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ABSTRACT

We present a novel implementation of smoothed particle hydrodynamics that uses the spatial

derivative of the velocity divergence as a higher order dissipation switch. Our switch – which

is second order accurate – detects flow convergence before it occurs. If particle trajectories

are going to cross, we switch on the usual SPH artificial viscosity, as well as conservative

dissipation in all advected fluid quantities (e.g. the entropy). The viscosity and dissipation

terms (that are numerical errors) are designed to ensure that all fluid quantities remain single

valued as particles approach one another, to respect conservation laws, and to vanish on a given

physical scale as the resolution is increased. SPHS alleviates a number of known problems

with ‘classic’ SPH, successfully resolving mixing, and recovering numerical convergence

with increasing resolution. An additional key advantage is that – treating the particle mass

similarly to the entropy – we are able to use multimass particles, giving significantly improved

control over the refinement strategy. We present a wide range of code tests including the Sod

shock tube, Sedov–Taylor blast wave, Kelvin–Helmholtz Instability, the ‘blob test’ and some

convergence tests. Our method performs well on all tests, giving good agreement with analytic

expectations.

Key words: hydrodynamics – instabilities – methods: numerical.

1 IN T RO D U C T I O N

Smoothed particle hydrodynamics (SPH) is now widely used in

almost all areas of theoretical astrophysics (Gingold & Monaghan

1977; Lucy 1977; Monaghan 1992). Its popularity has been largely

driven by its Lagrangian nature that makes it manifestly Galilean

invariant and geometry-free; its ease of implementation and the fact

that it couples naturally to tree-gravity solvers that are currently the

most efficient method for solving gravity (Monaghan 1992; Dehnen

2000; Price 2005; Rosswog 2009; Springel 2010b; Dehnen & Read

2011).

There are many different flavours of SPH used in the literature re-

flecting the above broad range of applications. The most common –

that we shall call ‘classic’ SPH – is the fully conservative SPH

implemented in the standard release of the GADGET-2 code (Springel

& Hernquist 2002; Springel 2005).1 Although classic SPH remains

⋆E-mail: justin.inglis.read@gmail.com
1 Slightly different implementations of this algorithm are also used in the

literature, for example in the GASOLINE code (Wadsley, Stadel & Quinn 2004)

and the HYDRA code (Couchman, Thomas & Pearce 1995). These are suffi-

ciently similar to also be called ‘classic’ SPH.

a powerful numerical tool for solving the fluid equations, it suffers

from slow numerical convergence (Springel 2010b), and a spurious

surface tension at phase boundaries that inhibits fluid mixing (see

e.g. Morris 1996a; Dilts 1999; Ritchie & Thomas 2001; Agertz et al.

2007; Price 2008; Wadsley, Veeravalli & Couchman 2008; Read,

Hayfield & Agertz 2010, hereafter RHA10; Springel 2010a).

In recent work, we demonstrated that mixing in classic SPH fails

for two distinct reasons (RHA10). The first is a leading order error in

the momentum equation, previously identified by Morris (1996b)

and Dilts (1999), that we called |E0|. This can grow by orders

of magnitude at flow boundaries, delaying the onset of instabilities.

The second is a pressure discontinuity at flow boundaries, previously

identified by Ritchie & Thomas (2001), Price (2008) and Wadsley

et al. (2008), that we called the local mixing instability (LMI).2 This

leads to a large force error which manifests as a spurious surface

tension. Both problems must be solved in order for mixing between

fluids of different density or entropy to proceed correctly (see also

Sections 3 and 4 in this paper).

2 It is an instability since, even if we start in pressure equilibrium, an in-

finitesimal perturbation will cause a pressure discontinuity to form.
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3038 J. I. Read and T. Hayfield

In RHA10, we presented some simple proof-of-concept solutions

to both of these problems. We cured the LMI by using a weighted

density estimate first proposed by Ritchie & Thomas (2001), and

we showed that |E0| can be made arbitrarily small by brute-force

so long as the method is stable to large neighbour number (this re-

quired introducing some new kernels). However, our resulting opti-

mized smoothed particle hydrodynamics (OSPH) method required

a neighbour number that scales linearly with the density contrast

on the kernel scale. The OSPH pressure estimator is also biased in

regions of the flow where entropy gradients are large. This leads to

poor performance in strong blast wave tests (we demonstrate this in

Appendix A).

The above problems with SPH have led to a welcome prolifer-

ation of new Lagrangian or pseudo-Lagrangian techniques in the

literature, including a moving mesh (Springel 2010a), flux-based

particle methods (Gaburov & Nitadori 2011), SPH using a Rie-

mann solver (Inutsuka 2002; Cha, Inutsuka & Nayakshin 2010;

Murante et al. 2011) and SPH using a Voronoi tessellation for the

densities (Heß & Springel 2010). It has also led to an exploration

of improved flavours of SPH that add additional dissipation terms

to mitigate the surface tension effect, and use switches to reduce

the dissipation away from flow boundaries and shocks3 (e.g. Price

2008, 2012; Kawata et al. 2009; Cullen & Dehnen 2010; Rosswog

2010).

In this paper, we present a new flavour of SPH – SPHS4 – that has

the mixing performance of OSPH, but does not introduce prohibitive

numerical cost. As in OSPH, we use a larger than normal neighbour

number with a correspondingly higher order and stable kernel to

reduce the force errors. However, instead of the expensive OSPH

pressure estimator, we introduce a higher order dissipation switch to

ensure that all fluid quantities are smooth by construction. We show

that these simple changes to the SPH algorithm lead to converged

results with increasing resolution, and excellent performance across

a wide range of code tests. Our dissipation switch also allows us to

successfully use multimass SPH particles.

This paper is organized as follows. In Sections 2–4, we present

the SPHS method. In Section 5, we discuss our time-step criteria

and multistepping scheme. In Section 6, we describe our implemen-

tation of SPHS in the GADGET-2 code (Springel 2005). In Section 7,

we present a suite of tests for our new method that demonstrate that

it can successfully model shocks, boundary instabilities and shear

flows. We also check that it conserves momentum, energy and mass

and discuss the numerical performance of the code. Finally, in Sec-

tion 8, we present our conclusions.

2 T H E S P H S E QUAT I O N S O F M OT I O N

In this paper, we consider solving the Euler equations in the absence

of sinks or sources in the Lagrangian ‘entropy form’ (Springel &

Hernquist 2002):

dρ

dt
= −ρ∇ · v, (1)

dv

dt
= −

∇P

ρ
, (2)

A = const., (3)

3 Actually, some of these SPH flavours have been in use in the literature for

quite some time (see e.g. Morris & Monaghan 1997).
4 The second ‘S’ in SPHS stands for Switch.

closed by the ideal gas equation of state:

P = A(s)ργ , (4)

where γ , ρ, v and A are the adiabatic index, density, velocity and

specific ‘entropy function’ of the flow, respectively. The function

A(s) is a monotonic function of the specific entropy s. For adia-

batic flow in the absence of sinks or sources, A is conserved. Thus

equation (3) implicitly solves the energy equation. If required, the

specific internal energy can be calculated from A and ρ as

u =
Aργ−1

γ − 1
. (5)

Note that often A is referred to as the ‘entropy’ when really it is a

monotonic function of the specific entropy. From here on we will

adopt this convention also.

We use the discrete form of the above equations as in RHA10:

ρi =

N∑

j

mjWij (|r ij |, hi), (6)

dvi

dt
= −

N∑

j

mj

ρiρj

[
Pi + Pj

]
∇iW ij , (7)

Pi = Aiρ
γ

i , (8)

where mi is the mass of particle i, r ij = rj − r i , W ij =

(1/2)
[
Wij (hi) + Wij (hj )

]
and W is a symmetric kernel that obeys

the normalization condition:
∫

V

W (|r − r ′|, h)d3r ′ = 1, (9)

and the property (for smoothing length h):

lim
h→0

W (|r − r ′|, h) = δ(|r − r ′|). (10)

Note that we do not explicitly solve the continuity equation nor

the energy equation. The continuity equation is implicitly solved

by equation (6) since its time derivative satisfies a discrete form of

equation (1) (see e.g. Price 2005). The energy equation is implicitly

solved by advecting the entropy function Ai = const. along with the

particles (Springel & Hernquist 2002).

We use a variable smoothing length hi as in Springel & Hernquist

(2002) that is adjusted to obey the following constraint equation:

4π

3
h3

i ni = Nn with ni =

N∑

j

Wij , (11)

where Nn is the typical neighbour number (the number of particles

inside the smoothing kernel, W). The above constraint equation

gives fixed mass inside the kernel if particle masses are all equal.

The above equations of motion manifestly conserve momentum,

mass and entropy. They do not manifestly conserve energy, but

the energy conservation is still extremely good as we will show in

Section 7.7. A fully conservative form of SPH can be constructed

by replacing equation (7) with equation (B1) (see Appendix B and

Springel & Hernquist 2002). However, as shown in RHA10, this

leads to a larger truncation error in the momentum equation. In

Appendix B, we show that – for the test problems presented in this

paper – the fully conservative form gives only a modest improve-

ment in energy conservation while introducing significantly more

diffusion for multiphase test problems. For this reason, we use the

above set of equations as our default choice for SPHS.

So far, the above equations are very similar to classic SPH and

thus will suffer from both the |E0| error and the LMI problems

C© 2012 The Authors, MNRAS 422, 3037–3055
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SPH with a higher order dissipation switch 3039

described in Section 1. We now address each of these problems in

turn in Sections 3 and 4.

3 E R RO R S A N D C O N V E R G E N C E

The first problem with classic SPH is the |E0| error in the momen-

tum equation (RHA10). While this is minimized by using equa-

tion (7), the error is still present in SPHS. To see this, we can Taylor

expand Pj about Pi in equation (7) to obtain5

dvi

dt
≃ −

2Pi

hiρi

∑

j

mj

ρj

∇x
i W ij −

(Vi∇i) Pi

ρi

+ O(h), (12)

where Vi is a matrix that approximates the identity matrix, and

∇x
i = hi∇ is a dimensionless gradient operator. The left-hand term

in equation (12) defines the dimensionless E0,i error:

E0,i = 2

N∑

j

mj

ρj

∇x
i W ij . (13)

Taking the limit of infinite kernel sampling (and equating mj/ρ j with

a volume element dV), we see that E0,i is a discrete approximation

to the volume integral:

E0,i ≃ 2

∫

V

dV ∇xW = 0 (14)

which is vector zero because ∇xW is antisymmetric.

