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In self-organized critical (SOC) systems avalanche size distributions follow power-laws.

Power-laws have also been observed for neural activity, and so it has been proposed

that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo,

evidence for SOC is still lacking. Therefore, we analyzed highly parallel spike recordings

from awake rats and monkeys, anesthetized cats, and also local field potentials from

humans. We compared these to spiking activity from two established critical models: the

Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental

differences between the neural and the model activity. These differences could be

overcome for both models through a combination of three modifications: (1) subsampling,

(2) increasing the input to the model (this way eliminating the separation of time scales,

which is fundamental to SOC and its avalanche definition), and (3) making the model

slightly sub-critical. The match between the neural activity and the modified models held

not only for the classical avalanche size distributions and estimated branching parameters,

but also for two novel measures (mean avalanche size, and frequency of single spikes), and

for the dependence of all these measures on the temporal bin size. Our results suggest

that neural activity in vivo shows a mélange of avalanches, and not temporally separated

ones, and that their global activity propagation can be approximated by the principle that

one spike on average triggers a little less than one spike in the next step. This implies

that neural activity does not reflect a SOC state but a slightly sub-critical regime without

a separation of time scales. Potential advantages of this regime may be faster information

processing, and a safety margin from super-criticality, which has been linked to epilepsy.

Keywords: self-organized criticality, human intracranial recordings, spike train analysis, highly parallel recordings,

spiking neural networks, multiunit activity, cortex, monkeys

INTRODUCTION
Avalanches, earthquakes, and forest fires are all cascades of activ-

ity in otherwise quiescent systems (Gutenberg and Richter, 1944;

Bak et al., 1987; Drossel and Schwabl, 1992; Frette et al., 1996;

Measures, variables, and abbreviations: α, connection strength or synaptic
strength; β, scaling exponent (DFA); σ , branching parameter; σ ∗, estimated
branching parameter; τ , critical exponent of the avalanche size distribution; bs,
bin size; DFA, detrended fluctuation analysis; f(s), avalanche size distribution; f (s =

1, bs), frequency of avalanches of size s = 1 and their dependence on the bin size; h,
rate of input spikes, also called drive (Hz); <s>, mean avalanche size; <IEI>, aver-
age inter event interval; <IEI> = 1/R; N, number of sampled (model) neurons;
r, rate per unit (Hz); R, population rate (Hz); STS, separation of time scales.

Dickman et al., 2000). Most of the time, the size of these cas-

cades, or avalanches, is small, but sometimes avalanches are large

enough to span the entire system. The size s of an avalanche is

the number of units activated during a cascade, and interestingly,

the distribution f(s) of avalanche sizes in the systems mentioned

above precisely follows a power law:

f (s) ∼ s−τ (1)

where τ is the critical exponent. Critical exponents determine

the macroscopic behavior of a system, and indicate the system’s

universality class (Wilson, 1975).
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Power law distributions are characteristic for second-order

phase transitions, where the system is in a “critical” state. If the

system evolves to reach a critical state without fine-tuning of

control parameters, the system is termed self-organized critical

(SOC) (Bak et al., 1987; Jensen, 1998; Nagler et al., 1999; Beggs

and Plenz, 2003; Frigg, 2003; Beggs and Timme, 2012; Pruessner,

2012).

SOC models show avalanches or cascades of activity across

their units, which may arise from simple local interactions (Bak

et al., 1987; Drossel and Schwabl, 1992; Olami et al., 1992). These

avalanches can include all units in the system. However, most

avalanches are small or intermediate in size. Note that avalanches

of size one, i.e., only one unit is active and no further activity

is triggered, have the highest chance of occurring (see Equation

1). Overall, avalanches are not characterized by an average size,

i.e., the size distribution is scale-free, and only the true size of the

system restricts the avalanche size range.

In nervous systems, scale-free properties have been observed

in local field potentials (LFP), electro- and magnetoencephalo-

graphic (EEG, MEG) activity, and BOLD signals (Linkenkaer-

Hansen et al., 2001; Beggs and Plenz, 2003; Petermann et al.,

2009; Hahn et al., 2010; Ribeiro et al., 2010; Tetzlaff et al., 2010;

Friedman et al., 2012; Poil et al., 2012; Tagliazucchi et al., 2012;

Priesemann et al., 2013; Shriki et al., 2013). They have been found

in different preparations, ranging from cultures to in vivo prepa-

rations, and across different species and phyla: leeches, rats, cats,

monkeys, and humans (Linkenkaer-Hansen et al., 2001; Beggs

and Plenz, 2003; Mazzoni et al., 2007; Pasquale et al., 2008;

Petermann et al., 2009; Priesemann et al., 2009, 2013; Hahn et al.,

2010; Ribeiro et al., 2010; Tetzlaff et al., 2010; Friedman et al.,

2012; Poil et al., 2012; Tagliazucchi et al., 2012; Shriki et al., 2013).

The prevailing hypothesis is that scale-free neural activity arises

from SOC behavior (Linkenkaer-Hansen et al., 2001; Beggs and

Plenz, 2003; Mazzoni et al., 2007; Beggs, 2008; Pasquale et al.,

2008; Petermann et al., 2009; Shew et al., 2009; Hahn et al., 2010;

Ribeiro et al., 2010; Tetzlaff et al., 2010; Friedman et al., 2012;

Poil et al., 2012; Tagliazucchi et al., 2012; Gal and Marom, 2013;

Shriki et al., 2013). However, there are also studies that reported

deviations from scale-free activity: Neural activity was shown to

exhibit sub-critical and super-critical behavior during develop-

ment in vitro (Pasquale et al., 2008; Tetzlaff et al., 2010; Friedman

et al., 2012); and there are also studies in which in vivo neural

activity appeared as sub-critical (Bedard et al., 2006; Priesemann

et al., 2013). Thus, healthy brains seem to be capable of organizing

themselves into a range of states that are not necessarily SOC.

Nevertheless, because neural activity from coarse scale mea-

sures (e.g., population spikes, LFP, MEG, BOLD) often do

show power law scaling, the same was expected for more

basic constituents of neural activity, namely the spiking activity.

Surprisingly, however, spike avalanches often deviated from

power law scaling (Bedard et al., 2006; Pasquale et al., 2008;

Hahn et al., 2010; Tetzlaff et al., 2010). In fact, to the best of our

knowledge, there is not a single study that demonstrated power

laws for spikes in awake animals. The deviations from power law

scaling in previous studies were attributed either to sub- or super-

critical states (Pasquale et al., 2008; Tetzlaff et al., 2010), or to

subsampling effects (Ribeiro et al., 2010). Subsampling refers to

the technical constraint that only a fraction of all neurons in a

given area can be measured. Subsampling can impede the obser-

vation of power law distributions in SOC models (Priesemann

et al., 2009, 2013; Ribeiro et al., 2010; Girardi-Schappo et al.,

2013) and hence a critical system can be misinterpreted as sub- or

super-critical (Priesemann et al., 2009). Therefore, subsampling

effects need to be taken into account when interpreting spike

avalanches.

An important property of SOC systems, which is potentially

absent in neural activity, is the separation of time scales (STS)

(Bak et al., 1987; Drossel and Schwabl, 1992; Clar et al., 1996;

Dickman et al., 2000; Pruessner, 2012; Hartley et al., 2013)

whereby pauses between avalanches last much longer than the

avalanches proper. For example, forest fires last for a much shorter

time than it takes to regrow the forest. Similarly, earthquakes

are much more rapid than the time it takes to build shear stress

through plate tectonics (Drossel and Schwabl, 1992; Clar et al.,

1996, 1999; Baiesi and Paczuski, 2004). Likewise, in the classical

sandpile model, scale-free avalanche distributions are observed

only if the grains are dropped at a low enough rate (Vespignani

and Zapperi, 1997, 1998). This low rate of external input, called

drive, is a necessary condition for the long pauses and hence for

SOC (Bak et al., 1987; Drossel and Schwabl, 1992; Clar et al., 1996;

Dickman et al., 2000; Pruessner, 2012; Hartley et al., 2013).

Neither the neural activity we analyzed here, nor that from

previous studies of neural avalanches showed STS: There were

no long pauses in the neural activity which could be seen as

natural separations between avalanches. Without such pauses,

unambiguous detection of the beginning and the end of an indi-

vidual avalanche is not possible. Hence, the method of temporal

binning had been introduced as a workaround (Beggs and Plenz,

2003) (Figure 1). Here, the choice of the bin size determines what

is considered to be a pause between avalanches. Consequently,

avalanche sizes necessarily change with the choice of the bin size

(see e.g., Beggs and Plenz, 2003; Priesemann et al., 2009, 2013;

Hahn et al., 2010). This implies that also the avalanche size distri-

butions and, more importantly, power law exponents change with

the choice of bin size (Beggs and Plenz, 2003; Priesemann et al.,

2013). This is in marked contrast to fully sampled SOC systems,

in which the power law exponents do not change under temporal

binning as a result of STS. These differences have to be considered

when comparing neural activity in vivo to that of classical SOC

models.

