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SPHIRE-crYOLO is a fast and accurate fully
automated particle picker for cryo-EM
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Selecting particles from digital micrographs is an essential step in single-particle electron

cryomicroscopy (cryo-EM). As manual selection of complete datasets—typically comprising

thousands of particles—is a tedious and time-consuming process, numerous automatic

particle pickers have been developed. However, non-ideal datasets pose a challenge to

particle picking. Here we present the particle picking software crYOLO which is based on the

deep-learning object detection system You Only Look Once (YOLO). After training the

network with 200–2500 particles per dataset it automatically recognizes particles with high

recall and precision while reaching a speed of up to five micrographs per second. Further, we

present a general crYOLO network able to pick from previously unseen datasets, allowing for

completely automated on-the-fly cryo-EM data preprocessing during data acquisition.

crYOLO is available as a standalone program under http://sphire.mpg.de/ and is distributed

as part of the image processing workflow in SPHIRE.
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I
n recent years, single-particle electron cryomicroscopy (cryo-
EM) has become one of the most important and versatile
methods for investigating the structure and function of bio-

logical macromolecules. In single-particle cryo-EM, many images
of identical but randomly oriented macromolecular particles are
selected from raw cryo-EM micrographs, digitally aligned, clas-
sified, averaged, and back-projected to obtain a three-dimensional
(3-D) structural model of the macromolecule.

As more than 100,000 particles often have to be selected for a
near-atomic cryo-EM structure, numerous automatic particle-
picking procedures, often based on heuristic approaches, have
been recently developed1–7. In a popular selection approach,
called template matching, cross-correlation of the micrographs is
performed against pre-calculated templates of the particle of
interest. However, this procedure is error-prone and the para-
meter optimization is often complicated. Although it performs
well with well-behaved data, it often fails when dealing with non-
ideal datasets where particles overlap, are compositionally and
conformationally heterogeneous, or the background of the
micrographs is contaminated with crystalline ice. In such cases,
this basic algorithm is unable to detect particles with high enough
confidence and, consequently, either particles are missed or many
false positives are selected, which need to be removed again
afterwards. Often, the last resort is manual selection of particles,
which is laborious and time intensive.

To solve this problem, two particle selection programs, Dee-
pEM by Wang et al.8 and DeepPicker by Zhu et al.9, have been
recently published, which employ deep convolutional neural
networks (CNNs). Besides these programs, Warp10 and Topaz11

were recently described in preprints. CNNs are extremely suc-
cessful in processing data with a grid-like topology12. For images
this is undoubtedly the state-of-the-art method for pattern
recognition and object detection. Similar to learning the weights
and biases of specific neurons in a multi-layer perceptron13, a
CNN learns the elements of convolutional kernels. A convolution
is an operation which calculates the weighted sum of the
local neighborhood at a specific position in an image. The weights
are the elements of the kernel which extracts specific local fea-
tures of an image, such as corners or edges. In CNNs, several
layers of convolutions are stacked and the output of one layer is
the input of the next layer. This enables CNNs to learn hier-
archies of features, thereby allowing the learning of complex
patterns.

Similar to common modern object detection systems, particle
selection tools employ a specific classifier for an object and
evaluate it at every position. Thus, they are trained with positive
examples of cropped out particles and negative examples of
cropped out regions of background or contamination. After the
classifier is trained, these systems slide a window over the
micrograph to crop out single local regions, pass them through a
CNN, and classify the extracted regions. The confidence of clas-
sification is transferred into a map and the object positions are
estimated by finding the local maxima in this map. Using this
approach it is possible to select particles on more challenging
datasets. However, as it classifies many overlapping cut-out
regions independently, this approach comes with a high com-
putational cost. Moreover, as the classifier only sees the wind-
owed region it is not able to learn the larger context of a particle
(e.g., to not pick regions near ice contamination).

In 2016, Redmon et al.14 introduced the “You Only Look
Once” (YOLO) framework as an alternative to the sliding-
window approach and reformulated the classification problem
into a regression task where the exact position of a particle is
predicted by the network. In contrast to the sliding-window
approach the YOLO framework requires only a single pass of the
full image instead of multiple passes of cropped out regions. Thus

the YOLO approach divides the image into a grid and predicts for
each cell of the grid whether it contains the center of a bounding
box enclosing an object of interest. If this is the case it applies
regression to predict the relative position of the object center
inside the cell, as well as the width and height of the bounding
box (Fig. 1a). This simplifies the detection pipeline and reduces
the number of required convolutions, which increases the
speed of the network while retaining its accuracy. During
training the YOLO approach only requires labeling-positive
examples, whereas the sliding-window approach also requires
labeling background and contaminants as negative examples.
Moreover, as the crYOLO network sees the complete image it is
able to learn the larger context around a particle and therefore
provides an excellent framework to reliably detect single particles
in electron micrographs (Fig. 1b).

