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Abstract. In the companion paper we presented extended simulations showing that the recently observed spike-
timing dependent synaptic plasticity can explain the development of simple cell direction selectivity (DS) when
simultaneously modifying the synaptic strength and the degree of synaptic depression. Here we estimate the spatial
shift of the simple cell receptive field (RF) induced by the long-term synaptic plasticity, and the temporal phase ad-
vance caused by the short-term synaptic depression in response to drifting grating stimuli. The analytical expressions
for this spatial shift and temporal phase advance lead to a qualitative reproduction of the frequency tuning curves
of non-directional and directional simple cells. In agreement with in vivo recordings, the acquired DS is strongest
for test gratings with a temporal frequency around 1–4 Hz. In our model this best frequency is determined by the
width of the learning function and the time course of depression, but not by the temporal frequency of the ‘training’
stimuli. The analysis further reveals the instability of the initially symmetric RF, and formally explains why direction
selectivity develops from a non-directional cell in a natural, directionally unbiased stimulation scenario.

Keywords: spike-timing, dependent synaptic plasticity, short-term synaptic depression, direction selectivity,
simple cell, phase advance

1. Introduction

One of the basic operations of the primary visual cor-
tex (V1) is the extraction of very local, well-defined
features of the retinal image, being fused with other
sources of information in higher cortical areas. The lo-
cal features encompass luminance contrasts, edges, ori-
entations, and directions of motion (Hubel and Wiesel,
1962). A remarkable property of a broad class of V1
neurons, the simple cells, is that they exhibit (almost)
linear spatial and temporal summation: the time course
of the subthreshold membrane potential in response

∗“Spike-Based Synaptic Plasticity and the Emergence of Direction
Selective Simple Cells: Simulation Results” appeared in Volume 13,
Issue 3.

to two (spatially disjoint) stimuli is the sum of the
responses to the individual stimuli (Reid et al., 1987;
Shapley, 1996; Carandini et al., 1997). The most promi-
nent deviations from linearity are the saturation of sim-
ple cell responses at high contrast (Albrecht et al., 1984)
and the cross-orientation suppression (Morrone et al.,
1982). It was recently suggested that a single type of
nonlinearity, short-term synaptic depression in thalam-
ocortical projections, would be enough to explain these
nonlinear response properties (Carandini et al., 2002).
This same synaptic mechanism may also produce di-
rectional selective simple cells when depressing and
non-depressing synapses are properly arranged within
the simple cell receptive field (Chance et al., 1998).
Here we analytically describe synaptic depression
in response to time varying stimuli. The description
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includes the entire visual pathway from the retinal input
through the thalamic relay to the simple cell response.

The main goal is to study the impact of spike-
timing dependent plasticity (STDP) at thalamocortical
synapses when the simple cell is exposed to moving
sine gratings with random velocities and directions.
As shown in our companion paper (Buchs and Senn,
2002, referred to as ‘simulation paper’), STDP may ex-
plain the development of simple cell direction selectiv-
ity (DS). When requiring that directional simple cells
evolve from non-directional ones, STDP must operate
on the degree of synaptic depression (Markram and
Tsodyks, 1996; Senn, 2002) as well as on the synaptic
strength (see Bi and Poo, 2001, for a review). We ana-
lytically describe the effect of STDP on the simple cell
response properties, and focus on the symmetry break-
ing of the simple cell receptive field (RF) induced by
the synaptic modifications.

Short-term synaptic depression at thalamocortical
afferents was first described by Stratford et al. (1996).
Based on such observations, Chance et al. (1998) sug-
gested that thalamocortical synaptic depression could
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Figure 1. The analytical model. Left: On-center LGN cells project in an initially symmetric arrangement through depressing (d) and non-
depressing (nd) synapses onto the simple cell (SC). The total input is determined by fixed synaptic densities from the LGN layer (ρd and ρ±

nd),
and by the synaptic strengths (G) which are subject to the synaptic modification (�G as a function of the pre- and postsynaptic spike time
differences). Right: The drifting, sinusoidally modulated grating (S) is processed by a linear spatio-temporal LGN filter (K and H, respectively),
followed by a half-rectification ( fpre). The timing (�t) between pre- and postsynaptic spike rates of the simple cell ( fpre and fpost , respectively)
determines whether a synapse is predominantly up- or downregulated. The sketch shows fpost as a rectified sine, although the true postsynaptic
rate is distorted (see Fig. 2).

