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SPICE: Self-Supervised Pitch Estimation
Beat Gfeller , Christian Frank , Dominik Roblek , Matt Sharifi , Marco Tagliasacchi ,

and Mihajlo Velimirović

Abstract—We propose a model to estimate the fundamental fre-
quency in monophonic audio, often referred to as pitch estimation.
We acknowledge the fact that obtaining ground truth annotations
at the required temporal and frequency resolution is a particularly
daunting task. Therefore, we propose to adopt a self-supervised
learning technique, which is able to estimate pitch without any
form of supervision. The key observation is that pitch shift maps
to a simple translation when the audio signal is analysed through
the lens of the constant-Q transform (CQT). We design a self-
supervised task by feeding two shifted slices of the CQT to the
same convolutional encoder, and require that the difference in the
outputs is proportional to the corresponding difference in pitch. In
addition, we introduce a small model head on top of the encoder,
which is able to determine the confidence of the pitch estimate, so
as to distinguish between voiced and unvoiced audio. Our results
show that the proposed method is able to estimate pitch at a level
of accuracy comparable to fully supervised models, both on clean
and noisy audio samples, although it does not require access to large
labeled datasets.

Index Terms—Audio pitch estimation, unsupervised learning,
convolutional neural networks.

I. INTRODUCTION

P ITCH represents a perceptual property of sound which is
relative, since it allows ordering to distinguish between

high and low sounds, intensive, that is, mixing sources with
different pitches produces a chord, not a single unified tone –
contrary to loudness, which is additive in the number of sources,
and it is a property that can be attributed to a sound independently
of its source [1]. For example, the note A4 is perceived as
the same pitch whether it is played on a guitar or on a piano.
A comprehensive treatment of the psychoacoustic aspects of
pitch perception is given in [2]. Pitch often corresponds to the
fundamental frequency (f0), i.e., the frequency of the lowest
harmonic. However, the former is a perceptual property, while
the latter is a physical property of the underlying audio signal.
While there are a few notable exceptions (e.g., the Shepard tone,
the tritone paradox, or the auditory illusions described in [3]),
this correspondence holds for the broad class of locally periodic
signals, which represents a good abstraction for the audio signals
considered in this paper.
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Pitch estimation in monophonic audio received a great deal
of attention over the past decades, due to its central impor-
tance in several domains, ranging from music information re-
trieval to speech analysis. Traditionally, simple signal process-
ing pipelines were proposed, working either in the time do-
main [4]–[7], in the frequency domain [8] or both [9], [10], often
followed by post-processing algorithms to smooth the pitch
trajectories [11], [12]. Until recently, machine learning methods
had not been able to outperform hand-crafted signal processing
pipelines targeting pitch estimation. This was due to the lack
of annotated data, which is particularly tedious and difficult to
obtain at the temporal and frequency resolution required to train
fully supervised models. To overcome these limitations, a syn-
thetically generated dataset was proposed in [13], obtained by
re-synthesizing monophonic music tracks while setting the fun-
damental frequency to the target ground truth. Using this training
data, the CREPE algorithm [14] was able to achieve state-of-the-
art results when evaluated on the same dataset, outperforming
signal processing baselines, especially under noisy conditions.

In this paper we address the problem of lack of annotated data
from a different angle. Specifically, we rely on self-supervision,
i.e., we define an auxiliary task (also known as a pretext task)
which can be learned in a completely unsupervised way. To
devise this task, we started from the observation that for humans,
including professional musicians, it is typically much easier to
estimate relative pitch, related to the frequency interval between
two notes, than absolute pitch, related to the actual fundamental
frequency [15]. Therefore, we design SPICE (Self-supervised
PItCh Estimation) to solve a similar task. More precisely, our
network architecture consists of a convolutional encoder which
produces a single scalar embedding. We aim at learning a model
that linearly maps this scalar value to pitch, when the latter is
expressed in a logarithmic scale, i.e., in units of semitones of an
equally tempered chromatic scale. To do this, we feed two ver-
sions of the same signal to the encoder, one being a pitch shifted
version of the other by a random but known amount. Then, we
devise a loss function that forces the difference between the
scalar embeddings to be proportional to the known difference in
pitch. Upon convergence, the model is able to estimate relative
pitch, solely relying on self-supervision. In order to translate
relative pitch to absolute pitch, we apply a simple calibration
step, which can be done using a small synthetically generated
dataset. Therefore, the model is able to produce absolute pitch
without having access to any manually labelled dataset.