Here we present the single particle-selection procedure
crYOLO, which utilizes the YOLO approach to select single
particles in cryo-EM micrographs. We evaluate our procedure on
simulated data, a common benchmark dataset, and three recently
published high-resolution cryo-EM datasets. The results
demonstrate that crYOLO is able to accurately and precisely
select single particles in micrographs of varying quality with a
speed of up to five micrographs per second on a single graphics
processing unit (GPU). crYOLO leads to a tremendous accel-
eration of particle selection, simplifying the training as no nega-
tive examples have to be labeled, and improving not only
the quality of the extracted particle images but also the final
structure. Furthermore, we present a general model for crYOLO
trained on more than 40 datasets and able to select particles of
previously unseen macromolecular species, realizing automatic
particle picking at expert level.

Results
Convolutional neural network. The program crYOLO builds
upon a Python-based open-source implementation15 of YOLO
and uses the deep-learning library Keras16. Beyond the basic
implementation, we added patch-processing, multi-GPU support,
parallel processing, preprocessing procedures, support for MRC
micrographs, single channel data, RELION star files, and
EMAN117 box files. CrYOLO includes a graphical tool to read
and create box files for training data generation or visualization of
the results in a user-friendly manner (Fig. 2). For the readers
interested in the details of the YOLO architecture, please refer the
online methods and the original paper18. Briefly, the YOLO
network consists of 22 convolutional and 5 max-pooling layers. In
addition, it contains a passthrough layer between layer 13 and 21
(similar to ResNets19) to exploit fine grain features and the net-
work is followed by a 1 × 1 convolutional layer used as a detection
layer. This architecture shows a similar performance to a 50-layer
ResNet but with a much lower number of weights18. However,
one limitation of the original YOLO network for particle picking
is that it uses a relatively coarse grid for prediction. Under special
circumstances, e.g., when particles are very small, this might lead
to a lower performance due to the fact that each grid cell can only
detect a single particle.

In order to tackle the problem of detecting very small
particles crYOLO divides the input image into a small number
of overlapping patches (e.g., 2 × 2 or 3 × 3). Instead of the
complete micrograph, each patch is then downscaled to the
network input image size of 1024 × 1024. During prediction, all
patches are classified in a single batch.

To reduce overfitting and improve the generalization capabil-
ities of the trained network, each image is internally augmented
before being passed through the network during training. During
augmentation a random selection of the following methods are
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used: flipping, blurring, adding noise, and random contrast
changes, which are described in the Methods.

Test datasets. We used crYOLO to select three different cryo-EM
datasets and analyzed the results. These include the TcdA1 toxin
subunit from Photorhabdus luminescens20 (EMPIAR-10089,
EMDB-3645), the Drosophila transient receptor channel
NOMPC21 (EMPIAR-10093, EMDB-8702), and the human
peroxiredoxin-3 (Prx3)22 (EMPIAR-10050, EMDB-3233). All
datasets were previously shown to produce high-resolution
structures. To validate the performance of our program, we also
tested it on simulated data of the canonical TRPC4 ion channel23

(EMD-4339) and on a published dataset of the keyhole limpet
hemocyanin (KLH)24.

TcdA1 assembles in the soluble prepore state in a large bell-
like-shaped pentamer with a molecular weight of 1.4 MDa20.
TcdA1 has been our test specimen to develop the software
package SPHIRE25. We previously used a dataset of 7475 particles
of TcdA1 to obtain a reconstruction at a resolution of 3.5 Å25.
Due to the large molecular weight of the specimen and its
characteristic shape, particles are clearly discernible in the
micrographs, even though a carbon support film was used.
Therefore, the selection of the particles is straightforward in this
case. We chose this particular test dataset because of its small size,
as the quality and number of selected particles would likely have
an influence on the quality of the final reconstruction.

In the case of NOMPC, which was reconstituted in
nanodiscs21, the overall shape of the particle, sample concentra-
tion, and limited contrast make it difficult to accurately select the
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Fig. 1 Training and picking in crYOLO. a With the YOLO approach the complete micrograph is taken as the input for the CNN. When the image is passed

through the network the image is spatially downsampled to a small grid. Then YOLO predicts for each grid cell if it contains the center of a particle

bounding box. If this is the case, it estimates the relative position of the particle center inside the cell, as well as the width and height of the bounding box.