explain different temporal response properties of sim-
ple cells, including DS. The relevant feature of synaptic
depression in this context is the phase advance of the
synaptic response with respect to a sinusoidally mod-
ulated stimulus. When combined with a spatially dis-
placed group of non-depressing synapses this phase ad-
vance may generate the simple cell DS. Recent support
for short-term synaptic depression in the visual path-
way comes from cross-orientation suppression experi-
ments in cats (Freeman et al., 2002). STDP in V1, on the
other hand, is supported by in vivo experiments on cats
in which spatial shifts in RF of V1 cells were induced
by rapid sequential flashing of spatially displaced vi-
sual stimuli (Yao and Dan, 2001; Fu et al., 2002).

The specific model we consider consists of a layer
of on-center lateral geniculate nucleus (LGN) cells re-
ceiving input from the retinal ganglion cells and pro-
jecting onto a single simple cell in V1. Afferents in the
center of the simple cell RF converge through depress-
ing excitatory synapses while those in the surround
converge through non-depressing excitatory synapses
onto the simple cell (Fig. 1). In the spirit of a minimal
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model we discard off-center excitatory and inhibitory
LGN afferents and, in a first step, we only consider
the modification of the absolute synaptic strength of
the depressing synapses. To capture the modifications
of the simple cell RF we calculate the output frequen-
cies of LGN cells, the degree of synaptic depression,
the total postsynaptic current, and the effect of the
synaptic long-term modifications. The nonlinearities
ascribed to the rectification of the LGN and simple cell
responses are thereby neglected. Our analysis yields
direct dependencies of the direction selectivity on the
stimulus velocity, on the time constant of synaptic de-
pression, and on the width of the synaptic learning
window.

The basic mechanism underlying the development
of DS is that, in response to drifting light gratings, the
temporally asymmetric STDP induces a shift of the
depressing RF center opposite to the stimulus direc-
tion. This counter directional shift occurs because the
synaptic rule strengthens synapses which are activated
immediately before the postsynaptic cell fires most,
while it weakens those synapses which are activated
immediately after. As we show, the spatial shift of the
depressing synapses enhances the simple cell response
to subsequent gratings moving in the same direction.
When stimulated from the other direction however, the
two contributions disintegrate because the spatial shift
changes its sign, but not the temporal shift (see Fig. 3c).
Symmetry breaking is revealed to occur through a posi-
tive feedback loop: Any slight RF asymmetry enhances
the response to one of the two directions, this further
strengthens the synaptic connection which led to the
increased response, and the RF symmetry is broken
further. This feedback mechanism explains the devel-
opment of DS even for an unbiased set of stimuli with
gratings moving equally often and with different speeds
in opposite directions. The paper concludes by show-
ing that the spatio-temporal RF formed by these mecha-
nisms is inseparable. A short form of the present results
appeared in Senn (2002).

2. Model and Methods

2.1. Spatio-Temporal Receptive Field of LGN Cells

The visual stimuli consist of drifting light gratings
specifying the luminance as a function of time t and
retinal position x measured in degrees. Neglecting the
physical units such a stimulus is given by S(x, t) =
cos(kx−�t), with period T = 2π

�
[ms] and wave length

λ = 2π
k [deg]. Each retinal position is associated with

an on-center LGN cell whose spatio-temporal receptive
field is characterized by a linear filtering followed by
a rectification (see Fig. 1). Following Maex and Orban
(1996), the instantaneous firing rate of a LGN cell with
RF centered at retinal position x is

fpre(x, t) = max

{
±A(C)

∫ ∞

−∞

∫ t

−∞
dt̃ d x̃ K (x − x̃)

× H (t − t̃)S(x̃, t̃), f back
pre

}
, (1)

where the spatial filter K is modeled by a difference of
Gaussians and the temporal filter H by a difference of a
fast and slow alpha-function (Maex and Orban, 1996),
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The factor A(C) in (1) scales the LGN cell frequency
and depends on the stimulus contrast C as specified
in Appendix A.1. On-center and off-center LGN cells
are formally distinguished by the choice of the plus and
minus, respectively, in (1). The parameters chosen here
and in the simulation paper are σc = 0.3 deg, σs = 1.5
deg, τ f = 16 ms and τs = 32 ms.

