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ABSTRACT

Recent results in schema-mapping and data-exchange re-
search may be considered the starting point for a new gen-
eration of systems, capable of dealing with a significantly
larger class of applications. In this paper we demonstrate
the first of these second-generation systems, called ++Spicy.
We introduce a number of scenarios from a variety of data
management tasks, such as data fusion, data cleaning, and
ETL, and show how, based on the system, schema map-
pings and data exchange techniques can be very effectively
applied to these contexts. We compare ++Spicy to the pre-
vious generations of tools, to show that this is much-needed
advancement in the field.

1. INTRODUCTION

There are many different classes of applications that need
to exchange, correlate, or integrate data. An essential re-
quirement of these applications is that of manipulating map-
pings between sources. Mappings are executable transfor-
mations that specify how an instance of the source repos-
itory should be translated into an instance of the target
repository. We may identify two broad research lines in the
recent literature.

On one side, we have studies on practical tools and algo-
rithms for schema-mapping generation. In this case, the
focus is on the development of systems that take as in-
put an abstract specification of the mapping, usually made
of a bunch of correspondences between the two schemas,
and generate the mappings – typically under the form of
tuple-generating dependencies(tgds) [3] – and the executable
scripts needed to perform the translation. This research
topic was largely inspired by the seminal papers about the
Clio system [19, 21].

On the other side, we have theoretical studies about data
exchange. Several years after the initial schema-mapping
algorithms had been proposed, researchers developed a rich
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body of research in which the notion of a data exchange prob-
lem [9] was formalized, and a number of theoretical results
were established. In this context, the focus is not on the gen-
eration of the mappings, but rather on the characterization
of their properties and of their solutions.

We can sketch a line of evolution in schema-mappings and
data exchange systems, through three main generations.

First-Generation Systems The first generation of sche-
ma-mapping systems – primarily Clio [21], but also HePToX
[5], and the early version of Spicy [6]1 – were focused on
the process of generating complex logical dependencies (i.e.,
tgds) based on a nice and user-friendly abstraction of the
mapping provided by users under the form of value corre-
spondences. It is interesting to note that they proposed a
rather general data model, based on nested relations, that
allowed for the treatment of both relational and XML-based
mapping tasks.

These systems also had a limited data-exchange support,
in that they were able to generate scripts (for example in
SQL or XQuery) to execute the mappings and materialize
a target solution. In this process, several key notions were
introduced, like the one of Skolem functions to handle exis-
tentially quantified variables [21].

However, at that stage, the systems suffered from a ma-
jor drawback: these systems failed to generate solutions of
good quality. They were mainly restricted to canonical so-
lutions [9], which tend to include significant redundancy, as
shown in [16, 17].

The Intermediate Generation Once the theory of data-
exchange had become more mature, it was clear that pro-
ducing solutions of quality was a critical requirement. The
notion of a core universal solution [11] was formalized as the
“optimal” solution, since it is universal, i.e., it does not con-
tain any arbitrary information that does not follow from the
source instance and the mappings, and among the universal
solutions is the one of the smallest size.

Sophisticated algorithms were developed [11, 13, 14] to
post-process a canonical solution generated by a schema-
mapping tool, and minimize it to find its core [20]. These
tools have the merit of being very general, but fail to be
scalable: even though the algorithms are polynomial, their
implementation requires to couple complex recursive com-
putations with SQL to access the database, and therefore
hardly scale to large databases. In fact, empirical results

1Notice that also the recent OpenII [23] integration suite – that
supports a broader class of integration tasks – incorporates a
Clio-like first-generation mapping module.
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show that they are hardly usable in practice due to unac-
ceptable execution times for medium size databases [16, 17].

A different approach to the generation of core solutions
was undertaken in [24, 16, 17]. In these proposals, scalability
is a primary concern. Given a mapping scenario composed
of source-to-target tgds (s-t tgds), the goal is to rewrite the
tgds in order to generate a runtime script, for example in
SQL, that, on input instances, materializes core solutions.
This is a key requirement in order to embed the execution
of the mappings in more complex application scenarios, that
is, in order to make data-exchange techniques a real “plug
and play” feature of integration applications. +Spicy

2 [16,
18] is an example of mapping tool of this generation.