A key characteristic of our model is that it receives as input
a signal transformed in the domain defined by the constant-Q
transform (CQT), which represents a convenient choice for
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Fig. 1. CQT frames extracted from the MIR-1k dataset re-ordered based on the pitch estimated by the SPICE algorithm (in red).

analysing pitch. Indeed, the CQT filter bank computes a wavelet
transform [16], and wavelets can be effectively used to rep-
resent the class of locally periodic signals. When the number
of filters per octave (also known as quality factor) is large
enough, wavelets have a discernible pitch which is related to the
logarithm of the scale variable. For this reason, pitch shifting
can be conveniently expressed as a simple translation along
the log-spaced frequency axis induced by the CQT. Note that
this property holds also for inharmonic or noisy audio signals
for which the fundamental frequency cannot be defined. For
example, stretching these signals in time produces a sensation
of pitch shift, which would be observable in the CQT domain
despite the absence of the fundamental frequency. Conversely,
we acknowledge the fact that for some specific audio signals
the analysis in the CQT domain might lead to erroneous pitch
estimates. For example, if the input signal is a Shepard tone and
the amount of pitch shift is equal to +11 semitones, the human
ear would perceive a pitch interval of −1 semitone. Hence, both
the magnitude and the sign of the estimated pitch would be
incorrect. Despite the existence of these handcrafted examples
for which our approach does not apply, the correspondence
between pitch shift and translation in the CQT domain still holds
for most real-world audio signals used to train and evaluate our
model.

Another important aspect of pitch estimation is determining
whether the underlying signal is voiced or unvoiced. Instead of
relying on handcrafted thresholding mechanisms, we augment
the model in such a way that it can learn the level of confidence
of the pitch estimation. Namely, we add a simple fully connected
layer that receives as input the penultimate layer of the encoder
and produces a second scalar value which is trained to match the
pitch estimation error.

In summary, this paper makes the following key contributions:
� We propose a self-supervised pitch estimation model,

which can be trained without having access to any labelled
dataset.

� We incorporate a self-supervised mechanism to estimate
the confidence of the pitch estimation, which can be di-
rectly used for voicing detection.

� We evaluate our model against two publicly available
monophonic datasets and show that in both cases we out-
perform handcrafted baselines, while matching the level of
accuracy attained by CREPE, despite having no access to
ground truth labels.

� We train and evaluate our model also in the noisy con-
ditions, where background music is present in addition to

monophonic singing, and show that also in this case, match
the level of accuracy obtained by CREPE.

As an illustration, Fig. 1 shows the CQT frames of one of
the evaluation datasets (MIR-1k [17]), which are considered to
be voiced. The red solid line represents pitch as estimated by the
SPICE and the CQT frames are sorted according to this value
from low to high pitch.

The rest of this paper is organized as follows. Section II
contrasts the proposed method against the existing literature.
Section III illustrates the proposed method, which is evaluated
in Section IV. Conclusions and future remarks are discussed in
Section V.

