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Abstract

Motivation: Cancer is characterized by intra-tumor heterogeneity, the presence of distinct cell

populations with distinct complements of somatic mutations, which include single-nucleotide var-

iants (SNVs) and copy-number aberrations (CNAs). Single-cell sequencing technology enables one

to study these cell populations at single-cell resolution. Phylogeny estimation algorithms that em-

ploy appropriate evolutionary models are key to understanding the evolutionary mechanisms be-

hind intra-tumor heterogeneity.

Results: We introduce Single-cell Phylogeny Reconstruction (SPhyR), a method for tumor phyl-

ogeny estimation from single-cell sequencing data. In light of frequent loss of SNVs due to CNAs in

cancer, SPhyR employs the k-Dollo evolutionary model, where a mutation can only be gained once

but lost k times. Underlying SPhyR is a novel combinatorial characterization of solutions as

constrained integer matrix completions, based on a connection to the cladistic multi-state perfect

phylogeny problem. SPhyR outperforms existing methods on simulated data and on a metastatic

colorectal cancer.

Availability and implementation: SPhyR is available on https://github.com/elkebir-group/SPhyR.

Contact:melkebir@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is a genetic disease that results from an evolutionary process,

where somatic mutations accumulate in a population of cells (Nowell,

1976). These mutations arise during the lifetime of an individual and

vary in genomic scale, ranging from single-nucleotide variants (SNVs)

that affect a single base to copy-number aberrations (CNAs) that affect

large genomic regions. Many generations of cell division, mutation and

selection yield a highly heterogeneous tumor, composed of different

groups of cancerous cells, where each group is characterized by a differ-

ent complement of somatic mutations. This phenomenon is known as

intra-tumor heterogeneity, and has important implications for both our

understanding of cancer progression and for treatment outcome

(Tabassum and Polyak, 2015). Knowledge on the evolutionary history

of the cells of a tumor enables one to understand the mechanisms that

result in intra-tumor heterogeneity. Unfortunately, DNA sequencing

data alone do not describe the evolutionary history of a tumor. Rather,

they only give us mutational information about a subset of tumor cells

present at the time of sequencing.

Similarly to the evolution of species and languages, the evolu-

tionary history of tumor cells can be appropriately modeled by a

phylogenetic tree. We consider a character-based phylogenetic tree

T, whose leaves, or taxa, correspond to cells sequenced at the pre-

sent time, and whose internal nodes correspond to ancestral cells.

Each node of T is labeled by the set of characters, or mutations, it

contains. The root node is a non-mutated, normal cell. To recon-

struct T from sequencing data, we require a generative model for the

sequencing data and an evolutionary model for T.

Most cancer sequencing studies use bulk DNA sequencing,

where one obtains short reads from hundreds of thousands of cells

that are sequenced in bulk. These mixed measurements must be

deconvolved to quantify intra-tumor heterogeneity. More recently,

single-cell sequencing (SCS) has been proposed as alternative to bulk

sequencing in cancer (Navin, 2014). Contrary to bulk sequencing,

individual tumor cells are sequenced in SCS and thus one directly

observes the leaves of T. However, current SCS technology is very

error-prone and suffers from elevated rates of false positives, false

negatives and missing data (Fig. 1). These errors can be corrected by

estimating the phylogenetic tree T, describing the evolutionary his-

tory of all mutations. This task requires an evolutionary model.

Evolutionary models constrain changes of characters along the

edges of T. A character can either be gained or lost on each edge of

T. Multiple gains of the same character indicate parallel evolution,

whereas losses indicate back mutation. A tree T whose characters do

not exhibit parallel evolution or back mutation/loss is said to be homo-

plasy-free. The infinite sites model or perfect phylogeny model requires

that T is homoplasy-free. This model has been used extensively in
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cancer genomics for both bulk sequencing data (Dang et al., 2017;

Deshwar et al., 2015; El-Kebir et al., 2015; Malikic et al., 2015; Nik-

Zainal et al., 2012; Popic et al., 2015; Yuan et al., 2015) and single cell

sequencing data (Jahn et al., 2016; Ross and Markowetz, 2016).

Importantly, while parallel evolution of SNVs is rare in cancer, losses of

SNVs are ubiquitous due to wide-spread copy-number loss of large gen-

omic regions (Kuipers et al., 2017). Thus, less restrictive evolutionary

models are essential to accurately model the somatic mutational process

of SNVs in cancer. Recently, Zafar et al. (2017) introduced a phylogeny

estimation algorithm that is based on the finite sites model. In this

model, a character may change state more than once, and thus parallel

evolution and mutation loss may occur. The Dollo parsimony model

(Dollo, 1893) is a slightly more restrictive evolutionary model: a charac-

ter may only be gained once but lost multiple times. That is, the Dollo

parsimony model allows back mutation/loss but does not allow for par-

allel evolution. This model has been applied recently in the context of

tumor phylogeny estimation from bulk sequencing data (Bonizzoni

et al., 2017b). As the main source of homoplasy in cancer evolution is

due to loss of SNVs caused by copy-number aberrations, the Dollo par-

simony model provides a good evolutionary model for the evolution of

SNVs in cancer.

Here, we consider the k-Dollo parsimony model, which restricts the

Dollo parsimony model to at most k losses per character. We show that

the problem of inferring a k-Dollo phylogeny given an error-free binary

matrix B is a variant of the cladistic multi-state perfect phylogeny

problem (Fernández-Baca, 2000). We prove that solutions to this prob-

lem are constrained integer matrix completions of the input matrix B

(Fig. 1), allowing us to derive an efficient integer linear programming

formulation that solves practical problem instances in seconds. We

introduce SPhyR (Single-cell Phylogeny Reconstruction), a coordinate-

ascent based approach that infers a k-Dollo phylogeny from single-cell

sequencing data with errors. On simulated data, we show that SPhyR

outperforms existing methods, that are either based on the infinite sites

or the finite sites evolutionary model, in terms of solution quality and

run time. On real data, we show that SPhyR provides a likelier explan-

ation of the evolutionary history of a metastatic colorectal cancer. In

summary, SPhyR enables detailed evolutionary analyses of single-cell

cancer sequencing data.

2 Problem statement

We consider a tumor composed of m cells that contain n SNVs. In the

following, we refer to SNVs as mutations. We model the mutation state

of an SNV locus as a binary character, where the 1-state denotes the

presence of the mutation at the genomic locus and the 0-state its ab-

sence. We represent the cell division and mutation history of the m

tumor cells by a character-based phylogenetic tree T, which is a rooted,

node-labeled tree. Each node v of T is labeled by a binary vector

bv 2 f0; 1g
n, indicating the mutation state of each character. As the

root node r of T is a non-mutated, normal cell, we have that br;c ¼ 0.

for all characters c 2 n½ �, where n½ � ¼ f1; . . . ; ng. Each leaf of T corre-

sponds to exactly one of the m cells. Here, our goal is to reconstruct a

phylogenetic tree T when only given its leaves. That is, as input, we are

given a binary matrix B 2 f0; 1gm�n that defines the character states of

them leaves of T. This task requires an evolutionary model.