During training, the network only needs labeled particles. Furthermore, as the network sees the complete micrograph, it learns the context of the particle.

b During picking crYOLO processes up to five micrographs per second and thus outperforms the sliding-window approach
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particles, despite having a molecular weight of 754 kDa.
Furthermore, the density of the nanodisc is more pronounced
than the density of the extramembrane domain of the protein;
thus, the center of mass is not located at the center of particle but
shifted toward the nanodisc density. We chose this dataset, as it is
a challenge for the selection program to accurately detect the
center of the particles and to avoid selection of empty nanodiscs.

Prx3 has a molecular weight of 257 kDa and has a
characteristic ring-like shape. The dataset is one of the first
near-atomic resolution datasets recorded using a Volta phase
plate22 (VPP). The VPP introduces an additional phase shift in
the unscattered beam. This increases the phase contrast,
providing a boost of the signal-to-noise ratio in the low-
frequency range. This makes the structural analysis of low-
molecular-weight complexes at high resolution possible26. The
VPP, however, enhances not only the contrast of the particles of
interest but also the contrast of all weak phase objects, including
smaller particles (impurities, contamination, and dissociated
particle components) that would otherwise not be easily visible
in conventional cryo-EM. This poses new challenges with regard
to particle selection, especially for automated particle picking
procedures that cross-correlate raw EM images with templates.

To obtain a simulated dataset we produced sets of 20
micrographs, each containing 250 randomly oriented TRPC4
particles, and a different noise level k. To generate realistic noise
we followed a similar procedure as described in Baxter et al.27. To
simulate structural noise, we first added zero mean Gaussian
noise with a SD of 88*k. Then we applied a contrast transfer
function (CTF) with a fixed defocus of 2.5 μm, voltage of 300 kV,
amplitude contrast of 0.1, and a B-factor of 200. Finally, to
simulate shot and digitalization noise, we added mean free
Gaussian noise again with a standard deviation (SD) of 51*k.
With this procedure we produced five sets with k= 1, 4, 6, 8, and
10. The corresponding signal to noise ratios (SNR), defined by
signal power divided by noise power, are 1.25, 0.093, 0.041, 0.023,
and 0.014, respectively.

A common benchmark dataset for particle picking is a
published set of cryo-EM images of KLH24. Besides KLH

particles, the dataset contains mitochondrial antiviral signaling
(MAVS) filaments, stacked KLH particles, and broken particles.
Ideally, all of these contaminants would be ignored by a particle-
picking procedure and only intact and single KLH particles
selected. An additional advantage of the dataset is that the
micrographs were recorded as pairs with high and low defocus,
which allows to evaluate the performance of a particle picker for
each defocus separately.

Training and application of crYOLO. To train crYOLO we
manually selected particles for initial training datasets. Depending
on the density of particles, the heterogeneity of the background,
and the variation of defocus, more or fewer micrographs are
needed. For the TcdA1, NOMPC, and Prx3 datasets, we found
that 200–2500 particles from at least 5 micrographs were suffi-
cient to properly train the networks for the 3 datasets. It should
be emphasized that the picking of negative examples (including
background, carbon edges, ice contamination, and bad particles)
is not required at all in crYOLO, as essentially all other positions
are considered to be negative examples. It is sufficient that these
contaminants are present in the training images with the labeled
particles. Ideally, each micrograph should be picked to comple-
tion. However, as the contrast in cryo-EM micrographs is often
low, a user is typically not able to select all particles for training
and often misses some of them, referred to as false negatives.
Including false negatives carries a lower penalty than missing true
positives during training (see Methods). This enables crYOLO to
converge during training, even if only 20% of all particles in a
micrograph are picked (see below).

To assess the performance of crYOLO, we calculated precision
and recall scores28. The scores were calculated on 20% of the
micrographs that were used for manual selection, but not for
training. The recall score measures the ability of the classifier to
detect positive examples and the precision score specifies the
strength of the classifier to not label a true negative as a true
positive. Both scores are summarized with the integral of the
precision-recall curves, the so-called area under the curve (AUC),
which is an aggregate measure for the quality of detection. The
larger the AUC value, the better the performance; 1.0 is the
maximum at perfect performance.

In order to quantify how well the particles are centered, we
calculated the mean intersection over union (IOU) value of
manually selected particles vs. the automatically picked boxes
using crYOLO. The IOU is defined as a ratio of the intersecting
area of two bounding boxes and the area of their union, and is a
common measure for the localization accuracy. Picked particles
with an IOU higher than 0.6 were classified as true positive. The
mean IOUs for TcdA1, Prx3, and NOMPC were 0.86 ± 0.009,
0.80 ± 0.004, and 0.85 ± 0.007, respectively. This indicates a high
localization accuracy of crYOLO.