However, these tools still have some serious limitations,
that prevent their adoption in real-life scenarios. We may
summarize these limitations as follows.

(a) They have limited support for target constraints. Han-
dling target constraints – i.e., keys and foreign keys, rep-
resented by egds and target tgds [9], respectively – is a
crucial requirement in many mapping applications. Notice
that foreign-key constraints were at the core of the origi-
nal schema-mapping algorithms, and, under appropriate hy-
pothesis, can always be rewritten as part of the source-to-
target tgds [10]. Therefore, the main problem is represented
by key constraints. This intermediate generation of tools
cannot handle key constraints in a scalable way. Either
they employ the post-processing approach to enforce keys
– in which case the computation of the core fails to scale to
large databases, as shown in [15] – or were limited to gen-
erate scalable SQL script for scenarios with source-to-target
tgds only, and no egds [16, 18].

(b) They are limited to relational scenarios, and cannot han-
dle XML or nested datasets. This is a consequence of the
fact that data-exchange research has primarily concentrated
on the relational setting, and for a long time no notion of
data exchange for more complex models was available. In
a way, this is a setback with respect to the early systems,
which had supported nested relations since the beginning. It
is interesting to note that a benchmark for mapping systems
has been recently proposed [1]. However, none of the tools
of the intermediate generation can be evaluated using the
benchmark – for example in order to compare the quality of
their solutions – since most of the scenarios in the bench-
mark refer to nested structures, and these systems are not
capable to generate core solutions for a nested data model.

++Spicy: a Second-Generation Tool Two recent re-
sults have paved the way towards the emergence of a fully-
fledged second-generation schema-mapping and data-excha-
nge tool.

(a) On the one side [15], the core-oriented rewriting algo-
rithms developed in [16, 18] have been extended to handle a
very large class of mapping scenarios with target functional
dependencies, i.e., target egds. This is a significant advance-
ment, as keys are very important in all cases in which data
coming from different sources needs to be integrated and
correlated.

(b) On the other side, a theory of XML data exchange [2,
7] was developed. While the XML setting studied in these
papers is very general, and, for its generality, leads to sev-
eral negative results, important properties were established
2Pronounced “more spicy”.

for the fragment of XML data exchange in which the data
model is restricted to correspond to nested relations [22].
A very important result was reported in [7]: the authors
show that the generation of universal solutions for a nested
scenario can be reduced to the generation of solutions for a
traditional, relational scenario, even in the presence of tar-
get constraints. The authors also provide an algorithm to
perform the reduction.

++Spicy
3 is the first example of a second-generation map-

ping tool based on these very recent algorithms. In this
demo:

(i) we show how ++Spicy can deal with different data man-
agement tasks, including data fusion, data cleaning and ETL
scenarios, which, in our opinion, represent very promising
areas of application of the latest schema-mappings and data-
exchange techniques;

(ii) we compare ++Spicy with previous-generation and com-
mercial mapping systems, and show how it is capable to
generate optimized SQL and XQuery code in a fully auto-
mated way based on a very simple and intuitive graphical
specification of the mapping, even in the presence of nested
sources and target constraints; with respect to previous sys-
tems, which were restricted to rather simplistic and unreal-
istic examples, or failed to generate compact solutions, we
show that the algorithms embedded in the engine enable the
management of more realistic and complex tasks;

(iii) we show that ++Spicy can efficiently compute core so-
lutions even for large databases and large scenarios; more-
over, its capability of producing executable scripts in SQL
or XQuery facilitates the process of executing the actual
exchange outside of the system, by running the scripts in
conventional engines.

Notice that, by the time of the conference, the system will
be made freely available under an open-source license.

2. DEMONSTRATION

Figure 1: Mapping GUI.

