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ABSTRACT This paper proposes a compact SPICE phenomenological model for insulator metal transition

(IMT) devices. The proposed model captures the interplay of electric field and Joule heating to effect

a transition from a high resistance insulating state to a low resistance metallic state. The model is

corroborated against experimental results and electrothermal simulations available in the literature. The

proposed model is implemented in Verilog-A and is fully compatible with commercial SPICE simulators

such as Spectre from Cadence, used in this paper. An IMT-based artificial neuron is then designed

and simulated using the proposed IMT compact model and design expressions for the operation of the

proposed neuron are derived. The simulation results agree with the expected neuron behavior as well as

the simulation results of other similar neurons proposed in the literature. This paper will enable circuit

designers to design and simulate IMT-based systems and help them explore the full potential of such

novel devices.

INDEX TERMS Insulator metal transition, IMT, compact model, SPICE model, neuron, Mott transition.

I. INTRODUCTION

Insulator Metal Transition (IMT) devices have recently

spurred significant interest in the research commu-

nity [1], [2]. Their switching characteristics have shown to

be ideal in applications such as crossbar memory arrays

and neuromorphic circuits. For example, in crossbar arrays,

IMTs show promising selector characteristics such as high

ON/OFF ratio which circumvents sneak path currents and,

more importantly, provide Back-End-Of-Line (BEOL) com-

patibility which helps achieve the ideal 4F2 density of cross-

bar arrays [3], [4]. On the neuromorhpic front, researchers

have shown that IMTs can be leveraged in building Integrate-

And-Fire (IAF) neurons without the need for complex CMOS

circuitry owing to their inherent switching dynamics, thus,

providing a significant density advantage [5], [6].

Several works have presented experimental studies on IMT

devices attempting to unravel the underlying switching mech-

anisms contributing to phase transition. Several studies have

shown that temperature is the prime cause of phase transition

such as the work in [7] and [8] while others have attributed

the transition to the electric field [9] with temperature playing

a secondary role. A more in depth study about the switch-

ing mechanism is presented in [10] and [11] which show

that Joule heating may not be sufficient for phase transition

and an electric field assisted transition is more plausible.

Yang et al. [10] hypothesize that a certain threshold volt-

age is required to effect a phase transition which decreases

with increasing temperature. Lin et al. [12] have classified

IMT devices into two categories: Electronic IMT (E-IMT)

and Thermally-driven IMT (T-IMT) and the characteristics

of each type have been studied.

The lack of a physics-based compact model, however, has

hindered circuit designers from exploring the full potential of

IMTs in circuit applications. In particular, understanding the

interplay between temperature and electric field has been the

main stumbling block to the development of such a compact

model [12]. In [5], an electro-thermal model was developed

for IMT devices which leverages the positive electro-thermal
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feedback to effect a phase transition of the device. The

model was compared to vanadium oxide (VO2) experimental

data and could reproduce the data with sufficient accuracy.

In [13], a similar model was developed based on the Mott

insulator theory and provides a device simulation framework

for modeling IMT devices.

On the neuromorphic front, researchers found that the

intrinsic dynamics of IMT devices can be leveraged in the

design of artificial neurons. In [6] and [14], an IMT-based

neuron was proposed. This work, however, did not include

the temperature dynamics in the IMT model nor did it study

their effect on the IMT-based neuron. In [15] and [16], an

IMT-based neuron coupled with a temperature-based model

for the IMT device was proposed. However, the model pro-

posed in that work is complex and may not be readily

integrated in SPICE simulators nor can it be easily used

to derive simple design expressions to facilitate the design

process for IMT neurons. Also, the neurons proposed in

these works are studied in isolation and do not show how

they can be integrated in a larger system.

In this work, a SPICE compatible IMT compact model

is developed and implemented in Verilog-A. The proposed

model describes the IMT device as a memristive system

wherein the state variable is the local temperature of the

device. The model is simulated using Spectre from Cadence

and shows a close match to experimental results and electro-

thermal simulations based on the models in [5] and [13].

Using the proposed model, an IMT based artificial neu-

ron is designed and simulated using Spectre from Cadence.

Design expressions and oscillation conditions for the pro-

posed design are derived based on the proposed model.

Background about previous modeling efforts for IMT devices

is described in Section II. Section III describes the pro-

posed compact model. Section IV validates the model against

experimental data and electrothermal simulations available in

the literature. The IMT-based artificial neuron is described in

Section V and the proposed design is presented in Section VI.

