested this using Cbench [2] to flood the controller
with high throughput of packer_in messages for installation
of new flows, thereby hampering the normal operation of the
SDN controller. On increasing the number of switches and
hosts in the network, all controllers except Floodlight exhibited
DoS-like conditions, i.e., either the controller breaks down or
the network latency increases to inordinate timescales. Un-
like other controllers, Floodlight throttles incoming OpenFlow
messages from the switches to prevent DoS. However, the
connection of the switches with the controller snaps when a
large number of switches attempt to connect with it.

DETECTION. SPHINX detects control plane DoS attacks on
the SDN controller by observing flow-level metadata to com-
pute the rate of packer_1n messages. SPHINX raises an alarm if
this throughput is above the administrator-specified threshold.
Figure 7 shows an example policy that reports violation if
the packer_1n throughput on any link from the switches to the
controller reaches 50 Mbps.

¢V
2
3
@)
)
©)

<Policy PolicyId="Network-DoS">
<Subject value="x" />
<Object><Throughput value="100" /></Object>
<Operation value="2>" />
<Trigger value="Periodic" />
</Policy>

Fig. 8: Example policy to detect network DoS.

1
2)
3
@
)
©)

<Policy PolicyId="TCAM-exhaustion">
<Subject value="Controller, S5" />
<Object><Rate value="50" /></Object>
<Operation value="<" />
<Trigger value="FLOW_MOD" />
</Policy>

Fig. 9: Example policy to detect TCAM exhaustion.

2) Network DoS: We tested the four controllers for network
DoS by installing custom rules on two OVSes in our topology,
to direct traffic into a loop and thereby magnify a 1 Mbps flow
between a specified endpoints such that it completely chokes
a 1 Gbps link. An iperf session between arbitrary hosts across
the choked link yielded a bandwidth of just ~400 Kbps. We
also observed that the attack completes in sub-second time
intervals for all the controllers.

DETECTION. For every flow, SPHINX periodically updates the
flow graph with byte statistics reported by the switches across
the flow path, and validates this byte consistency with the
intended behavior by monitoring rrow_moo messages. Figure 8
shows an example policy to detect if the throughput across any
network link rises above the administrator-specified threshold
of 100 Mbps. Additionally, SPHINX leverages path- and flow-
level metadata to detect loop formation in the network.

3) TCAM exhaustion: We test the controllers for TCAM
exhaustion attack as described in § III-A using a switch (IBM
RackSwitch G8264 with a TCAM of size 1K) with three hosts
(A, B and C). We repeatedly send exactly 1K flows from host
B, with arbitrary source addresses, to ensure that flow rules
never time out at the switch. Thus, any new flow rule (say those
corresponding to PINGs from A to C) are not installed, thereby
causing a denial of service. The TCAM exhaustion attack
worked for Floodlight, POX and Maestro, which completely
populate the TCAM (as they use source/destination IP pairs
as keys). This causes them to exhibit high latencies (40-80
ms) for any new flow rule installation (even PINGs), which
creates near DoS conditions for normal network operations.
In contrast, the attack did not work with the vanilla ODL
controller, since it installs rules only using the destination IP
as the key. In our experiment, since we sent all traffic to a
single destination, only a single rule was installed for all 1K
flows. To exhaust the TCAM in an ODL setup, we need flows
with unique destination IPs that are within the subnet.

DETECTION. SPHINX populates the flow graph with packet-
level metadata for rrow_mop messages to compute the rate of
flow installations. SPHINX detects TCAM exhaustion if this
rate continues to be high over time and violates administrator-
specified policy directives, as shown in Figure 9. The example
policy raises a violation if the rrow_mop throughput from the
controller to switch S5 is greater than 50 rrow_mop messages
per second.

4) Switch blackhole: A blackhole is a network condition
where the flow path ends abruptly and the traffic cannot be
routed to the destination. SPHINX trusts the controller, which
ensures that blackholes are not formed at the instant flow paths

10

are setup 2. However, a malicious switch in the flow path may
drop or siphon off packets, thereby preventing the flow from
reaching the destination. We tested the four controllers for the
above variant of the switch blackhole attack in a flow path of 5
switches by installing custom rules on one of the OVSes (not
including the ingress and egress switches) to drop all packets.

DETECTION. SPHINX determines the switch blackhole attack
associated with switches by verifying the flow graph for byte
consistency, which captures the flow patterns of the actual
network traffic along a path in the flow graph. Specifically,
SPHINX uses Algorithm 2 to monitor the per-flow byte statis-
tics at each switch in the flow path, and determine if the
switches are reporting inconsistent values of bytes transmitted
than expected. If the bytes reported across the switches fall
below a threshold, SPHINX raises an alarm. In this case, the
blackhole causing switch causes the successor switch in the
flow path to report O bytes for the corresponding flow, thereby
triggering the alarm.