Although E0,i should be approximately zero, it is problematic

because it appears in equation (12) at order h−1
i . Formal conver-

gence then requires that E0,i shrinks faster than hi. This can be

tricky to ensure and depends intimately upon the choice of kernel

W employed. A popular choice is the cubic spline (CS) kernel:

W =
8

πh3

⎧

⎪⎨

⎪⎩

1 − 6x2 + 6x3 0 < x ≤ 1
2
,

2(1 − x)3 1
2

< x ≤ 1,

0 otherwise,

(15)

where x = r/h and h defines the kernel edge not its resolving power.6

(The two are not the same as can be readily understood by consid-

ering a Gaussian kernel. This has an infinite edge, but a resolving

power given by approximately its scale length.)

Now, it is tempting to increase the kernel sampling simply by

stretching h for the CS kernel. However, this is a bad idea for two

reasons. First, it introduces bias into the density estimate, spoiling

convergence. Secondly, the CS kernel is not stable to large neighbour

number. As h is increased, the particles clump on the kernel scale

and the sampling is not significantly improved. For these reasons,

in RHA10 we proposed a new class of kernels that can be used to

achieve convergence. The lowest order of these was the CT kernel:

W =
N

h3

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
−12α + 18α2

)
x + β 0 < x ≤ α,

1 − 6x2 + 6x3 α < x ≤ 1
2
,

2(1 − x)3 1
2

< x ≤ 1,

0 otherwise,

(16)

5 Note that this assumes that the pressures are smooth and therefore differ-

entiable. In classic SPH, this is not guaranteed. However, in SPHS, we add

dissipation terms to ensure that this is the case. We discuss these in detail in

Section 4.
6 In many SPH papers, h is defined as a kernel scale length rather than the

compact support size. In this paper, h always refers to the edge of the kernel

where W(r, h) = 0.

Figure 1. The CS (black), CT (red) and HOCT4 (blue) kernels and their

first derivatives (dotted lines) as a function of dimensionless length x = r/h,

where h is the compact support size of the kernel. The vertical lines mark

the half-mass radii for each kernel. For the CS and CT kernels the half-mass

radii overlap on this plot.

where β = 1 + 6α2 − 12α3, N = 8/[π
(
6.4α5 − 16α6 + 1

)
] and

α = 1/3. This has spatial resolution similar to the CS kernel but is

stable to larger neighbour numbers. The next highest order was the

HOCT4 kernel:

W =
N

h3

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Px + Q 0 < x ≤ κ,

(1 − x)4 + (α − x)4 + (β − x)4 κ < x ≤ β,

(1 − x)4 + (α − x)4 β < x ≤ α,

(1 − x)4 x ≤ 1,

0 otherwise,

(17)

with N = 6.515, P = −2.15, Q = 0.981, α = 0.75, β = 0.5 and κ =

0.214. The CS, CT and HOCT4 kernels and their first derivatives

are shown in Fig. 1.

We demonstrated in RHA10 that the HOCT4 kernel is stable for

442 neighbours on a lattice, while having a similar spatial resolution

to the CT or CS kernel with 128 neighbours. This can be partially un-

derstood just from the half-mass radii of these two kernels (Fig. 1).

If we assume that the resolution scale is the half-mass radius, then

442 neighbours for the HOCT4 kernel is equivalent to ∼240 neigh-

bours for the CS kernel. However, in RHA10, we assess the spatial

resolution more carefully by comparing instead the ability for these

two kernels to correctly resolve the sound speed of linear waves.

This is what leads to the conclusion that the HOCT4 kernel with

442 neighbours has similar resolving power to the CS with 128.

Compared to ‘classic’ SPH with 42 neighbours, the HOCT4 kernel

with 442 neighbours has, therefore, a poorer spatial resolution of

only a factor of ∼(128/42)1/3 ∼ 1.5. We will use the HOCT4 kernel

with 442 neighbours for our default SPHS scheme. The CT kernel

with 128 neighbours will be used only for convergence testing.

As pointed out by Price (2012), the CT and HOCT4 kernels have

slightly larger density error than the more standard CS kernel. How-

ever, the effect is small (see Table 1). For glass particle distributions

with 128 neighbours, the CT kernel gives a density error ∼2 per

cent larger than the CS kernel, while the HOCT4 kernel with 442

C© 2012 The Authors, MNRAS 422, 3037–3055
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3040 J. I. Read and T. Hayfield

Table 1. Density errors for a selection of SPH kernels applied to a con-

stant density box. The columns give the following: kernel type; neighbour

number; lattice configuration (glass or simple cubic) and the median/5 per

cent/95 per cent recovered density to two significant figures (the true density

is ρtrue = 1.00).

Kernel Nn Lattice ρ (5 per cent) ρ (median) ρ (95 per cent)

CS 32 Simple 1.00 1.00 1.00

CS 128 Simple 1.00 1.00 1.00

CS 32 Glass 1.02 1.01 1.01

CS 128 Glass 1.01 1.00 0.996

CT 32 Simple 1.07 1.07 1.07

CT 128 Simple 1.02 1.02 1.02

CT 32 Glass 1.08 1.07 1.06

CT 128 Glass 1.02 1.02 1.01

HOCT4 442 Simple 1.01 1.01 1.01

HOCT4 442 Glass 1.02 1.01 1.00

neighbours is only ∼1 per cent worse.7 (Note that the error can

be very large if too few neighbours are used: higher order kernels

require more neighbours to be adequately sampled.)

In summary, formal convergence in SPH is somewhat subtle; it

requires several important criteria to be satisfied:

(i) increased particle number, N;

(ii) increased neighbour number, Nn to ensure that E0,i shrinks

faster than hi;

(iii) a higher order kernel to maintain spatial resolution and

(iv) a kernel that is stable to clumping/banding for the above

choice of Nn.

The CT kernel with 128 neighbours and the HOCT4 kernel with

442 neighbours thus provide a convergent kernel pair that satisfy

the above criteria. We will demonstrate this in Section 7.3. (Note

that the above is simply what is required formally. It may be that

for a given numerical problem E0,i shrinks faster than hi without

any need to raise the neighbour number. This cannot be guaranteed

in general, however.)

The above convergence criteria – constructed simply to ensure

that E0,i shrinks faster than hi – seem rather laborious. Given that

we know a priori what E0,i is for each particle, it is tempting to

simply factor it out of the momentum equation as follows:

dvi

dt
= −

N∑

j

mj

ρiρj

[
Pj − Pi

]
∇iW ij

︸ ︷︷ ︸

Morris equation

−
Pi

hiρi

E0,i . (18)

The left-hand term in equation (18) – that we shall call the Mor-

ris equation (Morris 1995) – is now a higher order momentum

equation. It gives zero force for constant pressure by construction,

unlike equation (7). And it should give much simpler convergence –

no longer requiring increased neighbour number, or careful kernel

choice (indeed we will demonstrate this in Section 7.3). Such higher

order momentum equations have been discussed several times in the

literature before (e.g. Morris 1995; Oger et al. 2007). Recently, Abel

(2011) have proposed an interesting variant similar to the Morris

equation but with ρ i → ρ j. This produces a manifestly smoother

7 It is not clear, given these results, why Price (2012) argue that the density

error is prohibitive for the CT kernel. Most likely it is because the error is

very large when only 32 neighbours are used. For larger neighbour numbers,

however, the performance of the CT and HOCT4 kernels is acceptable.

force that has improved stability properties as compared to the

Morris equation.

While higher order momentum equations are appealing, their ad-

vantages come at a price. As pointed out in RHA10, notice that the

Morris equation is symmetric in i and j inside the sum. This means

that momentum is no longer conserved between particle pairs. This

lack of manifest momentum conservation becomes a problem in

strong shocks (Morris 1996a). We will discuss subtracted-E0,i mo-

mentum equations and their potential for creating higher order SPH-

like methods in a separate paper (Hayfield & Read, in preparation).

4 C O N V E R G E N T FL OW A N D D I S S I PAT I O N

The second problem with SPH is dealing with flow convergence – a

problem common to any Lagrangian scheme. SPH can be thought of

as both a Monte Carlo method and a method of characteristics. It is

a Monte Carlo method because a finite number of discrete particles

are used to initially sample the fluid. However, from this moment

onwards it a method of characteristics: the particles move along

streamlines in the flow. The problem is that the particles represent

large unresolved patches of the fluid. Unlike real infinitesimal points

in a fluid flow, SPH particles can approach one another, as shown

in Fig. 2. This leads to multivalued fluid quantities at the crossing

point: multivalued momentum, entropy, mass and any other fluid

quantity that is advected with the particles. The only quantity that is

not multivalued is the density since this is calculated by smoothing

over a particles’ nearest neighbours (see equation 6).

The problem of particles approaching one another was realized

very early on in the development of SPH, and led to the introduction

of artificial viscosity. This acts to make the momentum between par-

ticles single valued as they approach one another, while maintaining

energy and momentum conservation. However, less appreciated in

the literature is the need for similar dissipation terms in all other

advected fluid quantities. This was recently highlighted by Price

(2008). For example, if two particles approach one another with

very different entropy, their pressures will become multivalued.

This leads to a spurious repulsive force between the particles which

inhibits mixing. In RHA10, we referred to this as the LMI. How-

ever, it can be thought of as a more general problem of multivalued

fluid quantities arising when particles approach one another.

There are two possible solutions to deal with multivalued pres-

sures in SPH. In RHA10, we used an idea from Ritchie & Thomas

Figure 2. A schematic representation of two SPH particles approaching

one another in a convergent flow. The two particles carry discretely different

advected quantities with them: entropy, A1,2, mass, m1,2, velocity, v1,2, etc.

Apart from their densities that are manifestly smooth (cf. equation 6), all

other fluid quantities become multivalued at point P. Thus, we must detect

when this situation is going to occur and add dissipation terms in all fluid

quantities to ensure that they remain single valued throughout the flow.

C© 2012 The Authors, MNRAS 422, 3037–3055
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SPH with a higher order dissipation switch 3041

(2001) to manifestly smooth the pressures by using a modified ‘RT’

density estimator:

ρi =

N∑

j

(
Aj

Ai

)1/γ

mjW ij (19)

which gives (via equation 8)

Pi =

⎡

⎣

N∑

j

A
1/γ

j mjW ij

⎤

⎦

γ

. (20)

The above density estimator, combined with equations (6) and (7),

defines the OSPH method derived in RHA10.