Section VII provides discussions and future prospects about

IMT fabrication and device requirements and Section VIII

presents the conclusions.

II. BACKGROUND

Two IMT device models were proposed in [5] and [13].

In [5], a device model that captures the positive feedback

between the temperature and electric field was presented.

In this model, however, the relationship between the device

resistance and the device temperature was implemented using

a look up table. This method, while it might be favorable in a

device simulation framework, is not compatible with SPICE

simulators which require closed form compact models for

efficient circuit simulation.

A more refined device model was developed in [13] based

on band theory. The IMT device is modeled as a low bandgap

semiconductor. Increasing the device temperature results in

decreasing the bandgap. This decrease in the bandgap results

in an increase of the carrier concentration which ultimately

results in decreasing the device resistance. A model is also

presented which captures the change in the thermal conduc-

tivity with temperature. The bandgap model and the thermal

conductivity model are then solved in a self consistent man-

ner to effect a phase transition as a function of temperature.

The model in [13] was implemented in Sentaurus TCAD

simulator wherein the built-in electrothermal models and

finite element drift-diffusion model where leveraged. This

model, similar to the previous one, is best used in a TCAD

simulation flow and not SPICE level simulators.

The proposed compact model, presented in the next

section, builds upon both electrothemal models wherein sim-

plifications such as using lumped element thermal model

and proposing a phenomenological relationship between the

device temperature and resistance were employed to arrive at

a closed form model suitable for integration in commercial

SPICE simulators.

III. THE PROPOSED IMT SPICE MODEL

The switching dynamics of IMT devices have been attributed

to the interaction of electric field and Joule heating as alluded

to before. As the current flows through the device, the device

temperature rises until it hits a critical temperature at which

point the device transitions from a high resistance insulating

phase to a low resistance metallic phase. As the device cools

down, the resistance relaxes back to its initial high resistance

state.

Here we leverage the memristor theory [17]–[19] to

describe the IMT device. The memristive dynamics of the

IMT device can be described as follows [20]:

I = G(x).V, (1)
dx

dt
= g(x,V), (2)

where (1) and (2) describe the output and state equations,

respectively, with x being the state variable. The proposed

model has two main governing equations: (I) the resistance

change equation which corresponds to the output equation

(here we used the resistance rather than conductance for

modeling convenience) and (II) the temperature evolution

equation which corresponds to the state equation, with the

temperature being the state variable such that x = T(t).

The behavior of the resistance change versus tempera-

ture can be captured by two thermistor states for the high

resistance and low resistance states and a sigmoid func-

tion for the transition from a high resistance state to a

low resistance state. Since the thermistance behavior depicts

a linear relationship between the resistance and the tem-

perature in the Log-Linear plot, one can simply model

the two thermistor states as exponential functions of the

temperature such that RLRS = RLRSFe
−BLRS(T(t)−TF) and

RHRS = RHRS0
e−BHRS(T(t)−T0). RLRSF is the low resistance

state defined at temperature TF (a reference temperature)

and RHRS0
is the high resistance state defined at the ambient

temperature T0. BLRS and BHRS are the temperature coeffi-

cients which are extracted from the slope of the thermistance
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vs. temperature plot and the negative sign describes Negative

Temperature Coefficient (NTC) thermistors. This implemen-

tation, however, requires clipping of the RLRS and RHRS at

some minimum and maximum values to avoid any unphys-

ical behavior during circuit simulation. Clipping, however,

requires the use of conditionals which hampers the “smooth-

ness” of the model yielding potential convergence difficulties

during circuit simulation. Hence, we reformulate the model

equations such that RLRS and RHRS smoothly plateau to RLRSF
and RHRS0

at high and low temperatures, respectively.

This relationship between the temperature and the resis-

tance can be expressed as follows:

RLRS = RLRSF (1 + KLRS
A)

1

A , (3a)

RHRS = RHRS0
(

KHRS

(1 + KHRS
A)

1

A

), (3b)

RIMT = RLRS +
(RHRS − RLRS)

1 + e
T(t)−Tc

Tx

, (3c)

where KLRS = e−BLRS(T(t)−TF) and KHRS = e−BHRS(T(t)−T0).

Tx is a fitting parameter that captures the sharpness of the

resistive transition. Tc is the critical temperature which is

around 340K in the case of VO2 devices [6]. RLRS and RHRS
are the Low Resistance State and High Resistance State,

respectively. A is a control parameter which governs how

the two thermistor states approach the asymptotes [21]. In

this work, A = 10
4 is used. However, this parameter can be

varied by the user as needed. While the model might seem

complicated at first glance, the principal equations are simple

exponential functions as aforementioned. This formulation is

only employed to abide by compact modeling practices as

suggested in [21] and [22]. Appendix A provides a more

thorough explanation for (3) and describes the parameter

extraction procedure.