II. RELATED WORK

Pitch estimation: Traditional pitch estimation algorithms are
based on hand-crafted signal processing pipelines, working in
the time and/or frequency domain. The most common time-
domain methods are based on the analysis of local maxima
of the auto-correlation function (ACF) [4]. These approaches
are known to be prone to octave errors, because the peaks of
the ACF repeat at different lags. Therefore, several methods
were introduced to be more robust to such errors, including,
e.g., the PRAAT [5] and RAPT [6] algorithms. An alternative
approach is pursued by the YIN algorithm [7], which looks for
the local minima of the Normalized Mean Difference Function
(NMDF), to avoid octave errors caused by signal amplitude
changes. Different frequency-domain methods were also pro-
posed, based, e.g., on spectral peak picking [18] or template
matching with the spectrum of a sawtooth waveform [8]. Other
approaches combine both time-domain and frequency-domain
processing, like the Aurora algorithm [9] and the nearly defect-
free F0 estimation algorithm [10]. Comparative analyses in-
cluding most of the aforementioned approaches have been con-
ducted on speech [19], [20], singing voices [21] and musical
instruments [22]. Machine learning models for pitch estimation
in speech were proposed in [23], [24]. The method in [23]
first extracts hand-crafted spectral domain features, and then
adopts a neural network (either a multi-layer perceptron or a
recurrent neural network) to compute the estimated pitch. In [24]
consensus of other pitch trackers is used to get ground truth, and a
multi-layer perceptron classifier is trained on the principal com-
ponents of the autocorrelations of subbands from an auditory
filterbank. More recently the CREPE [14] model was proposed,
an end-to-end convolutional neural network which consumes
audio directly in the time domain. The network is trained in
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a fully supervised fashion, minimizing the cross-entropy loss
between the ground truth pitch annotations and the output of the
model. In our experiments, we compare our results with CREPE,
which is the current state-of-the-art.

Pitch confidence estimation: Most of the aforementioned
methods also provide a voiced/unvoiced decision, often based on
heuristic thresholds applied to hand-crafted features. However,
the confidence of the estimated pitch in the voiced case is seldom
provided. A few exceptions are CREPE [14], which produces a
confidence score computed from the activations of the last layer
of the model, and [25], which directly addresses this problem,
by training a neural network based on hand-crafted features to
estimate the confidence of the estimated pitch. In contrast, in
our work we explicitly augment the proposed model with a head
aimed at estimating confidence in a fully unsupervised way.

Pitch tracking and polyphonic audio: Often, post-processing
is applied to raw pitch estimates to smoothly track pitch contours
over time. For example, [26] applies Kalman filtering to smooth
the output of a hybrid spectro-temporal autocorrelation method,
while the pYIN algorithm [11] builds on top of YIN, by applying
Viterbi decoding of a sequence soft pitch candidates. A similar
smoothing algorithm is also used in the publicly released version
of CREPE [14]. Pitch extraction in the case of polyphonic
audio remains an open research problem [27]. In this case, pitch
tracking is even more important to be able to distinguish the
different melody lines [12]. A machine learning model targeting
the estimation of multiple fundamental frequencies, melody,
vocal and bass line was recently proposed in [28] .

Self-supervised learning: The widespread success of fully su-
pervised models was stimulated by the availability of annotated
datasets. In those cases in which labels are scarse or simply not
available, self-supervised learning has emerged as a promising
approach for pre-training deep convolutional networks both
for vision [29]–[31] and audio-related tasks [32]–[34]. Some-
what related to our paper are those methods that try to use
self-supervision to obtain point disparities between pairs of
images [35], where shifts in the spatial domain play the role
of shifts in the log-frequency domain.

III. METHODS

The proposed pitch estimation model receives as input an au-
dio track of arbitrary length and produces as output a time series
of estimated pitch frequencies, together with an indication of the
confidence of the estimates. The latter is used to discriminate
between unvoiced frames, in which pitch is not well defined,
and voiced frames.

Audio Frontend

Our proposed model does not consume audio directly, but
instead it receives as input individual frames of the constant-Q
transform (CQT). As illustrated in [16], the CQT representation
approximately corresponds to the output of a wavelet filter bank
defined by the following family of wavelets:

ψλk
(t) = λkψ(λkt), (1)

where Q denotes the number of filters per octave and

λk = fbase2
k
Q , k ∈ 0, . . . , Fmax − 1, (2)

where fbase is the frequency of the lowest frequency bin and
Fmax is the number of CQT bins. The Fourier transform of the
wavelet filters can be expressed as:

Ψλk
= Ψ

(
f

λk

)
(3)

Assuming that the center frequency of Ψ(f) is normalized to 1,
each filter is centered at frequency λk and has a bandwidth equal
to λk/Q. Hence, if we consider two filters with indices k1 and
k2, one of the corresponding wavelets would the pitch-shifted
version of the other. That is,

Δk = k2 − k1 = Q · log2 α, (4)

where α = λk2
/λk1

. Therefore, for the class of locally periodic
signals that can be represented as a wavelet expansion, a trans-
lation of Δk bins in the CQT domain is related to a pitch-shift
by a factor α.