To further assess the quality of particles picked by crYOLO, we
additionally calculated two-dimensional (2-D) classes using the
iterative stable alignment and clustering approach29 (ISAC) as
implemented in the SPHIRE software package25. The 2-D
clustering using ISAC relies on the concepts of stability and
reproducibility, and is capable of extracting validated and
homogeneous subsets of images that can be reliably processed
in steps further downstream in the workflow. The number of
particles in these subsets indirectly reflects the performance of the
particle picker. Moreover, we calculated 3-D reconstructions and
compared it with the published reconstruction.

For TcdA1, crYOLO was trained on 10 micrographs with 1100
particles and selected 10,854 particles from 98 micrographs. This
is ~29% more particles than previously identified by the Gauss-
Boxer in EMAN217 (Fig. 3a–c). Furthermore, the number of

Fig. 2 Graphical tool for creating training data and visualizing results. The

tool can read images in MRC, TIFF, and JPG format and box files in EMAN1

and STAR format. The example shown is a micrograph of TRPC423 with

many contaminants
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Fig. 3 Selection of TcdA1 particles and structural analysis. a–c Representative digital micrograph (micrograph number 0169) taken from the EMPIAR-10089

dataset. Red boxes indicate the particles selected by a Gauss-Boxer, b crYOLO, or c the generalized crYOLO network. Scale bar, 50 nm. d Summary of

particle selection and structural analysis of the three datasets. All datasets were processed using the same workflow in SPHIRE. e Representative

reference-free 2-D class averages of TcdA1 obtained using the ISAC and Beautifier tools (SPHIRE) from particles picked using crYOLO. Scale bar, 10 nm.

f Fourier shell correlation (FSC) curves of the 3-D reconstructions calculated from the particles selected in crYOLO and Gauss-Boxer. The FSC 0.143

between the independently refined and masked half-maps indicates resolutions of ~3.4 and ~3.5 Å, respectively. g The final density map of TcdA1 obtained

from particles picked by crYOLO is shown from the side and is colored by subunit. The reconstruction using particles from the generalized crYOLO network

is indistinguishable

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0437-z ARTICLE

COMMUNICATIONS BIOLOGY |           (2019) 2:218 | https://doi.org/10.1038/s42003-019-0437-z | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


“good” particles after 2-D classification is higher (Fig. 3d, e),
indicating that crYOLO is able to identify more true-positive
particles. This results in a slightly improved resolution of the 3-D
reconstruction (Fig. 3f, g).

For NOMPC, the original authors picked initially 337,716
particles from 1873 micrographs using RELION7 (Fig. 4b, c) and
obtained a 3-D reconstruction at a resolution of 3.55 Å from
175,314 particles after extensive cleaning of the dataset by 2-D and
3-D classification using RELION30. CrYOLO was trained on 9
micrographs with 585 particles and selected only 226,289 particles
(>30% fewer) (Fig. 4a, c). After 2-D classification and the removal of
bad classes (Fig. 4c, d), 171,917 particles were used for the 3-D
refinement yielding a slightly improved cryo-EM structure of
NOMPC of 3.4 Å (Fig. 4e–f). The reconstruction shows high-
resolution features in the region of the ankyrin repeats (Fig. 4g).
Although the number of initially selected particles differed
tremendously from crYOLO, the number of particles used for the
final reconstruction is very similar, indicating that crYOLO selects
less false-positive particles than the selection tool in RELION. In
this case, this also reduced the steps and overall time of image
processing, as 2-D classification was performed on a much lower
starting number of particles and further cleaning of the dataset by a
laborious 3-D classification was unnecessary.

For Prx3, crYOLO was trained on 5 micrographs with 2500
particles and identified 354,581 particles from 802 digital
micrographs, which is comparable to the number of particles
picked in the original article using EMAN217 (Fig. 5a–c). We used
two consecutive ISAC rounds to classify the particles in 2-D
(Fig. 5d). In the first round, we classified the whole dataset into
large classes to identify the overall orientation of the particles. In
the second round, we split them into top, side, and tilted views,
and ran independent classifications on each of them. This
procedure is necessary to avoid centering errors in ISAC. After
discarding bad classes and removing most of the preferential top
view orientations, the dataset was reduced to 37,031 particles. The
3-D refinement of the remaining set of particles in SPHIRE
yielded a map at a nominal resolution of 4.6 Å (Fig. 5e, f). In
comparison, the final stack in the original article was composed of
only 8562 particles, which were refined to a 4.4 Å resolution map
in RELION. In contrast to our processing pipeline, the original
authors used three rounds of 2-D and four rounds of 3-D
classification in RELION7, in order to clean this dataset.