The temperature evolution dynamics are described by the

compact thermal model in [23] as shown in (4):

Cth
dT(t)

dt
= VIMT IIMT −

(T(t) − T0)

Rth
, (4)

where VIMT IIMT is the Joule heating, Cth and Rth are the

effective thermal capacitance and the effective thermal resis-

tance, respectively, and T0 is the ambient temperature. This

model assumes that the device stays at an effective tempera-

ture T(t) and exchanges heat with the ambient environment

at an ambient temperature T0.

Listing 1 depicts Verilog-A code snippet of the core model

equations. Suggested good practices for writing compact

models are considered based on the work in [24] and [25].

Note that (3a) and (3b) are each split into two equations in

the VerilogA implementation. This formulation is to avoid

numerical overflow as the values for KLRS and KHRS become

large; see [21] for more detailed explanation. However, one

can readily show that the expressions in each conditional are

mathematically identical and, hence, the use of conditionals

will not introduce any discontinuities.

Listing 1. Verilog-A code snippet.

Fig. 1. Model fitting against experimental data.

IV. MODEL VALIDATION AGAINST EXPERIMENTAL
RESULTS AND ELECTRO-THERMAL SIMULATIONS

The proposed model is validated against the results in [5].

The proposed model closely matches the experimental

results as well as electro-thermal simulation as shown in

Figs. 1, 2, 3, 4, 5 and 6. Fig. 1, 2 and 3 depict the resistive

transition about the critical temperature which is about 340K

in VO2 devices fitted against experimental data from [5].

Fig. 4 depicts the hysteresis in the V-I plane (a finger-

print of memristive systems) exhibited by the IMT device

as shown in [5] and [6] and fitted against the experimental

data from [5]. Figures 5 and 6 depict the time dependence

of temperature and resistance evolution, respectively, fitted

against electrothermal simulations from [5]. Three voltage
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Fig. 2. Model fitting against experimental data.

Fig. 3. Model fitting against experimental data.

Fig. 4. Demonstration of device Hysteresis in the V-I plane which
demonstrates the memristive dynamics of the IMT device.

levels, based on the values used from [5], were applied across

the device: 1.4V , 1.6V and 1.8V . One can readily observe

in Fig. 5 that the local temperature of the device saturates

Fig. 5. Model (solid line) fitting against electro-thermal simulations
(markers). Plotting the Device local temperature against time for three
applied voltage values.

Fig. 6. Model (solid line) fitting against elector-thermal simulations
(markers). Plotting the Device resistance against time for three applied
voltage values.

at a higher temperature value for higher voltages due to

increased Joule heating. In Fig. 6, higher voltages result in

faster transition time due to faster rate of joule heating.

V. SIMULATION OF AN ARTIFICIAL NEURON USING IMT

This section showcases the utility of the proposed model in

a SPICE level simulation framework. The proposed neuron

circuit in [5] is simulated in Cadence environment using

Spectre circuit simulator with the IMT model implemented

in VerilogA.

A typical neuromorphic system consists of synapses and

neurons. First, inputs to the synapse network are multiplied

by their corresponding weights. In memristive neuromor-

phic systems, the weights are often represented by the

conductance of a nonvolatile memristive device (typically,

a transition metal oxide in most of state-of-the-art archi-

tectures), the inputs are the voltages across the device and

the output, result of the multiplication, is the current flowing
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through the device such that Ohm’s law is leveraged for mul-

tiplication without the need for additional complex circuitry.

The current through the synapses are then summed and fed

to the neuron input. The neuron compares the inputs to a

threshold and fires if the input signal exceeds the threshold.

The neuron then remains idle for a period of time known

as the refractory period wherein no fires can take place. A

schematic of a neuromorphic system is presented in Fig. 7.

Fig. 7. Schematic of a neuromorphic system.

Here, since the aim is to validate the utility of the pro-

posed IMT SPICE model, we replicate the circuit presented

in [5]. The accumulated sum through the synaptic weight

is represented by a current source feeding into a capacitor

such that:

�ISYNAPSE = �ViGi, (5)

where Vi is the voltage spike generated by the ith input

neuron and Gi is the conductance (weight) of the ith synap-

tic element. The core of the neuron is the IMT device

which switches from RHRS to RLRS once the temperature

exceeds Tc. Unlike conventional CMOS neurons, here the

neuron’s threshold is the device temperature, not a specified

voltage value. Fig. 8 depicts the circuit under study.