Note that this key property of mapping pitch-shift to a simple
translation does not hold in general for other audio frontends,
e.g., for the widely used mel spectrogram. In this case, the
relationship between frequency (in Hz) and mel units is given
by

m = c · log
(
1 +

f

fbreak

)
(5)

for some constants c and fbreak (also known as break frequency).
Hence, the relationship is approximately linear at low frequen-
cies (f � fbreak) and logarithmic at high frequencies (f �
fbreak), with a smooth transition between these two regimes.
It is straightforward to show that a multiplicative scaling of
frequencies does not correspond to an additive scaling in the
mel domain.

Pitch Estimation

The proposed model architecture is illustrated in Fig. 2. Given
an input track, the audio frontend computes the absolute value
of the CQT, which is represented as a real-valued matrix X of
size T × Fmax, where T depends on the selected hop length.
From each temporal frame t = 1, . . . , T (where T is equal to
the batch size during training) the model samples at random two
integer offsets kt,1 and kt,2 from a uniform distribution, i.e.,
kt,i ∼ U(kmin, kmax), and it extracts two corresponding slices
xt,1,xt,2 ∈ RF , spanning the range of CQT bins [kt,i, kt,i +
F ], i = 1, 2, where F is the number of CQT bins in the slice.
Then, each vector is fed to the same encoder to produce a single
scalar yt,i = Enc(xt,i) ∈ R. The encoder is a neural network
with L convolutional layers followed by two fully-connected
layers. Further details about the model architecture are provided
in Section IV.

We design our main loss in such a way that yt,i is encouraged
to encode pitch. First, we define the relative pitch error as

et = |(yt,1 − yt,2)− σ(kt,1 − kt,2)| (6)
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Fig. 2. SPICE model architecture.

Then, the loss is defined as the Huber norm [36] of the pitch
error:

Lpitch =
1

T

∑
t

h(et), (7)

where:

h(x) =

{
x2

2 , |x| ≤ τ

τ2

2 + τ(|x| − τ), otherwise.
(8)

The pitch difference scaling factor σ is adjusted in such a way
that yt ∈ [0, 1] when pitch is in the range [fmin, fmax], namely:

σ =
1

Q · log2(fmax/fmin)
(9)

The values offmin andfmax are determined based on the range of
pitch frequencies spanned by the training set. In our experiments
we found that the Huber loss makes the model less sensitive to
the presence of unvoiced frames in the training dataset, for which
the relative pitch error can be large, as pitch is not well defined
in this case.

In addition to Lpitch, we also use the following reconstruction
loss

Lrecon =
1

T

∑
t

‖xt,1 − x̂t,1‖22 + ‖xt,2 − x̂t,2‖22, (10)

where x̂t,i, i = 1, 2, is a reconstruction of the input frame
obtained by feeding yi,t into a decoder x̂t,i = Dec(yi,t). The
reconstruction loss Lrecon forces the reconstructed frame x̂t,i to
be as close as possible to the original framext,i. The decoder is a

neural network withL convolutional layers whose architecture is
the mirrored version of the encoder, with convolutions replaced
by transposed convolutions, which maps the scalar value yi,t
back to a vector with the same shape as the input frame. Further
details about the model architecture are provided in Section IV.
In Section IV we also empirically evaluate the impact of this
loss component as part of the ablation study.

Therefore, the overall loss is defined as:

L = wpitchLpitch + wreconLrecon, (11)

where wpitch and wrecon are scalar weights that determine the
relative importance assigned to the two loss components.