An edge (v, w) where bv;c ¼ 0 and bw;c ¼ 1 corresponds to a gain

of character c—multiple gains of the same character indicate parallel

evolution. On the other hand, an edge (v, w) of T where bv;c ¼ 1

and bw;c ¼ 0 corresponds to a loss or back mutation of character c.

In the Dollo parsimony model (Dollo, 1893), a character may only

be gained once but lost multiple times. Here, we consider the

k-Dollo parsimony model, which restricts the Dollo parsimony

model to at most k losses per character. We call a tree whose charac-

ters evolve under the k-Dollo parsimony model, a k-Dollo phyl-

ogeny, which we formally define as follows.

Definition 1: A k-Dollo phylogeny T is a rooted, node-labeled tree

subject to the following conditions.

1. Each node v of T is labeled by a vector bv 2 f0;1g
n.

2. The root r of T is labeled by vector br ¼ 0; . . . ; 0½ �T .

3. For each character c 2 n½ �, there is exactly one gain edge (v, w)

in T such that bv;c ¼ 0 and bw;c ¼ 1.

4. For each character c 2 n½ �, there are at most k loss edges (v, w) in

T such that bv;c ¼ 1 and bw;c ¼ 0.

Let B 2 f0; 1gm�n. A tree T is a k-Dollo phylogeny for B if and

only if T is a k-Dollo phylogeny with m leaves such that each row of

B labels exactly one leaf of T. We call B a k-Dollo phylogeny matrix

provided there exists a k-Dollo phylogeny T for B. Thus, we have

the following problem.

k-Dollo Phylogeny problem (k-DP): Given a binary matrix B 2

f0;1gm�n and parameter k 2 N, determine whether there exists a

k-Dollo phylogeny for B, and if so construct one.

The k-DP problem assumes error-free data. In real data, how-

ever, the error-prone whole-genome amplification step in single-cell

sequencing results in an input matrix D with false positives (incor-

rect 1-entries), false negatives (incorrect 0-entries), and missing data

Fig. 1. Tumor phylogeny estimation from single-cell sequencing (SCS) data. Heterogeneous tumors are composed of distinct cellular populations with distinct

complements of somatic mutations, including single-nucleotide variants (SNVs) and copy-number aberrations (CNAs). During cancer progression, SNVs are fre-

quently lost due to copy-number aberrations, but rarely introduced more than once. Here, single-cell sequencing of a tumor yields an input matrix D, whose m

rows are cells and n columns are SNVs. Matrix D has incorrect and/or missing entries. We aim to simultaneously correct errors in matrix D and infer the evolu-

tionary history of the m cells, yielding output matrix B and the corresponding phylogenetic tree T. The evolutionary model employed by our method SPhyR is the

k-Dollo parsimony model, where each SNV can only be gained once but lost at most k times. SPhyR is based on a combinatorial characterization of k-Dollo phylo-

genetic trees T as k-Dollo completions A of a binary matrix B
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(‘?’-entries). To correct these errors, we assume an evolutionary

model without parallel evolution and at most k losses per character,

i.e. the k-Dollo parsimony model. The task is thus to fill in the miss-

ing entries and fix incorrect entries of matrixD 2 f0;1; ?gm�n, yield-

ing matrix B 2 f0; 1gm�n and a k-Dollo phylogeny T for B. The

false positive rate a 2 0; 1½ � and the false negative rate b 2 0;1½ � can

be estimated from sequencing data of normal cells. Thus, the prob-

ability of observing matrix D given matrix B, false positive rate a

and false negative rate b is:

Pr DjB; a;bð Þ ¼
Y

m

p¼1

Y

n

c¼1

Pr dp;cjbp;c; a; b
� �

; (1)

where

Pr dp;cjbp;c; a; b
� �

¼

a; dp;c ¼ 1 and bp;c ¼ 0

1� a; dp;c ¼ 1 and bp;c ¼ 1;

b; dp;c ¼ 0 and bp;c ¼ 1;

1� b; dp;c ¼ 0 and bp;c ¼ 0;

1; dp;c ¼ ?

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(2)

The clonal evolution theory of cancer posits that only a small

number of mutations are beneficial to the tumor and result in clonal

expansions (Nowell, 1976). That is, a driver mutation that leads to

a clonal expansion is often preceded by many passenger mutations

that do not confer an evolutionary advantage to the tumor. As such,

groups of mutations either are all present or absent in a tumor cell,

and thus cluster on distinct branches of the phylogenetic tree.

Moreover, cells originate from a small number of clones. Hence, we

expect the output matrix B to contain multiple sets of repeated col-

umns and repeated rows, which each correspond to a distinct branch

and distinct clone, respectively. This leads to the following problem.

k-Dollo Phylogeny Flip and Cluster problem (k-DPFC): Given ma-

trix D 2 f0;1; ?gm�n, error rates a;b 2 0; 1½ �, integers k; s; t 2 N,

find matrix B 2 f0; 1gm�n and tree T such that: (i) B has at most s

unique rows and at most t unique columns; (ii) Pr DjB; a; bð Þ is max-

imum and (iii) T is a k-Dollo phylogeny for B.

3 Materials and methods

3.1 Combinatorial structure and complexity

We will show that the k-DP problem is a variant of the cladistic

multi-state perfect phylogeny problem with an unknown subset of

incorrect 0-entries. A perfect phylogeny is defined as follows.

Definition 2 (Estabrook et al. 1975; Gusfield 1991): A rooted, node-

labeled tree T is a perfect phylogeny provided the following condi-

tions hold.

1. Each node v of T is labeled by a vector av 2 f0; . . . ;kþ 1gn.

2. The root r of T is labeled by vector ar ¼ 0; . . . ; 0½ �T .

3. Nodes labeled with state i for character c form a connected sub-

tree T c;ið Þ of T.

Each character state c; ið Þ 2 n½ � � kþ 1½ � corresponds to the root

node v c;ið Þ of the subtree T c;ið Þ. For each character c 2 n½ �, character

states c;0ð Þ correspond to the root node r of T. Thus, each of v 1;0ð Þ;

. . . ; v n;0ð Þ denote the root node r. We write c; ið Þ � T d; jð Þ if and only

if node v c;ið Þ is on the unique path from the root of T to node v d;jð Þ.

Note that �T is reflexive.