Fig. 8. Schematic of an IMT neuron Circuit.

Fig. 9 depicts the SPICE simulation of the circuit in Fig. 8.

Current pulses were supplied through the capacitor to model

voltage spikes multiplied by their corresponding weights. As

time evolves, the voltage across the IMT VIMT increases as

well as the device temperature T(t) due to Joule heating.

Once the temperature hits Tc, the resistance of the IMT

Fig. 9. Simulation of an IMT neuron using the proposed mode [5].

RIMT switches to RLRS and a current spike is generated. The

system then remains idle for a period of time equal to the

refractory period as shown in Fig. 9 where the capacitor

does not accumulate voltage as long as the IMT is at RLRS.

After the device cools down, the resistance relaxes back to

RHRS and the capacitor starts to accumulate voltage while the

device starts to heat up again. The obtained SPICE simulation

results capture the neuron behavior shown in [5]. Table 1

depicts the device parameters used in the simulation of the

circuit in Fig. 9. RLRS/HRS were extracted from the device

geometry and resistivity based on R = ρ.L/A.

TABLE 1. IMT VerilogA model parameters for neuron circuit simulation.

VI. PROPOSED IMT-BASED IAF NEURON

The proposed neuron builds off the proposed circuit in [5].

First, the current source is replaced by a synaptic network.

Second, an output stage is added in order to provide signal

restoration as well as convert the current spike into voltage

spike as the output of the neuron serves as an input to

the following stages. Fig. 10 depicts the proposed design.

Input pulses are fed into the synaptic network wherein each

synaptic element is comprised of a nonvolatile memristive

device to store the synaptic weight and a diode (a rectifying

device) to prevent any back current. The proposed design

functions in much the same way as the circuit in Fig. 8 until

the current spike is generated. The current spike is then fed
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Fig. 10. Schematic of the proposed neuron circuit.

to an inverter to generate a voltage pulse. A spike generation

circuit is then added to produce an output voltage spike with

a pulse width controlled by the RC time constant of the RC

network preceding the output buffer. Fig. 11 depicts the

simulation of the proposed design.

Fig. 11. Simulation of the proposed neuron.

It is important to understand the impact of the design

parameters on the operation of the proposed neuron. The

essence of neuron oscillation rests in the IMT device alter-

nating between RHRS and RLRS. At RHRS, the steady state

temperature exceeds the critical temperature and, accord-

ingly, the neuron fires. At RLRS, the steady state temperature

drops below the critical temperature, the neuron resets and

the process is repeated for the next inputs.

At steady state ( dT
dt

= 0), the solution to the differential

equation in (4) can be expressed as follows:

Tss = T0 + RthI
2

IMTRIMT , (6)

where Tss is the steady state temperature of the IMT device.

Hence, according to the aforementioned explanation, the

oscillation condition can be expressed as follows:

Rth.I
2

IMT .RLRS < Tc − T0 < RthI
2

IMTRHRS, (7)

Inequality (7) establishes the oscillation condition for the

IMT-based neuron as a function of device parameters such

as Rth, RLRS, RHRS and Tc and circuit variables such as IIMT
which is a function of the amplitude of the voltage spike

and the series resistance with the IMT device including the

synapse resistance, diode ON resistance and the IMT series

resistance. This oscillation is the essence of operation of the

IAF neuron as shown in [6]. The relaxation oscillator is a

typical circuit that exhibits oscillation which can be found

in Appendix B.

The neuron typically operates in three phases: (I) accu-

mulation wherein the inputs from the synapse networks are

summed, (II) firing when the accumulated value reaches the

neuron’s threshold and (III) refractory period wherein the

neuron is idle.

In CMOS neurons, an OPAMP is required for accumu-

lation (Integrator) and another is required for comparison

against the threshold (comparator). Also, a feedback cir-

cuitry is often needed to implement the refractory period.

These OPAMPS, besides entailing all the complexities of

analog design, are also area consuming and power hungry.

For example, extra capacitors are often needed for stability

purposes which usually consume significant area.

On the other hand, the IMT device can provide the accu-

mulation function through the heating of the device, fire

through device transition and a refractory period during

device cooling should the device be placed in such con-

figuration. One can readily see the advantages provided by

the IMT device. A typical CMOS neuron, such as the work

in [26], requires more than 20 transistors while the proposed

IMT-based neuron only requires 7 transistors.