IX. EVALUATION

We now present an evaluation of SPHINX. In § IX-A, we
evaluate SPHINX’s accuracy by measuring how quickly it can
detect attacks, the effectiveness of the byte consistency algo-
rithm, and the false alarms generated under benign conditions.
In § IX-B, we measure user perceived latencies introduced by
SPHINX, variation in packet throughputs, overhead of policy
verification, etc., and also compare its performance against
related work. Lastly, in § IX-C, we describe our experiences
with SPHINX under four diverse case studies.

EXPERIMENTAL SETUP. Our physical testbed consists of 10
servers connected to 14 switches (IBM RackSwitch G8264)
arranged in a three-tiered design with 8 edge, 4 aggregate,
and 2 core switches. All of our servers are IBM x3650 M3
machines having 2 Intel Xeon x5675 CPUs with 6 cores each
(12 cores in total) at 3.07 GHz, and 128 GB of RAM, running
64 bit Ubuntu Linux v12.04.

We determine the default value of 7 in SPHINX empirically.
The proportionality constant & (recall § VI-B2) for our physical
testbed was empirically determined to be 1.034, and for link
loss rates of up to ~1%, the default T comes out to be 1.045.
Thus, X at each of the switches along the flow path in our
testbed must lie between X/1.045 and X * 1.045.

TOOLS USED. We use several tools for evaluating SPHINX in
a controlled setup. We achieve scalability using the Mininet
emulator with the number of hosts varying from 100 to 10K.
We use Cbench [2] to stress test SPHINX’s performance in
the presence of a large number of hosts with high packer_1n
rates. Cbench emulates switches and hosts to stress the con-
troller with packer_in messages that generate rrow_mop rules
to be installed on switches. We use the Mausezahn packet
generator [9] to control the rate of TCP packets from several
Mininet hosts to stress SPHINX with varying rrow_mop rates.
We use tcpreplay [18] to vary packer_in rates. Lastly, we use
custom scripts to generate benign traffic in Mininet.

2 A static blackhole could manifest if the ‘action’ attribute of the OpenFlow
FLOW_MOD message received at a switch may not have any associated out-port,
or the ‘action’ might send the packet back on the received port itself. Thus,
the switch will either drop all packets, or return them along the in-port.

Detection time (us)
Physical testbed 1K Mininet hosts
60
80

Attack

ARP poisoning
Fake topology

Controller DoS 75 900
Network DoS 75 164
TCAM exhaustion nla nla
Switch blackhole 75 900

Table 6: Attack detection times (us) using SPHINX. Controller DoS
was performed with ODL as Floodlight throttles high packet rates.

A. Accuracy

1) Attack detection: We measure SPHINX’s detection ac-
curacy under two different parameters. First, SPHINX must
provide near realtime detection of attacks. Second, even in
the presence of diverse network traffic and multiple different
faults, SPHINX should be able to quickly detect each attack.

For the first experiment, we introduced synthetic faults
(described in § VIII) along with benign traffic on our physical
testbed and with 1K emulated hosts in Mininet (arranged
in a tree topology with fanout 10 and depth 3). We then
used SPHINX to measure the absolute time taken to detect
the faults. We define detection time as time taken to raise
an alarm from the instant SPHINX received the offending
packet. We used a custom traffic generator to introduce benign
traffic with 300 rrow_mon/sec. We repeated each scenario 10
times and report the results in Table 6. The results show
sub-millisecond detection times, which indicates that SPHINX
provides near realtime detection of attacks, even with 1K
hosts and reasonable background traffic. Note that ARP and
fake topology attacks are detected when packer_1n messages
are processed. However, SPHINX runs a periodic flow graph
validator to detect DoS attacks. Thus, these detection times
may vary as size of the flow graph increases.

For the second experiment, we used Mininet to scale the
number of hosts from 100, 1K, up to 10K. We then launched
ARP poisoning, fake topology and network DoS attacks simul-
taneously in different parts of the network. We repeated each
experiment 10 times, and observed that SPHINX successfully
detected all the faults under the different topologies.

BENIGN TRAFFIC. We sanity check SPHINX’s deterministic
verification by measuring the false alarms generated in the
presence of benign traffic with all the checks in Table 4
enforced. We wrote a traffic generator that uses three diverse
real-world, but benign, network traces—a 14min trace from
LBNL [7], a 65min trace [4], and a 2hr trace extracted
from [3]—to drive traffic in Mininet. Execution of these traces
raised no alarms at the default 7 of 1.045.

DIAGNOSTICS. SPHINX provides useful diagnostic messages
to pinpoint the real cause of attacks. SPHINX can do so because
it (i) succinctly captures the flow metadata, and (ii) wherever
possible, maps each network update to an incoming OpenFlow
packet. For example, in the fake topology attack, SPHINX
provides diagnostic messages to identify the malicious LLDP
packet, and also lists the in- and out-port of the source and
destination switches to identify the network link over which
the offending packet was sent.