Given an integer matrix A 2 f0; . . . ; kþ 1gm�n, we say that a

tree T is a perfect phylogeny T for A if and only if T is a perfect

phylogeny with m leaves such that each row of A labels exactly one

leaf of T. We call an integer matrix A a perfect phylogeny matrix

provided there exists a perfect phylogeny T for A. The problem of

constructing a perfect phylogeny from a given matrix A is known as

the perfect phylogeny problem.

For k¼0, i.e. the two-state case, solutions to the perfect phyl-

ogeny problem are fully characterized as follows.

Theorem 1 [Perfect Phylogeny Theorem (Gusfield, 1991)]: A binary

matrix A 2 f0;1gm�n is a perfect phylogeny matrix if and only if no

two columns of A contain the three pairs (1, 0); (0, 1) and (1, 1).

The above condition is known as the three gamete condition and

can be constructively checked in linear time O(mn) (Gusfield,

1991). For any constant k, the perfect phylogeny problem is solvable

in time polynomial in m and n (Agarwala and Fernández-Baca,

1994; Kannan and Warnow, 1997). However, if none of m, n or k

are fixed, the perfect phylogeny decision problem is NP-complete

(Bodlaender et al., 1992).

We consider a restriction of the fixed k�0 perfect phylogeny

phylogeny problem, where, in addition to matrix A, we are given a

state tree S for each character. This problem is known as the cladis-

tic perfect phylogeny problem, where for each character the given

state tree imposes an ordering on the states of that character.

Definition 3 [Fernández-Baca (2000)]: A state tree S is a rooted,

node-labeled tree, whose root node is labeled by state 0, and whose

other nodes are uniquely labeled by states f1; . . . ;kþ 1g.

We write i�S j if and only if for the two nodes vi and vj of S,

labeled by i and j, respectively, it holds that vi is on the unique

path from the root of S to vj. A perfect phylogeny T is consistent

with state tree S for character c provided: i�S j if and only if c; ið Þ

�T c; jð Þ for all states i; j 2 f0; . . . ; kþ 1g. We now review a connec-

tion between the cladistic multi-state perfect phylogeny problem

and the two-state perfect phylogeny problem. Given matrix

A 2 f0; . . . ; kþ 1gm�n and state trees S ¼ fS1; . . . ; Sng, the m� n

kþ 1ð Þ binary factor matrix B0 of A; Sð Þ is defined as follows

(Supplementary Fig. S1).

Definition 4 [Fernández-Baca (2000)]: Let A 2 f0; . . . ;kþ 1gm�n

and let S ¼ fS1; . . . ; Sng be a set of state trees for each character.

The binary factor matrix B0 ¼ b0p;e

h i

of A; Sð Þ has dimensions

m� n kþ 1ð Þ, and entries

b0p;e ¼
0; if i6�Scap;c;

1; if i�Scap;c:

(

(3)

where c ¼ be= kþ 1ð Þc þ 1; i ¼ emod kþ 1ð Þð Þ þ 1 and Sc is the

state tree of character c.

Formally, the cladistic perfect phylogeny problem asks to con-

struct a perfect phylogeny T for A whose characters are consistent

with their corresponding state tree. Unlike the general problem, this

problem is solvable in time O(mnk) using the binary factor matrix

B0, as shown by Fernández-Baca (2000).

Theorem 2 [Fernández-Baca (2000)]: Matrix A has a perfect phyl-

ogeny consistent with states trees S ¼ fS1; . . . ; Sng if and only if the

binary factor matrix B0 of A; Sð Þ is a perfect phylogeny matrix.

We will use the above result to introduce a characterization of

k-Dollo phylogenies as a subset of multi-state perfect phylogenies

whose characters are consistent with the k-Dollo state tree, defined

as follows (Supplementary Fig. S1).

SPhyR i673

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
4
/1

7
/i6

7
1
/5

0
9
3
2
1
8
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty589#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty589#supplementary-data


Definition 5: The k-Dollo state tree S k½ � is a state tree with nodes

f0; . . . ; kþ 1g and edges f 0;1ð Þg [ f 1; ið Þji 2 f2; . . . ;kþ 1gg.

Intuitively, the k-Dollo state tree encodes that there is exactly

one gain modeled by the edge (0, 1), and that there at most k losses

modeled by edges f 1; ið Þji 2 f2; . . . ; kþ 1gg that each must occur

after the gain. To decide whether a binary matrix B ¼ bp;i
� �

is

a k-Dollo phylogeny matrix, we need to decide for each entry

bp;i ¼ 0 whether it is a loss or not. States f2; . . . ; kþ 1g denote

losses, and state 0 denotes that the mutation has not occurred.

Thus, we define a k-completion A of the 0-entries of a given matrix

B as follows.

Definition 6: Let B 2 f0; 1gm�n. Matrix A 2 f0; . . . ; kþ 1gm�n is

a k-completion of B provided (1) ap;c 2 f0; . . . ;kþ 1gnf1g if and

only if bp;c ¼ 0; and (2) ap;c ¼ 1 if and only if bp;c ¼ 1.

We now define a restricted subset of k-completions that corres-

pond to k-Dollo phylogenies (Fig. 1 and Supplementary Fig. S1).

Definition 7: Let I ið Þ ¼ fi; . . . ; kþ 1g. Matrix A 2

f0; . . . ; kþ 1gm�n is a k-Dollo completion provided there exist no

two columns and three rows in A of the following form:

i1 0

0 j1

i01 j01

0

B

B

@

1

C

C

A

or

i1 j001

0 j2

i01 j2

0

B

B

@

1

C

C

A

or

i2 0

i001 j1

i2 j01

0

B

B

@

1

C

C

A

or

i2 j001

i001 j2

i2 j2

0

B

B

@

1

C

C

A

where i1; i
0
1; j1; j

0
1 2 I 1ð Þ; i2; j2 2 I 2ð Þ; i001 2 I 1ð Þnfi2g and j001 2 I 1ð Þnfj2g.

Thus, the number of forbidden 3�2 submatrices is

kþ 1ð Þ4 þ 2k2 kþ 1ð Þ2 þ k4. Supplementary Table S1 lists all for-

bidden submatrices for k¼1. Given B 2 f0; 1gm�n, we say that a

matrix A 2 f0; . . . ; kþ 1gm�n is a k-Dollo completion of B if and

only if A is a k-Dollo completion and A is a k-completion of B. We

now prove that solutions to the k-DP problem are k-Dollo comple-

tions of input matrix B.

Theorem 3: Let B 2 f0;1gm�n. The following statements are

equivalent.

1. There exists a k-Dollo phylogeny T for B.

2. There exists a k-Dollo completion A of B.

3. There exists a k-completion A of B such that the binary factor

matrix B0 of A; S k½ �ð Þ is a perfect phylogeny matrix.