The small differences in the final resolution of the reconstruc-
tions can be attributed to the fact that all reconstructions reach
resolutions near the theoretical resolution limit; at a pixel size of
1.74 Å, 4.4 Å represents ~0.8 times Nyquist. Consistent with this
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analysis using RELION and crYOLO/SPHIRE. d Representative reference-free 2-D class averages obtained using the ISAC and Beautifier tools (SPHIRE)

from particles selected by crYOLO. Scale bar, 10 nm. e FSC curves and f final 3-D reconstruction of the NOMPC dataset obtained from particles picked
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observation, the FSC curves of the reconstructions from both sets
of particles are practically superimposable (Fig. 5e). Interestingly,
a large fraction of the particles was discarded during refinement,
both by the original authors—97.6%—and by us—87.7%. In our
case, this is not due to the quality of the particle selection. Indeed,
310,123 of our picks were included into the stably aligned images
after ISAC. Instead, we deleted most of the particles that were
found in the preferred top orientation, which represents roughly
half of the dataset. The remaining discarded images correspond to
correct picks in regions where the protein forms clusters. In those
cases, although the particles were correctly identified by crYOLO,
they were not used for single-particle reconstruction.

In order to evaluate the SNR dependency on the picking
quality of crYOLO, we used the simulated data and trained a
model for each noise-level set, using the 15 micrographs for
training and 4 for validation for each set. Finally, we calculated
the AUC for each of the sets (Fig. 6a). Up to a noise level of 6 the
AUC value is >0.8 and even for a noise level of 8 the AUC values
stay >0.6. In images with a noise level of ≥8 the particles are
visually barely distinguishable from the background (Fig. 6b).
This demonstrates the strength of crYOLO for selecting particles

of near-to-focus cryo-EM datasets that naturally have a low
contrast.

To determine the influence of the size of the training dataset on
selection quality, we trained crYOLO on the manually picked
KLH dataset and on subsets of different size. We decreased the
number of micrographs in each subset gradually and evaluated
the results by calculating the precision and recall scores. The
selection performance was excellent, for both the high defocus
and the low defocus micrographs (Fig. 7a). To demonstrate the
discrimination power, we trained a model to pick only the side
views of KLH. The performance was comparable with picking all
views (Fig. 7b). Even if the model was trained with as few as 40
KLH particles from 1 micrograph pair, crYOLO still demon-
strated a high AUC value of 0.9 (Fig. 7c, Table 1). All trained
models skipped MAVS filaments, stacked KLHs, and broken
particles. This demonstrates that crYOLO can be easily and
accurately trained with only a small number of particles.

Although it might be ideal to provide a training set where the
particles were picked to completion for each micrograph, it is still
often difficult or, with crowded micrographs, a time-consuming
burden. To illustrate the performance of crYOLO on sparsely
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labeled data we used the TcdA1 dataset and randomly removed
80% of the labeled particles (Supplementary Fig. 1a,b). The
training dataset where the particles were picked to completion
contains 10 micrographs with 1100 particles. The sparsely labeled
dataset contains the same micrographs but with only 205 particles
labeled. The performance on the sparsely labeled dataset (AUC=
0.88) is still very good when compared to the training set which
was picked to completion (AUC= 0.95) (Supplementary Fig. 1c).

Computational efficiency. We used a desktop computer equip-
ped with an NVIDIA GeForce GTX 1080 graphics card with 8 GB
memory and an Intel Core i7 6900K CPU to train crYOLO and
select the particles using the GPU. The time needed for training
was 5–6.5 min for each dataset (Fig. 8). The selection of the Prx3,
TcdA1, and NOMPC datasets reached a speed of ~4.6, ~5.0, and
~4.2 micrographs per second, respectively. However, if no GPU is
available, a trained model can also be used on a common CPU.

The picking speed on our multi-core CPU is one second per
micrograph.

In comparison the software DeepPicker8 reports 1.5 min per
micrograph on a GPU and the software DeepEM9 reports 13 min
on a CPU and 40s on a GPU.

Generalization to unseen datasets. Ideally, crYOLO would spe-
cifically recognize and select particles that it has not seen before.
In order to reach this level of generalization, we trained the
network with a combination of 840 micrographs from 45 datasets
containing 26 manually picked datasets, 9 simulated datasets, and
10 particle-free datasets consisting only of contamination. The
molecular weight of the complexes from the respective datasets
ranged from 64 kDa to 1.1 MDa.

Using this generalized crYOLO network, we automatically
selected particles of RNA polymerase31 (EMPIAR 10190) and
glutamate dehydrogenase (EMPIAR 10217). Although crYOLO
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had not been trained on these particles, it specifically selected
particles while avoiding contamination (Fig. 9a, b).