2) Sensitivity of 7: SPHINX’s accuracy of probabilistic verifi-
cation is influenced by 7 (see § VI-B2), which may lead to false
alarms or the absence of genuine alarms. We study 7’s impact

11

under two scenarios using controlled experiments. First, we
measure the probability of alarms generated due to competing,
but genuine flows over shared links with different values of
7. Note that these would be false alarms since the flows are
genuine. Second, we study the probability of lack of genuine
alarms, even in the presence of a misbehaving switch or link.
Such genuine alarms should have been raised by SPHINX’S
verification checks, but did not because of 7.

(a) False alarms: We performed a worst-case analysis of
false alarms raised for a given 7 using competing TCP iperf
flows. TCP’s fair share nature will generate fluctuations in
throughput to cause changes in the switches’ X along the
flow path, which would raise alarms. We used Mininet hosts
that share a 3 hop path, and compute the fraction of X
verification checks that raised false alarms. We observed that as
T increases, the probability of observing false alarms decreases
(see Figure 10a). Both precision and recall are O, since there
are no true positives. At the default 7 = 1.045, we observed 6
alarms for 8 competing flows over 5 mins. We also performed
this experiment on our physical testbed, which yielded similar
results. Note that loss of stats_repry messages, which provide
cumulative statistics, may also lead to false alarms depending
on T.

(b) Lack of genuine alarms: We define the probability of the
lack of genuine alarms for a given 7 as the ratio of the number
of checks that did not trigger an alarm to the total checks
triggered during verification. We evaluated the above metric for
controlled flows between Mininet hosts that are 6 hops apart.
We introduced packet drops on one link in the path to mimic a
misbehaving switch or link. Alarms will be triggered because
of the variability in X due to packet drops. However, SPHINX
might suppress some of these genuine alarms. We observed
that as 7 increases, SPHINX underreports violations, and thus
the probability of lack of genuine alarms during verification
increases (see Figure 10b). For a given 7, both precision and
recall are the same, i.e., equal to one minus the probability of
lack of genuine alarms at each data point.

B. Performance

We perform experiments with both ODL and Floodlight.
However, in the interest of space we report results with Flood-
light only. All experiments check policies listed in Table 4.

1) End user latencies: We compute the overhead of using
SPHINX as perceived by end users by observing RTTs for PING
packets between two hosts separated by 5 hops in our physical
testbed. We modified Floodlight to install rules with an idle
timeout of 1 sec, and used Cbench to understand the effect of
increasing number of hosts on the observed PING latencies. We
send 1K PING packets at intervals of 3 sec, thereby causing
each PING to result in a rrow_mop. Figure 10c shows the results
of the experiment. For clarity, we only plot scenarios with
1 and 1K hosts. We observe that the latency increases with
increasing number of hosts. However, even with 1K hosts, the
latency overhead of SPHINX at the 50% mark is just 300us.
With 10K hosts, we observed much less latency for both cases
with and without SPHINX We attribute this reduced latency to
Floodlight, which throttles messages at high throughput.

2) FLOW_MOD throughput: End user latency is also affected
by how quickly SPHINX can process rrow_mop packets and

123

0.6 2 flows £

» 4 flows —%—]
£ 6 flows o
© =
T g4 8 flows E]
o . 10 flows —8— @
® 12 flows —%— g
5 14 flows —+— ~
5 02 3
[<} —
£ S
el

<

o

B0

0

1r 5 i 19
2%loss —@—
4% loss —>—
0.8 | 6%loss 0.8 -
8% loss '/
% | /
0.6 | 10% loss 06 4
04 - 0.4 4
0.2 r 0.2 4
‘ \

CDF

Without Sphinx —e—

With Sphinx —%—

|___s=Without Sphinx - 1k hosts

With Sphinx - 1k hosts

1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1
Margin of similarity (t)

(a) Prob. of false alarms with variation in 7 and flows.

1.02 1.04 1.06 1.08
Margin of similarity (t)

(b) Prob. of lack of genuine alarms vs 7 and loss rate.

0 &
11 112 0 5

10 15 20 25

Latency (ms)

30 35 40

(c) Comparison of ping latencies with varying hosts.

4000 4 400 - 400 1
@
EX
% ° —
o 3000 r £ 300 4 8 300
& = =
~ jo)) o
n Ug’ <
8 2000 H » 200 N 200
= 8 -
()
2 <] =1
° a 5}
L1000 4) . g 100 4§ g 100 4
Without Sphinx —e— <
With Sphinx —%— £
0 T T T 0 T T T 0 T T T
1000 2000 3000 4000 5000 1000 2000 3000 4000 1000 2000 3000 4000

TCAM misses / sec
(d) FLOW_MOD throughput vs TCAM miss rates.