In the demonstration we show how the user can specify
mapping tasks with ++Spicy in a natural and friendly way
by using the GUI in Figure 1. As it is common, the user
loads and manipulates schemas and instances – both rela-
tional and XML – with their constraints, possibly adding
target keys by dragging and dropping attributes. Then, s/he
draws arrows among elements of the schemas in order to de-
fine the desired transformation. Such arrows express the

3Pronounced “much more Spicy”.
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equivalence relationship among elements, independently of
the underlying data model or of logical design choices; as an
alternative, a module is available to load a set of pre-defined
tgds in logical form from a text file.

Inputs to the system are a source and a target schema,
along with their key and foreign-key constraints, an ab-
stract specification of the mapping in terms of correspon-
dences, and one or more source instances. The output is an
executable transformation, that can be run on the source
instance to generate a core solution for the target. The sys-
tem hides the technical details of the tgd generation and
rewriting phase, and automatically generates an SQL or
XQuery script that can be fed to an external engine (e.g.,
PostgreSQL, Saxon, etc) to generate the target instance.

In the demonstration we let the audience interact with
++Spicy using a set of schemas including relational ones
with keys, nested XML schemas with keys, and scenarios
taken from the schema mapping benchmark [1]. In particu-
lar, we focus on four classes of scenarios, as discussed in the
following paragraphs, to highlight the practical impact of a
second generation mapping system. For each scenario, we
compare the output of ++Spicy to that of alternative sys-
tems (previous generation ones, commercial ones 4) in terms
of quality results and of the execution times.

Data-fusion Consider the data-fusion scenario in Figure 2.

Figure 2: Mapping person data.

It requires to merge together financial data from three differ-
ent source tables (Figure 2.a.): (i) a table about subscribers
of pension funds; (ii) a table with the email addresses of
the people receiving the company mailing list; (iii) a table
about clients and their check accounts. The target schema
contains two tables, one about persons, the second about
accounts. On these tables, we have two keys: name is a key
for Person, while number is a key for Account.

Based on the correspondences among elements, as repre-
sented in Figure 1, a first-generation mapping system gen-
erates for this scenario several s-t tgds, which specify how
data should be moved from the source to the target. Target
egds can be used to encode the required key constraints on
the target, as follows. Note how the third tgd, m3, invents
a value to perform a vertical partition of the Client table.

4Such as Altova MapForce (http://www.altova.com/mapforce)
or StylusStudio (http://www.stylusstudio.com).

m1. ∀n, pf : Subscriber(n, pf) → ∃Y1, Y2 :Person(n, pf, Y1, Y2)
m2. ∀n, e : MailingList(n, e) → ∃Y1, Y2 :Person(n, Y1, e, Y2)
m3. ∀n, acc : Client(n, acc) →

∃Y1, Y2, Z : (Person(n, Y1, Y2, Z) ∧ Account(Z, acc))
e1. ∀n, p, e, a, p

′, e′, a′ :Person(n, p, e, a) ∧ Person(n, p′, e′, a′)
→ (p = p′) ∧ (e = e′) ∧ (a = a′)

e2. ∀n, i, i
′ : Account(i, n) ∧Account(i′, n) → (i = i′)

However, as first-generation systems ignore egds, by using
such s-t tgds the best we can achieve is to generate efficiently
a pre-solution, i.e., a solution for the s-t tgds only, as shown
in Figure 2.c. It is easy to see that it is unsatisfactory as it
violates the required key constraints and suffers from an un-
wanted entity fragmentation effect: information about the
same entities (e.g., Abi, Perry or the account 001/25 ) is
spread across several tuples, each of which gives a partial
representation of the entity. If we take into account the
usual dimensions of data quality [4], such an instance must
be considered of very low quality in terms of compactness
(or minimality). In fact, on large source instances, the level
of redundancy due to entity fragmentation can seriously im-
pair both the efficiency of the translation and the quality of
answering queries over the target database.

Based on these requirements, it is natural to desire the
generation of a solution as the one shown in Figure 2.b.