The ‘RT’ density estimator has the nice feature that it avoids mul-

tivalued pressures by construction. However, there is an associated

cost. Consider the situation of large entropy contrasts on the kernel

scale. Particles with Ai ≫ Aj will contribute essentially zero weight,

reducing the effective kernel sampling. To maintain a constant |E0|

error, we must then scale the neighbour number proportional to the

entropy contrast on the kernel scale. This becomes prohibitively

expensive for astrophysically important applications like strong

blast waves. Here, OSPH gives significantly poorer performance

than SPH for the same numerical cost. We demonstrate this in

Appendix A.

For the above reasons, in this paper we take an approach more

similar to Price (2008), but with a key difference. Price (2008) pre-

sented dissipation switches designed to detect (and correct) mul-

tivalued pressures. However, once pressures are multivalued it is

already too late. As demonstrated recently by Valcke et al. (2010),

once pressure blips form at flow boundaries, they cause pressure

waves to propagate throughout the fluid. These damp the growth

of surface instabilities and cause errors to propagate throughout the

flow. To avoid this problem, we must detect when particles will

approach one another in advance. We can then act to ensure that all

fluid quantities (not just the pressure) will be single valued by the

time the particles reach one another. This is the strategy we adopt

here.

To detect when particles will cross, we require an accurate flow

convergence detector. We take an approach similar to Cullen &

Dehnen (2010). Cullen & Dehnen (2010) came up with the novel

idea of using the time derivative of the velocity divergence to detect

flow convergence in advance. They then switch on artificial viscos-

ity to prevent particle interpenetration. We use a similar idea, but

consider instead the spatial derivative of the velocity divergence.

As we will show, this has the advantage that we obtain an excellent

estimate of the flow divergence and curl for free.

Cullen & Dehnen (2010) focus only on the artificial viscosity.

Here, we use the same switch not just for the artificial viscosity,

but for all artificial dissipation terms. (Recall that we require one of

these for each advected fluid quantity.)

We have some freedom in how to construct the flow convergence

detector and the dissipation terms. However, both must satisfy a

number of constraints in order for the scheme to produce converged

results with increasing resolution:

(i) the switch must detect flow convergence before it occurs;

(ii) the switch must be sufficiently robust (i.e. high order) as to

not trigger randomly due to particle noise;

(iii) the dissipation terms must respect conservation laws;

(iv) the dissipation terms must shrink on a given physical scale

with increasing resolution and

(v) the dissipation terms must not generate spurious pressure

waves that propagate through the fluid.

These criteria guide our choices for the switch and the artificial

dissipation terms that we describe in the following two subsec-

tions. The last point, in particular, is important. It is no good if our

dissipation terms introduce more problems than they solve. They

should act to make fluid quantities single valued wherever parti-

cles approach one another. But they should do this in a manner

that respects conservation laws, is convergent, and does not lead to

problems elsewhere in the flow.

4.1 A higher order convergence detector

We first describe our higher order flow convergence detector. Local

flow convergence occurs wherever the velocity divergence is neg-

ative. This suggests that we should switch on dissipation terms if

∇ · vi < 0 for a given particle. However, if we set the magnitude

of the dissipation also using ∇ · vi , then the dissipation will only

switch on once the flow is converging, not before. To detect flow

convergence in advance, we use instead the spatial derivative of

∇ · vi for the magnitude of our dissipation parameter αloc,i. This

leads to the following dimensionless dissipation switch:

αloc,i=

⎧

⎨

⎩

h2
i |∇(∇ · vi)|

h2
i |∇(∇ · vi)| + hi |∇ · vi | + nscs

αmax ∇ · vi < 0,

0 otherwise,

(21)

where αloc,i describes the amount of dissipation for a given particle

in the range [0, αmax = 1] and ns = 0.05 is a ‘noise’ parameter that

determines the magnitude of velocity fluctuations that trigger the

switch. Equation (21) turns on dissipation if ∇ · vi < 0 (convergent

flow) and if the magnitude of the spatial derivative of ∇ · vi is large

as compared to the local divergence (i.e. if the flow is going to

converge).

In principle, the maximum dissipation parameter αmax can be

different for each fluid quantity. Our default in this paper is to use

αmax = 1 for all fluid variables. We investigate the sensitivity of

SPHS to αmax in Appendix C.

As in Cullen & Dehnen (2010), we set the local dissipation to the

above value instantaneously if αi < αloc,i,

αi = αloc,i, αi < αloc,i, (22)

otherwise αi smoothly decays back to zero:

α̇i = (αloc,i − αi)/τi, αmin < αloc,i < αi,

α̇i = (αmin − αi)/τi, αmin > αloc,i,
(23)

where τ i = hi/vmax,i is the time-scale for the decay, and vmax,i is the

maximum signal velocity (Springel 2005):

vmax,i = max
j

[
vsig,ij

]
, (24)

with

vsig,ij = ci + cj − 3wij , (25)

where wij = (vij · r ij )/|r ij |, and ci is the local sound speed at

particle i.

The parameter αmin = 0.2 ensures that the dissipation parame-

ter decays all the way back to zero once particles are no longer

converging.

4.2 A higher order gradient estimator

Our dissipation switch (equation 21) requires a good estimate of

both the first and second derivatives of the velocity field. A noisy

estimator will cause the limiter to trigger unnecessarily, leading

C© 2012 The Authors, MNRAS 422, 3037–3055
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3042 J. I. Read and T. Hayfield

to an overly diffusive method.8 To achieve good quality gradients,

we fit a second order polynomial to each of the fluid variables as in

Maron & Howes (2003). The first and second derivatives then follow

from the coefficients of the polynomial fit. The full 3D algorithm is

given in Appendix D. Here we present a 1D version to illustrate the

idea.

We assume that a fluid variable, qi, can be locally represented by

a smooth second-order polynomial:

qi = a0,i + a1,ixij + a2,ix
2
ij + O(h3), (26)

where xij = rij/hi.

To determine the coefficients an,i, we then consider the matrix

equation Ma = q:

⎡

⎢
⎢
⎣

N∑

j

mjWij

⎛

⎜
⎜
⎝

1 xij x2
ij

xij x2
ij x3

ij

x2
ij x3

ij x4
ij

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

a0,i

a1,i

a2,i

⎞

⎟
⎟
⎠

=

N∑

j

mjWij

⎛

⎜
⎜
⎝

qj

qjxij

qjx
2
ij

⎞

⎟
⎟
⎠

. (27)

The matrix M and the vector q contain weighted moments that

can be calculated in the usual way by summing over each particle’s

nearest neighbours. The vector a is then calculated by solving for

the inverse of M. The particle gradients at the position of the particle

(xij = 0) then follow from q ′
i(0) = a1,i and q ′′

i (0) = 2a2,i .

The above straightforwardly generalizes to 3D and to vector fluid

variables. For scalar variables in 3D we must solve a 10 × 10 matrix

inverse to obtain a 10 coefficient fit (see Appendix D):

qij = a0,i + a1,ixij + a2,iyij + a3,izij + a4,ix
2
ij + a5,iy

2
ij

+ a6,iz
2
ij + a7,ixijyij + a8,ixijzij + a9,iyijzij

+ O(h3),

(28)

where xij = r ij/hi = [xij , yij , zij ].

Note that Maron & Howes (2003) use these higher order gradients

to actually move the fluid. This makes the method non-conservative,

leading to problems in strong shocks. In SPHS, we use these gradi-

ents instead to conservatively maintain fluid smoothness.

Our dissipation switch manifestly satisfies our criteria (i) and (ii)

outlined above. It detects flow convergence in advance, and it is

accurate since it is based on a second order accurate expansion of

the velocity field.

Note that a second-order polynomial is the lowest order that we

could fit in order to obtain a second derivative. In principle, we could

fit a third- or fourth-order polynomial thus further increasing the

accuracy of the switch. However, this comes at quite significant cost.

At third order, the size of the moment matrix increases from 10 × 10

to 20 × 20 and requires an additional 40 sums over the particles to

be calculated and stored. Secondly, for the higher order moments to

actually help, the neighbour number should be increased. Otherwise

noise in the third moments could make the higher order gradient

estimator poorer than the second-order estimate. For these reasons,

we stick to the second-order scheme in this paper.

8 Indeed, Rosswog (2010) recently advanced the idea of using higher order

gradients for their dissipation switch. They used a first-order accurate gradi-

ent of the pressure, whereas we use the gradient of the velocity divergence

(which is a second derivative of the velocity field).

4.3 The dissipation terms

As discussed at the start of this section, we require a dissipation term

for each advected fluid quantity. These will then be switched on

(using the switch described in Section 4.1) if the flow is converging.

In this subsection, we describe the conservative dissipation terms

that we use for the momentum (artificial viscosity; Section 4.3.1),

entropy (artificial thermal conductivity; Section 4.3.2) and mass

(artificial mass dissipation;9 Section 4.3.3). These dissipation terms

(described in equations 29 to 40) are all added together in our SPHS

scheme.

4.3.1 Artificial viscosity

We start with the familiar artificial viscosity. Here, we use the form

as in Monaghan (1997) and Springel (2005):

v̇diss,i = −

N∑

j

mj
ij∇iW ij , (29)

where


ij =

{

−
αij

2

vsig,ij wij

ρij
if vij · r ij < 0,

0 otherwise,
(30)

where αij = (1/2)
[
αi + αj

]
, and vsig,ij and wij are defined by

equation (25). This must then generate entropy to ensure energy

conservation:

Ȧdiss,i = −
1

2

γ − 1

ρ
γ−1
i

N∑

j

mjαij
ijvij · ∇iW ij . (31)

In addition, we use a Balsara-like switch to limit viscosity in shear

flows (Balsara 1989). As in Cullen & Dehnen (2010), we apply this

to our viscosity parameter αi, rather than directly to equation (31).

This is mathematically identical, but means that αi represents the

true viscosity of the flow. Thus, we multiply αi by a suppression

function given by

fBalsara,i =
|∇ · v|i

|∇ · v|i + |∇ ∧ v|i + 0.0001ci/hi

, (32)

where ci is the sound speed for particle i. Equation (32) is identical

to the usual Balsara switch, except that we use the higher order

gradients derived in Appendix D to derive the divergence and curl

of the velocity field.