FlowMods / sec

(e) Variation in FLOW_MOD processing time.

FlowMods / sec

(f) SPHINX’s queue size with FLOW_MOD throughput.

1500 ¢ 4000 1000 -
Burst - 100 —e— Burst- 100 —e—)
@ 1 Burst - 500 —x— — Burst- 500 —>— 1
g 1200 2 3000] 800
© > —
£ 900 4 = 2 600
o N 2000 H @
£ @ £
@ 600 o £ 400 |
8 3
=} L
£ a0 G 10004 e o 4 200 |
[
0 ‘ 0 ‘ 0 : : :
10000 100000 10000 100000 1 10 100 1000 10000

Packetlns / sec

(g) PACKET_IN processing times.

Packetlns / sec

(h) SPHINX’s queue size with PACKET_IN rates.

No. of policies

(i) Policy verification times with increasing policies.

Fig. 10: SPHINX evaluation.

forward them to the switches for flow setup. We measure
SPHINX’s overheads in processing rrow_mop messages by ob-
serving rrow_mop throughput with increasing rate of incoming
TCP connections achieved with and without SPHINX. We
wrote a driver program using Mausezahn to initiate new
TCP connections from several Mininet hosts. Thus, each TCP
packet results in a TCAM miss, which subsequently generates
a eacker_1n and elicits a rrow_mop message from the controller.
Figure 10d shows the results. We see that even at high
TCAM miss rates (or packer_1n rates), SPHINX maintains a
high rrow_mop throughput. We also observe that the throughput
is only constrained by the controller’s overhead, which is
evident from the fact that with and without SPHINX rrow_mop
throughputs are almost equal (with at most 2% overhead).

We also measure the rrow_vob processing times (Figure 10e)
and SPHINX’s ingress queue size (Figure 10f) from within
SPHINX itself. We observe that for rrow_mop throughput below
2K, the processing time is below 100us, but it rises as the
throughput increases. A similar trend is observed for SPHINX’s
ingress queue size, which remains small at ~110 bytes for
rrow_mop rate of 2K, but increases to ~400 bytes at high

throughput. This is because at higher rrow_mop rates, the
controller piggybacks several OpenFlow messages in the same
TCP payload and sends them in bursts. This increases both the
processing times and the queue sizes.

3) PACKET_IN processing: Attack detection times are im-
pacted by the length of SPHINX’s ingress queue and the pro-
cessing of packer_in messages. A large queue size negatively
affects SPHINX’s performance, while small packet processing
times affect it positively. Thus, we observe the length of the
queue of unprocessed packets in SPHINX’s pipeline and the
time taken to process packets as the packer_in rates vary.
We use tcpreplay to send bursts of packets at appropriate
intervals to vary the packer_in rate. For the experiment, we
use burst sizes of 100 and 500 packets. Figures 10g and 10h
plot the packet processing times and ingress queue sizes as
the packer_1n rate varies. We observe that as the rate increases,
both processing times and queue sizes also increase. This is
because as the packer_1n rate increases, the switches (like the
controller) also piggyback OpenFlow messages, and SPHINX
receives an onslaught of packets proportional to the burst size.
This results in higher processing times and queue sizes.

However, both processing rates and queue sizes show a
decrease after the 32K mark. We attribute this to throttling
in Floodlight. We further stress test SPHINX using Cbench
in throughput mode with 10K hosts at ~113.6K packer_1n
messages/sec. We observe a packet processing time of ~2ms,
and a mean queue size of ~6KB. This is because many more
OpenFlow packets are sent piggybacked at higher burst rates.

4) Policy verification: SPHINX implements validation checks
on every network update. Thus, we study the impact on the
processing time of rrow_mop messages with increasing number
of security policies. Since SPHINX works with incremental
flow graphs, it results in lower validation times, which pos-
itively affects SPHINX’s performance. This experiment aims
to show that even simple policies, such as those in Table 4,
when executed a large number of times do not introduce high
overheads. Figure 10i shows the results. We observe that as the
policies increase from 1 to 1K, the validation time increases by
just 73us to 245us. Even with 10K policies, SPHINX takes just
869us to complete verification of the corresponding rrow_mop.

5) Resource utilization: We measured SPHINX’s resource
consumption using Cbench with 50K hosts running for 20mins,
and observed a peak (relative) CPU usage of ~6% and memory
usage of ~14.5%. The high memory utilization is due to
the processing of metadata from a large number of packeT_1n
messages.