In recent years, several new network architectures have been
published. These networks have a higher capacity and allow the
training of more than 100 layers. One of these networks is
Inception-ResNet32, which achieved high accuracy at the
ImageNet competition33. To compare this network with the
crYOLO network, we replaced the feature extraction part of
crYOLO with the Inception-ResNet architecture and trained it on
the complete combination of datasets. The Inception-ResNet
architecture achieved the same performance as the crYOLO
architecture (Fig. 9c). As illustrated here, the median AUC/recall/
precision is approximately the same. Thus, what we conclude is
that, given our current training set, increasing the capacity of the
network does not result in improved performance. Bigger
networks have the advantage that they have a higher capacity,
i.e., can be trained to arbitrary depth. However, they tend to

overfit more easily and the Inception-ResNet architecture comes
with a higher computational cost. In addition, it was shown
recently that many layers in modern ResNets do not learn
anything34 and can be safely removed without damaging the
performance of the network. This means that a network with the
same prediction quality but lower number of weights, such as the
one we used for crYOLO, is actually an advantage in a practical
setup with limited training data. However, it is noteworthy to
highlight that crYOLO offers the possibility of the integration of
new architectures in a straightforward manner, which will
contribute to its sustainability.

To assess the quality of the generalized crYOLO network, we
compared its performance selecting TcdA1 with that of a network
that was directly trained on this protein. As expected, the AUC
and localization accuracy are better for the directly trained
network (Fig. 9d). However, the generalized crYOLO network
selected a similar number of particles (Fig. 3d); the AUC of 0.84
(Fig. 9d) and the IOU of 0.79 show that its performance is of
sufficient quality to select a good set of particles. Indeed, the
TcdA1 particles selected by the generalized crYOLO network
resulted in a reconstruction of similar resolution and quality as
the particles from the TcdA1-trained crYOLO (Fig. 3f). We
expect that increasing the training set with a higher number of
proteins and complexes will further expand the capabilities of
crYOLO.

Discussion
In this work we present crYOLO, a particle-picking procedure for
cryo-EM. CrYOLO employs a state-of-the-art deep-learning
object-detection system which contains a 21-layer CNN. The
excellent performance of crYOLO on several recent direct
detector datasets reflects the efficiency of the program to detect
good particles at high speed with an accuracy comparable to
manual particle selection. CrYOLO’s speed and efficiency
underlines its potential to become a crucial component in a
streamlined automated workflow for single-particle analysis and
thus eliminates one of the remaining bottlenecks.

To close the remaining gaps in the automated workflow
between the electron microscope and data processing, such as
evaluation, drift, CTF correction, and file conversion and transfer,
our lab has developed an on-the-fly processing pipeline called
TranSPHIRE, which is documented and freely available on www.
sphire.mpg.de (manuscript in preparation). The TranSPHIRE
pipeline includes crYOLO.

The crYOLO package is available as a standalone program and
is easily integrated in existing workflows. It will be fully integrated
into the SPHIRE image processing workflow and into the Scipion
framework35. In addition to a command line interface crYOLO
provides an easy-to-use graphical tool for simple and direct
generation of training data, as well as visual evaluation of picking
results (Fig. 2). CrYOLO outputs the coordinate files in EMAN
box-file and RELION STAR-file format, which can easily be
imported to all available software packages for single-particle
analysis. CrYOLO picks micrographs rapidly on a standard GPU.
If a trained network is available, particle picking can also be
performed on multi-core CPUs. However, this decreases the
speed of selection to 1s per micrograph. This is still faster than
other particle pickers on a GPU. Some of these differences can be
attributed to the exact model of CPUs and GPUs used. However,
the use of the YOLO approach clearly plays a strong role in the
particle-picking time. Moreover, this approach is not only faster
but has the capability to learn the context of the particle such as
to avoid picking inside or in the vicinity of contamination. This
feature is particularly important for specimens that pose a chal-
lenge due to the high amount of contamination present. In

Table 1 Evaluation table for different subsets of the KLH

micrographs

Mic. pairs Trained for AUC Precision Recall IOU

Low
defocus

65 All views 0.97 0.92 0.96 0.94
14 All views 0.95 0.93 0.9 0.94
7 All views 0.97 0.89 0.94 0.92
4 All views 0.94 0.84 0.94 0.92
2 All views 0.92 0.86 0.91 0.92
1 All views 0.9 0.85 0.9 0.89
14 Side views 0.91 0.89 0.89 0.92

High
defocus

65 All views 0.99 0.99 0.98 0.95
14 All views 0.97 0.91 0.99 0.95
7 All views 0.98 0.92 0.96 0.94
4 All views 0.96 0.98 0.87 0.94
2 All views 0.9 0.86 0.95 0.94
1 All views 0.91 0.85 0.91 0.91
14 Side views 0.97 0.91 0.97 0.95

The AUC, Precision, Recall, and IOU were evaluated for various training sets comprising a
different number of micrograph pairs. In addition, a subset with 14 micrographs was trained to
pick only side views. The IOU and the AUC values of all experiments are between 0.89 and 0.97
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addition, what further contributes to the overall value of our
crYOLO package includes the low number of micrographs that
are required during the training process, the possibility of training
with sparsely labeled data, and elimination of the need for the
user to pick negative examples.