Equations (29) and (31) satisfy our dissipation criteria (iii)–(v)

outlined at the start of Section 4. They respect energy and momen-

tum conservation by construction; they act only on the kernel scale

(and thus the viscosity will reduce at a given physical scale as the

resolution is increased); and they introduce a numerical error only

locally.

4.3.2 Entropy dissipation

For our dissipation in the entropy function variable Ai, we choose

a form that explicitly conserves energy, similar to that proposed in

Price (2008):

Ȧdiss,i =

N∑

j

mj

ρij

αijv
p

sig,ijLij

[

Ai − Aj

(
ρj

ρi

)γ−1
]

Kij , (33)

9 This is only required if there are multimass particles.
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SPH with a higher order dissipation switch 3043

where ρij = [ρi + ρj ]/2 is the symmetrized density, Kij = r̂ij ·

∇iWij is a symmetric smoothing kernel, Lij is a pressure limiter (of

which more in a moment) and v
p

sig,ij is similar to the signal velocity,

but defined to be positive definite:

v
p

sig,ij =

{

ci + cj − 3wij if 3wij < (ci + cj ),

0 otherwise.
(34)

This modified signal velocity is chosen to give more dissipation to

approaching particle pairs than receding particle pairs. However,

unlike the viscosity where the dissipation is fully suppressed for re-

ceding pairs (cf. equation 30), we find that receding pairs still require

some small entropy dissipation. This is because, while neighbour-

ing particles can have discretely different velocities without serious

repercussion (so long as they are not approaching one another),

discretely different entropies inside the kernel will drive spurious

pressure waves that affect the numerical solution everywhere.

In fact, the above explains why adding some small entropy dis-

sipation is preferable to doing nothing at all. The right amount of

entropy dissipation will ensure smooth pressures and keep errors

local. But the key is getting the ‘right amount’. If we are not careful,

our dissipation terms can actually drive pressure waves and do more

harm than good. To avoid this, we introduce a pressure limiter:

Lij =
|Pi − Pj |

Pi + Pj

. (35)

Note that, unlike the dissipation prescription presented in Price

(2008), equation (33) poses no problem for simulations involving

gravity. In hydrostatic equilibrium the entropy dissipation will van-

ish since the flow is non-converging and αij = 0.

Equation (33) satisfies our dissipation criteria (iii)–(v) outlined at

the start of Section 4. It respects energy conservation by construc-

tion, acts only on the kernel scale and – through the pressure limiter

– does not propagate errors non-locally.

4.3.3 Mass dissipation (for multimass applications)

Multimass SPH particles are very useful since they allow interesting

regions of the flow to be simulated at significantly higher resolu-

tion (e.g. Monaghan & Varnas 1988; Meglicki, Wickramasinghe &

Bicknell 1993). However, classic SPH runs into difficulties once

particle masses are allowed to vary (see e.g. Ott & Schnetter 2003).

The problems occur because, like the entropy, the particle masses

are advected along with the particles. When particles approach one

another, the masses become multivalued, driving a pressure wave at

the mass interface. The problem is less severe than for the entropies

because the masses are smoothed over in the equation of state (cf.

equations 6 and 8). Nonetheless, large density contrasts realized

with multimass particles are problematic.

Some approaches to multimass SPH have been proposed in the

literature. Ott & Schnetter (2003) suggest adapting the density es-

timate to ensure smooth pressures by construction – an approach

very similar to the multiphase SPH proposed by Ritchie & Thomas

(2001). Kitsionas & Whitworth (2002) suggest increasing the neigh-

bour number at the mass interface. This acts to smooth the pressure

blip. However, for reasonable neighbour number increases there can

still be significant noise/error introduced at the boundary.

A key advantage of our approach is that we can treat any advected

fluid quantity in the same manner as the entropy, above. This in-

cludes the particle masses, which allows us to consider a multimass

SPH scheme that does not require raising the neighbour number

at boundaries, or introducing a new density estimator. Treating the

mass similarly to the entropy, above, we introduce a conservative

pairwise mass dissipation:

ṁdiss,i =

N∑

j

mij

ρij

αijv
p

sig,ijLij

[
mi − mj

]
Kij , (36)

where mij = [mi + mj ]/2 is the symmetrized mass. Note that this

symmetrized mass appears only in equation (36), and not in the

other dissipation terms. This difference follows from the fact that

equation (36) must respect mass conservation, while equations (33)

and (31) – that describe the evolution of the specific entropy – must

respect energy conservation (see Appendix E for further details).

As for the artificial viscosity, we must then add correction terms to

ensure momentum and energy conservation. There is actually some

freedom in how we choose to do this (see Appendix E). A simple

approach is to ensure that each particle individually conserves its

energy and momentum:

d(mivi)

dt
= ṁivi + mi v̇i = 0, (37)

dEi

dt
= ṁiui + mi u̇i +

1

2
ṁivi · vi + mivi · v̇i, (38)

where we recall that ui is the specific internal energy. Substituting

equation (37) into equation (38) then gives the correction terms for

each particle:

v̇diss,i = −
ṁdiss,i

mi

vi, (39)

Ȧdiss,i =
1

2

γ − 1

ρ
γ−1
i

ṁdiss,i

mi

[vi · vi] −
ṁdiss,i

mi

Ai . (40)

We will use the above correction terms throughout this paper. (We

derive a general class of correction terms in Appendix E; these may

lead to even better results in some situations, but we leave this as an

investigation for future work.) It is clear that equations (36), (39)

and (40) satisfy our criteria (iii)–(v) outlined at the start of Section 4.

For equal mass particle applications, ṁdiss,i = 0 by construction and

equations (36), (39) and (40) have no effect.

A final concern is that adding mass dissipation will affect our

solution of the continuity equation. Taking the time derivative of

equation (6), we have that

ρ̇i =
d

dt

∑

j

mjWij =
∑

j

ṁjWij +
∑

j

mjvij · ∇Wij . (41)

The right-hand term is the familiar SPH continuity equation; the

left-hand term is a correction factor that accounts for mass dissipa-

tion. Thus, by using the familiar SPH density sum (equation 6), we

automatically include the mass dissipation correction to the conti-

nuity equation. However, we may still worry whether equation (41)

tends towards equation (1) in the limit of infinite resolution. Substi-

tuting for ṁj = ṁdiss,j in equation (41), we have

∑

j

ṁjWij =
∑

j,k

Qjk(mj − mk)KjkWij ≃ 0, (42)

where Qij = Qji = mij/ρijαijv
p

sig,ijLij , and the equation is very

nearly vanishing since the sum is almost perfectly antisymmetric in

the indices j, k (the antisymmetry is broken by W ij). In the continuum

limit, the above term is exactly zero and so equation (41) does indeed

tend towards equation (1) with increasing resolution.
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3044 J. I. Read and T. Hayfield

5 T IME-STEPPING

For our time-step control, we use individual particle time-steps

ordered on a hierarchy of rungs in powers of two, as in Springel

(2005). Particles are placed on rungs using a Courant-like condition:

�ti = C
hi

vmax,i

, (43)

where C = 0.2 is the Courant factor. We use this same fixed Courant

factor for all tests presented in this paper.

In addition to the standard time-step criteria above, we introduce

a constraint similar to that in Saitoh & Makino (2009) to ensure

that neighbouring particles do not differ in their time-steps by more

than a factor of 4. The algorithm we use is based on code kindly

provided by Muldrew & Pearce (private communication).

6 IM P L E M E N TAT I O N

We implemented our method in the GADGET-2 code (Springel 2005).

GADGET-2 is a massively parallel TREE-SPH code originally designed

to model galaxy collisions, but now adapted for cosmological, hy-

drodynamic, magnetohydrodynamic and many other applications.

SPHS acts as a new hydro module within GADGET-2, replacing the

standard SPH parts of the code. We refer the reader to the original

GADGET-2 paper for details of the gravity solver (Springel 2005).

The SPHS hydro module like GADGET-2 requires two loops over

the particles. In the first loop, the densities are calculated (iterating

to ensure equation 11 is satisfied). At the same time, we calculate the

polynomial fluid gradients (for the dissipation switch; Section 4).

In the second loop, the hydrodynamic forces are evaluated along

with the dissipation terms. Some speed comparisons between our

current implementation of SPHS and classic GADGET-2 SPH are

given in Section 7.8.

7 C ODE TESTS

In this section, we present a suite of code tests designed to challenge

the SPHS method. In Section 7.2, we use the Sod shock tube test to

examine shocks in SPHS both with and without multimass particles,

and to assess the rate of convergence in SPHS. In Section 7.3, we use

the ‘Gresho’ vortex test to examine convergence in shear flows in

SPHS, and the role of numerical viscosity. In Section 7.4, we use a

strong Sedov–Taylor blast wave test to see how well SPHS performs

in the presence of extreme entropy contrasts. In Section 7.5, we use

a Kelvin–Helmholtz (KH) instability test with density contrast 1:8

– both with and without multimass particles – to examine mixing in

SPHS. Finally, in Section 7.6, we use the ‘blob’ test – a 1:10 density

ratio gas sphere in a wind tunnel to assess how SPHS performs in

more complex flow situations where shocks and mixing combine.

7.1 Simulation labelling convention

In the following subsections, we run a broad range of simulations

both in our new hydrodynamics code SPHS, and in ‘classic’ SPH

(the version of SPH that is in the public release version of the

GADGET-2 code, and that is described in Springel 2005). To avoid

confusion, we use the following naming convention for these sim-

ulations:

SPHX-KKNNx,

where X refers to the flavour of SPH: ‘classic’ SPH (SPH), or our

new code (SPHS); KK refers to the kernel used (CS – cubic spline;

equation 15), (CT – core triangle; equation 16), (HCT – high order

core triangle; equation 17); NN refers to the neighbour number (42,

96, 128, 442) and x is reserved to describe special simulations: x =

g means that the test was run using glass rather than lattice initial

conditions; x = e means that the test was run using a higher order

momentum equation (equation 18 with the E0 term subtracted) and

x = multimeans that the test was run using multimass particles.