COMPARISON WITH RELATED WORK. We now put in per-
spective SPHINX’s performance against VeriFlow [30] and
NetPlumber [28], which are most closely related to it in design.
While these works address problems different from ours (e.g.,
they do not consider malicious entities in the network, and
examine flow rules for conflicts), we present these results to put
SPHINX’s performance in context. All three tools report sub-
millisecond mean verification time. At high rrow_vop through-
put rates, SPHINX imposes maximum overheads of ~2%, and
is only limited by the overheads of the controller itself. In
contrast, VeriFlow reports a maximum rrow_mop throughput
overhead of 12.8%. This is because VeriFlow must traverse
the entire multi-dimensional trie for verifying each rrow_wop,
whereas SPHINX uses pre-built incremental flow graphs for
validation that require minimal processing. No similar data
was available for NetPlumber.

C. Case Studies

We now show SPHINX’s broad utility by illustrating how it
can support disparate networking needs without major changes.

1) Network virtualization: Open DOVE [12] is an overlay
network virtualization platform for data centers that provides
logically isolated multi-tenant networks with L.2/L.3 connectiv-
ity. Open DOVE features a scalable control plane, including
address, policy, and mobility management, and a VXLAN [19]
based data plane. It includes several key components—
network controller or management console (0DMC), connec-
tivity server (oDCS), gateway (o0DGW) and OVS(es). Connec-
tivity between the VMs and oDMC is handled via the OVS(es).
oDMC is responsible for creating and registering overlays,
while oDCS performs policy enforcement. 0DGW externalizes
the overlays for communication with external networks.

L2 networks are vulnerable to packet spoofing and DoS
attacks. However, a MAC-over-IP mechanism for delivering L2

13

traffic, such as VXLAN, significantly extends this attack sur-
face. Rogue endpoints can inject themselves into the network
by (i) subscribing to multicast groups that carry broadcast traf-
fic for VXLAN segments, and (ii) sourcing MAC-over-UDP
frames to inject spurious traffic and hijack MAC addresses.
Recent work [40] confirms that VXLAN is susceptible to ARP
poisoning (from both overlay and tenant networks) and MAC
flooding (from overlay network). SPHINX can easily secure
the oDMC in Open DOVE to provide robust defenses against
packet spoofing and DoS attacks in network virtualization
platforms. This requires only minor changes in SPHINX to
enable processing of VXLAN packets instead of OpenFlow.

2) VM Migrations: The migration of VMs from one host to
another is a frequent phenomenon in clouds and data center
networks. Such deployments would require SPHINX to be able
to identify these migrations, so as to prevent the generation of
false alarms that might arise due to purported violations in the
invariants associated with the migrating VM (e.g., MAC-IP-
Switch-Port bindings) when it relocates to a new host.

SPHINX can achieve this by listening for RARP mes-
sages generated by the migrating VMs, along with switch-to-
controller messages caused as a result of these migrations (such
as notifications of changes in the port status at the source and
destination switches). Alternatively, SPHINX can also listen
for control messages of the cloud administrator actuating the
migrations. Once SPHINX determines that a VM has migrated,
the relevant metadata would be internally updated (e.g., the
Switch-Port mapped to the VM’s MAC-IP), and no violations
would be reported. Note that migrations themselves cannot
be maliciously orchestrated from one host to another, as that
would entail compromising the network administrator. Further,
while a malicious network entity might attempt to fake a VM
migration, it would be unable to generate a valid sequence
of messages from both source and destination switches in the
absence of an accomplice.

3) Load balancer: Load balancers distribute incoming client
requests across a set of replicated servers to maximize through-
put, minimize response time, and optimize resources. Typi-
cally, clients access the service through a single public IP
address reachable via a gateway, and the load balancer rewrites
the destination IP of the incoming client packets to the
address of the assigned replica server. Similarly, the source
IP of all outgoing response packets are also rewritten to
the public IP address visible to the client. In SDNs, where
load balancing is implemented as a controller module, packet
routing is achieved by installing rules with write actions at
the gateway—orpat_ser_nw_nst (for incoming request packets)
and orpat_seT_nw_sre (for outgoing response packets)—before
forwarding. A load-balanced SDN requires no additional pro-
cessing on SPHINX’s end, which treats the load-balanced flows
as unicast flows between the client and the assigned replica.

4) Multicast: Controller applications/modules maintain mul-
ticast groups as multicast trees. Each group has a unique
multicast IP that is used by members to send/receive messages.
Receivers interested in joining/leaving a particular group must
send IGMP messages to the controller, which are forwarded as
packeT_In messages for maintenance of multicast groups. Ma-
licious hosts can forge IGMP join/leave requests to multicast
groups leading to DoS for legitimate members. For example, a
malicious host can repeatedly send forged IGMP leave requests

on behalf of an unsuspecting host A for multicast group M.
This would result in the controller accordingly modifying
its multicast trees by removing A from group M, which
effectively results in DoS, wherein host A can never listen
to communication from M. Similarly, a malicious host B can
send forged IGMP join requests to make the unsuspecting host
A a member of all available multicast groups, which could lead
to DDoS by choking the downlink to A.