As indicated above, in classical SOC systems each avalanche

is separated from the next one by a long pause. In contrast, in

driven SOC systems, i.e., SOC systems without STS, avalanches

can meet, merge, intermingle, and split up: They form a mélange.

As we demonstrate in this paper, neural activity indeed resembles

such a mélange of avalanches instead of well-separated ones.

To investigate the differences between in vivo and model activ-

ity, we analyzed spike avalanches recorded in awake rats and mon-

keys, anesthetized cats, and LFP avalanches recorded in humans,

and compared these in vivo avalanches to avalanches from an

established SOC model (Bak-Tang-Wiesenfeld model) (Bak et al.,

1987; Dunkelmann and Radons, 1994; Priesemann et al., 2009,

2013), and to those from a stochastic branching model (Harris,

1963; Haldeman and Beggs, 2005).
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FIGURE 1 | Definition of avalanches sizes, branching parameter σ ∗,

and their change with bin size. (A) To define avalanches, temporal

binning (boxes) is applied to a sequence of spikes (red dots and

diamonds). Empty bins are marked in blue. An avalanche is an ensemble

of spikes in a sequence of non-empty bins. Its size s is the total

number of spikes, as indicated above the bins. The branching parameter

σ ∗
i is the ratio between the number of spikes in one bin, divided by the

number of spikes in the previous bin, as indicated below the bins. If the

previous bin was empty, σi is “not defined” (nd). The estimated

branching parameter σ ∗ for an experiment is the average over all σ ∗
i , σ ∗

= <σ i>. (B) When increasing the bin size, the observed avalanches can

become larger, since pauses “disappear”. The branching parameter σ ∗

also changes with the bin size. (C) Under subsampling, only a fraction of

the units are recorded (red dots), while others are missed (gray). Thereby

subsampling can split a single avalanche into several parts. (A–C) In the

model, spikes are either triggered externally by some drive (red

diamonds), or they are evoked by presynaptic activity (red dots). If a

second avalanche is triggered while the first one is still active [last

avalanche in (A)], then the two avalanches cannot be told apart and are

evaluated as if they were a single one.

RESULTS
As a widely held belief states that mammalian nervous sys-

tems operate in a SOC state, we first briefly recapitulate

the theoretically expected avalanche statistics in this state by

example of a SOC model and a critical stochastic branch-

ing model. We then show that all of the analyzed neural

avalanches in vivo showed clear deviations from the expected

statistics.

The remainder of the results then demonstrates how two sim-

ple and neurophysiologically well-motivated conceptual changes

in the models can serve to align model and in vivo activity with

respect to a large set of measured quantities.

DIFFERENCES BETWEEN NEURAL DYNAMICS IN VIVO AND SOC

The first example model is a simple neural network model, which

is known to have SOC properties (Bak et al., 1987). Furthermore,

this SOC model has been shown to match LFP avalanches in mon-

keys and humans (Priesemann et al., 2009, 2013). In our study,

the model consisted of 2500 non-leaky integrate-and-fire neurons

arranged as a 50 by 50 grid with nearest neighbor connections

of synaptic strength α = 1 (see Methods). In this model, spikes

are either evoked by activity from presynaptic neurons, or by a

random external input to a neuron. This input is termed drive

and has a rate h. For h → 0 and α = 1, this model obeys local

energy conservation (Bonachela et al., 2010), and is equivalent

to the well-known SOC Bak-Tang-Wiesenfeld model (Bak et al.,

1987). h → 0 is necessary for a model to be SOC (Vespignani

and Zapperi, 1997, 1998; Dickman et al., 2000), because it guar-

antees the obligatory STS. h → 0 is implemented by applying

external input only when there is otherwise no activity in the

model. The input triggers an avalanche, i.e., a cascade of events.

The size s of an avalanche is defined as the total number of spikes

evoked by a single input spike. This model is known to show a

power law for f(s) with slope τ ≈ 1 (Figure 2A), and a cutoff at

s ≈ 1000 (Bak et al., 1987). This cutoff reflects the finite size of

the model (Bak et al., 1988; Kadanoff et al., 1989; Ktitarev et al.,

2000).

To later demonstrate that our conclusions are not specific to

the SOC model above, we simulated a second model, namely

a stochastic branching model (see Methods) (Harris, 1963;

Haldeman and Beggs, 2005). Like the SOC model, it was sim-

ulated with 2500 neurons, but in contrast to the SOC model,
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FIGURE 2 | Avalanche size distributions f(s) changed with the bin size for

the in vivo spike trains (D–F), and for the subsampled models (B,C,H,I).

(A) f(s) of the SOC model under full sampling did not depend on the bin size.

(B) Under subsampling (N = 100 neurons), f(s) of the same SOC model

changed with small bin sizes only. (C) In the driven model (h > 0) f(s) changed

for all bin sizes. h was chosen such that the population rate R of the 100

sampled model neurons matched R of the experiments (R ≈ 320 Hz). (D–F)

f(s) recorded in the hippocampus (awake rat), the visual cortex (anesthetized

cat), and the prefrontal cortex (awake monkey). (G–I) shows the same as

(A–C), but for a critical branching model instead of the SOC model. Dashed

lines indicate potential power law slopes to guide the eye. All f(s) are

logarithmically binned and f(s) is in absolute counts.

the k = 4 postsynaptic neurons were chosen randomly at each

step. Activity propagated stochastically, i.e., an active neuron acti-

vated each of its k postsynaptic neurons with probability p =

α/k. Like the SOC model, this model is critical for α = 1, and

sub- (super-) critical for α < 1 (α > 1). The critical stochastic

branching model with STS also showed a power law distribution

for f(s), but with a different critical exponent (τ = 1.5,

Figure 2G).

The results for the stochastic branching model and the SOC

model were qualitatively the same for all measures used below.

The similarity also held when the models were modified analo-

gously. Therefore, in the following, we mainly report results for

the SOC model.

Our critical models were contrasted with highly parallel

recordings from awake rats (hippocampus), awake monkeys (pre-

frontal cortex), and from an anesthetized cat (visual cortex

area 18). The avalanche distributions f(s) from these in vivo

spike recordings were all very similar, but clearly differed from

those obtained from the fully sampled critical models (compare

Figures 2D–F with A,G). In particular, the in vivo f(s) neither fol-

lowed a power law, in contrast to what is expected for a SOC

system, nor an exponential distribution, as would be expected

for independent Poissonian activity (Figures S1 and S2 show the

in vivo f(s) for each experiment in double-logarithmic and log-

linear scales, respectively). Quantitatively, the f(s) were best fit in

16 out of 17 experiments by a lognormal distribution
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f (s) ∼ e
−

(ln(s)−µ)2

2σ2

with parameters µ = 0.89 ± 0.25 and variance σ 2 = 1.2 ± 0.1,

given a bin size of 1 average inter event interval (<IEI>) (see

Clauset et al., 2007; Priesemann et al., 2013 for details). Based

on these parameters the maximum of f(s) was at s = 0.87 ±

0.38 (mean ± SD), which means that f(s) was monotonically

decreasing. Two alternative distributions, namely stretched expo-

nentials and power laws with cutoff, also provided reasonable

fits, with likelihoods ∼1% worse than the one for the lognormal

distribution.

Interestingly, all in vivo avalanche distributions were similar

despite changes in the population rate R by a factor of 50 (from

37 to 1560 Hz) across the 17 experiments (Figures S1, S2).

Note that some of the f(s) of the rat experiments could also be

approximated by a power law, but at most for one selected bin

size (Figure S3A). When slightly changing the bin size, the f(s)

clearly deviated from power law scaling (Figure S3B). This is in

stark contrast to the behavior expected for SOC systems.

A second striking difference between critical models and

in vivo activity was that the in vivo f(s) changed with the bin size

across a range from 0.5 to 128 ms. The reason for the bin size

dependence was that in vivo recordings showed pauses of variable

length between the spikes, while SOC activity showed only the

long pauses between avalanches, which are due to STS. In order

to introduce pauses of variable length into the model avalanches,

one can apply subsampling and drop STS (see next two sections).

SUBSAMPLING INTRODUCES PAUSES AT SHORT TIME SCALES

Subsampling refers to the problem that we are far from being

able to sample all spikes from all neurons, even for a single brain

area (Figure 1C). Thus, for a careful comparison between in vivo

recordings and models, the activity from the models should be

subsampled in the same manner as in the experiments. Because

in each experiment around 100 neurons were recorded in paral-

lel, in the model we constrained the sampling also to N = 100

randomly chosen neurons out of the 2500. We fixed the subsam-

pling by the number of neurons, and not the fraction, because

running these critical models with millions of neurons is beyond

our computational capacities, and because the qualitative results

did not change in larger models, i.e., when decreasing the fraction

(see below).