Given the way it is designed, the proposed model can only
estimate relative pitch differences. The absolute pitch of an input
frame is obtained by applying an affine mapping:

p̂0,t = b+ s · yt = b+ s · Enc(xt) [semitones], (12)

which depends on two parameters. This is needed to map the
output of the encoder yt from the [0, 1] range to the absolute
pitch range (expressed in semitones). We use a small amount
of synthetically generated data (locally periodic signals with a
known frequency) to estimate both the intercept b̂ and the slope
ŝ. More specifically, we generate a waveform which is piece-
wise harmonic and consists of M pieces. Each piece is a purely
harmonic signal with fundamental frequency f0 corresponding
to a semitone sampled uniformly at random in the range A2
(110 Hz) and A4 (440Hz). We sample the amplitude of the first
harmonic in a0 ∼ N (0, 1) and that of higher order harmonics in
ak ∼ a0 · U(0, 1), k = 1, . . . ,K. A random phase is applied to
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each harmonic. In our experiments, each piece isN ·H samples
long, where H denotes the CQT hop-length used by the SPICE
model and N the number of frames. We feed this waveform to
SPICE and consider the estimate produced for the central frame
in each piece (to mitigate errors due to boundary effects). This
leads to M synthetically generated samples that can be used to
fit the model in (12). In Section IV we empirically evaluate the
robustness of the calibration process for different values of M .

Note that pitch in (12) is expressed in semitones and it can be
converted to frequency (in Hz) by:

f̂0,t = fbase2
p̂0,t
12 [Hz] (13)

Confidence Estimation

In addition to the estimated pitch p̂0,t, we design our model
such that it also produces a confidence level ct ∈ [0, 1]. Indeed,
when the input audio is voiced we expect to produce high
confidence estimates, while when it is unvoiced pitch is not well
defined and the output confidence should be low. To achieve this,
we design the encoder architecture to have two heads on top of
the convolutional layers, as illustrated in Fig. 2. The first head
consists of two fully-connected layers and produces the pitch
estimate yt. The second head consists of a single fully-connected
layer and produces the confidence level ct. To train the latter,
we add the following loss:

Lconf =
1

T

∑
t

|(1− ct,1)− et/σ|2 + |(1− ct,2)− et/σ|2.

(14)

This way the model will produce high confidence ct ∼ 1
when the model is able to correctly estimate the pitch difference
between the two input slices. At the same time, given that
our primary goal is to accurately estimate pitch, during the
backpropagation step we stop the gradients so that Lconf only
influences the training of the confidence head and does not affect
the other layers of the encoder architecture.

Handling Background Music

The accuracy of pitch estimation can be severely affected
when dealing with noisy conditions, which emerge, for example,
when the singing voice is superimposed over background music.
In this case, we are faced with polyphonic audio and we want
the model to focus only on the singing voice source. To deal
with these conditions, we introduce a data augmentation step in
our training setup. More specifically, we mix the clean singing
voice signal with the corresponding instrumental backing track
at different levels of signal-to-noise (SNR) ratios. Interestingly,
we found that simply augmenting the training data was not
sufficient to achieve a good level of robustness. Instead, we also
modified the definition of the loss functions as follows. Let xc

t,i

and xn
t,i denote, respectively, the CQT of the clean and noisy

input samples. Similarly, yct,i and ynt,i denote the corresponding
outputs of the encoder. The pitch error loss is modified by
averaging four different variants of the error, that is:

epqt = |(ypt,1 − yqt,2)− σ(kt,1 − kt,2)| p, q ∈ {c, n}, (15)

Lpitch =
1

4

∑
t

∑
p,q∈{c,n}

h(epqt ). (16)

The reconstruction loss is also modified, so that the decoder
is asked to reconstruct the clean samples only. That is:

Lrecon =
1

T

∑
t

‖xc
t,1 − x̂t,1‖22 + ‖xc

t,2 − x̂t,2‖22. (17)

The rationale behind this approach is that the encoder is induced
to represent in its output only the information relative to the
clean input audio samples, thus learning to denoise the input by
separating the singing voice from noise.