7.2 Sod shock tube

The Sod shock tube test is a 1D tube on the interval [− 0.5, 0.5] with

a discontinuous change in properties at x = 0 designed to generate a

shock. The left state is described by ρ l = 1.0, Pl = 1.0, vl = 0, and

the right state by ρr = 0.125, Pr = 0.1, vr = 0, where ρ, P and v

are the density, pressure and velocity along the x-axis. We use an

adiabatic equation of state with γ = 5/3 and perform the test in 3D

on the union of a 32 × 32 × 400 lattice on the left, with a 16 × 16 ×

200 lattice on the right, giving a 1D resolution of N1D = 600 points.

For the SPHS simulation, we set an initial dissipation parameter α =

1 over the initial pressure discontinuity (−0.05 < x < 0.05) since

this test starts with a shock. We use lattice ICs for this test aligned

with the shock, identical to those presented in RHA10. In SPH,

however, there is some freedom in how to lay down the particles.

Cullen & Dehnen (2010), for example, use instead glass-like initial

conditions. These are noisier than the simple cubic lattice we use

here, but have no preferred direction. While the choice of initial

condition can affect the results, it should not affect the difference in

the results between SPH and SPHS. We will demonstrate this using

glass and lattice ICs for the Gresho vortex test in Section 7.3.

The results at time t = 0.2 are shown in Fig. 3 for SPH (red)

and SPHS (black). The analytic solution is marked in blue. Notice

that SPHS performs well on this test. In particular, the pressure blip

at the shock, present in the SPH run (red), is almost completely

gone. The SPH run, which used 96 neighbours, shows significantly

more noise in the velocity distribution. This occurs due to symmetry

breaking of the simple cubic lattice ICs and is reduced for glass-

like initial conditions (Cullen & Dehnen 2010). It is also reduced by

moving to higher order kernels that have larger neighbour number

and are therefore correspondingly less noisy (e.g. Price 2012). This

is why the noise is not present in the SPHS simulation.

In addition, we perform this same test using multimass particles

in SPHS, where we sample the domain uniformly with a 16 × 16

× 400 lattice – the same resolution as the low-density phase in the

single particle mass Sod test (Fig. 3, bottom panels). This is an

extremely challenging test for SPHS. The initial conditions have

a sharp jump in three fluid variables: entropy, pressure and mass.

Nonetheless, the solution is in excellent agreement with the analytic

result.

Finally, we perform a convergence study for the Sod shock tube

test in Fig. 4. We follow Springel (2010b) and define our error

measure as

L1(vx) =
1

Nb

Nb∑

i

|vx,i − vx(xi)|, (44)

where Nb is the number of bins in x, vx,i is the mean x-velocity

in bin i, and vx(xi) is the expected analytic mean velocity in bin

i. We use a x-bin width of 0.01. This is small enough to capture

the improvements with increasing resolution, but not so small as to

oversample the lowest resolution run.

Springel (2010b) find that for shock tests in 2D, SPH performs

worse than the optimal N−1
1D scaling, giving something closer to

N−0.7
1D . Here we find that, by contrast, SPHS gives a near-optimal
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SPH with a higher order dissipation switch 3045

Figure 3. 3D Sod shock tube test results at t = 0.2 in SPHS (black) and SPH-CS96 (red). From left to right, the panels show the density, pressure, magnitude of

vx (the x-velocity component along the shock) and the dissipation switch α (only relevant for the SPHS simulations). The blue line marks the analytic solution.

Notice that the pressure blip at x ∼ 0.2 is almost fully removed in SPHS. The top panels show results for a single particle-mass simulation; the bottom for the

same run with multimass particles in SPHS on a uniform particle grid.

Figure 4. Sod shock tube convergence test results. The x-axis gives the

number of particles along the shock N1D (Fig. 3, top, shows results for

N1D = 600), the y-axis shows the binned velocity error in x-bins of width

0.01 and the thick black line shows a scaling of N−0.9
1D (the best-possible

scaling is N−1
1D ).

scaling, going as very nearly N−1
1D , except at the highest resolution

(compare the black and thick black lines in Fig. 4). The slowing

down of the convergence rate for the highest resolution simulation

may be due to a fundamental convergence limit set by our neighbour

number (i.e. set by the magnitude of the E0 error; see Section 3).

Unfortunately, we need to probe up to prohibitively high resolution

to conclusively test this; we defer such tests to future work.

7.3 Gresho vortex test

We set up the Gresho vortex test similarly to Springel (2010b) (and

see Gresho & Chan 1990). The test involves an N × N × N/8 3D

lattice of particles. A velocity and pressure field are applied to these

to set up a stable vortex:

vφ(R) =

⎧

⎨

⎩

5R for 0 ≤ R ≤ 0.2,

2 − 5R for 0.2 ≤ R ≤ 0.4,

0 for R ≥ 0.4,

(45)

P (R) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

5 + 25
2
R2 for 0 ≤ R ≤ 0.2,

9 + 25
2
R2

−20R + 4 ln(R/0.2) for 0.2 ≤ R ≤ 0.4,

3 + 4 ln 2 for R ≥ 0.4,

(46)

where R =
√

x2 + y2 and we set ρ = 1 and γ = 5/3.

The above vortex should be stable over many rotations, but in

practice will decay due to the numerical viscosity inherent in the

scheme. As such, it is a useful test of the numerical viscosity gen-

erated in shear flows. Indeed, classic SPH performs poorly on this

test converging very slowly to the wrong solution (Springel 2010b).

Such rotating configurations are common in a wide class of astro-

physical problems; it is important for numerical schemes to perform

well on such tests.

The results for SPHS are given in Fig. 5. We show, from left to

right, the rotational velocity profile of the vortex (black points) as

C© 2012 The Authors, MNRAS 422, 3037–3055
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3046 J. I. Read and T. Hayfield

Figure 5. Gresho vortex test results. The top panels show results for the HOCT4 kernel with 442 neighbours; the bottom panels for the CT kernel with 128

neighbours. The left-hand panels show the vφ velocities of particles after a time t = 1 for N = 64 × 64 × 8 particles; the analytic solution is marked in blue.

The middle panels show the dissipation parameter α at the same time. The right-hand panels show the three E0 error components in black, red and blue.

Overplotted is the mean binned error magnitude |E0| (solid black line).

compared to the analytic solution (thick blue line); the dissipation

parameter α and the leading order error in the momentum equation

E0. We find significantly better performance in SPHS than was

found by Springel (2010b) for SPH. The primary reason for this –

surprisingly – is not the lower viscosity of the method. The average

viscosity is lower in SPHS – in the range 0.05 <α < 0.3 as compared

to SPH that has constant α = 1 (see Fig. 5, middle panels). However,

the real reason for the improvement is the improved force accuracy.

In Fig. 5, the top three panels show the results for our default

method (SPHS-HCT442), while the bottom three show results for

SPHS using a lower neighbour number with the CT kernel (SPHS-

CT128; see Section 7.1 for our simulation labelling convention).

If anything, the viscosity is slightly lower for the SPHS-CT128

simulation, yet the results are worse, with increased noise and a bias

in the rotational velocity for R � 0.2. The only difference between

these two simulations is the neighbour number, and the associated

E0 error. Indeed, in SPHS-HCT442, the E0 is lower than for the

SPHS-CT128 simulation (see Fig. 5, right-hand panels).

In Fig. 6, we explore this further by presenting convergence tests

for SPH and SPHS using varying neighbour number and kernel

choice. We calculate the L1(vφ) error norm as in the Sod test (Sec-

tion 7.2), using a bin size of �R = 0.01. The thick black line on

the plot marks the ideal scaling of N−2
1D (ideal for a second order

method away from contact discontinuities). The red lines show re-

sults for classic SPH with 42 neighbours (solid line), 96 neighbours

(dotted line) and 128 neighbours using the CT kernel (dashed line).

Notice that SPH-CS42 converges very slowly with increasing reso-

lution, with the error always larger than 10 per cent. Increasing the

neighbour number to 96 neighbours helps at low resolution but gives

diminishing returns with increasing resolution. This agrees with our

results from RHA10, where we showed that in shear flows the E0

error improves only very slowly with increasing neighbour num-

ber for the CS kernel. This is because for neighbour number larger

than ∼40, the particles begin to clump preventing any significant

improvement in the kernel sampling. By contrast, switching to the

CT kernel with 128 neighbours – that is manifestly stable to particle

clumping – gives a significant improvement in the convergence rate

(dashed line). Now the error drops to ∼5 per cent for N1D = 128.

The solid blue line shows the result for SPHS using the CT ker-

nel with 128 neighbours (SPHS-CT128). The results are only very

slightly better than for classic SPH. This highlights that, for this

test, it is the force accuracy that determines the rate of convergence,

not the dissipation scheme. The solid black line shows the result

for our default SPHS scheme: SPHS-HCT442. With 442 neigh-

bours and a correspondingly higher order kernel, our method now

converges on percent level accuracy for this test. The convergence

C© 2012 The Authors, MNRAS 422, 3037–3055

Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
2
2
/4

/3
0
3
7
/1

0
4
9
5
2
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



SPH with a higher order dissipation switch 3047

Figure 6. Gresho vortex convergence test results. The x-axis gives the num-

ber of particles along one side of the box N1D (Fig. 5 shows results for N1D =

64); the y-axis shows the binned velocity error in R-bins of width 0.01. The

different line colours show different SPH methods; the naming convention

(marked) is as described in Section 7.1. Three simulations: SPHS-CS42

(‘classic’ SPH); SPHS-HCT442 (our default SPHS method) and SPHS-

HCT442e (our default method using a higher order momentum equation)

are tested to higher resolution (N1D = 256). The thick black line shows a

scaling of N−1.4
1D (the best-possible scaling is N−2

1D ).

appears to be uninterrupted even at N1D = 256, though the rate is

perhaps slowing. The dotted black line shows the results for the

same simulation but run using glass initial conditions. The error

is slightly improved, but the rate of convergence is identical. This

demonstrates that our results are not sensitive to the initial parti-

cle distribution. Finally, the solid magenta line shows results for

our default SPHS scheme, but using a higher order momentum

equation. For this simulation, we replaced equation (7), with the

left-hand term in equation (18) – i.e. explicitly subtracting away the

E0 error (SPHS-HCT442e). In this case, we should expect to see a

steady convergence rate, without any need to further increase the

neighbour number. Indeed, this is what is seen. The results are now

significantly better than any of the other SPH methods. At the very

highest resolution (N1D = 256), however, there may still be some

slowing in the convergence rate. It is possible that this is simply

a fluctuation (running the test at even higher resolution to test this

seems extravagant). Alternatively, it may be that at these resolutions

the viscosity does start to play a role, slowing the convergence rate.