When applying subsampling, the model avalanche size distri-

bution f(s) changed with bin size (Figures 2B,H). A change in

bin size affected f(s), because subsampling introduces apparent

pauses in a single avalanche (Figure 1C). These apparent pauses

were relatively short compared to the duration of an avalanche,

and compared to the pauses between avalanches on the full model

(by definition of STS). Therefore, when subsampling, f(s) changed

only with small bin sizes but stopped to change its shape with

larger ones (Figures 2B,H).

These results also held when using a larger model and sampling

the same number of neurons, i.e., a smaller fraction of neurons. In

this case, the distance and hence the traveling time of avalanches

between sampled neurons became larger and longer, and the inter

spike intervals became unrealistically long. Nonetheless, at large

bin size, a similar fraction of small avalanches was observed (due

to STS). As a consequence, f(s) also stopped changing like in

smaller models, and never became as flat as the in vivo f(s). Hence,

the behavior of a larger model was the same as that of smaller

ones, but on a longer time scale.

Subsampling the SOC model did not only introduce a depen-

dence of f(s) on the bin size, it also affected the cutoff of f(s).

Thereby, the absolute value of the cutoff became more similar for

the model and the in vivo f(s) (Figures 2B,H).

In sum, acknowledging subsampling effects in the model

allowed for a better match between the model and the in vivo

activity, but only for small bin sizes up to a few milliseconds. For

larger bin sizes, the in vivo f(s) continued to become flatter, while

the model f(s) stopped to change their shape. This indicated that a

modification to the model dynamics itself was necessary to match

in vivo activity.

AN INCREASE IN DRIVE RATE h CREATES A MÉLANGE OF AVALANCHES

We hypothesized that in vivo and SOC activity differed because

SOC models have STS (Vespignani and Zapperi, 1997, 1998;

Dickman et al., 2000), which is necessarily absent in vivo. STS

can be eliminated from the models by increasing the drive rate

h. We increased h in such a way that the model population

rate R matched the in vivo population rate under subsampling

(h = 0.02 Hz, and R = 320 Hz; single neuron rate r in the model:

r = R/N = 3.2 Hz). In this driven SOC model, the avalanches

were no longer separated by long pauses (Figure 3B). Instead, at

any point in time, avalanches could start, meet, intermingle, split

into branches, or die out (Figures 1, 3B). In such a mélange of

avalanches, single avalanches can no longer be tracked.

The mélange of avalanches in the driven model hardly showed

any pauses when all neurons were sampled (Figure 3B). However,

under subsampling, pauses were more frequent. Thus, sub-

sampling allowed for an extraction of apparent avalanches by

applying temporal binning (Figure 1). Note that these appar-

ent avalanches do not correspond to the avalanches observed

in classical SOC models in which avalanches are separated by

long pauses, and are thereby defined unambiguously. However,

the apparent avalanches from the driven models are conceptu-

ally the same as those extracted from in vivo recordings because

avalanches in both cases are extracted with the same method.

As expected for the driven, subsampled SOC model, f(s)

changed with all bin sizes (Figures 2C,I), and thereby resem-

bled the in vivo f(s) much better than the original SOC model

(Figure 2).

DRIVEN CRITICAL AND DRIVEN SUB-CRITICAL STATES

In the following, we address the question whether subsampling

and the elimination of STS is sufficient to match the model

activity with the in vivo activity, or whether it is necessary to

introduce in addition deviations from criticality.

To tune models away from criticality, we made use of the fact

that SOC and branching models are only critical in the con-

servative limit (α = 1) (Harris, 1963; Bonachela and Muñoz,

2009; Bonachela et al., 2010). Hence, by introducing dissipation

(α < 1) these models can be made sub-critical. In fact, the model

dynamics showed a smooth transition from the “driven SOC”

state (α = 1) to pure Poisson activity (α = 0) (Figures 3, 4) with
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FIGURE 3 | The population spike rate of the (modified) SOC model

depended on the connection strength α and the rate of input spikes h

(drive). h and α were balanced such that the rate of each unit was r = 5 Hz,

except for (A), where α = 1 and h → 0 (SOC model). In (A), the broken

axes indicate that the pauses between subsequent avalanches are much

longer than the avalanche proper (separation of time scales). (B) α = 1,

h = 0.02 Hz, r = 5 Hz (driven SOC). (C) α = 0.95, h = 0.5 Hz, r = 5 Hz

(driven sub-critical). (D) α = 0, h = r = 5 Hz (Poisson). In (A–D), the

population rate time course is indicated in black; the scale bar indicates the

firing rate per neuron. Black dots show the spike raster from 100 randomly

chosen units; the blue background denotes pauses, i.e., none of the 2500

neurons spiked. Note the absence of pauses in (C,D).

decreasing α. In principle, a decrease in α also decreased the fir-

ing rate r of each unit. To still maintain a constant firing rate r,

a concomitant increase in the drive rate h was applied. In this

way, the model could make the transition from driven SOC to

Poissonian activity without a change in r (Figure 4, black line).

Given a fixed r, a decrease in α decreased the variability of the

models population rate (Figure 3).

To understand which network dynamics between driven criti-

cal and Poissonian accounted best for the in vivo spike avalanches,

we identified those measures in the model which depended most

sensitively on α under subsampling: α had a prominent effect

on the avalanche size distribution f(s), in particular how f(s)

depended on the bin size. We quantified this below using the

following avalanche measures: the mean avalanche size (<s>),

the frequency of avalanches of size s = 1 (f (s = 1)), and the esti-

mated branching parameter σ ∗. The way in which these measures

changed with the bin size depended sensitively on α. In addition,

we estimated the scaling exponent β of the “detrended fluctua-

tion analysis” (DFA) (Peng et al., 1994, 1995; Kantelhardt et al.,

2002). (Note that the scaling exponent (β) is often denoted as α

in the literature). The results of these analyses are presented in

detail below, and compared one by one to the in vivo results.

FIGURE 4 | In the model, the spike rate r of a unit depended on the

synaptic strength α and the rate of input spikes (h). With increasing h or

α, the rate of each unit increased. The black line indicates the parameter

combination of α and h, for which r = 5 Hz.

THE MEAN AVALANCHES SIZE

The mean avalanche size (<s>) from the subsampled model fol-

lowed a power law with increasing bin size for α = 1 (driven

SOC), and followed an exponential for α = 0 (Poissonian activ-

ity) (Figure 5A). For intermediate values of α, the relation

changed gradually.

For the experiments, the observed <s> at a given bin size

depended strongly on the population spike rate R that varied con-

siderably between experiments (R ranged from 37 Hz to 1.5 kHz).

To diminish the impact of R, we used a normalized bin size, i.e., a

bin size in units of average inter-event-intervals (1 <IEI> = 1/R).

Using the normalized bin size, the <s> of all experiments over-

lapped (Figure 5A, gray lines). However, the <s> did not follow a

power law with changing bin size in vivo, in contrast to the driven

critical model. In fact, the in vivo <s> was best matched by the

<s> of the driven, sub-critical models (α ≈ 0.99). Thus, com-

paring the in vivo and model <s> indicated that spike avalanches

resembled a driven sub-critical regime more closely than a driven

SOC state.

THE FREQUENCY OF AVALANCHES OF SIZE ONE

The frequency of avalanches of size s = 1, f (s = 1, bs) quanti-

fies how f(s) decayed with the bin size (bs) at s = 1, i.e., how the

intercept of f(s) with the y-axis in Figure 2 changed. f(s) at s = 1

was equally spaced from bin size 1 to 32 ms for the driven critical

models under subsampling (Figures 2C,I) which is remarkable as

it corresponds to a power law behavior of f (s = 1, bs) for the

driven SOC model (black line in Figure 5B; note that the x-axis

here is in <IEI>, and 1 <IEI> = 2 ms in the model). For the

sub-critical models (α < 1), f (s = 1, bs) decayed more steeply

than a power law. For the Poissonian case (α = 0), it followed an

exponential. In this respect, f (s = 1, bs) and <s> showed similar

behaviors with α.

f (s = 1, bs) is a promising new measure to assess criticality

under subsampling, because in contrast to many other measures,

its behavior did not change with the subsampling strategy: For the

driven SOC model, it showed power law scaling independently
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FIGURE 5 | Two new avalanche measures. (A) The mean avalanche size and

(B) the frequency of avalanches with size s = 1, f (s = 1, bs), changed with the

bin size (bs) in the model (colored) and in the experiments (gray). The colored

lines show f (s = 1, bs) for the model with varying synaptic strength α. In the

model, the drive rate h was adjusted such that each neuron spiked with r ≈ 5 Hz.

In (B), f (s = 1, bs) was normalized such that f (s = 1, bs = 1 <IEI>) = 1.