4. There exists a k-completion A of B, and perfect phylogeny T for

A whose characters are consistent with S k½ �.

Proof: We refer to Supplementary Section S.2 for the full proof.h

In the above theorem, we established a connection between the

k-Dollo phylogeny problem and the cladistic multi-state perfect

phylogeny problem. This allows us to constructively determine

whether a k-completion A of B is a k-Dollo completion, as stated in

the following corollaries.

Corollary 1: Let B 2 f0;1gm�n. We can decide in O(mnk) time if

matrix A 2 f0; . . . ; kþ 1gm�n is a k-Dollo completion of B.

Corollary 2: Let B 2 f0; 1gm�n. Given a k-Dollo completion A of

B, we can construct a k-Dollo phylogeny for B inO(mnk) time.

Note that the k¼0 case of the k-DP problem corresponds to the

two-state perfect phylogeny problem. In fact, the condition for a

0-Dollo completion is precisely the three gamete condition. The

k¼1 case is known as the persistent phylogeny problem. An elegant

reduction to a binary matrix completion problem was introduced in

(Bonizzoni et al., 2012) and formed the basis of the integer linear

program (ILP) introduced by Gusfield (2015). In subsequent work,

Bonizzoni et al. (2017b) extended their binary matrix completion re-

duction to allow for k>1 losses. We note that the binary matrix

used in these papers is precisely the binary factor matrix obtained

from the multi-state matrix A and state trees S k½ �. While a restricted

variant of the k¼1 case was recently shown to be solvable in poly-

nomial time (Bonizzoni et al., 2017a), the hardness for k�1 remains

an open question.

We now consider the k-DPFC problem. We prove that this prob-

lem is NP-hard even for k¼0.

Theorem 4: The k-DPFC is NP-hard even for k¼0.

Proof: We show this by reduction from the Flip problem (Chen

et al., 2002), where one is given a binary matrix D 2 f0;1gm�n and

integer c 2 N and asked to decide whether there exists a matrix B 2

f0;1gm�n such that: (1) at most c entries in B differ from D; and (2)

no two columns of B contain the three pairs (1, 0); (0, 1) and (1, 1).

A matrix B is said to be conflict free if it satisfies condition (2). Let

(D, c) be an instance of the Flip problem. The corresponding in-

stance of the k-DPFC problem has the same input matrix D, has

error rates a ¼ b < 0:5, does not constraint the number s¼m of

unique rows and the number t¼n of unique columns, and requires

k¼0 losses for each character.

We claim that there exists a conflict-free matrix B with at most c

distinct entries if and only if there exist a 0-Dollo phylogeny matrix

B0 2 f0;1gm�n with likelihood

Pr DjB0; a; bð Þ�ac � 1� að Þmn�c: (4)

)ð Þ Let B 2 f0;1gm�n be a conflict-free matrix with at most c

distinct entries. It is easy to verify that Pr DjB; a; bð Þ ¼

ac � 1� að Þmn�c. Moreover, by the perfect phylogeny theorem

(Theorem 1), we have that B is a perfect phylogeny matrix and thus

a 0-Dollo phylogeny matrix.

(ð Þ Let B0 2 f0;1gm�n be a 0-Dollo phylogeny matrix with like-

lihood Pr DjB; a;bð Þ�ac � 1� að Þmn�c. Assume for a contradiction

that B0 has d> c entries that differ from matrix D. As a ¼ b < 0:5,

we have that

Pr DjB0; a; bð Þ ¼ ad � 1� að Þmn�d < ac � 1� að Þmn�c; (5)

which yields a contradiction. Hence, any matrix B0 with

likelihood at least ac � 1� að Þmn�c must have at most c entries dis-

tinct fromD. h

3.2 Cutting plane and column generation for k-DP

In this section, we introduce an integer linear program (ILP) for the

k-DP problem. Let B ¼ bp;c
� �

be an m�n binary input matrix and

let k 2 N be the maximum number of losses per character.

We model each entry ap;c of them�n output matrix A by binary

variables ap;c;0; . . . ; ap;c;kþ1 2 f0;1g such that ap;c;i ¼ 1 if and only

ap;c ¼ i. To that end, we introduce the following constraints.

ap;c;i 2 f0; 1g 8p 2 m½ �; c 2 n½ �; i 2 f0; . . . ;kþ 1g (6)

X

kþ1

i¼0

ap;c;i ¼ 1 8p 2 m½ �; c 2 n½ � (7)

We introduce the following constraints to ensure that A is a

k-completion of B.

ap;c;1 ¼ 0 8p 2 m½ �; c 2 n½ � s:t: bp;c ¼ 0 (8)
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ap;c;1 ¼ 1 8p 2 m½ �; c 2 n½ � s:t:bp;c ¼ 1 (9)

In addition, we introduce the following symmetry breaking

constraints.

X

m

p¼1

X

n

c¼1

ap;c;i�
X

m

p¼1

X

n

c¼1

ap;c;i�1 8i 2 f3; . . . ; kþ 1g (10)

Recall that I ið Þ ¼ fi; . . . ;kþ 1g. For all distinct taxa p; q; r 2 m½ �,

distinct characters c; d 2 n½ � and states i1; i
0
1; j1; j

0
1 2 I 1ð Þ; i2; j2 2 I 2ð Þ;

i001 2 I 1ð Þnfi2g and j001 2 I 1ð Þnfj2g, the following constraints ensure

that A does not contain one of the forbidden submatrices given in

Definition 7.

ap;c;i1 þ ap;d;0 þ aq;c;0 þ aq;d;j1 þ ar;c;i0
1
þ ar;d;j0

1
�5 (11)

ap;c;i1 þ ap;d;j00
1
þ aq;c;0 þ aq;d;j2 þ ar;c;i0

1
þ ar;d;j2�5 (12)

ap;c;i2 þ ap;d;0 þ aq;c;i00
1
þ aq;d;j1 þ ar;c;i2 þ ar;d;j0

1
�5 (13)

ap;c;i2 þ ap;d;j00
1
þ aq;c;i00

1
þ aq;d;j2 þ ar;c;i2 þ ar;d;j2�5 (14)

Given k allowed losses per character, we aim to minimize the

maximum number of losses across all characters. To that end, we

use an objective function such that a single entry of A with state

j>2 incurs a cost that is greater than the cost incurred when all

entries of A have states at most j�1. We have the following integer

linear program.

min
X

m

p¼1

X

n

c¼1

X

kþ1

i¼2

ap;c;i
1

mn

� �kþ1�i

s:t: 6ð Þ � 14ð Þ

(15)