IV. EXPERIMENTS

Model Parameters

First we provide the details of the default parameters used
in our model. The input audio track is sampled at 16 kHz. The
CQT frontend is parametrized to use Q = 24 bins per octave,
so as to achieve a resolution equal to one half-semitone per
bin. We set fbase equal to the frequency of the note C1, i.e.,
fbase � 32.70 Hz and we compute up toFmax = 190CQT bins,
i.e., to cover the range of frequency up to Nyquist. We use a
Hann window with hop length set equal to 512 samples, i.e.,
one CQT frame every 32 ms. The CQT is implemented using
TensorFlow operations following the specifications of the open-
source librosa library [37]. During training, we extract slices of
F = 128CQT bins, setting kmin = 0 and kmax = 8 (i.e., between
0 and 4 semitones when Q = 24). The Huber threshold is set to
τ = 0.25σ and the loss weights equal to, respectively, wpitch =
104 and wrecon = 1. We increased the weight of the pitch-shift
loss to wpitch = 3 · 105 when training with background music.

The encoder receives as input a 128-dimensional vector cor-
responding to a sliced CQT frame and produces as output two
scalars representing, respectively, pitch and confidence. The
model architecture consists of L = 6 convolutional layers. We
use filters of size 3 and stride equal to 1. The number of channels
is equal to d · [1, 2, 4, 8, 8, 8], where d = 64 for the encoder and
d = 32 for the decoder. Each convolution is followed by batch
normalization and a ReLU non-linearity. Max-pooling of size 3
and stride 2 is applied at the output of each layer. Hence, after
flattening the output of the last convolutional layer we obtain an
embedding of size 1024 elements. This is fed into two different
heads. The pitch estimation head consists of two fully-connected
layers with, respectively, 48 and 1 units. The confidence head
consists of a single fully-connected layer with 1 output unit. The
total number of parameters of the encoder is equal to 2.38 M.
Note that we do not apply any form of temporal smoothing to
the output of the model.

The model is trained using Adam [38] with default hyperpa-
rameters and learning rate equal to 10−4. The batch size is set
to 64. During training, the CQT frames of the input audio tracks
are shuffled, so that the frames in a batch are likely to come from
different tracks.
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Fig. 3. Range of pitch values covered by the different datasets.

TABLE I
DATASET SPECIFICATIONS

TABLE II
EVALUATION RESULTS

Datasets

We use three datasets in our experiments, whose details are
summarized in Table I. The MIR-1k [17] dataset contains 1000
audio tracks with people singing Chinese pop songs. The dataset
is annotated with pitch at a granularity of 10 ms and it also
contains voiced/unvoiced frame annotations. It comes with two
stereo channels representing, respectively, the singing voice and
the accompaniment music. The MDB-stem-synth dataset [13]
includes re-synthesized monophonic music played with a variety
of musical instruments. This dataset was used to train the CREPE
model in [14]. In this case, pitch annotations are available at a
granularity of 29 ms. Given the mismatch of the sampling period
of the pitch annotations across datasets, we resample the pitch
time-series with a period equal to the hop length of the CQT, i.e.,
32 ms. In addition to these publicly available datasets, we also
collected in-house the SingingVoices dataset, which contains 88
audio tracks of people singing a variety of pop songs, for a total
of 185 minutes.

Fig. 3 illustrates the empirical distribution of pitch values.
For SingingVoices, there are no ground-truth pitch labels, so we
used the ouput of CREPE (configured with full model capacity
and enabling Viterbi smoothing) as a surrogate. We observe
that MDB-stem-synth spans a significantly larger range of fre-
quencies (approx. 5 octaves) than MIR-1k and SingingVoices
(approx. 3 octaves). Note that this is still smaller than the range
covered by human hearing, which extends to 9–10 octaves.
Further work is needed to collect datasets and evaluate pitch
estimation algorithms on such a broad frequency range.