FIGURE 6 | The frequency of single events f (s = 1, bs). Decreased with

the bin size (bs) as a power law, independently of the subsampling set

in the driven SOC model (α = 1, r = 5 Hz). The subsampling set is indicated

in the right part of the figure. It was chosen as follows: blue f (s = 1, bs):

sampling 64 random units; green f (s = 1, bs): sampling 100 random units

(both, blue, and green units together); red and turquoise: sampling 8 × 8

units arranged in a grid with distance 1, and distance 5, respectively; pink

and beige: sampling 4 × 4 units with distance 1, and 5, respectively.

of the number and spatial arrangement of the sampled units

(Figure 6). However, the slope of the power law did change

due to the model’s next-neighbor topology: With smaller dis-

tances between sampled sites, the power laws became flatter

(red and pink traces in Figure 6). For the stochastic branch-

ing model, the same results held, but the power law slopes did

not change under subsampling, owing to the model’s random

topology.

The in vivo f (s = 1, bs) did not follow a power law (Figure 5B,

gray lines), and for most cases did not follow an exponential

dependency either (Figure 5B). The best approximation for the

in vivo f (s = 1, bs) was the driven, slightly sub-critical model

(α ≈ 0.99). This is in agreement with the results for <s>.

The precise value of α necessary to achieve the best match

between model and experiments potentially depended on a

number of factors (e.g., finite size effects). However, the main

result that <s> and f (s = 1, bs) observed in vivo followed nei-

ther a power law nor an exponential distribution excludes both,

critical and Poissonian states of operation.

THE BRANCHING PARAMETER σ

A widely used measure to estimate whether the in vivo avalanches

reflected a driven SOC brain state is the branching parame-

ter σ ∗, which has been used in many past studies about neural

avalanches to test whether the brain was SOC (Beggs and Plenz,

2003; Beggs, 2007; Plenz and Thiagarajan, 2007; Priesemann et al.,

2009, 2013; Shew et al., 2009; Klaus et al., 2011; Shriki et al.,

2013). The analysis of σ ∗ was initially inspired by the theory of

branching processes (Harris, 1963), in which σ = 1 guarantees

that a branching process is critical. Note, however, that estimating

σ ∗ from data may yield misleading results, because σ ∗ depends

on various factors such as the bin size (Beggs and Plenz, 2003;

Priesemann et al., 2013), the subsampling geometry (Priesemann

et al., 2009), and STS (i.e., h → 0 vs. h > 0). We next show how

σ ∗ depended on these factors in our models, and then use these

results to estimate whether the in vivo avalanches might reflect a

SOC state.

For the modified SOC model, we expect that σ equals α. For

the second model we used, i.e. the stochastic branching model,

we know by definition of the model that σ equals α. However,

when estimating σ ∗ in this model by applying temporal binning

to the model activity, finding the expected σ ∗ = α was the excep-

tion, not the rule (Figure S4; results were very similar to the ones

for the SOC model in Figure 7). In addition, σ ∗ changed with

the bin size, although the model parameter σ proper is obviously

bin size independent (Figures 7, S4). Although the estimated σ ∗

failed to approximate the true σ , σ ∗ may still be a viable approach

to compare model and in vivo activity in the following. Since the

results for both models were basically the same, we again focus on

the results for the modified SOC model.

With STS, σ ∗ always approached zero for large bin sizes inde-

pendently of model state and subsampling approach (dashed lines

in Figures 7A,B, S4). For intermediate bin sizes and under sub-

sampling, σ ∗ varied widely. σ ∗ tended to be smaller for smaller

α, but the absolute value of σ ∗ apparently cannot serve as an
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FIGURE 7 | The estimated branching parameter σ ∗ changed with bin

size. (A,B) In the model, σ ∗ depended on the synaptic strength α and the bin

size. For the driven model, the spike rate was fixed to r = 5 Hz (full lines),

while for the model with separation of time scales the drive was infinitesimal

small (h → 0; dashed lines). For h → 0 and α = 1, the model is SOC (black

dashed lines). (A) Results for the fully sampled model. (B) Results for

subsampling N = 100 neurons from the model. (C) σ ∗ for the spiking activity

recorded in monkeys, cats, and rats varied with the bin size, but was very

similar across species and experiments. It was well approximated by the

driven model with α = 0.98 (green line).

indicator for the state of the system (Figures 7A,B). Thus, under

most analysis conditions, the estimated σ ∗ did not show the

intended result (σ ∗ = α). Note that in theory, σ ∗ should not

change at all with the bin size.

Without STS (full lines in Figures 7A,B, S4), σ ∗ was ≤1 for

small bin sizes, ≥1 for intermediate bin sizes, and approximated

unity for large bin sizes – independently of the state of the model.

This shows that the widely held assumption that an estimated

σ ∗ > 1 (σ ∗ < 1) corresponds to a super-critical (sub-critical)

state of the system is likely incorrect, especially for the ubiquitous

scenario of subsampling.

Although the expected σ ∗ = 1 is neither unique to critical

systems, nor indicative of criticality, σ ∗ and its dependence on

the bin size still reflect the intrinsic dynamics of the system.

Therefore, comparing σ ∗ between in vivo and model activ-

ity may still help to indicate the state of the system. Note

that to estimate the in vivo σ ∗ we used the normalized bin

size (in <IEI>) to account for the different population rates

R in the experiments. σ ∗ was very similar across all experi-

ments (Figure 7C) despite a 50-fold difference in R. This indi-

cates once again that neural avalanches in vivo hardly dif-

fer across mammalian species (from rats to monkeys), across

brain structures (from hippocampus to prefrontal cortex), and

across cognitive states (from anesthetized to awake behaving

animals).

Given the complex dependence of σ ∗ on the bin size, how can

σ ∗ be used to estimate the precise state of the neural network?

First, for all in vivo avalanches, σ ∗ approximated unity for large

bin size (Figure 7C). However, this simply indicates that spiking

activity in vivo lacks STS. Second, the maximum of σ ∗ under sub-

sampling may be an indicator of the state. The maximum of σ ∗

increased with increasing α. For α = 1, σ ∗ showed a maximum

of ≈3 at bs ≈100 ms. [The same values held for the stochastic

branching model (Figure S4)]. For the experiments, the maxi-

mum value of σ ∗ was only around 1.4. Overall, the best match

for the in vivo σ ∗ was achieved by the driven, slightly sub-critical

models (α ≈ 0.98). This result is in line with the previous results

for f (s = 1, bs) and <s>.

FIGURE 8 | The exponent β of the DFA. Depended on the synaptic

strength α in the model (diamonds), and was affected by subsampling

(black: fully sampled model; green: subsampled model). For the

experiments, β (gray circles) and the respective mean values (gray bars)

ranged between 0.55 and 0.9.

THE SCALING EXPONENT β

In DFA, the scaling exponent β quantifies the memory decay

in a time series. β = 0.5 indicates that a time series has no

memory (uncorrelated); β ≈ 1 indicates 1/f (pink) noise; and

β ≈ 1.5 Brownian noise. We estimated β for the population rate

time series of the model (r = 5 Hz), and for each experiment.

As expected, under full sampling the model with α = 1 showed

β ≈ 1 (Figure 8, black diamonds); with decreasing α, β decreased

as well; and for α = 0 (Poisson), we found β ≈ 0.5. Qualitatively,

the same results held under subsampling, but β tended to be

underestimated (Figure 8, green diamonds).

The in vivo activity showed neither β = 1 nor β = 0.5, but β

ranged between 0.55 and 0.9. These β values correspond to those

of the sub-critical, driven model with 0.98 ≤ α < 0.999.

All the above measures indicated that driven, slightly sub-

critical models provided the best match to in vivo spike
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FIGURE 9 | Avalanche size distributions f(s) for in vivo spikes and for

spikes from the driven, sub-critical models. (A) f(s) of one awake

monkey. Dots indicate the raw f(s), while lines are the f(s) with

logarithmic binning. (B) f(s) for the driven, sub-critical models with

α = 0.99, and r = 5 Hz; model 1 denotes the modified SOC model (full

lines), and model 2 the stochastic branching model (dashed lines). (C)

f(s) of all in in vivo spike recordings (rat, cat, monkey), together with the

f(s) of the driven, subcritical models (same as in B). All bin sizes were in

average inter event intervals (<IEI>), and f(s) were normalized such that

f (s = 1, bs = 1):= 1.

avalanches. Most of these measures were derived from the

avalanche size distribution, and hence we expect a good match

between the in vivo f(s), and the f(s) of the driven models with

α ≈ 0.99. Indeed, given a normalized bin size, both sub-critical

models fitted the in vivo f(s) well (Figure 9). The small differences

for large s (s > 100) may potentially be overcome by applying

a more realistic drive instead of uncorrelated Poissonian drive,

for example one that reflects the statistics of neural activity (as

lined out here), or the statistics of our environment (Field, 1987;

Van der Schaaf and van Hateren, 1996; Simoncelli and Olshausen,

2001; Sinz et al., 2009).