Our evaluations demonstrate that the accuracy of crYOLO
yields a set of particles with a remarkably low number of false
positives. In addition, the IOU values of the selected particles
provide evidence for the excellent centering performance of
crYOLO. These are both strengths that contribute to improving
the quality of the input dataset for image processing and

ultimately improve the final reconstruction in many cases. At the
same time, it reduces the number of subsequent processing steps,
such as computationally intensive 3-D classifications, and thereby
shortens the overall processing time.

In comparison with template-based particle-picking
approaches, crYOLO is not prone to template bias and there-
fore the danger of picking “Einstein from noise”36 is reduced.
However, the user should select the particles for the training
data without bias. Otherwise, the applied supervised learning
method will create a biased model. For example, if a view of
the particle is completely missing in the training data,
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crYOLO might learn to skip this view. Therefore, the micro-
graphs in the training dataset should be representative of
the full dataset with respect to range of defocus, types of
contamination, etc.

Importantly, crYOLO can be trained to select previously
unseen datasets. With the use of a training set containing 10–20
micrographs from 45 datasets, we have obtained a powerful
general network. Adding more training datasets from different
projects that were manually picked by experienced users will
improve the performance of crYOLO even further. In crYOLO
adding more training data is especially easy, because in contrast
to the sliding-window approaches, training crYOLO only requires
particles to be labeled and not the background nor any con-
tamination. Therefore, previously processed datasets can be
directly used to train crYOLO directly without manually picking
background and contamination afterwards. In principle, it is also
feasible to train generalized networks that are specialized on
certain types of particles, such as viruses, elongated or very small
particles to improve the performance of crYOLO. At the moment,
the development of CNNs is moving fast and new CNN net-
works, which outperform earlier networks, are released fre-
quently. The flexible software architecture of crYOLO allows an
easy incorporation of new CNNs and therefore a straightforward
adaptation to new developments, if necessary.

Taken together, crYOLO enables rapid fully automated on-the-
fly particle selection with comparable precision as manual pick-
ing, without bias from reference templates. Furthermore, with the
use of the generalized model presented here, our particle picker,
crYOLO, can be used without a template or human intervention
to select particles on most single-particle cryo-EM projects within
a very short period of time.

Methods
CrYOLO architecture and training. CrYOLO trains a deep CNN for automated
particle selection. A typical CNN consists of multiple convolutional and pooling
layers, and is characterized by the depth of the network, which is the number of
convolutional layers37. The input of a CNN is data with a grid-like topology, most
often images that may have multiple channels (e.g., color). A convolutional layer
consists of a fixed number of filters and each filter consists of multiple convolu-
tional kernels with a fixed size (typically 1 × 1, 3 × 3 or 5 × 5). The number of
convolutional kernels per filter is equal to the number of channels in the input data
of the layer. During forward propagation, each filter in a convolutional layer creates
a feature map, which is a channel in the final output of the layer. Each kernel is
convolved with the corresponding input channel. The results are summed up along
the channels, resulting in the first channel of the output. The same procedure is
applied for the second filter, which results in the second channel, and so on. After
all channels are calculated, the so-called batch normalization38 is applied. Batch
normalization normalizes the feature map and leads to faster training. Further-
more, it has some regularization power, which makes further regularization often
unnecessary. Finally, a nonlinear activation function is applied element-wise to the
normalized feature map, which results in the final feature map.

In typical CNNs, max-pooling layers are inserted between some of the
convolutional layers. Max-pooling layers divide the input image into equal sized
tiles (e.g., 2 × 2), which are then used to calculate a condensed feature map.
Therefore, for each tile a cell is created; the maximum for the tile is computed and
inserted into the cell. This leads to a reduced dimensionality of the feature map and
makes the network more memory-efficient and robust against small perturbations
in the pixel values.