We trained SPICE using either SingingVoices or MIR-1k and
used both MIR-1k (singing voice channel only) and MDB-
stem-synth to evaluate models in clean conditions. To handle
background music, we repeated training on MIR-1k, but this
time applying data augmentation by mixing in backing tracks
with a SNR uniformly sampled from [−5 dB, 25 dB]. For the

Fig. 4. Raw pitch accuracy.

evaluation, we used the MIR-1k dataset, mixing the available
backing tracks at different levels of SNR, namely 20 dB, 10
dB and 0 dB. In all cases, we apply data augmentation during
training, by pitch-shifting the input audio tracks by an amount in
semitones uniformly sampled in the discrete set {−12, 0,+12},
using a TensorFlow-based implementation of the phase-vocoder
algorithm in [39]. We found that this works better than sampling
from a continuous set, because of the artifacts introduced by the
pitch-shifting algorithm when adopting arbitrary rational scaling
factors.
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Fig. 5. Pitch error on the MIR-1k dataset, conditional on ground truth pitch and model confidence.

Fig. 6. Pitch error on the MDB-stem-synth dataset, conditional on ground truth pitch and model confidence.

Baselines

We compare our results against two baselines, namely
SWIPE [8] and CREPE [14]. SWIPE estimates the pitch as
the fundamental frequency of the sawtooth waveform whose
spectrum best matches the spectrum of the input signal. CREPE
is a data-driven method which was trained in a fully-supervised
fashion on a mix of different datasets, including MDB-stem-
synth [13], MIR-1k [17], Bach10 [40], RWC-Synth [11], Med-
leyDB [41] and NSynth [42]. We consider two variants of the
CREPE model, by using model capacity tiny or full, and we dis-
abled Viterbi smoothing, so as to evaluate the accuracy achieved
on individual frames. These models have, respectively, 487 k and

22.2 M parameters. CREPE also produces a confidence score for
each input frame.

Evaluation Measures

We use the evaluation measures defined in [27] to evaluate
and compare our model against the baselines. The raw pitch
accuracy (RPA) is defined as the percentage of voiced frames
for which the pitch error is less than 0.5 semitones. To assess the
robustness of the model accuracy to the initialization, we also
report the interval ±2σ. Here σ is the sample standard deviation
of the RPA values computed using the last 10 checkpoints of 3
separate replicas. For CREPE we do not report such interval,
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because we simply run the model provided by the CREPE
authors on each of the evaluation datasets. The voicing recall rate
(VRR) is the proportion of voiced frames in the ground truth that
are recognized as voiced by the algorithm. We report the VRR
at a target voicing false alarm rate equal to 10%. Note that this
measure is provided only for MIR-1k, since MDB-stem-synth is
a synthetic dataset and voicing can be determined based on a
simple silence thresholding.

Main Results

The main results of the paper are summarized in Table II
and Fig. 4. On the MIR-1k dataset, SPICE outperforms SWIPE,
while achieving the same accuracy as CREPE in terms of RPA
(90.7%), despite the fact that it was trained in an unsupervised
fashion and CREPE used MIR-1k as one of the training datasets.
Fig. 5 illustrates a finer grained comparison between SPICE and
CREPE (full model), measuring the average absolute pitch error
for different values of the ground truth pitch frequency, condi-
tioned on the level of confidence (expressed in deciles) produced
by the respective algorithm. When excluding the decile with low
confidence, we observe that above 110 Hz, SPICE achieves an
average error around 0.2–0.3 semitones, while CREPE around
0.1–0.5 semitones.

We repeated our analysis on the MDB-stem-synth dataset.
In this case the dataset has remarkably different characteristics
from the SingingVoices dataset used for the unsupervised train-
ing of SPICE, in terms of both frequency extension (Fig. 3)
and timbre (singing vs. musical instruments). This explains
why in this case the gap between SPICE and CREPE is wider
(88.9% vs. 93.1%). Fig. 6 repeats the fine-grained analysis for
the MDB-stem-synth dataset, illustrating larger errors at both
ends of the frequency range. We also performed a thorough
error analysis, trying to understand in which cases CREPE and
SWIPE outperform SPICE. We discovered that most of these
errors occur in the presence of a harmonic signal, in which most
of the energy is concentrated above the fifth-order harmonics,
i.e., in the case of musical instruments characterized by a spectral
timbre considerably different from the one of singing voice.