LFP AVALANCHES IN HUMANS

Approximate power law distributions have been reported for

coarse measures of neural activity, such as population spikes,

LFP, EEG, MEG, and BOLD activity (Linkenkaer-Hansen et al.,

2001; Beggs and Plenz, 2003; Petermann et al., 2009; Hahn et al.,

2010; Ribeiro et al., 2010; Tetzlaff et al., 2010; Friedman et al.,

2012; Poil et al., 2012; Tagliazucchi et al., 2012; Priesemann

et al., 2013; Shriki et al., 2013). In the following, we show

that also LFP recordings in humans indicate a driven, slightly

subcritical regime, despite their approximate power law scaling

of f(s).

LFPs were recorded using intracranial depth electrodes from

five human subjects. Each subject had between 44 and 63 record-

ing contacts implanted. From these recordings, we extracted

avalanches of enhanced activity (see Methods and Priesemann

et al., 2013). The LFP f(s) closely followed a power law

(Figure 10A), and the slope of the power law decreased with

increasing bin sizes. This is in contrast to SOC systems in which

the slope does not change with temporal binning (Figures 2A,G),

and indicates that LFP avalanches, like the spike avalanches, lack

clear STS.

In general, the LFP f(s) showed a better approximation to

power law scaling than any of the spike avalanche distribu-

tions (Figures 2, 10). Despite an approximate power law scaling

for f(s), all the other measures we used here [i.e., <s>, f (s =

1, bs), σ ∗, and β] indicated a sub-critical regime: The <s>

and the f (s = 1, bs) both deviated from power law scaling

(Figure 10B); the branching parameter did not show a pro-

nounced peak (Figure 11); and the scaling exponent β of the DFA

was smaller than unity (mean(β) = 0.6; Figure 7). This is in line

with our previous study on the same data (Priesemann et al.,

2013), and with our results for spiking activity. In sum, despite

approximate power-law scaling in f(s), all the other measures indi-

cated a driven, slightly sub-critical regime on the level of LFP

activity.

DISCUSSION
This study challenges the hypothesis that mammalian brains

operate in a SOC state, as has been repeatedly suggested

(Linkenkaer-Hansen et al., 2001; Beggs and Plenz, 2003;

Haldeman and Beggs, 2005; Levina et al., 2007a; Hsu et al.,

2008; Pasquale et al., 2008; Stewart and Plenz, 2008; Petermann

et al., 2009; Priesemann et al., 2009; Shew et al., 2009; Hahn

et al., 2010; Ribeiro et al., 2010; Tetzlaff et al., 2010; Poil et al.,

2012; Tagliazucchi et al., 2012; Shriki et al., 2013). Despite

these claims, evidence for SOC was found lacking for spik-

ing data, which are generally considered an important and

reliable marker of neural activity. To test the SOC hypothe-

sis, we therefore analyzed in vivo spiking activity from three

mammalian species and local field potential recordings from the

human brain using established measures of criticality, and also

novel ones that are robust to common shortcomings of exper-

imental data, such as subsampling. We particularly focused on

systematic changes of these measures with the choice of the

bin size.

Spike avalanches from rats, cats, and monkeys, and LFP

avalanches from humans showed deviations from the behavior

expected for SOC, thereby contradicting the SOC hypothesis.

To reproduce the in vivo results and provide potential explana-

tions for their deviations from SOC, we modified the models

capable of critical behavior. We found a close match between

in vivo and model behavior (1) if those models were subsampled,
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FIGURE 10 | (A) The size distribution f(s) of LFP avalanches from intracranial

depth electrodes in humans followed power laws. The slope of the power

laws changed with the bin size (see legend). The bin size was changed over

a 1000-fold range, from sampling resolution (400 Hz, i.e., 2.5 ms) to

“gluing” everything together at bs ≈ 2500 ms. The bin size closest to one

inter event interval is marked in purple (bs = 80 ms, see Methods). (B)

Neither the mean avalanche size (<s>), nor the frequency of avalanches of

size s = 1, f(s = 1, bs), showed a power law. Each line represents the

results for one recording session (<s> in black, f (s = 1, bs) in gray).

and (2) if the STS – a fundamental property of SOC sys-

tems – was eliminated, and (3) if the models were tuned to a

sub-critical regime. As these results generalized over two very

different models, we interpret results from the in vivo record-

ings here as evidence that mammalian nervous systems operate

in a driven, sub-critical regime. This regime, albeit not critical,

was, however, remarkably similar across species and experimental

conditions.

UNIVERSAL BEHAVIOR OF SPIKE AVALANCHE DISTRIBUTIONS

ACROSS RECORDING AREAS, VIGILANCE STATES AND SPECIES

The observed avalanche size distributions f(s) were similar across

species and recording areas (hippocampus in rats, visual cortex

in cats, prefrontal cortex in monkeys). A similar universality of

f(s) across recording areas has been reported by Ribeiro and col-

leagues (hippocampus, somatosensory cortex, and visual cortex

in rats) (Ribeiro et al., 2010). Thus, avalanche activity seems to

FIGURE 11 | The estimated branching parameter σ ∗ from the LFP

avalanches in humans changed with the bin size. Each of the lines

shows the results for one recording session. (+) indicates σ ∗ = 1 and

bs = 80 ms ≈ 1 <IEI> to guide the eye.

be independent of the function and the precise anatomy of an

area. This might either indicate that avalanches are not a sen-

sitive measure of neural dynamics, or that activity propagation

must follow principles that are independent of the specific role

that a brain area plays in information processing. The first argu-

ment is not likely applicable, since avalanches change under data

shuffling and they sensitively reflect the correlation structure in

the data (e.g., Figure 1 in Priesemann et al., 2013). The second

argument might indeed hold. Hence, the challenge is to identify

the principle that gives rise to these apparently universal spike

avalanche distributions. This principle may in fact be very simple.

As discussed below, our modified SOC model, as well as a simple

branching model, suggests that on average one spike gives rise to

a little less than one subsequent spike, and that quiescence in the

population activity is prevented by “input spikes” which trigger

avalanches at a low rate. This principle differs from SOC, where

one spike on average gives rise to exactly one subsequent spike,

and the rate of input spikes approaches zero (STS). As a conse-

quence, SOC activity shows only one avalanche at a time, while

the driven, slightly sub-critical regime shows instead a mélange of

avalanches.

EMPIRICAL AVALANCHE DISTRIBUTIONS RULE OUT THE CRITICAL

AND THE POISSON STATES

Let us first summarize the conclusions that can be drawn from

the analyses of the in vivo spike avalanches alone, without refer-

ring to modeling. For f(s), neither was the power law scal-

ing found, that is characteristic for SOC, nor did the novel

measures (f (s = 1, bs), <s>) support the hypothesis of criti-

cal behavior. Thus, the hypothesis that spike avalanches show

signs of SOC can be ruled out. In addition, we can rule out

the hypothesis of largely independent Poissonian behavior of

the spiking units (that is often used in models), because in

this case the avalanche distributions should have shown expo-

nential behavior, which was not observed. We therefore con-

clude that spiking activity is neither (self-organized) critical nor

Poissonian.
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LIMITATIONS OF THE MODELS AND MEASURES

The SOC model used here was admittedly simple – it comprised

neither inhibitory connections nor leakage in the neurons; synap-

tic connections had a homogeneous nearest-neighbor topology

and were all of identical strength α. We chose this model because

the basic variant (σ = 1, h → 0; i.e., the Bak-Tang-Wiesenfeld

model; Bak et al., 1987) is extensively studied in the context of

SOC (De Menech et al., 1998; Jensen, 1998; Vespignani et al.,

1998; Dickman et al., 2000; Dhar, 2006; Pruessner, 2012). The

second model we used was a stochastic branching model (Harris,

1963; Haldeman and Beggs, 2005). It was set up to be compa-

rable to the SOC model, but had a random topology, and the

activity propagated stochastically with p = α/k. In this model,

the number of connections k hardly affected the results (see also

Haldeman and Beggs, 2005).

For both models, the avalanche dynamics was qualitatively

similar. Hence, the model results were not specific to the topology

(local vs. random), the number of connections k, and the pre-

cise spike propagation mechanisms (deterministic vs. stochastic).

In contrast, implementing leaky model neurons may hinder SOC

altogether (Bonachela and Muñoz, 2009; Bonachela et al., 2010).

This in itself is an argument against the hypothesis that neural

activity is SOC, but it could still be “quasi-critical” (Bonachela

and Muñoz, 2009; Bonachela et al., 2010). However, our results

indicate sub-criticality.

We note that the power law scaling observed for the novel mea-

sures (f (s = 1, bs), <s>) in the critical models has not been

derived analytically yet. However, in both critical models the

novel measures showed power law scaling despite the different

topology and the different spike propagation rules, and hence

we expect this behavior to be characteristic for critical dynamics.

Still, for now these measures can only be used as tools to compare

model and in vivo dynamics, and not for determining scaling laws.