VII. DISCUSSIONS AND FUTURE PROSPECTS

Here the values used for RHRS and RLRS are both relatively

low which also agree with the experimental results in [5].

It should be noted, however, that this represents a limita-

tion on the fabrication of such devices. Higher RHRS values

might require a significantly long period of time until the

device hits the Tc which might be practically unfeasible. This

problem can be overcome, however, via increasing the value

of the applied voltage. Yet, another limitation is that the

applied voltage should remain within the practical bounds

of standard CMOS processes.

These values may not be suitable, however, for memory

application. In memory arrays, IMT devices are typically

used as selector devices to circumvent sneak path cur-

rents. Hence, low RHRS values might not effectively suppress

those unwanted leakage currents. This prospect shows that

RHRS/RLRS values might vary depending on the application.

Finally, as alluded to before, understanding the exact

switching dynamics of IMT devices is still subject to fur-

ther research and, accordingly, the models might require

constant refinements. The compact model developed in this

work is based on the most established understanding of the

switching mechanism of IMT devices available in the litera-

ture. Also, the developed compact model was fitted against

device models (TCAD-like models) wherein the same phys-

ical switching mechanism was considered but with simpler

formulation to arrive at closed form expression which can be

easily implemented in SPICE simulators. However, further

studies of IMT switching dynamics might reveal new switch-

ing mechanisms and physics which will require adjustments

to the models.

VIII. CONCLUSION

This work presented a SPICE compatible compact model

for Insulator Metal Transition devices validated against
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experimental data and electrothermal simulations from the

literature. The proposed model describes the IMT device as

a memristive system and captures the role of temperature

and electric field in the resistive transition of the device.

Using the proposed model, a simple neuron was designed

and simulated in Spectre. Design expressions for the neu-

ron’s oscillation where derived. The results agree with the

expected neuron behavior and published experimental data.

Impact of device parameters on the system performance were

also discussed and device requirements for efficient circuit

operation were projected.

APPENDIX A
IMT MODEL PARAMETER EXTRACTION

In this section, we develop the parameter extraction pro-

cedure of the proposed model. We primarily focus on the

resistance model and show how BHRS and BLRS are extracted.

First, the simplified form of equation (3) is used in the

extraction procedure, described in Section III, which can be

expressed in the following form:

ln(RLRS) = ln(RLRSF ) − BLRS(T(t) − TF), (8)

ln(RHRS) = ln(RHRS0
) − BHRS(T(t) − T0), (9)

four data points are then used to extract the thermal coef-

ficients (BHRS and BLRS) as shown in Fig. 12. The thermal

coefficients can be expressed as follows:

BLRS =
ln(RLRSF ) − ln(RLRS)

T2 − TF
, (10)

BHRS =
ln(RHRS0

) − ln(RHRS)

T1 − T0

, (11)

Fig. 12. Thermal coefficients extraction.

As alluded to before, the value chosen for A in this work is

A = 10
4. The higher the value of A, the faster RHRS and RLRS

saturate to RHRS0
and RLRS0

beyond T0 and TF , respectively.

APPENDIX B
RELAXATION OSCILLATOR DESIGN

Here we analyze an IMT-based relaxation oscillator and

derive the Oscillation conditions. The relaxation oscillator

is a simpler circuit than the proposed neuron with the same

operation principle. Thus, analyzing this simple circuit may

aid with the understanding of the proposed neuron circuit.

Fig. 13 depicts the IMT-based relaxation oscillator proposed

in [16].

Fig. 13. Schematic of the relaxation oscillator.

A DC voltage is applied at the circuit’s input. At steady

state ( dT
dt

= 0), the solution to the differential equation in (4)

can be expressed as follows:

Tss = T0 + RthI
2

IMTRIMT , (12)

where the current through the IMT device (at steady state)

can be expressed as follows:

IIMT =
VDC

RDC + RIMT
, (13)

To ensure oscillation:

Tss(RLRS) < Tc < Tss(RHRS), (14)

Substituting (12) and (13) in (14):

RthRLRSV
2

DC

(RLRS + RDC)2
< Tc − T0 <

RthRHRSV
2

DC

(RHRS + RDC)2
, (15)

Hence, one can readily see that given an IMT device with

some arbitrary thermal resistance, high resistance state and

low resistance state, circuit variables such as the applied DC

voltage and the series resistance can impact the oscillation

condition and, thus, should be carefully chosen.
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