The most promising results for this particular test come from the

SPHS-HCT442e method that uses a higher order momentum equa-

tion. Unfortunately, this same equation violates pairwise momen-

tum conservation between particles and causes problems in strong

shocks (Section 3; and see Morris 1996a). As such, we defer the

investigation of such schemes to future work. We note here, how-

ever, that our default scheme – SPHS-HCT442 – still performs very

well on this test, achieving percent level accuracy with increasing

resolution and showing no indication that convergence is reaching

a plateaux, even at the highest resolution considered.

Our results suggest that in practice, we may be able to ensure

that E0,i shrinks faster than hi without indefinitely increasing the

neighbour number and kernel order (for a discussion of formal

convergence criteria for SPH, see Section 3). The neighbour number

and kernel order, however, control the rate of convergence.

7.4 Sedov–Taylor blast wave

We set up a Sedov–Taylor blast-wave test as in Springel & Hernquist

(2002) using a uniform lattice of 643 particles with initial density

ρ = 1. We inject an explosion energy E = 1 into a central region

r < 0.08. This corresponds to an initial entropy per central particle

of A = 350. The remaining particles are assigned A = 0.05, giving

an entropy contrast of ∼7000. The analytic similarity solution to

this problem is well known (see e.g. Landau & Lifshitz 1966), and

gives a time evolution for the blast wave radius of

r(t) = 1.15

(
Et2

ρ

)1/5

(47)

for an adiabatic index of γ = 5/3.

The Sedov–Taylor test is particularly challenging for any hy-

drodynamical code because of the extreme entropy gradient in the

initial conditions. The results for SPHS for N = 643 and 1283 par-

ticles are given in the left two panels of Fig. 7. As the resolution

is increased, the results converge on the analytic solution shown in

blue: the peak density of the shock increases, while the low-density

tail better matches the analytic expectations. The blast wave is per-

fectly symmetric, as shown in the rightmost panel. For comparison,

Figure 7. Sedov–Taylor blast wave test results. Left three panels: the density profile of the gas at t = 0.05 for N = 643 and 1283 particles for SPHS-HCT442,

and for N = 1283 particles for SPH-CS42 (using the time-step limiter described in Section 5). The blue lines mark the analytic solution. For the SPHS

simulations, the actual unbinned point particle densities are plotted in black; for the SPH simulation, they are plotted in grey. Notice the significantly larger

noise for the SPH simulation. A mean binned profile, using a bin size of �x = 0.001 is overplotted in red. Rightmost panel: logarithmic density contours of

the blast wave viewed from top at t = 0.05 for SPHS-HCT442 with N = 1283 particles.
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3048 J. I. Read and T. Hayfield

the results for classic SPH (with N = 1283) are shown in the third

panel. Notice that the result is significantly more noisy (compare

the grey dots with the black dots in the left two panels). The reduced

noise in SPHS is partly due to the increased neighbour number, and

partly due to the entropy dissipation (see for example similarly less

noisy results for this test reported in Rosswog & Price 2007). The

mean solution for SPH is, however, in good agreement with the

analytic solution (compare the red and blue lines for the SPH-CS42

panel). Note that, for this test we had to use the time-step limiter

described in Section 5 (and see Saitoh & Makino 2009), and so this

simulation is not strictly speaking ‘classic’ SPH as we have defined

it in this paper. Similar results can be obtained with classic SPH

by using fixed time-steps and a sufficiently small Courant factor

(equation 43). However, this is computationally very expensive.

One interesting aspect of the Sedov test is that it allows us to

compare the spatial resolution in SPHS-HCT442 with classic SPH

using 42 neighbours (SPH-CS42). Notice that the SPH-CS42 sim-

ulation resolves higher density in the shock. The unbinned particles

reach densities up to ρmax ∼ 4.5 in simulation units, whereas our de-

fault scheme (SPH-HCT442) manages only ρmax = 2.7. We argued

in Section 3 that the HOCT4 kernel with 442 neighbours should

degrade the spatial resolution by a factor f ∼ 1.5 as compared to the

CS kernel with 42 neighbours. Since the shock front for the Sedov

test is one-dimensional, then we can expect a lower peak density in

SPHS-HCT442 of a factor ∼f . This is almost exactly what is seen

since ρmax,SPH/ρmax,SPHS = 1.67. In practice, however, the spatial

resolution of the SPH simulation is not this good because of the

increased noise. We ought to trust only the averaged solution that

is shown in red. For this averaged density, the peak is significantly

lower, with ρmax ∼ 3.3 – only a factor of 1.2 better than our default

SPHS method. We conclude from this that SPHS-HCT442 does not

significantly degrade the spatial resolution as compared to SPH-

CS42, especially once the reduced noise of the method is taken into

account.

7.5 Kelvin–Helmholtz test

We set up a 1:8 density contrast KH test in 3D as in RHA10. We

used a periodic thin slab defined by x ∈ { − 0.5, 0.5}, y ∈ { − 0.5,

0.5} and z ∈ { − 1/64, 1/64}. The domain satisfied

ρ, T , vx =

{
ρ1, T1, v1, |y| < 0.25,

ρ2, T2, v2, |y| > 0.25.
(48)

The density and temperature ratio were Rρ = ρ1/ρ2 = T2/T1 =

c2
2/c

2
1 , ensuring that the whole system was in pressure equilib-

rium. The two layers were given constant and opposing shearing

velocities, with the low-density layer moving at a Mach num-

ber M2 = −v2/c2 ≈ 0.11 and the dense layer moving at

M1 = M2

√
Rρ . The density ratios considered in this work are

small which assures a subsonic regime where the growth of insta-

bilities can be treated using equation (51) (Vietri, Ferrara & Miniati

1997).

To trigger instabilities, velocity perturbations were imposed on

the two boundaries of the form

vy = δvy[sin(2π(x + λ/2)/λ) exp(−(10(y − 0.25))2)

− sin(2πx/λ) exp(−(10(y + 0.25))2)],
(49)

where the perturbation velocity δvy/v = 1/8 and λ = 0.5 is the

wavelength of the mode.

The linear growth rate of the KHI is given by (Chandrasekhar

1961)

w = k
(ρ1ρ2)1/2v

(ρ1 + ρ2)
, (50)

where k = 2π/λ is the wavenumber of the instability, ρ1 and ρ2 are

the densities of the respective layers and v = v1 − v2 is the relative

shear velocity. The characteristic growth time for the KHI is then

τKH ≡
2π

w
=

(ρ1 + ρ2)λ

(ρ1ρ2)1/2v
. (51)

We set up two simulations to satisfy the set-up described above.

An equal mass particle simulation with N = 2359 296, and a multi-

mass version with N = 524 288. The latter simulation used a uniform

grid of particles, with mass ratio 1:8 to describe the density step.

To satisfy pressure equilibrium everywhere, the temperatures were

adjusted at the boundary to be consistent with the SPH density step

that is smooth (cf. equation 6).

The results of the test at times τKH = 1, 2 and 3 are shown in

Fig. 8. The top row shows the results for classic SPH (SPH-CS42);

the middle row shows the results for our default SPHS scheme

(SPHS-HCT442), using single mass particles; the bottom row shows

the results for SPHS-HCT442 using multimass particles. The SPH

results are poor, with no mixing observed between the fluid layers,

similarly to what has been reported in previous works (e.g. Agertz

et al. 2007; RHA10). By contrast, the SPHS results show the growth

of KH rolls on the correct time-scale and resolved mixing into the

fully non-linear regime. Furthermore, the single mass simulation

and multimass simulation (middle and bottom panels) are in excel-

lent agreement. They differ in the details of the non-linear evolution

caused by the growth of smaller noise-seeded rolls. But the growth

time for the primary KH roll is in excellent agreement with analytic

expectations, while the non-linear evolution is qualitatively similar.

The multimass simulation is slightly more diffusive due to the addi-

tional mass dissipation between particles at the boundary. However,

this simulation (because of the lower particle number) ran almost

five times faster.

As discussed in our previous paper (RHA10), the improved per-

formance for the KH test in SPHS is a result of both the improved

force accuracy (due to the increased neighbour number and higher

order, stable kernel), and the improved dissipation. We demonstrate

this in Appendix F, where we show the effect of switching off the

entropy and mass dissipation terms (equations 33 and 36) for this

test.

7.6 The ‘blob’ test

The ‘blob’ test is a spherical cloud of gas of radius Rcl in a wind

tunnel with periodic boundary conditions. The ambient medium

is 10 times hotter and 10 times less dense than the cloud so that

the system is in pressure equilibrium. The wind velocity (vwind =

csM) has an associated Mach number M = 2.7. This leads to the

formation of a bow shock after which the post-shock subsonic flow

interacts with the cloud and turns supersonic as it flows past it. The

test was first presented (with a full analytic analysis) in Agertz et al.

(2007). Here, we set up the test as in RHA10 with N = 126 744

in the blob, arranged on a lattice. As in RHA10, we seed an initial

inwards perturbation on the blob surface.

The results at times τKH = 1 (top), 2 (middle) and 3 (bottom) in

classic SPH (left) and SPHS (right) are given in Fig. 9. In classic

SPH, similarly to what has been reported in previous works, the blob

does not break up and survives for the full length of the simulation.
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SPH with a higher order dissipation switch 3049

Figure 8. KH1:8 test results. From left- to right-hand panels show logarithmic density contours at τKH = 1, 2 and 3, and the dissipation parameter α at τKH =

1. The top panels show results for a single particle mass simulation (N = 2359 296); the bottom panels for a multimass simulation with a uniform density

particle distribution (N = 524 288).

Furthermore, the suppression of instabilities at the fluid interface is

sufficient to remove the inward perturbation that was seeded in the

initial conditions. By contrast, this perturbation is clearly visible in

the SPHS simulation and grows causing the blob to split down the

middle in good agreement with both Eulerian codes and our OSPH

method (RHA10). Finally, notice that the symmetry of the blob is

well preserved even at τKH = 3 – well into the non-linear regime.