ON THE PLAUSIBILITY OF EXTERNAL DRIVE

Spike and LFP avalanches recorded in rats, cats, and primates

were best matched by a driven sub-critical model. The drive in

the model consisted of input spikes, i.e., of spikes not caused by

presynaptic spikes from within the model. Given their impor-

tance for a successful match between in vivo and model activity,

we may ask what the in vivo counterpart of the input spikes in

the models could be. In vivo, such input spikes can be provided

by at least three sources—by sensory input elicited by stimuli

in the outside world, from brain structures other than the one

under consideration, or by internal activation which presumably

occurs spontaneously. Such spontaneous activity can for exam-

ple be generated by pacemaker cell activity (Selverston, 2008;

Longtin, 2013), or vesicle fusion at a presynaptic terminal with-

out a preceding spike (Fredj and Burrone, 2009). With all these

known input sources in vivo, it came as no surprise that the model

required input spikes (i.e., drive) to be able to match in vivo

activity.

INPUT SPIKES MOST LIKELY DO NOT CONSTITUTE A LARGE FRACTION

OF THE OBSERVED ACTIVITY

The fraction of “input spikes” (drive) among all the spikes of the

model is negligible at criticality (α = 1). This fraction, given a

constant spike rate r, increases with tuning toward sub-criticality

(α < 1), until all spikes are input spikes in the Poisson state

(α = 0), and none arises from synaptic transmission. For exam-

ple, in the driven, slightly sub-critical model (α = 0.99), only one

in ∼3600 spikes was an input spike. To illustrate this number,

imagine a neuron that spikes with a rate of 1 Hz. This neuron

fires spontaneously (i.e., an “input spike”) only once an hour.

This example is simplistic, because it assumes that the input is

homogeneous, however, it illustrates well that the fraction of

input spikes (from the external world, other brain structures, or

of stochastic origin; see above) in the driven, sub-critical regime

that reproduced the in vivo findings is extremely small compared

to the overall level of activity.

CONCEPTUAL CONSIDERATIONS ON THE ANALYSIS OF NEURAL

AVALANCHES AND THE CRITICAL STATE

While we have so far discussed how in vivo spike avalanches sug-

gest a driven sub-critical regime of operation for mammalian ner-

vous systems, several neglected but important conceptual issues

with the analysis of neural avalanches surfaced in this study. These

are discussed in the following.

THE TERM “AVALANCHE” REFERS TO DIFFERENT ENTITIES IN SOC

MODELS AND IN THE ANALYSIS OF NEURAL DATA

Although it is rarely fully acknowledged, the term “avalanche”

refers to different entities for activity in SOC models and for

neural activity. In SOC models, an avalanche is a cascade of

events that originates from a single input event (Bak et al., 1987).

Subsequent avalanches are always separated by pauses (STS). In

contrast, for neural activity, avalanches are defined using tem-

poral binning (Beggs and Plenz, 2003), because neural activity

lacks clear pauses that could naturally serve to define the begin-

ning and end of an avalanche. Such avalanches can be defined

on any spike time series, irrespective of its origin. Consequently,

“binning-dependent avalanches” do not correspond to classical

SOC avalanches. Although these two types of “avalanches” are

different entities, it is customary to use the same term when

referring to any one of them. In the present study, we analyzed

the “binning-dependent” avalanches in both cases, in the driven

models and in the in vivo activity. This justifies a comparison

between model and in vivo activity, and was also necessary as

binning-dependent avalanches are the de-facto standard in the

analysis of neural systems, although previous studies frequently

alluded to SOC avalanches.

AVALANCHE DEFINITIONS IN HIGHLY PARALLEL RECORDINGS

For neural activity, avalanches are commonly defined using tem-

poral binning, and this definition relies on pauses. We can expect

that physiologically relevant pauses (i.e., pauses of a few ms) van-

ish in spike recordings, when activity of a large number of neurons

is recorded in parallel. For example, if each neuron spikes with

1 Hz, sampling only 100 neurons in parallel would frequently pro-

duce pauses that are several milliseconds long. However, when

sampling thousands or even millions of such neurons, pauses

would probably be absent. Without pauses, neither the classical

nor the binning-dependent avalanche definition is applicable, and

consequently, alternative approaches to assess criticality have to
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be established. Currently, these approaches threshold the activ-

ity and thereby introduce pauses (e.g., Spasojević et al., 1996;

Papanikolaou et al., 2011; Poil et al., 2012). As an alternative

approach, we propose to apply systematic subsampling. Both

approaches allow using the binning-dependent avalanche defini-

tions again.

CAN WE DETERMINE A SPECIFIC CRITICAL EXPONENT FOR NEURAL

DATA?

Avalanche size distributions of critical branching processes have

an exponent of τ = 1.5 (Harris, 1963). Since branching processes

have some resemblance with propagation of neural activity, it was

hypothesized that neural avalanches should also show τ = 1.5.

Indeed, τ = 1.5 has been observed (Beggs and Plenz, 2003, 2004;

Stewart and Plenz, 2008; Hahn et al., 2010; Priesemann et al.,

2013), but only for specific bin sizes. For example, Beggs and

Plenz showed in their seminal work that τ = 1.5 holds for one

specific bin size (4 ms), but when changing the bin size from 1

to 16 ms, the exponent decreased from 2 to 1.2 (Beggs and Plenz,

2003). Similarly, for the LFP avalanches shown here, τ = 1.5 was

observed only for a bin size of ∼80 ms, and with varying the

bin size from 2.5 ms to ∼2.5 s, the exponent changed from 3

to 1 (Figure 10A) (Priesemann et al., 2013). Changes in τ were

also observed in the driven, subsampled SOC model (Figure 2C).

Thus, drive and subsampling may underlie the variation of τ

in experiments as well. However, irrespective of its origin, it is

an open question how to reconcile the variation of τ in neu-

ral data with the fixed τ in critical systems. One proposal is to

use a specific bin size for neural data, namely one average inter-

event-interval (<IEI>) (Beggs and Plenz, 2003). However, there

is no theoretical underpinning yet why this bin size should be

preferred over others, and even for using this bin size, τ was

found to be 1.8 in spike avalanches in anesthetized cats (Hahn

et al., 2010), instead of 1.5. Thus, in neural data, there is not

a unique τ , and therefore there is no specific critical exponent

for neural activity, which would allow to link neural activity to a

universality class.

Since neural avalanche distributions change with the bin size

(Beggs and Plenz, 2003; Priesemann et al., 2009, 2013; Benayoun

et al., 2010; Hahn et al., 2010), we side with Benayoun et al., who

“do not read any significance into the particular slope observed.

[. . . ] In our view, any good model of neural avalanches must

reproduce the variability in the observed slope of the power law

with temporal bin width.” (Benayoun et al., 2010) Though we

here did not observe power laws for the in vivo f(s), our model

could reproduce the in vivo spike f(s) and their change with tem-

poral binning. It could also reproduce the bin-size dependent

changes of novel and established measures of avalanche dynam-

ics (f (s = 1, bs), <s>, σ ∗, DFA exponent). To the best of our

knowledge, this is the first model that matched not only the

avalanche properties for a single bin size, but also their changes

with changing bin size.

SUBSAMPLING EFFECTS IN THE ASSESSMENT OF CRITICALITY

Subsampling is unavoidable in spike avalanche recordings in vivo,

and is helpful when comparing neural activity to model activity

(Priesemann et al., 2009). However, subsampling was also shown

to complicate criticality analysis because it can distort avalanche

measures (Priesemann et al., 2009, 2013; Ribeiro et al., 2010).

To overcome this problem, we here developed avalanche mea-

sures that are not distorted by subsampling. One example is the

bin size dependence of the frequency of avalanches of size one

(f (s = 1, bs)). This measure robustly showed power-law scal-

ing in the driven SOC states, and exponential scaling in the

Poisson state, independent of subsampling strategies (Figure 6).

Therefore, we propose to use f (s = 1, bs) as a robust measure for

criticality analysis.

Subsampling effects can appear very strong if one uses a fixed

bin size, e.g., 1 ms as in Ribeiro et al. (2014). We used instead

a normalized bin size, which accounts for the problem that the

population rate R changes with the number of sampled neurons.

Using a normalized bin size diminished subsampling effects, and

also allowed for a comparison to the in vivo recordings.

FINITE SIZE EFFECTS IN CRITICALITY ASSESSMENT

The finite size of the critical models limited the correlation

lengths in space and time and thereby caused the cutoff in f(s)

(Figures 2A,G). In analogy, the finite size is expected to also have

caused – in the driven critical models – the cutoff at large bin size

in the novel measures (f (s = 1, bs), <s>). Since finite size effects

decrease with increasing system size, and since the in vivo spikes

were recorded in a far larger system than our model spikes, finite

size effects are unlikely to account for the deviations from power

law scaling found for the in vivo activity.