In our ILP, the number of variables is O(mnk) and the number

of constraints is O m3n2k4
� �

. As such, a naive implementation of

this ILP does not scale to practical problem instance sizes where typ-

ically m¼50, n¼100 and k¼1. To scale the ILP to large instances,

we use column and cutting plane generation, introducing variables

and constraints only as needed. More specifically, we use a slight

variation of classic column generation, and include all variables ap;c;i
(where p 2 m½ �; c 2 n½ �; i 2 f0; . . . ; kþ 1g) in the model, but alter

their respective domains during the procedure. First, observe that

the minimum value of the objective function (15) is 0, and is only

attained in the absence of loss, i.e. when ap;c;i ¼ 1 if bp;c ¼ i, and

ap;c;i ¼ 0 if bp;c 6¼ i. Initially, we set ap;c;i 2 f0g if bp;c 6¼ i and ap;c;i 2

f0;1g if bp;c ¼ i. In addition, we add constraints (7), (8), (9) and

(10) to the model. We then solve the model. The resulting

minimum-cost solution might not be a k-Dollo completion and thus

violate constraints 11� 14ð Þ. For each pair c, d of distinct charac-

ters, we identify violated constraints in O mk3
� �

time, along the

same lines as described in (Chimani et al., 2010). More specifically,

we consider each of the four forbidden submatrices in Definition 7

separately, and scan the m rows for the presence of one of O k3
� �

forbidden pairs. Let

ap;c;i1 ap;d;j1

aq;c;i2 aq;d;j2

ar;c;i3 ar;d;j3

0

B

B

@

1

C

C

A

(16)

be an identified forbidden submatrix for distinct characters c, d and

distinct taxa p, q, r. We introduce the associated violated constraint

(which is one of 11� 14ð Þ). In addition, we evaluate each variable

ap;c;i of the identified forbidden submatrix. If i¼0, we extend the

domain of variable ap;c;2 such that ap;c;2 2 f0; 1g. If 2�i < kþ 1,

we set ap;c;iþ1 2 f0;1g. In other words, when possible, we allow the

ILP to resolve violations that involve a variable with a 0-state or a

fixed loss state by enabling the use of (additional) loss states. Upon

introducing violated constraints and extending variable domains, we

restart the ILP and repeat the same procedure. We terminate if no

violated constraints are identified or if the ILP solver proves the

model to be infeasible. This procedure will either determine that no

solution exists or it will result in a k-Dollo completion with optimal

cost. To see this, observe that additional loss states can be intro-

duced in an incremental fashion, as the objective function guaran-

tees that setting ap;c;i ¼ 1 for a single entry, where i>2, results in a

greater cost than any assignment of entries restricted to states

f0;2; . . . ; i� 1g. We refer to Supplementary Section S.3 for add-

itional details and pseudocode of the column generation procedure

and the cut separation step.

3.3 Coordinate ascent for k-DPFC

We introduce a heuristic to solve the k-DPFC problem, where we

are given as input a matrixD 2 f0;1; ?gm�n, a false positive rate a, a

false negative rate b and natural numbers k, s, t. We are asked to

infer a maximum likelihoodm�n k-Dollo phylogeny matrix B with

at most s unique rows and t unique columns. Essentially, the

k-DPFC problem involves three sets of constraints. That is, we wish

to (i) find a clustering p : m½ � ! s½ � of the m rows (taxa) of D into s

clusters, (ii) find a clustering w : n½ � ! t½ � of the n columns (charac-

ters) of D into t clusters and (iii) find a k-Dollo phylogeny matrix B

with dimensions s� t. These constraints are connected by the object-

ive function log Pr D; p;wjB; a; bð Þ, which equals:

X

m

p¼1

X

n

c¼1

log Pr dp;cjbp pð Þ;w cð Þ; a; b
� �

; (17)

where Pr dp;cjbp pð Þ;w cð Þ; a; b
� �

is defined in (2). Here, we propose to op-

timize these three sets of constraints separately using coordinate ascent.

Computing p.

We start with the problem of finding a maximum likelihood row

clustering p given a k-Dollo phylogeny matrix B and a column

Algorithm 1: SPhyR D; a;b; k; s; tð Þ

Input: Matrix D 2 f0; 1; ?gm�n, a false positive rate a 2 0; 1½ �, a

false negative rate b 2 0;1½ � and natural numbers k, s, t

Output: k-Dollo completion A 2 f0; . . . ; kþ 1gm�n with at

most s unique rows and at most t unique columns

1. E D

2. Set ep;c  0:5 for each entry dp;c ¼ ?

3. p kMeans ET ; s
� �

4. w kMeans E; tð Þ

5. L;D 1

6. while D > 0 do

7. A;Bð Þ  SolveAB D; a; b; s; t; k; p;wð Þ

8. for p 1 to m do

9. p p½ �  argmaxh2 s½ �

Xn

c¼1
log Pr dp;cjbh;w cð Þ; a;b

� �

10. for c 1 ton do

11. w c½ �  argmaxf2 t½ �

Xm

p¼1
log Pr dp;cjbp pð Þ;f ; a;b

� �

12. L0  
Xm

p¼1

Xn

c¼1
log Pr dp;cjbp pð Þ;w cð Þ; a;b

� �

13. D L0 � L

14. L L0

15. Expand A according to p and w

16. return A
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clustering w of input matrix D. For each taxon p 2 m½ �, we want to

find the row p pð Þ of B with maximum likelihood

p pð Þ ¼ argmax
h2 s½ �

X

n

c¼1

log Pr dp;cjbh;w cð Þ; a; b
� �

: (18)

Computing p given B and w thus takesO(mns) time.

Computing w.

Similarly, we can compute the maximum likelihood column clus-

tering w given B and p inO(mnt) time:

w cð Þ ¼ argmax
f2 t½ �

X

m

p¼1

log Pr dp;cjbp pð Þ;f ; a; b
� �

: (19)

Computing B.

To compute the maximum likelihood k-Dollo phylogeny matrix

B given row clustering p and column clustering w, we use the same

ideas as for the k-DP problem. That is, in addition to computing B

we also compute a k-Dollo completion A of B. As such, for each

taxon cluster h 2 s½ � and character cluster f 2 t½ �, we introduce bin-

ary variables ah;f ;0; . . . ; ah;f ;kþ1 and the following constraints.

ah;f ;i 2 f0; 1g 8h 2 s½ �; f 2 t½ �; i 2 f0; . . . ;kþ 1g (20)

X

kþ1

i¼0

ah;f ;i ¼ 1 8h 2 s½ �; f 2 t½ � (21)

We have the same set of symmetry breaking constraints (10) and

Dollo phylogeny constraints 11� 14ð Þ—however, note that we ad-

just these constraints for use with s taxon clusters and t character

clusters (instead of m taxa and n characters). In contrast to the pre-

vious formulation, matrix A may change the entries of matrixD and

thus we do not include constraints (8) and (9). Let X ¼ m½ � � n½ �.