7.7 Conservation

Fig. 10 summarizes the conservation performance of SPHS for all

of our tests. From left to right, we show the conservation of energy,

momentum, angular momentum and (where relevant) mass. The

results are normalized to a simulation time of 1, where ‘1’ is the

maximum time presented in this paper (i.e. for the KH1:8 test this is

τKH = 3). Momentum and angular momentum conservation results

are only shown where these quantities are not zero in the initial

conditions (to avoid a divide by zero in the percentage errors).

The worst performance is for the Sedov–Taylor test that conserves

energy at the ∼5 per cent level. However all other tests conserve

energy, mass, momentum and angular momentum to better than 1

per cent over the full simulation time.

7.8 Code performance

Fig. 11 compares the ratio of the speed of our default SPHS scheme

(SPHS-HCT442; black squares) and SPH-CS442 (red squares) to

classic SPH (SPH-CS42). (We use the simulation naming conven-

tion as described in Section 7.1.) For all tests, we used 16 processors.

The Sod tests were compared at the N1D = 600 resolution, the vor-

tex tests at N1D = 128 and the Sedov tests at N1D = 128. In all cases,

we eliminate the start-up time costs (the time taken to complete step

zero). There is some significant variation in speed across all of the

tests with the cost of SPHS ranging from two to four times that of

SPH-CS42, but typically SPHS is three to four times slower at like

particle number.
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3050 J. I. Read and T. Hayfield

Figure 9. Blob test results at τKH = 1 (top), 2 (middle) and 3 (bottom) for classic SPH (left) and SPHS (right). All plots show logarithmic density contours.

Figure 10. Conservation in SPHS. From left to right, the panels show conservation of energy, momentum, angular momentum and (where relevant) mass for

the simulation test suite presented in this paper. The coloured lines show results for the multimass Sod test (black), the Sedov–Taylor test (red; for N = 1283

particles), the Gresho vortex test (green; for N = 64 × 64 × 8), the multimass KH1:8 test (blue) and the Blob test (purple). The results are normalized to a

simulation time of 1, where ‘1’ is the maximum time presented in this paper (i.e. for the KH1:8 test this is τKH = 3). Momentum and angular momentum

conservation results are only shown where these quantities are not zero in the initial conditions (to avoid a divide by zero in the percentage errors).

Note that the above speed tests are conservative. We could equally

well conduct the tests at like numerical error, rather than like par-

ticle number. For the Gresho vortex test, for example, it is unlikely

that SPH-CS42 can ever achieve equivalent accuracy to SPHS for

any reasonable particle number (see Fig. 6). To obtain ∼1 per cent

accuracy on this test, classic SPH would require an enormous par-

ticle number and be significantly slower than SPHS.

Finally, we have not made any attempt to optimize our current

implementation of SPHS. Faster neighbour search algorithms, or

neighbour caching could conceivably gain back much of the speed

losses as compared to classic SPH. In addition, for real astrophysics

applications, the additional work done on the neighbours may be

compensated by improved time-stepping (due to the reduced noise),

and better load balancing in highly parallel simulations. Such con-

siderations are beyond the scope of this present work.

8 C O N C L U S I O N S

We have presented an implementation of SPHS that has two novel

features. The first is an improved treatment of dissipation. We use

the spatial derivative of the velocity divergence as a higher order

dissipation switch. Our switch – which is second-order accurate –

detects flow convergence before it occurs. If particle trajectories are

going to cross, we switch on the usual SPH artificial viscosity, as
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SPH with a higher order dissipation switch 3051

Figure 11. The ratio of the speed of our default SPHS scheme (SPHS-

HCT442; black squares) and SPH-CS442 (red squares) to ‘classic’ SPH

(SPH-CS42). (We use the simulation naming convention as described in

Section 7.1.) For all tests, we used 16 processors. The Sod tests were com-

pared at the N1D = 600 resolution, the vortex tests at N1D = 128 and the

Sedov tests at N1D = 128. In all cases, we eliminate the start-up time costs

(the time taken to complete step zero).

well as conservative dissipation in all advected fluid quantities (e.g.

the entropy). The viscosity and dissipation terms (that are numerical

errors) are designed to ensure that all fluid quantities remain single

valued as particles approach one another, to respect conservation

laws, and to vanish on a given physical scale as the resolution is

increased. The second novel feature is the use of significantly larger

neighbour number (442) to improve the force accuracy. As in our

previous work, we use a novel kernel function that is (i) higher order

such that the spatial resolution is not significantly degraded by our

larger neighbour number, and (ii) that has a constant first derivative

in the centre to prevent particle clumping (this latter ensures a

smooth particle distribution on the kernel scale, which is necessary

to obtain the improvement in the force accuracy).

We have demonstrated that SPHS alleviates a number of known

problems with ‘classic’ SPH,10 successfully resolving mixing and

recovering numerical convergence with increasing resolution. An

additional key advantage is that – treating the particle mass similarly

to the entropy – we are able to use multimass particles, giving

significantly improved control over the refinement strategy.

We have presented a wide range of code tests: the Sod shock tube,

Sedov–Taylor blast wave, Gresho vortex, KH instability, the ‘blob

test’ and some convergence tests. Our method performed well on all

tests, giving good agreement with analytic expectations. For some

tests, like the Gresho vortex, most of the improvement over ‘classic’

SPH is due to the improved force accuracy. For other tests like the

(high density contrast) KH instability, the improved dissipation is

equally important. We deliberately picked challenging tests that

involve sharp features in one or more of the fluid quantities. These

10 We define ‘classic’ SPH as that implemented in the public release version

of the GADGET-2 code (Springel 2005), and similar.

are inherently difficult to resolve for our method that is manifestly

smooth, yet we show that SPHS copes well even in such situations.

In our current implementation (that is likely suboptimal) SPHS

is typically three to four times slower than ‘classic’ SPH (using 42

nearest neighbours) for like particle number. However, this addi-

tional cost should be offset against the improvement in the quality

of the hydrodynamic solution in SPHS, the significantly reduced

noise and the improved rate of convergence. For the Gresho vortex

test, for example, SPHS achieves approximately per cent level ac-

curacy as compared to ∼10 per cent in SPH for the same particle

number.

The main remaining flaw in the SPHS algorithm is its low order.

This means that formal convergence requires the neighbour number

to be increased along with the particle number (using increasingly

higher order stable kernels to maintain spatial resolution). However,

our default kernel choice – the HOCT4 kernel with 442 neighbours

– is already sufficient to obtain per cent level accuracy on the hy-

drodynamic tests we present here, and shows no sign of reaching

a plateaux in convergence even at the highest resolutions we con-

sider. It is possible that convergence in practice does not require

ever-increasing neighbour numbers, but rather the neighbour num-

ber and kernel order simply set the rate of convergence. Either way,

it is unlikely that the neighbour number/kernel order will need to be

increased beyond our default HOCT4 kernel with 442 neighbours

for most astrophysical applications of interest.

SPHS will be useful for any astrophysics application involving

multiphase fluid flow (e.g. resolving the ISM in galaxy discs), or

where the use of multimass particles would be advantageous. The

improved treatment of ram pressure stripping will likely be impor-

tant for cosmological simulations where galaxies and clusters form

through a sequence of hierarchical mergers (e.g. White & Rees

1978). This may explain the striking difference between Eulerian

and SPH codes for the entropy profile of gas in simulated adiabatic

galaxy clusters (the Santa Barbara test; Frenk et al. 1999). SPHS

is also likely to be important for simulations involving rapid gas

cooling, where multiphase flow is unavoidable. In particular, SPH

simulations of cooling galaxy haloes are found to produce cold gas

clouds in the halo (Kaufmann et al. 2009), while Eulerian codes do

not (Joung, Bryan & Putman 2012). We will use SPHS to explore

astrophysics problems like these in a series of forthcoming papers.
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APP ENDIX A : THE TROUBLE WITH ‘RT’

PRESSURES

In RHA10, we used the same equations of motion as SPHS, but

with the pressure estimator in equation (20). This ensured mani-

festly smooth pressures throughout the flow, allowing us to suc-

cessfully model mixing between different fluid phases. However,

while equation (20) gives excellent performance for multiphase

Figure A1. Sedov-Taylor blast wave test results using the ‘RT’ pressure

estimator (equation 20) without entropy dissipation. The plot shows the

density profile of the gas at time t = 0.05, similarly to Fig. 7. Notice that the

shock front is displaced with respect to the analytic curve (blue).

flow applications, it performs poorly in strong shocks where the

entropy gradients on the kernel scale are large. We show this in

Fig. A1, where we plot results for the Sedov–Taylor blast wave

problem (with N = 1283; and see Section 7.4), using the ‘RT’ pres-

sure estimator (equation 20) without entropy dissipation. As can be

seen, the resulting shock front, while very smooth, is not in good

agreement with the analytic curve shown in blue.

The above highlights the key problem with ‘RT’ densities and

pressures. Particles in the kernel with very different entropies are

down-weighted in the sum. This means that to obtain good kernel

sampling, we must scale the neighbour number with the entropy

contrast on the kernel scale. For the Sedov–Taylor blast wave, where

the initial entropy contrast is ∼7000, this is prohibitively expensive.

Not doing this, however, leads to a significant numerical error as

can be seen in Fig. A1. For this reason, in this paper, we have

abandoned the density and pressure estimators given in equations

(19) and (20). Instead, we ensure smooth pressures through our

higher order dissipation switch described in Section 4.

APPENDI X B: A FULLY C ONSERVATI VE

V E R S I O N O F SP H S

A fully conservative version of SPHS can be constructed by replac-

ing equation (7) with that in Springel & Hernquist (2002):

dvi

dt
= −

N∑

j

mj

[

fi

Pi

ρ2
i

∇iWij (hi) + fj

Pj

ρ2
j

∇iWij (hj )

]

, (B1)

where the function f i is a correction factor that ensures energy

conservation for varying smoothing lengths:

fi =

(

1 +
hi

3ρi

∂ρi

∂hi

)−1

. (B2)

As discussed in RHA10, the above momentum equation gives im-

proved (in fact manifest) energy conservation, but larger truncation

error. For applications where energy conservation is of paramount

importance (for example, where a system is evolved for many dy-

namical times), the above equation should be used. However, in this

C© 2012 The Authors, MNRAS 422, 3037–3055
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SPH with a higher order dissipation switch 3053

Figure B1. KH1:8 multimass test results at τKH = 1 for a fully conservative

version of SPHS (that uses equation B1 instead of equation 7). Notice that

the results are significantly more diffusive than our default scheme shown

in Fig. 8.

case, care must also be taken over the time-stepping (e.g. Dehnen

& Read 2011). For the tests presented in this paper, the energy

losses due to variable time-steps dominate and the above momen-

tum equation gains only ∼0.5 per cent in energy conservation for

the KH1:8 multimass test (see Section 7.7), and ∼2 per cent for the

Sedov test (a factor of ∼2 improvement in both cases). However,

the larger truncation error introduces significantly more diffusion.