In critical models, the finite size can change the value of α,

for which the model is critical. For example, Eurich et al. (2002)

showed for their model that the critical α depended on the model

size L as αcrit = 1 − L−0.5. Thus, their finite size models with α →

1 were super-critical and showed peaks in their f(s). This was not

the case for our critical models. Our models, in contrast, appeared

to be slightly sub-critical at α = 1. This is probably due to the

open boundary conditions we used in contrast to Eurich et al.

Hence, since the finite size made our models at most sub-critical

but not super-critical, there is no concern that the observed match

of model and in vivo results at values of α < 1 is due to finite size

effects.

DIFFERENT TYPES OF CRITICAL PHASE TRANSITIONS EXIST

To better understand criticality and potential deviations from it,

it is also important to define which type of criticality one refers

to. Critical phase transitions can occur for example for the tran-

sitions from order to chaos (Bertschinger and Natschläger, 2004;

Haldeman and Beggs, 2005; Boedecker et al., 2012; Lizier, 2013),

from non-oscillatory to oscillatory regimes (Linkenkaer-Hansen

et al., 2001; Poil et al., 2012), from replay to non-replay of spatio-

temporal patterns (Scarpetta and de Candia, 2013), and from a

regime with finite to one with potentially infinite avalanche sizes

(Bak et al., 1987; Drossel and Schwabl, 1992; Olami et al., 1992;

Eurich et al., 2002; Beggs and Plenz, 2003; Haldeman and Beggs,

2005; Levina et al., 2007a,b, 2009), as known from branching

processes (Harris, 1963). One study has found that the transitions

to chaos and to potentially infinite avalanches coincide in their

model (Haldeman and Beggs, 2005), but it is unclear whether this

finding generalizes to other systems. We here want to emphasize
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that our model showed a transition to potentially infinitely large

avalanches.

CONSEQUENCES FOR INFORMATION PROCESSING AND STABILITY OF

BRAIN DYNAMICS

After having discussed evidence from in vivo spike avalanche dis-

tributions for a driven, sub-critical mode of operation, and after

having clarified conceptual issues, we now turn to the question

of what consequences these findings may have on information

processing and dynamic stability in the mammalian brain.

SUB-CRITICALITY, SUPER-CRITICALITY, AND STABILITY

Criticality is characterized by a power-law distribution of its

avalanche sizes. This indicates that avalanches of any size can

occur; even close to infinite-size avalanches may occur, provided

that the system is large enough to sustain them. Infinite-size

avalanches do occur in the super-critical regime, and have been

linked to epileptic seizures (Hsu et al., 2008; Meisel et al., 2012).

Such infinite avalanches produce runaway activity, and could

thereby impair normal brain activity. Therefore, it is unlikely that

it would be good for a normally functioning brain to be super-

critical. Sub-criticality, in contrast, never shows infinitely large

avalanches, and thus offers a safer regime for brain operation.

Thus, a slightly sub-critical regime allows the brain to avoid run-

away activity, while still allowing moderate activity propagation,

and maintaining most of the possible computational advantages

that come with criticality (Haldeman and Beggs, 2005; Kinouchi

and Copelli, 2006; Beggs, 2008; Shew et al., 2009; Shew and Plenz,

2013).

DRIVE AND INFORMATION PROCESSING

There may be good reason why neural activity in vivo does

not show a STS for its avalanches: When eliminating the STS,

avalanches run in parallel, meet, and intermingle. Thereby, the

rate of computations may be increased compared to the SOC

state. In addition, the presence of multiple, potentially interact-

ing avalanches, may enable collision-based computation, which is

one fundamental way of information modification (Lizier, 2013).

Thus, a driven state may increase the rate and capacity of neural

information processing in vivo.

CONCLUSIONS
Our analysis of in vivo data indicated that the mammalian brain

is not SOC because in vivo spiking activity differed fundamentally

from activity expected for SOC. Instead, the mammalian brain

apparently self-organizes to a slightly sub-critical regime with-

out an STS. Mechanistically, such a driven, sub-critical regime

shows a mélange of avalanches, while SOC systems, in contrast,

are characterized by temporally separated avalanches. Operating

in a slightly sub-critical regime may prevent the brain from tip-

ping over to super-criticality, which has been linked to epilepsy.

Regarding computational capabilities, which have been reported

to be optimal for SOC, a slightly sub-critical regime only deviates

little from SOC and therefore its computational capabilities may

still be close to optimal, while the non-zero drive in general may

allow for a higher rate of information processing. Taken together,

a driven, slightly sub-critical regime may strike a balance between

optimal information processing and the need to avoid runaway

activity.

METHODS
SELF-ORGANIZED CRITICAL MODEL

The SOC neural network model we used here is the Bak-Tang-

Wiesenfeld model (Bak et al., 1987), and modified versions of

it. Translated to a neuroscience context, the model consisted of

2500 non-leaky integrate and fire neurons. A neuron i spiked if its

membrane voltage Vi(t) reached a threshold �:

If Vi(t) > �, Vi(t + 1) = Vi(t) − 4

� was set to � = 0 for convenience. Note that the choice of

� does not change the activity of the model at all. The model

neurons were arranged on a 2D lattice, and each neuron was con-

nected locally to its four next neighbors, i.e., the coupling strength

αij = α for all four next neighbors of neuron i, and αij = 0 else.

Vi(t + 1) = Vi(t) +
∑

j

αij · δ(t − Tj) + H(t)

The time t was updated in ms (i.e., 1 ms effective synaptic delay).

Tj denoted the spike times of neuron j, and H(t) was a func-

tion which set a neuron above threshold with a certain Poisson

rate h. h represented the “drive” in the context of SOC. Note

that the neurons at the edges and corners of the grid had only

3 and 2 neighbors, respectively. This model is equivalent to the

well-known Bak-Tang-Wiesenfeld model (Bak et al., 1987) if

h → 0 and α = 1. In contrast, for α = 0, the model represented

independent Poisson units which spiked with rate r = h.

Subsampling (Priesemann et al., 2009) was applied to the

model by sampling the activity of 100 randomly selected neu-

rons only, and neglecting the activity of all other neurons. To

simulate specific subsampling effects, the sampled neurons were

not chosen randomly, but arranged in specific configurations (see

Figure 6, right part). Here the sampled neurons were arranged to

have very small or very large distances. For the small distances,

4 × 4 or 8 × 8 neurons from a compact, central subset were sam-

pled (Figure 6, red and pink), and for the large distances, 4 × 4

or 8 × 8 neurons with distance 5 grid units between them were

sampled (Figure 6, turquoise and beige).

STOCHASTIC BRANCHING MODEL

In addition to the SOC model, we also simulated a classical

stochastic branching model. In this model, a branching process

(Harris, 1963; Haldeman and Beggs, 2005) was mapped on a grid

of neurons. An active neuron activated each of its k postsynap-

tic neurons with probability p = α · 1/k. As in the SOC model,

this model was critical for α = 1 in the infinite size limit, and

subcritical (supercritical) for α < 1 (α > 1). In contrast to the

SOC model, here the postsynaptic neurons were assigned ran-

domly at each step. The other parameters were analogous to the

SOC model: The model had 2500 neurons with k = 4 connections

each, and α and h were balances such that neurons spiked with

r = 5 Hz (except if h → 0). The open boundary conditions were

implemented by defining pdiss = 0.001 as the probability that a

neuron projected “outside of the grid,” i.e., the probability that an
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activation of a postsynaptic neuron was not effective. Note that

pdiss > 0 makes the model slightly subcritical. Subsampling was

implemented in the same manner as in the SOC model. Note

however that spatial distances have no meaning in this model

because of its random topology. Results for this model were qual-

itatively similar to those of the SOC model. Therefore, we usually

reported the results of the SOC model only.

EXPERIMENTS

We evaluated spikes from recordings in three different species,

namely in rats, cats and monkeys. The rat experimental proto-

cols were approved by the Institutional Animal Care and Use

Committee of Rutgers University (Mizuseki et al., 2009). The

cat experiments were performed in accordance with guidelines

established by the Canadian Council for Animal Care (Blanche,

2009). The monkey experiments were performed according to the

German Law for the Protection of Experimental Animals, and

were all approved by the Regierungspräsidium Darmstadt. The

procedures also conformed to the regulations issued by the NIH

and the Society for Neuroscience.

The spike recordings from the rats and the cats came from

the NSF-founded CRCNS data sharing website (Blanche, 2009;

Mizuseki et al., 2009). In brief, in rats the spikes were recorded in

CA1 of the right dorsal hippocampus during an open field task.

We used the first data set of each animal (ec013.527, ec014.277,

ec015.041, ec016.397), and from rat “ec014” we also used a sec-

ond data set (ec014.333). The five datasets provided sorted spikes,

i.e., {37, 77, 32, 58, 58} single units and {4, 8, 8, 8, 8} multi units,

respectively. However, since the identity of a unit does not matter

for the definition of neural avalanches (see below), the single- and

multi-unit activity was combined to one set of spike times. More

details on the experimental procedure and the datasets proper can

be found on Mizuseki et al. (2009).