The network architecture used in crYOLO is summarized in Table 2. The
feature extraction part consists of 21 convolutional layers and each convolutional
layer consists either of multiple 3 × 3 filters or 1 × 1 filters. In addition, it contains a
passthrough layer between layer 13 and 21, which enables the network to use low-
level features during prediction. All convolutional layers use padding so that they
do not reduce the size of their input. We used the leaky rectified linear unit39

(LRELU) as activation function. LRELU simply returns the element itself if the
element is positive and the element multiplied by a fixed constant α (here α= 0.1),
if it is negative.

Five max-pooling layers downsample the image by a factor of 32. During
training, a dropout unit in the detection part sets 20% of the entries in the feature
map after layer 21 to 0. This regularizes the network and reduces overfitting.
Finally, a convolution layer with six 1 × 1 filters performs the actual detection. With
the YOLO18 approach, each cell in the final feature map is used to classify if the
center of a particle box is inside this grid cell, and if this is the case it predicts the

exact position of the box center relative to the cell, as well as the width and height
of the box.

The network was trained using backpropagation with the stochastic
optimization procedure ADAM40. Backpropagation applies the chain rule to
compute the gradient values in every layer. The gradient determines how the kernel
elements in each convolutional layer should be updated to get a lower loss. The
optimizer determines how the gradient of the loss is used to update the network
parameters. For YOLO, the loss function to be minimized is given by:

L ¼ λcoord
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where 1obji is 1 if the center of a particle is in cell i and 0 otherwise, λcoord, λobj, and
λnoobj constant weights, (xi,yi) the centrum coordinates of the training boxes, and
ðx̂i; ŷiÞ the predicted coordinates. The width and height of the box with their
estimates are given by (wi,hi)) and (ŵi; ĥi) respectively. The confidence that a cell
contains a particle is Ci.

The first term of the loss function penalizes bad localization of particle boxes.
The second term penalizes inaccurate estimates for the width and height of the
boxes. The third term attempts to increase the confidence for cells with a particle
inside. The last term decreases the confidence of those cells containing no particle
center. The loss function slightly differs from the one used in Redmon et al.14, as
we only have a single class to predict and also only one reference box (anchor box
in Redmon et al.14).

Data augmentation. During training, each image is augmented before passing it
through the network. This means that it is slightly altered by random selection

Table 2 YOLO network architecture

Layer Type Filters Size

Feature extraction
1 Convolutional 32 3 × 3

Max-pooling
2 Convolutional 64 3 × 3

Max-pooling
3 Convolutional 128 3 × 3
4 Convolutional 64 1 × 1
5 Convolutional 128 3 × 3

Max-pooling
6 Convolutional 256 3 × 3
7 Convolutional 128 1 × 1
8 Convolutional 256 3 × 3

Max-pooling
9 Convolutional 512 3 × 3
10 Convolutional 256 1 × 1
11 Convolutional 512 3 × 3
12 Convolutional 256 1 × 1
13 Convolutional 512 3 × 3

Max-pooling
14 Convolutional 1024 3 × 3
15 Convolutional 512 1 × 1
16 Convolutional 1024 3 × 3
17 Convolutional 512 1 × 1
18 Convolutional 1024 3 × 3
19 Convolutional 1024 3 × 3
20 Convolutional 1024 3 × 3
21 Convolutional 1024 3 × 3
Detection

Dropout (0.2)
1 Convolutional 6 1 × 1

The CNN consists of 21 convolutional and 5 max-pooling layers for feature extraction. For
detection, a single convolutional layer is used with a dropout layer in front to reduce overfitting.
The dropout layer is only used during training, not during prediction
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methods instead of passing the original image through the network. Each image is
passed multiple times through the network, randomly modified in different ways.
This helps the network to reduce overfitting and also the amount of training data
needed. The applied methods are as follows:

Gaussian blurring: a random SD between 0 and 3 is selected and then a
corresponding filter mask is created. This mask is then convolved with the input
image. Average blurring: a random mask size between 2 and 7 is chosen. This
mask is shifted over the image. At each position, the central element is replaced
with the mean values of its neighbors. Flip: the image is mirrored along the
horizontal and vertical axes. Noise: Gaussian noise with a randomly selected SD
proportional to the image SD is added to the image. Dropout: randomly replaces
1–10% of the image pixels with the image mean value. Contrast normalization:
the contrast is changed by subtracting the median pixel value from each pixel,
multiplying them by a random constant and finally adding the median
value again.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The training datasets for this study are available from the corresponding author upon
reasonable request. CrYOLO—along with a detailed practical manual—is available for
download under http://sphire.mpg.de.

Code availability
The source code is contained in the crYOLO software package (http://sphire.mpg.de) and
its use is restricted by the end user license agreement: http://sphire.mpg.de/wiki/doku.
php?id=cryolo_license.
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