This is shown in Fig. B1, where we present results for the multimass

KH1:8 test (see Section 7.5) at time τKH = 1, using equation (B1).

For this reason, our default choice for SPHS is the momentum

equation (7).

APP ENDIX C : THE SENSITIVITY O F SPH S TO

T H E D I S S I PAT I O N PA R A M E T E R S

In this appendix, we assess how sensitive SPHS is to the choice of

dissipation parameters. As our default, we have assumed a single

maximum dissipation parameter for viscosity, mass dissipation and

entropy dissipation: αmax = αv = αm = αA = 1. This default choice

is natural from the definition of the dissipation/viscosity equations

(29), (31), (33) and (36). These assert that the dissipation should

proceed proportional to the jump in the given fluid quantity (mass,

entropy, etc.) and on a time-scale set by the signal velocity. Thus,

we expect a normalization parameter in each case of order unity.

Nonetheless, α is a free parameter and we should check that our

results are not sensitive to it. To test this, in Fig. C1, we consider the

effect of varying αv and αA for the Sod shock tube test (Section 7.2)

at two different resolutions.

From Fig. C1, we see that our results are not sensitive to the en-

tropy dissipation parameter αA. Over a wide range 0.1 < αA < 5, the

results change only slightly. More importantly, the differences de-

crease with increasing resolution (compare the red and black lines

in the left two panels of Fig. C1). The results are more sensitive,

however, to the choice of viscosity parameter αv. For low viscosity

(αv = 0.1), we have spurious oscillations in the solution. Reassur-

ingly, however, these decrease with increasing resolution (compare

the green and black curves in the right two panels of Fig. C1). The

results are poor, however, if αv is too large. For αv = 5, there is a

strong undershoot in the density at the shock that does not improve

with increasing resolution.

We conclude that the results in SPHS converge with increasing

resolution independently of αv or αA, as long as αv is not too large.

APPENDI X D : FI TTI NG AN NT H O R D E R

P O LY N O M I A L TO A FL U I D QUA N T I T Y

We describe here an algorithm for fitting an order N polynomial to

an irregular point distribution (see e.g. Fan & Gijbels 1996; Maron

& Howes 2003). We give the relevant equations for a second order

fit in three dimensions, but the method straightforwardly generalizes

to arbitrary order and dimension. Assuming that a fluid quantity qi

defined at particle position i is smooth (and therefore differentiable),

we can perform a second-order polynomial expansion at a point j

about i:

qij = a0,i + a1,ixij + a2,iyij + a3,izij + a4,ix
2
ij + a5,iy

2
ij

+ a6,iz
2
ij + a7,ixijyij + a8,ixijzij + a9,iyijzij

+ O(h3),

(D1)

where xij = r ij/hi = [xij , yij , zij ].

The coefficients of this expansion can then be determined by

inverting the following 10 × 10 matrix equation:

Ma = q, (D2)

where

aT = [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9], (D3)

qT =
∑N

j mjqjW ij

[
1, xij , yij , zij , x

2
ij , y

2
ij , z

2
ij ,

xijyij , xijzij , yijzij

]
,

(D4)

Figure C1. Sensitivity to the dissipation parameters for the Sod shock tube test (Section 7.2). From left to right, the panels show the density profile at t =

0.2 (similarly to Fig. 3), for varying entropy function dissipation parameter αA and viscous dissipation parameter αv, at low resolution N1D = 200 and higher

resolution N1D = 400, as marked. The blue line marks the analytic solution. Notice that so long as αv is not too large, the results converge with increasing

resolution independently of the choice of dissipation parameters.
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M =

N∑

j

mjW ij

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 xij yij · · ·

xij x2
ij xijyij · · ·

yij yijxij y2
ij · · ·

zij zijxij zijyij · · ·

x2
ij x3

ij x2
ijyij · · ·

y2
ij y2

ijxij y3
ij · · ·

z2
ij z2

ijxij z2
ijyij · · ·

xijyij x2
ijyij xijy

2
ij · · ·

xijzij zijx
2
ij xijzijyij · · ·

yijzij yijzijxij zijy
2
ij · · ·

· · · zij x2
ij y2

ij z2
ij · · ·

· · · xijzij x3
ij xijy

2
ij xijz

2
ij · · ·

· · · yijzij yijx
2
ij y3

ij yijz
2
ij · · ·

· · · z2
ij zijx

2
ij zijy

2
ij z3

ij · · ·

· · · x2
ijzij x4

ij x2
ijy

2
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ijz
2
ij · · ·

· · · y2
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ijx
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⎟
⎟
⎟
⎟
⎟
⎟
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⎟
⎟
⎟
⎟
⎟
⎟
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(D5)

and W ij = (1/2)[Wij (hi)+Wij (hj )] is the symmetrized smoothing

kernel (the superscript T means transpose).

Having determined all of the coefficients of a (by solving a =

M
−1q), the gradients of q evaluated at i then simply follow as

∂qi

∂x
= a1,

∂qi

∂y
= a2,

∂qi

∂z
= a3, (D6)

and similarly for the second derivatives.

A P P E N D I X E : A G E N E R A L D E R I VAT I O N O F

CON SERVATION TERMS FOR MULTIMASS

S P H S

In Section 4.3.3, we introduced a multimass dissipation term for

SPHS. This requires some correction terms to restore energy and

momentum conservation. In this appendix, we derive the general

class of such correction terms.

Our dissipation terms must obey mass, momentum and energy

conservation:

Ṁ = 0 =
∑

j

ṁj , (E1)

ṀV = 0 =
∑

j

˙mjvj =
∑

j

mj v̇j + ṁjvj , (E2)

Ė = 0 =
∑

j

ṁj

(
1

2
vj · vj + uj

)

+ mj

(
vj · v̇j + u̇j

)
. (E3)

First, let us verify that equation (36) satisfies equation (E1). Substi-

tuting for ṁj = ṁdiss,j , we have

Ṁ =
∑

j,k

Qjk(mj − mk)Kjk = 0, (E4)

where Qij = Qji = mij/ρijαijv
p

sig,ijLij and the above is zero

because it is antisymmetric in j, k. Note that this explains why

we must use a symmetrized mass in equation (36): Qij must be

symmetric in order to ensure mass conservation.

Now, let us substitute ṁj = ṁdiss,j into equation (E2):

0 =
∑

j

mj v̇diss,j +
∑

j,k

Qjk(mj − mk)Kjkvj , (E5)

where we have split the acceleration into a dissipative correction

term, and all other normal SPHS terms: v̇i = v̇diss,i + v̇rest,i , and

then used the fact that
∑

j mj v̇rest,j = 0 by construction for SPHS.

We may now select any form we like for v̇diss,i so long as it satisfies

equation (E5). In Section 4.3.3, we chose a form that conserves

momentum on a per particle basis, but we may also choose a form

that fluxes the momenta, for example:

v̇i =
∑

j

Qij

(mi − mj )

mi

Kijvj . (E6)

It is straightforward to show that the above correction term also

conserves momentum since it makes equation (E5) antisymmetric

in j, k.

We may then derive a similar constraint equation for our energy

correction term. As an example, let us substitute ṁj = ṁdiss,j and

equation (E6) into equation (E3). This gives

0 =
∑

j,k

(
Qjk(mj − mk)Kjk

)
[

1

2
vj · vj + uj

]

+ mj

[

vj ·
(

Qjk
(mj −mk )

mj
Kjkvk

)

+ u̇diss,j

]

,

(E7)

where similarly to the above, we have dropped all contributions

involving the standard SPHS terms since these are already conser-

vative and therefore vanish.

We may then derive a correction term for u̇diss,j :

u̇diss,i =
∑

j

Qij

(mi − mj )

mi

Kij

[
1

2
vj · vj + uj

]

. (E8)

It is straightforward to verify that substituting equation (E8) into

equation (E7) makes the equation antisymmetric in j, k and thus

restores energy conservation.

It is clear from the above examples that we may use the above

constraints to derive a whole class of correction terms. Some of

these may give better performance than equations (37) and (38) that

we use as our default in this paper. Such a study is, however, beyond

the scope of this present work.

A P P E N D I X F: T H E I M P O RTA N C E O F

DI SSI PATI ON TERMS FOR MULTI PHASE

A N D M U LT I M A S S FL OW IN SP H S

In this appendix, we show the effect of switching off our dissipation

terms in entropy and mass for the KH1:8 multimass test (Sec-

tion 7.5). The results are shown in Fig. F1. As expected, the entropy

dissipation is extremely important: without it there is no mixing

between the different fluid phases (see left-hand panels). Notice,

C© 2012 The Authors, MNRAS 422, 3037–3055
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SPH with a higher order dissipation switch 3055

Figure F1. KH1:8 multimass test results: the effect of removing the dissipation terms. From left to right the panels show logarithmic density contours at

τKH = 1 (top) and τKH = 2 (bottom) for SPHS run without entropy or mass dissipation (left), without mass dissipation (middle) and the full SPHS scheme

(right). (The right-hand panels reproduce the results from Fig. 8, bottom row.)

however, that even without dissipation, the KH rolls do grow on

the correct time-scale unlike in the classic SPH simulation (Fig. 8,

top row). This demonstrates (similarly to our findings in RHA10)

that the improved force accuracy in SPHS is responsible for the

correct growth rate of the rolls, while the improved dissipation is

responsible for actual mixing between the different fluid phases.

The effect of the mass dissipation is more subtle. Without

mass dissipation, mixing is also inhibited, but the effects are less

strong than for the case without entropy dissipation because, unlike

the entropies, the masses are smoothed inside the density sum11

(equation 6).

11 In fact, the results for this test without mass dissipation are rather similar

to the KH1:8 single mass test we presented using OSPH in RHA10. This

similarity arises because in OSPH the entropy – like the particle masses –

is smoothed inside the pressure estimator (equation 20).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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