We built a multicast module for ODL to control and
manage multicast trees for multicast groups, and subsequently
implemented the attacks described above on vanilla ODL.
SPHINX enhanced ODL is immune to such attacks, since
it verifies each IGMP packer_1n on a particular switch by
leveraging its view of the topology to extract the switch-port on
which the request was received. SPHINX then validates if the
host is connected to the particular switch. If the validation fails,
SPHINX raises an alert. SPHINX leverages rrow_mop messages
to identify source-based multicast routing trees for different
groups and maintains the corresponding multicast flow graphs.
SPHINX also performs path consistency checks, and periodic
flow consistency checks on the multicast flow graph.

X. DISCUSSION AND FUTURE WORK

LIMITATIONS. SPHINX’s has a few limitations, as it can only
detect tangible side-effects arising from network updates.

(1) SPHINX cannot identify a malicious ingress or egress
switch in a flow path that adds/drops packets to influence
the X. This limitation is inherent to SPHINX, since it relies
on stars_repny from untrusted switches along the flow path
to generate ¥ and detect flow inconsistencies. Specifically,
SPHINX cannot validate the Xs reported by the ingress or
egress switches in the flow path. However, SPHINX can lever-
age supplementary data from other standard traffic monitoring
techniques such as sFlow or NetFlow to perform validation at
the ingress and egress switches.

(2) SPHINX might miss some transient attacks. A major
challenge in detecting flow inconsistencies arises from the
granularity at which metadata statistics are updated, which
spans a few seconds and is controller dependent. Fixing this
limitation may require changes to the controller to report
flow statistics at fine grained intervals, or require SPHINX to
augment its analysis with finer granularity data from sFlow
or NetFlow to achieve more precision. Alternatively, SPHINX
can also be augmented by making use of network monitoring
frameworks such as Planck [39] and PayLess [23] for greater
accuracy in link utilization measurements.

(3) The accuracy and effectiveness of flow graphs to detect se-
curity violations as described is limited by the lack of realistic
networks available to us for large scale experimentation.

(4) A high value of 7 may cause SPHINX to under report
violations, which can be fixed by using flow-specific 7.

(5) SPHINX cannot detect compromise in packet integrity.
However, cryptographic mechanisms can fix this limitation.

FUTURE WORK. SPHINX in its present form does not con-
sider the cases described below.

(1) Flow rule aggregation: Controller modules often ag-
gregate flow rules to conserve switch TCAM. SPHINX, as

14

implemented, requires installation of source/destination based
rules that hamper aggregation. However, SPHINX can easily
be modified to support aggregated flow rules.

(2) Mixed networks: Real enterprise deployments may have
OpenFlow switches interacting seamlessly with other non-
OpenFlow network entities. We plan to enhance SPHINX to
detect security attacks in such mixed settings as well.

(3) Proactive OpenFlow environment: The attacks as de-
scribed in § III and § VIII assume a reactive OpenFlow setup,
where untrusted switches and hosts may generate malicious
control traffic to elicit detrimental responses from the con-
troller that further poison its view of the network. In a proactive
OpenFlow environment, a malicious controller or applications
can initiate attacks on the SDN. We leave detection of such
proactive attacks for future work.

XI. RELATED WORK

Recent advances in SDN security have primarily focused
on security enforcement frameworks [38], [41], [42], and
realtime verification of network constraints [22], [27]-[30],
[34], [37], [44]. To our knowledge, SPHINX is the first system
to detect a broad class of attacks in SDNs in realtime, with a
threat model that does not require trusted switches or hosts.

(1) Security enforcement: FORTNOX [38] extends the SDN
controller with a live rule conflict detection engine, while
FREScO [41] provides a security application development
framework to enable modular development of security monitor-
ing and threat detection applications. Both these systems focus
exclusively on threats arising from malicious applications that
may result in the installation of conflicting rules. In contrast,
SPHINX’s threat model is different, and can detect a much
broader class of attacks on SDNs.

Avant-guard [42] alters flow management at switch level to
make SDN security applications more scalable and responsive
to dynamic network threats. However, unlike SPHINX, it fo-
cuses mostly on DoS attacks, and requires modifications to the
OpenFlow protocol. In contrast, SPHINX uses succinct meta-
data to detect a wide array of attacks while being controller
agnostic, and requires no changes to the OpenFlow protocol.

(2) Network verification: Concurrent with our work, To-
poGuard [27] is a security extension to SDN controllers that
detects attacks targeted to poison the controllers’ view of
the network topology, by fixing security omissions in the
controllers. In contrast, SPHINX unifies detection of attacks on
network topology and data plane forwarding using flow graphs.
However, SPHINX currently detects attacks within OpenFlow-
based SDNs, while TopoGuard targets mixed networks also.