We have the following objective function and ILP.

min
X

p;cð Þ2X:

dp;c¼0

½ap pð Þ;w cð Þ;1log bþ 1� ap pð Þ;w cð Þ;1

� �

log 1� bð Þ�

þ
X

p;cð Þ2X:

dp;c¼1

½ap pð Þ;w cð Þ;1log 1� að Þ þ 1� ap pð Þ;w cð Þ;1

� �

log að Þ�

s:t: 10ð Þ � 14ð Þ; 20ð Þ and 21ð Þ

This ILP has O(stk) variables and O s3t2k4
� �

constraints. Again,

we use column generation to solve the ILP. To begin, we omit con-

straints 11� 14ð Þ. To initialize the column generation procedure,

we need to determine an initial assignment of variables ah;f ;i that

maximizes the objective function. In other words, for each taxon

cluster h 2 s½ � and character cluster f 2 t½ �, we need to determine

whether ah;c;1 ¼ 1 or ah;c;1 ¼ 0 maximizes the likelihood (22). This

involves a simple computation, which can be performed in O(mn)

time for all pairs h; fð Þ 2 s½ � � t½ �. For each pair (h, f) where ah;f ;1
¼ 1 has greater likelihood than ah;f ;1 ¼ 0, we set the domain of ah;f ;1
to {0, 1} and the domains of the remaining variables ah;f ;i, where

i 2 f0; 2; . . . ;kþ 1g, to {0}. On the other hand, if ah;f ;1 ¼ 0 has

greater likelihood than ah;f ;1 ¼ 0, we set the domain of ah;f ;1 to {0}

and the domains of the remaining variables ah;f ;i, where

i 2 f0; 2; . . . ;kþ 1g, to {0, 1}. Similarly to the column generation

procedure for k-DP, we solve the model and identify for each pair f,

g of character clusters whether there exists a forbidden submatrix in

O sk3
� �

time. Upon finding such a forbidden submatrix, we intro-

duce the violated constraints and extend the domains of the involved

variables. More specifically, for each involved variable ah;f ;i we

extend the domain of variable ah;f ;1 to {0, 1} if i 6¼ 1; and if i¼1,

we extend the domains of variables ah;f ;j to {0, 1} where

j 2 f0; 2; . . . ;kþ 1g. We subsequently restart the ILP, and repeat the

same procedure. We terminate when no violated constraints are

identified. See Supplementary Section S.3 for additional details and

pseudocode.

SPhyR.

We initialize p and w using the k-Means algorithm. More

specifically, we replace the? -entries of matrix D by 0.5, yielding a

matrix E. To obtain p, we cluster the columns of matrix E using k-

Means with k¼ s. Similarly, we obtain w by clustering the rows of

matrix E using k-Means with k¼ t. We then compute k-Dollo

phylogeny matrix B and its k-Dollo completion A given p and w,

followed by updating p and then w. We repeat these steps until

convergence (Algorithm 1) and allow the user to specify a number

of restarts. In each restart, a different random number generator

seed is used, yielding a different initial taxon and character cluster-

ing. We call the resulting algorithm Single-cell Phylogeny

Reconstruction (SPhyR, pronounced ‘sapphire’). SPhyR is imple-

mented in Cþþ and uses the IBM ILOG CPLEX v12.8 library.

SPhyR is open source and available on https://github.com/elkebir-

group/SPhyR.

4 Results

4.1 SPhyR solves practical k-DP instances in seconds

We used the ms package (Hudson, 2002) to simulate two-state

perfect phylogeny trees. We set the recombination parameter to 0,

and used varying number m 2 f25; 50; 100g of taxa and

number n 2 f25;50;100g of characters. For each combination of m

and n, we simulated 20 two-state perfect phylogeny matrices

B	 2 f0; 1gm�n. For each simulated matrix B	, we reconstructed its

unique node-labeled perfect phylogeny tree T	, contracting internal

vertices with out-degree 1. Let b	v 2 f0; 1g
n be the states for each

character at node v of T. We subsequently introduced losses in T	

and B	 with a loss rate k and maximum number k of losses per char-

acter. More specifically, we performed a pre-order tree traversal: for

each edge (u, v) in T	 and character c 2 n½ � that has been lost at

most k�1 times and where b	u;c ¼ 1, we introduced a loss for that

character with probability k. That is, we set b	v;c :¼ 0 and b	w;c :¼ 0

for all descendants w of v. We used varying number k 2 f1; 2;3g of

maximum losses per character and loss rates k 2 f0:1; 0:2; 0:4g.

Thus, for each combination of m, n and k, we generated 60k-Dollo

phylogenies.

We ran SPhyR in k-DP mode using a single thread on machines

with 2.6GHz AMD Opteron 6276 CPUs and 64 GB of RAM. We

used a run time limit of five hours for each instance. We show results

for square input matrices in Figure 2; results for all input instances

are shown in Supplementary Table S2. Our algorithm successfully

solved all instances with dimensions up to 100�100 and at most

k¼2 losses per character in only a few seconds. For k¼3 character

losses and the same dimensions, SPhyR solved 75% of instances

within the time limit (Fig. 2a). We find that the running time

increased with increasing dimensionsm�n and number k of charac-

ter losses (Fig. 2b). The complexity of k-DP instances is mainly due

to the (relative) number of 0-entries in the input matrix B, which

increased with increasing dimensionsm�n and number k of charac-

ter losses (Fig. 2c). Our cutting plane and column generation proced-

ure introduced only a tiny fraction of variables (Fig. 2d) and

constraints (Fig. 2e) into the model. Remarkably, the fraction of

generated variables and constraints decreased with increasing k,

which is due to the incremental fashion in which our method
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considers character losses. Furthermore, our algorithm only required

a small number of iterations (Fig. 2f). We note that instances solved

in a single iteration correspond to perfect phylogeny instances.

In summary, despite the large fraction of 0-entries in practical

problem instances, our algorithm quickly identifies a small fraction

of variables (and constraints) that are relevant for solving the in-

stance. As such, SPhyR is able to solve practical k-DP problem

instances with varying loss rates in seconds.