For the spikes from the cat, neural data were recorded by Tim

Blanche in the laboratory of Nicholas Swindale, University of

British Columbia, and downloaded from the NSF-funded CRCNS

Data Sharing website (Blanche, 2009). We used the data set pvc3,

i.e., recordings in area 18 which contain 50 sorted single units

(Blanche and Swindale, 2006). We used that part of the experi-

ment in which no stimuli were presented, i.e., the spikes reflected

spontaneous activity in the visual cortex of the anesthetized cat.

Details on the experimental procedures and the data proper can

be found in Blanche and Swindale (2006); Blanche (2009).

In the monkey experiments, spikes were recorded simultane-

ously from up to 16 single-ended micro-electrodes (ø = 80 µm)

or tetrodes (ø = 96 µm) in lateral prefrontal cortex of three

trained macaque monkeys (M1: 6 kg ♀; M2: 12 kg ♂; M3: 8 kg

♀). The electrodes had impedances between 0.2 and 1.2 M� at

1 kHz, and were arranged in a square grid with inter electrode dis-

tances of either 0.5 or 1.0 mm. The monkeys performed a visual

short term memory task with on average 80% correct behav-

ioral responses which required them to memorize a sample object

and to compare a test stimulus presented after a delay of 3 s to

memory content. The monkeys indicated via differential button

press whether test and sample stimuli matched or not. Each trial

consisted of a 1 s long baseline, 500–900 ms sample stimulus pre-

sentation, a delay of 3 s and a response interval lasting throughout

a 2 s test stimulus presentation. More details of the experimental

procedure can be found in Pipa et al. (2009). In total, we ana-

lyzed spike data from 11 experimental sessions comprising almost

12.000 trials. In M1 and M2 we recorded four sessions each, and

in M3 we recorded 3 sessions. 6 out of 11 sessions were recorded

with tetrodes (2/4, 4/4, and 0/3 from M1, M2, and M3, respec-

tively). Spike sorting on the tetrode data was performed using

a Bayesian optimal template matching approach as described in

Franke (2011) (see Franke et al., 2010 for an earlier version)

using the “Spyke Viewer” software (Pröpper and Obermayer,

2013). On the single electrode data, spikes were sorted with a

multi-dimensional PCA method (Smart Spike Sorter by Nan-Hui

Chen).

MEASURES

Avalanches in SOC systems are cascades of spikes triggered by a

single external spike (Bak et al., 1987). An avalanche can span

the entire system, but can also affect just a few sites before it dies

out. By definition, in SOC models subsequent avalanches are sep-

arated by pauses that are much longer than the avalanches proper

(STS) (Bak et al., 1987; Pruessner, 2012). This means that a new

avalanche is only triggered after the previous one has long died

out. In SOC systems, several avalanche characteristics, such as the

distribution of sizes and durations, follow scaling laws, known

from the framework of “renormalization theory” (Stanley, 1971,

1999; Sethna et al., 2001; Dhar, 2006). In the following, we define

the avalanche measures and describe the expected scaling laws for

the SOC model and the critical stochastic branching model.

The avalanche size s is the total number of spikes in an

avalanche. The avalanche size distribution f(s) is its frequency

of avalanche sizes, and p(s) refers to the respective probability

distributions. f(s) follows a power law in SOC systems:

f(s) ∼ s−τ

τ is the critical exponent and depends on the SOC model. For the

SOC model we use here (α = 1 and h → 0), τ ≈ 1 (Bak et al.,

1987; Priesemann et al., 2009), and for the critical branching

model τ = 1.5 (Harris, 1963; Haldeman and Beggs, 2005).

The definition of avalanche sizes in the driven models (h > 0)

and in vivo relied on temporal binning (Beggs and Plenz, 2003),

since these systems lacked STS. When applying temporal bins to a

spike train, the avalanche size was defined as the total number of

events in subsequent, non-empty time bins (Figure 1). Stating it

differently, an avalanche is by definition the activity in a sequence

of full bins, and is preceded and followed by an empty bin. With

this definition, f(s) changed with the bin size (Figure 1).

As stated above, f(s) changed with the bin size. To quan-

tify the bin-size dependent changes of f(s), we used the mean

avalanche size (<s>), and the measure f (s = 1, bs), i.e., the bin

size dependence of the frequency of avalanches of size s = 1.

A common measure to characterize neural avalanches is the

branching parameter. In a branching process, the branching

parameter σ defines whether activity expands (σ > 1) or dies out

(σ < 1) (Harris, 1963). Between these two regimes, at σ = 1, the

branching process is critical (Harris, 1963). In analogy, the σ ∗

was estimated from spike trains using temporal binning as follows
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(Beggs and Plenz, 2003; Priesemann et al., 2009): σ ∗
i is the num-

ber of events in time bin ti divided by the number of events in

time bin ti − 1. The average over all σ ∗
i (for which the number

of events in ti − 1 is not zero) is defined as the estimated branch-

ing parameter σ ∗ (Figure 1) (Beggs and Plenz, 2003; Priesemann

et al., 2009). Note that σ ∗ depends on the bin size, and may fail to

provide the intended results (see Results and Discussion).

Detrended fluctuations analysis (DFA) (Peng et al., 1994,

1995; Kantelhardt et al., 2002) quantifies long-range correla-

tions in a time-series, which also dominate SOC systems. We

applied DFA to the time course of the summed population activ-

ity. The summed population activity is the total number of

spikes across all neurons at each sampling step. For the DFA, we

used analysis window widths from 24 to 211 ms. Smaller win-

dow widths could not be used because of the limited sampling

resolution, and for windows larger than 2 s the power law scal-

ing broke down, and this impeded the estimation of the DFA

exponent β.

It sometimes is helpful to measure the bin size not in abso-

lute time (e.g., milliseconds), but in “average inter event intervals”

(<IEI>). The <IEI> is the inverse of the population rate R, i.e.,

the rate of all units together, independent of their origin. In con-

trast to the population rate R, the rate of a single unit is denoted

with r.

LFP RECORDINGS IN HUMANS

We evaluated LFP which were recorded with intracranial depth

recordings in humans. We used the very same data and analysis

methods as in Priesemann et al. (2013), and we used the results

from all vigilance states combined, because we already showed

that the differences with vigilance states were small (Priesemann

et al., 2013). We analyzed data from five subjects [3 females (aged

21, 23, and 27), two males; (aged 25 and 48)] with refractory

partial epilepsy undergoing pre-surgical evaluation. The sub-

jects were hospitalized between February 2005 and March 2007

in the epilepsy unit at the Pitié-Salpetrière hospital in Paris.

All patients gave their informed consent and procedures were

approved by the local ethical committee (CCP). Each patient was

continuously recorded during several days (duration range: 9–20

days; mean duration: 16 days) with intracranial and scalp elec-

trodes (Nicolet acquisition system, CA, US). Depth electrodes

were composed of 4–10 cylindrical contacts (2.3-mm long, 1-

mm in diameter, 10-mm apart center-to-center), mounted on

a 1 mm wide flexible plastic probe. Pre and post implantation

MRI scans were evaluated to anatomically locate each contact

along the electrode trajectory. The placement of electrodes within

each patient was determined solely by clinical criteria. Signals

were digitized at 400 Hz. The five subjects were implanted with

(44, 48, 50, 50, and 63) intracranial LFP recording sites. In total

seven recording sites were excluded from the analysis due to

artifacts and thus we used (44, 48, 45, 50, and 61) recordings

sites for data evaluation. All LFP were low-pass filtered at 40 Hz

(4th order butterworth, MATLAB) to reduce the impact of line

noise.

To analyze the neuronal avalanches for these LFP data in

the same manner as the spike data, we extracted binary events

from the LFP. These binary events represent phases of enhanced

synaptic activity. To extract these events, we calculated the area

under the positive deflection lobes between two zero crossings of

the LFP (Figure 2 in Priesemann et al., 2013). As LFP-voltages

reflect current flows via Ohm’s law, this time integral, or area

under the voltage curve, is proportional to the total amount

of displaced charges and hence describes the departure from

equilibrium (charge neutrality) quantitatively—in contrast to

simple voltage peaks. To obtain binary events from the LFP, we

applied a threshold to the area values under the LFP deflec-

tion lobe. The threshold was selected such that each recording

site in each interval of constant vigilance state had the same

event rate r = 1/4 Hz. In contrast to our first paper with these

data (Priesemann et al., 2013), we here used only one value

for r, and combined the results for all vigilance states from

wakefulness to deep sleep, since neither r nor the different vig-

ilance states affected the results qualitatively (Priesemann et al.,

2013).

For the avalanche analysis in the humans, we used a bin size

either in units of average inter event intervals (<IEI>) or in ms.

The <IEI> is a function of the event rate r and the number

of electrode contacts N, <IEI> = 1/(r · N) = 1/R. Since r was

fixed and N did not vary much across patients, the following

approximation holds: 1 <IEI> ≈ 80 ms.
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