During the demo, we show how previous generation sys-
tems are unable to generate the desired solution. We also
demonstrate how the core solution can be materialized by
chasing the dependencies above with a post-processing step
to minimize the pre-solution. Unfortunately, existing chase
engines that are capable of performing this task hardly scale
to large databases [16]. Using the algorithms in [15], the
engine in ++Spicy generates an SQL script that is order
of magnitude faster (e.g., seconds vs hours for the same
database).

STBenchmark STBenchmark [1] proposes various map-
ping scenarios with nested sources. For each scenario, it
proposes one or more sample source instances, and the ex-
pected solutions. Interestingly, there are no key constraints
in the benchmark. A key observation is that, for all mapping
scenarios in the benchmark, the expected solution always
corresponds to the core.

During the demonstration, we will compare the various
mapping systems, including commercial ones, based on their
performance on the mapping tasks in STBenchmark. Some
scenarios will be enriched by adding key constraints. In all
cases in which sources are nested, relational mapping sys-
tems are not applicable. The remaining ones show signif-
icant differences in terms of quality of the generated solu-
tions. It is also important to note that there is a significant
trade-off between the quality of the output and the amount
of effort required to specify the mapping, especially for com-
mercial systems. ++Spicy provides a very good compro-
mise, since it generates core solutions in a scalable way with
minimal user interaction.

Data-cleaning Commercial data cleaning systems are ba-
sed on approaches in which cleaning actions have to be ex-
plicitly specified by users using transformation operations.
They usually focus on data profiling, to identify data quality
issues, and record matching, to remove duplicate entities,
by using ad-hoc techniques and rules with special atten-
tion for specific types of data, such as addresses or phone
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numbers. A more principled approach to cleaning is based
on constraints [12]. Consider for instance the database E

in Figure 3.a as given. In ++Spicy we let the user de-

Figure 3: Data cleaning example.

fine a key constraint for the attribute name. To enforce the
new constraint, the system rewrites the corresponding egd
e. Employees(n, a, s)∧Employees(n, a′, s′) → (a = a′)∧ (s =
s′) into a data exchange from the given database E to a
new empty one with the same structure plus the egd e. In
this setting, the algorithm described in the previous example
produces a schema mapping which outputs the database in
Figure 3.b. Then, thanks to the key constraint on the Em-
ployees table, the system detects the inconsistency on Paul’s
age, and reports it to the user, which must decide how to
handle it by properly curating the data. We will show how
the resulting scripts scale extremely well even with large
databases with hundreds of thousands of tuples.

ETL ETL tools are widely used in data warehousing envi-
ronments to express data transformations as a composition
of operators in a procedural fashion. Operators vary from
simple data mappings between tables to more complex ma-
nipulations, such as joins, splits of data and merging of data
from different sources. Usually, these tools are used by de-
velopers that want to achieve an efficient implementation of
a data exchange task.

Compared to mapping systems, the superior popularity of
ETL systems is due to their richer semantics, which allow
them to express more operations [8], and to the declarative
nature of schema mapping tools that can become a limit
with complex transformations where intermediate steps are
needed. For this reason, it is important to support scenarios
where flows of mappings, defined using intermediate results,
are preferable to a single, monolithic mapping with a large
number of complex s-t tgds. ++Spicy allows the design of
chains of mappings and introduces functional dependencies
in the target, thus enabling operations that were not possi-
ble with first-generation mapping tools. We will show how
the expression of data exchange scenarios by mapping tools
is preferable to ETL systems in terms of easiness of use,
without losing efficiency in the execution, by comparing the
same scenario implemented with the two paradigms. To give

Figure 4: ETL graph.

an intuition of the minimal input required by ++Spicy, con-
sider that for the ETL scenario in Figure 4 only two lines and
two labels are required to express the same data exchange
scenario, as exemplified by the following s-t tgd:

m. Students(n1, b1, c1, p1) ∧ Emps(n1, d1, p1, e1)∧
(p1 = ‘Msc’) → Master(N1, b1, d1, ‘M

′)

To support complex flows of mappings, ++Spicy intro-
duces two main operators. The first is used for chaining
mapping scenarios. The second can be used to merge the
output of different scenarios.
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