4.2 SPhyR outperforms existing methods on simulated

single-cell sequencing data

We now consider the problem of phylogeny estimation from an input

matrix with incorrect entries. We generate such input matrices

D ¼ dp;c
� �

from the k-Dollo phylogeny matrices B	 ¼ bp;c
� �

previously

simulated with m ¼ n ¼ 50 and k¼1 (Fig. 3a). We perturb each ma-

trix B	 using false positive rate a	 ¼ 0:001 and false negative rate

b	 ¼ 0:2 (Fig. 3b). That is, if b	p;c ¼ 0, we set dp;c ¼ 1 with probability

a	 ¼ 0:001, otherwise we set dp;c ¼ 0. If b	p;c ¼ 1, we set dp;c ¼ 0 with

probability b	 ¼ 0:2, otherwise we set dp;c ¼ 1. Thus, we have 60

simulated instances with varying loss rate k 2 f0:1; 0:2; 0:4g.

We compared SPhyR to SCITE (Jahn et al., 2016) and SiFit

(Zafar et al., 2017). While SCITE uses the infinite sites model and

disallows homoplasy, SiFit uses a finite sites model allowing for

parallel evolution and mutation loss. Our method SPhyR is based on

the k-Dollo parsimony model, and thus disallows parallel evolution

and restricts the number of losses of each character to at most k. We

provided all three methods the simulated false positive rate

a	 ¼ 0:001 and false negative rate b	 ¼ 0:2. For SPhyR, we set the

maximum number k of character losses to 1, the number s of taxa

clusters to 10, and the number t of distinct branches to 35. We

used default parameters and 100 restarts for each method.

Supplementary Section S.5 provides additional details.

Given the same input matrixD ¼ dp;c
� �

, each method infers an out-

put matrix B ¼ bp;c
� �

. We compared each output matrix B to the simu-

lated matrix B	 ¼ b	p;c

h i

as follows. A false positive (FP) is a 1-entry in

B that is a 0-entry in B	. The false positive rate (FPR) is the fraction of

false positives among the 1-entries of B. Conversely, a false negative

(FN) is a 0-entry in B that is a 1-entry in B	. The false negative rate

(FNR) is the fraction of false negatives among the 0-entries of B. We

note that, by construction, each matrix D has an expected FPR

a ¼ 0:001 and expected FNR b ¼ 0:2—thus, a straw-man algorithm

that leaves the input matrix unperturbed, i.e. B¼D, would achieve

these rates. Moreover, note that an FPR and FNR of 0 implies that

B ¼ B	. We find that all three methods outperformed the straw-man al-

gorithm, significantly reducing the fraction of false positives with only a

slight increase in the fraction of false negatives (Fig. 4a–c). Among the

three methods, SPhyR achieved the lowest FNR while maintaining a

low FPR (median FNR: 0.038; median FPR: 0.010) compared to

SCITE (FNR: 0.065; FPR: 0.009) and SiFit (FNR: 0.119; FPR: 0.002).

SiFit achieved the lowest FPR and the highest FNR.

To explore the effect of these differences in FPR and FNR, we

compared each output phylogenetic tree T to the simulated phylo-

genetic tree T	. We used three different measures that consider pairs

of character states (Fig. 3e). First, the ancestral pair recall is given by

jA Tð Þ \ A T	ð Þj=jA T	ð Þj, where the multi-set A Tð Þ is composed of

ordered pairs c; ið Þ; d; jð Þð Þ of character states that are introduced on

Fig. 3. Simulation setup and comparison measures. (a) Given the number m

of taxa and n of characters, we use the ms package (Hudson, 2002) to simu-

late a perfect phylogeny tree. Subsequently, we introduce at most k losses

per character using a rate k, yielding the simulated phylogenetic tree T 	 and

matrix B	. (b) We then perturb the entries of B	 ¼ ½b	p;c � given a false positive

rate FPRðDÞ ¼ a	 and false negative rate FPNRðDÞ ¼ b	, yielding the input ma-

trix D ¼ ½dp;c �. Entry dp;c ¼ 0 is a true negative (TN) if b	p;c ¼ 0 and a false

negative (FN) if b	p;c ¼ 1. Conversely, dp;c ¼ 1 is a false positive (FP) if b	p;c ¼ 0

and a true positive (TP) if b	p;c ¼ 1. (c) Given D, a	 and b	, a phylogeny estima-

tion method yields output matrix B ¼ ½bp;c �. (d) In addition, such a method

outputs a phylogenetic tree T whose leaves form the rows of output matrix B.

(e) To compare T and T 	, we compute the recall in terms of pairs of character

states that are ancestral (A), on distinct branches (incomparable, I ), or on the

same edge (clustered, C). A recall of 1 for all three measures implies that (the

internal nodes of) T and T 	 are identical. To compare B and B	, we compute

FPRðBÞ and FNRðBÞ—if both are 0 then B ¼ B	

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Cutting plane and column generation enables SPhyR to efficiently

solve practical k-DP instances. We show results for m�n binary matrices

B ¼ ½bp;c �where m¼n. (a) The number of solved instances for varying dimen-

sions and maximum number k of character losses. For each k and m�n,

there are 60 simulated instances. SPhyR solved all k¼1 instances (blue) to

optimality, but exceeded the run time limit for k¼ 3 instances (red) with

dimensions 100�100. (b) The run time in seconds (logarithmic scale)

increased with increasing k and m�n. (c) The fraction of entries bp;c ¼ 0. (d)

The percentage of model variables ap;c;i instantiated during column gener-

ation. (e) The percentage of model constraints (logarithmic scale) added dur-

ing separation. (f) The number of column generation iterations. Only a single

iteration is required if B is a perfect phylogeny matrix
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distinct edges of the same branch of T. Second, the incomparable

pair recall is defined as jI Tð Þ \ I T	ð Þj=jI T	ð Þj, where the multi-set

I Tð Þ is composed of unordered pairs f c; ið Þ; d; jð Þg of character

states that are introduced on edges from distinct branches of T.

Third, the clustered pair recall is defined as jC Tð Þ \ C T	ð Þj=jC T	ð Þj,

where the multi-set C Tð Þ is composed of unordered pairs

f c; ið Þ; d; jð Þg of character states that are introduced on the same

edge of T. If all three measures equal 1 then the output tree T and

the simulated tree T	 are identical (when restricted to their internal

nodes). We find that SiFit’s low FPR at the expense of the FNR sig-

nificantly reduced its ability to accurately recover the simulated tree.

In contrast, the more balanced FPR and FNR of SCITE and SPhyR

led to more accurate output trees. Moreover, SPhyR’s evolutionary

model and combinatorial coordinate-ascent algorithm, enabled our

method to more accurately recover the simulated trees than SCITE

and SiFit in each of the three recall measures (Fig. 4d–f), at a frac-

tion of the run time (Supplementary Fig. S8).

In Supplementary Section S.5, we show that SPhyR is robust to

varying a and b. In addition, we find that with k¼0 the output tree

quality decreased, whereas the quality remained the same with

k¼2, highlighting the importance of the k-Dollo parsimony model.