Natarajan et al. [37] present algorithms to detect conflicting
rules in a virtualized OpenFlow network. Xie et al. [44] stati-
cally analyze reachability properties of networks. Anteater [34]
can provably verify the network’s forwarding behavior and thus
determine certain classes of bugs. Like Anteater, Header Space
Analysis (HSA) [29] also leverages static analysis to detect
forwarding and configuration errors. In contrast, SPHINX is
a dynamic system that sits closer to the actual network
operations. SPHINX analyzes OpenFlow control messages in
realtime to build flow graphs, and detects a broad class of
threats arising from untrusted hosts and switches in SDNs.

VeriFlow [30] segregates the entire network into classes
with the same forwarding behavior using a multi-dimensional
prefix tree. Any network update affecting the forwarding
rules and specified policies can then be verified in realtime.
NetPlumber [28] uses HSA incrementally to maintain a de-
pendency graph of update rules to enforce runtime policy
checking. NetPlumber can also verify arbitrary header mod-
ifications, including rewriting and encapsulation. SPHINX is
similar in spirit to both VeriFlow and NetPlumber in that it
leverages packet metadata to construct and analyze the for-
warding state of the network on each update. Like NetPlumber,
SPHINX also provides a policy framework for expressing
constraints on flows. However, both these tools verify network-
wide invariants by examining the flow rules installed by the
controller, and assume the data plane to be free of adversaries.
In contrast, Sphinx makes no such assumptions and analyzes
various switch-controller messages to ensure that the actual
behavior of the network conforms to the desired behavior.

XII. CONCLUSION

We describe SPHINX, a controller agnostic tool that lever-
ages flow graphs to detect security threats on network topology
and data plane forwarding originating within SDNs. We show
that existing controllers are vulnerable to such attacks, and
SPHINX can effectively detect them in realtime. SPHINX
incrementally builds and updates flow graphs with succinct
metadata for each network flow and uses both deterministic
and probabilistic checks to identify deviant behavior. Our
evaluation shows that SPHINX imposes minimal overheads.

ACKNOWLEDGEMENT

We thank our shepherd, Guofei Gu, and the anonymous
reviewers for their valuable comments. We are also grateful to
Anil Vishnoi, Dhruv Sharma, and Vinod Ganapathy for their
feedback on an earlier draft of the paper.

REFERENCES

[1]
[2]

“ARP poisoning attack,” http://goo.gl/p4AVhf.

“Cbench,” http://www.openflowhub.org/display/floodlightcontroller/
Cbench+(New).

“CRATE datasets,” ftp://download.iwlab.foi.se/dataset.

“Data Set for IMC 2010 Data Center Measurement,”
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html.

“Dynamic ARP Inspection,”
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst6500/ios/12-
2SX/configuration/guide/book/dynarp.html.

“Fake topology attack,” http://goo.gl/zZRG8bz.

“LBNL/ICSI Enterprise Tracing Project,”
http://www.icir.org/enterprise- tracing/.

[3]
[4]

[5]

[6]
[7]

[8] “Maestro,” https://code.google.com/p/maestro-platform/.
[91 “Mausezahn,” http://www.perihel.at/sec/mz/.
[10] “Mininet,” http://mininet.org/.
[11] “Netty,” http://netty.io/.
[12] “Open DOVE,” https://wiki.opendaylight.org/view/Open_DOVE:Main.
[13] “Open vSwitch,” http://openvswitch.org/.
[14] “OpenDaylight,” http://www.opendaylight.org/.

[15] “OpenFlow switch specification,”
http://openflow.org/documents/openflow-spec-v1.1.0.pdf.
[16]

(17]

“POX,” http://www.noxrepo.org/pox/about-pox/.
“Project Floodlight,” http://www.projectfloodlight.org/floodlight/.

15

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]
[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

“Tcpreplay,” http://tcpreplay.synfin.net/.

“VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks
over Layer 3 Networks,”
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops- vxlan-05.

E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration Analysis and
Verification of Federated Openflow Infrastructures,” in SafeConfig’10.
E. Al-Shaer, W. Marrero, A. El-Atawy, and K. Elbadawi, “Network
Configuration in A Box: Towards End-to-End Verification of Network
Reachability and Security,” in ICNP’09.

M. Canini, D. Venzano, P. Peresini, D. Kosti¢, and J. Rexford, “A
NICE Way to Test Openflow Applications,” in NSDI’12.

S. Chowdhury, M. Bari, R. Ahmed, and R. Boutaba, “PayLess: A
Low Cost Network Monitoring Framework for Software Defined
Networks,” in IEEE NOMS’14.

N. Feamster and H. Balakrishnan, “Detecting BGP Configuration
Faults with Static Analysis,” in NSDI'05.

N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,

A. Story, and D. Walker, “Frenetic: A Network Programming
Language,” in ICFP’11.

A. Guha, M. Reitblatt, and N. Foster, “Machine-Verified Network
Controllers,” in PLDI’13.

S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning Network Visibility
in Software-Defined Networks: New Attacks and Countermeasures,”’
in NDSS’15.