We also evaluated the quality of the confidence estimation
comparing the voicing recall rate (VRR) of SPICE and CREPE.
Results in Table II show that SPICE achieves results comparable
with CREPE (86.8%, i.e., between CREPE tiny and CREPE
large), while being more accurate in the more interesting low
false-positive rate regime (see Fig. 7).

In order to obtain a smaller, thus faster, variant of the SPICE
model, we used the MorphNet [43] algorithm. Specifically, we
added to the training loss (11) a regularizer which constrains the
number of floating point operations (FLOPs), using λ = 10−7 as
regularization hyper-parameter. MorphNet produces as output
a slimmed network architecture, which has 180k parameters,
thus more than 10 times smaller than the original model. After
training this model from scratch, we were still able to achieve a
level of performance on MIR-1k comparable to the larger SPICE
model, as reported in Table II.

Table III shows the results of the ablation study we carried out
to assess the importance of some of the design choices described

Fig. 7. Voicing Detection-ROC (MIR-1k).

TABLE III
EVALUATION RESULTS OF THE ABLATION STUDY

in Section III. These results indicate that the reconstruction loss
is crucial to obtain good results. We believe that this loss acts as a
regularizer, as it enforces inputs with the same pitch but different
timbre to have the same latent values. Pitch shift data augmen-
tation is also important, especially on MDB-stem-synth, which
has a wider pitch range than the training dataset (SingingVoices).
Using continuous pitch shift augmentation instead of discrete
octave shifts gives somewhat worse results, likely due to the
artefacts it introduces. Finally, using Huber loss instead of L2
or L1 loss also gives a significant gain, which we attribute to the
fact that some inputs in the data are actually unvoiced, and hence
it is useful to reduce the impact of these unvoiced examples on
the loss.

Table IV shows the results obtained when evaluating the
models in the presence of background music. We observe that
SPICE is able to achieve a level of accuracy very similar to
CREPE across different values of SNR.

Calibration

The key tenet of SPICE is that is an unsupervised method.
However, as discussed in Section III, the raw output of the pitch
head can only represent relative pitch. To obtain absolute pitch,
the intercept b and the slope s in (12) need to be estimated based
on ground truth labels, which can be obtained using synthetically
generated data without having access to any labelled dataset as
described in Section III. Fig. 8 shows the fitted model for both
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TABLE IV
EVALUATION RESULTS ON NOISY DATASETS

Fig. 8. Calibration of the pitch head output.

Fig. 9. Robustness of the RPA on MIR-1k when varying the number of
synthetically generated samples used for calibration.

MIR-1k and MDB-stem-synth as a dashed red line. In order to
quantitatively evaluate the robustness to the calibration process,
we generate harmonic waveforms withK = 3 higher-order har-
monics, with N = 11 frames and H = 512 samples. Then, we
vary the number of samplesM ∈ {2, 3, 5, 10, 20, 50}, repeat the
calibration step 100 times and compute the RPA on the MIR-1k
dataset. Fig. 9 reports the results of this experiment (error bars
represent 2.5% and 97.5% quantiles). We observe that using
as few as M = 5 synthetically generated samples are generally
enough to obtain stable results.

V. CONCLUSION

In this paper we propose SPICE, a self-supervised pitch esti-
mation algorithm for monophonic audio. The SPICE model is
trained to recognize relative pitch without access to labelled data
and it can also be used to estimate absolute pitch by calibrating
the model using just a few labelled examples. Our experimental
results show that SPICE is competitive with CREPE, a fully-
supervised model that was recently proposed in the literature,
despite having no access to ground truth labels. The SPICE
model is publicly available as a Tensorflow Hub module at
https://tfhub.dev/google/spice/1.
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