4.3 SPhyR reconstructs evolutionary history of a

metastatic colorectal cancer with larger data likelihood

We considered metastatic colorectal cancer patient CRC1 from

(Leung et al., 2017). The authors sequenced 178 cells from this pa-

tient using a cancer gene panel composed of 1000 genes. Subsequent

mutation calling identified 16 single-nucleotide variants (SNVs).

This yielded an 178�16 input matrix D with 191 missing ‘?’-entries,

614 1-entries and 2043 0-entries. Leung et al. (2017) ran SCITE on

matrix D, and obtained a perfect phylogeny tree TSCITE and matrix

BSCITE with a ¼ 1:52% and b ¼ 7:89% (Supplementary Fig. S10). In

a subsequent paper, Zafar et al. (2017) ran their method SiFit on the

same matrix D with the same a and b, and obtained phylogenetic

tree TSiFit and matrix BSiFit (Supplementary Fig. S11). We compared

these two trees and two matrices to the tree and matrix inferred by

SPhyR using the same a and b. In addition, we used the same num-

ber s¼10 of taxa clusters as in the simulations, and number t¼15

of character clusters. We varied the number k 2 f0; 1g of losses.

Supplementary Figure S9 shows the output matrices of each method

and is summarized in Table 1. We find that BSCITE has fewer edits from

D (278) and consequently larger data likelihood (�447.66) than BSiFit

(301 edits and likelihood �471.62). Inspection of the corresponding

tree TSiFit of BSiFit reveals that 15 SNVs were introduced more than

once and underwent parallel evolution (Supplementary Fig. S11), which

is uncommon in the evolution of SNVs in cancer. With k¼0, i.e. no

loss of mutation, SPhyR achieved similar likelihood as SCITE. By allow-

ing each character to be lost once, i.e. k¼1, SPhyR yielded matrix

BSPhyR with the same number of edits but a larger likelihood than

BSCITE. Supplementary Figure S12 shows the corresponding tree TSPhyR.

Unlike TSiFit, the tree TSPhyR does not exhibit parallel evolution, which is

by definition of the k-Dollo parsimony model. In TSCITE, 24 cells

formed a separate clade (red leaves in Supplementary Fig. S10). These

cells were obtained from the liver metastasis by Leung et al. (2017). In

addition to the same 24 cells (red leaves in Supplementary Fig. S12),

tree TSPhyR assigns six additional cells to the metastatic clade (blue

leaves in Supplementary Fig. S12). SPhyR inferred that these six cells

have undergone loss of mutation. Five of the six cells (MD_1, MD_5,

MD_6, MD_10 and MD_20) were obtained by Leung et al. (2017)

from the liver metastasis, corroborating the metastatic clade in TSPhyR.

SCITE was unable to assign the original 24 metastatic cells and these

five additional cells to the same clade due to the infinite sites assump-

tion; the five additional cells appeared close to the root in TSCITE (blue

leaves in Supplementary Fig. S10). Thus, the k-Dollo parsimony model

employed by SPhyR led to more accurate reconstruction of the evolu-

tionary history of this metastatic colorectal cancer.

5 Discussion

We introduced SPhyR, a method for tumor phylogeny estimation

from single-cell sequencing data. Copy-number aberrations are

Table 1. SPhyR reconstructs a phylogenetic tree for patient CRC1

from (Leung et al., 2017) with larger data likelihood than existing

methods

Method log Pr ðDjB; a; bÞ 1! 0 0! 1 ?! 0 ?! 1 #

edits

#

losses

# par.

evo.

SCITE �447.66 33 54 142 49 278 0 0

SiFit �471.62 14 96 126 65 301 14 15

SPhyR

(k¼ 0)

�450.70 19 79 138 53 289 0 0

SPhyR

(k¼ 1)

�413.38 13 74 137 54 278 14 0

Note: The input matrix D ¼ ½dp;c� hasm¼ 178 taxa (cells) and n¼ 16 char-

acters (single-nucleotide variants). For each method, we show the data likeli-

hood, the number of 1! 0 changes, the number of 0! 1 changes, the

number of ?! 0 changes, the number of ?! 1 changes, the total number of

changes, the number of losses, and the number of times a character is intro-

duced more than once (parallel evolution).

(a) (b)

(c) (d)

(e) (f)

Fig. 4. SPhyR more accurately recovers the simulated matrices B	 and trees

T 	 than SCITE and SiFit. Given the same input matrix D, each method inferred

an output matrix B and phylogenetic tree T. (a–c) The tradeoff between the

false negative rate (FNR) and the false positive rate (FPR) for each matrix B

output by each method. (d–f) Three different measures that assess similarity

between T 	 and T in terms of character states occurring on the same branch

(d), on distinct branches (e) and on the same edge (f) in both T 	 and T
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ubiquitous in solid tumors and affect large genomic regions. As

such, homoplasy of single-nucleotide variants in cancer is mainly

due to mutation loss caused by copy number aberrations. Based on

this observation, SPhyR employs the k-Dollo parsimony model,

where a mutation may only be gained once but lost k times. We

studied the error-free case and derived a combinatorial characteriza-

tion of solutions as constrained integer matrix completions. This

characterization formed the basis for our integer linear program,

which we solved efficiently using column and cutting plane gener-

ation. We introduced a coordinate-ascent approach for solving the

real data case with errors in the input matrix. On simulated data, we

showed that SPhyR outperformed existing methods, that are either

based on the infinite sites or the finite sites evolutionary model, in

terms of solution quality and run time. On real data, we showed

that SPhyR provided a likelier explanation of the evolutionary his-

tory of a metastatic colorectal cancer.

Our findings show that while there is a need for more realistic

evolutionary models in tumor phylogeny estimation beyond the in-

finite sites model, evolutionary models that are too permissive, such

as the finite sites model, lead to incorrect inferences. By disallowing

parallel evolution but allowing for mutation loss, the k-Dollo parsi-

mony model employed by SPhyR strikes a balance between being

realistic and yet, sufficiently constrained.

There are a number of avenues for future research. From a theor-

etical perspective, the hardness of the k-DP problem, where k�1,

remains open. It would be interesting to investigate whether the

graph sandwich approach used by Pe’er et al. (2004) for incomplete

directed perfect phylogeny problem can be extended to the k-DP

problem. From a practical perspective, inclusion of additional data

sources and information might yield additional constrains that

improve phylogeny reconstruction. For instance, for metastatic

cancers the inclusion of a multi-state location character might result

in evolutionary scenarios that minimize migrations, as described in

(El-Kebir et al., 2018) for bulk DNA sequencing data. Moreover,

inclusion of copy-number information might allow one to restrict

the subset of characters that have undergone losses. Finally, one

could consider joint phylogeny estimation from bulk and single-cell

sequencing data of the same tumor.
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