P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real Time Network Policy Checking Using Header Space
Analysis,” in NSDI'13.

P. Kazemian, G. Varghese, and N. McKeown, “Header Space
Analysis: Static Checking for Networks,” in NSDI’12.

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey,
“VeriFlow: Verifying Network-wide Invariants in Real Time,” in
NSDI'13.

R. Kloti, “OpenFlow: A Security Analysis,” Master’s thesis, ETH,
Zurich, 2012.

D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards Secure and
Dependable Software-Defined Networks,” in HotSDN’13.

LBNL, “arpwatch,” http://ee.Ibl.gov/.

H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the Data Plane with Anteater,” in SIGCOMM’11.
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling
Innovation in Campus Networks,” SIGCOMM Comput. Commun. Rev.,
April 2008.

C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A Compiler and
Run-time System for Network Programming Languages,” in POPL’12.
S. Natarajan, X. Huang, and T. Wolf, “Efficient Conflict Detection in
Flow-Based Virtualized Networks,” ICNC’12.

P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu,
“A Security Enforcement Kernel for OpenFlow Networks,” in
HotSDN’12.

J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal,
J. Carter, and R. Fonseca, “Planck: Millisecond-scale Monitoring and
Control for Commodity Networks,” in SIGCOMM’14.

G. P. Reyes, “Security assessment on a VXLAN-based network,”
Master’s thesis, University of Amsterdam, Amsterdam, 2014.

S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson,
“FRESCO: Modular Composable Security Services for
Software-Defined Networks,” in NDSS’13.

S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and Vigilant Switch Flow Management in Software-Defined
Networks,” in CCS’13.

A. Voellmy and P. Hudak, “Nettle: Taking the Sting out of
Programming Network Routers,” in PADL’1].

G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg,

G. Hjalmtysson, and J. Rexford, “On Static Reachability Analysis of
IP Networks,” in INFOCOM’05.

http://goo.gl/p4AVhf
http://www.openflowhub.org/display/floodlightcontroller/Cbench+(New)
http://www.openflowhub.org/display/floodlightcontroller/Cbench+(New)
ftp://download.iwlab.foi.se/dataset
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
 http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst6500/ios/12-2SX/config uration/guide/book/dynarp.html
 http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst6500/ios/12-2SX/config uration/guide/book/dynarp.html
http://goo.gl/zRG8bz
http://www.icir.org/enterprise-tracing/
https://code.google.com/p/maestro-platform/
http://www.perihel.at/sec/mz/
http://mininet.org/
http://netty.io/
https://wiki.opendaylight.org/view/Open_DOVE:Main
http://openvswitch.org/
http://www.opendaylight.org/
http://openflow.org/documents/openflow-spec-v1.1.0.pdf
http://www.noxrepo.org/pox/about-pox/
http://www.projectfloodlight.org/floodlight/
http://tcpreplay.synfin.net/
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-05
http://ee.lbl.gov/

	I Introduction
	II Background
	III Motivation
	III-A Host- and Switch-based Attacks
	III-A1 Network topology
	III-A2 Data plane forwarding

	III-B Traditional attacks manifest in SDNs

	IV Sphinx: Overview
	IV-A Threat model
	IV-B Flow graphs
	IV-C High-level approach
	IV-D Why Sphinx works?

	V Sphinx: Design
	V-A Intercept OpenFlow packets
	V-B Build incremental flow graphs
	V-C Validate network behavior

	VI Sphinx policy engine
	VI-A Constraint specification
	VI-B Constraint verification
	VI-B1 Topological state constraint verification
	VI-B2 Forwarding state constraint verification

	VI-C Handling alarms

	VII Implementation
	VIII Study of Controller Vulnerabilities
	VIII-A Attacks on Network Topology
	VIII-A1 ARP Poisoning
	VIII-A2 Fake topology

	VIII-B Attacks on Data Plane Forwarding
	VIII-B1 Controller DoS
	VIII-B2 Network DoS
	VIII-B3 TCAM exhaustion
	VIII-B4 Switch blackhole

	IX Evaluation
	IX-A Accuracy
	IX-A1 Attack detection
	IX-A2 Sensitivity of

	IX-B Performance
	IX-B1 End user latencies
	IX-B2 FLOW_MOD throughput
	IX-B3 PACKET_IN processing
	IX-B4 Policy verification
	IX-B5 Resource utilization

	IX-C Case Studies
	IX-C1 Network virtualization
	IX-C2 VM Migrations
	IX-C3 Load balancer
	IX-C4 Multicast

	X Discussion and Future work
	XI Related work
	XII Conclusion
	References