In the present analysis we restrict ourselves to on-
center cells and discard the nonlinear rectification in
(1). We therefore assume that the input from the LGN
onto the V1 simple cell is specified by a presynaptic
spike rate of the form

fpre(x, t) = f 0
pre + f 1

pre cos(kx − �t), (4)

with average rate f 0
pre and modulation amplitude

f 1
pre given by f 0

pre = f 1
pre = 1

2 A(C)A◦(k, �), see
Appendix A.1 for explicit expressions and Fig. 4a
showing the amplitude f 1

pre as a function of the
temporal frequency �.

2.2. Spatio-Temporal Receptive Field
of the Simple Cell

The receptive field of the model V1 cell on the
LGN layer is specified by 3 Gaussian clusters of
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on-center afferents projecting through depressing and
non-depressing synapses onto the simple cell (Fig. 1).
The effective synaptic strength (weight) from the LGN
layer at position x to the simple cell, Geff (x), is deter-
mined by the product of the LGN cell density times the
strength of an individual connection at that position,
Geff (x) = ρ(x)G(x). In the initial configuration the
synaptic weights of the depressing and non-depressing
synapses each have the same value, Ḡ◦

d/nd . Assuming
Gaussian densities for the centered depressing and the
left/right non-depressing clusters, the initial effective
strengths become (cf. Figs. 1 and 3c)

Ḡeff ,±
nd (x) = ρ±

nd(x)Ḡnd(x)

= Ḡ◦
nd√

2πσnd

exp

(
− (x ± xnd)2

2σ 2
nd

)
, (5)

Ḡeff
d (x) = ρd (x)Ḡd (x) = Ḡ◦

d√
2πσd

exp

(
− x2

2σ 2
d

)
.

(6)

2.3. Short-Term Synaptic Dynamics

The model of synaptic transmission considers a limited
source of vesicles with some non-negligible recovery
time after each synaptic release. In the simulation pa-
per, the stochastic recovery process is assumed to be
Poissonian with time constant τrec. Given a releasable
vesicle, this vesicle is discharged with probability Pdis

upon arrival of a presynaptic spike. The total probabil-
ity of releasing a vesicle in response to a presynaptic
spike is Pdis Pv , where Pv is the probability of encoun-
tering a releasable vesicle. This probability is governed
by the equation

dPv

dt
= 1 − Pv

τrec
− Pdis Pv

∑
pre

δ(t − tpre), (7)

where the sum is taken over all presynaptic spike times
tpre. A synaptic release is assumed to trigger an instan-
taneous current pulse of strength Ḡd , and the expected
current pulse induced by a depressing synapse is pro-
portional to Gd = Pdis PvḠd . In the present paper we
only consider the mean behavior of (7) obtained by re-
placing the sum of delta functions with the presynaptic
spike rate fpre given by (4), see Eq. (9) below. Non-
depressing synapses are characterized by Pdis = 1 and
Pv = 1 at any time.

2.4. Synaptic Modification and Simple Cell Model

Here we consider a reduced scheme of synaptic modi-
fication which, in term of spikes, can be expressed by
the learning function

L(�t) = − �t√
2πτL

exp

(
−�t2

2τ 2
L

)
, (8)

where �t = t rel
pre − t sp

post is the time difference between
a presynaptic release and a post-synaptic spike. This
function has a maximum and minimum at −τL and
τL , respectively, determining the positive (long-term
potentiation, LTP) and a negative (long-term depres-
sion, LTD) term of the learning rule. The strength Ḡd

of a depressing synapse is changed proportionally to
L(�t). Equation (8) represents a convenient reduction
of the full scheme of the synaptic modification based
on internal variables tracing the pre- and post-synaptic
activities (see simulation paper). In the present mean
field analysis (8) enters as a kernel in the convolution of
the presynaptic release rate with the postsynaptic spike
rate (see Eq. (31) below). Beside the change of the
synaptic strength Ḡd , we will also consider the modi-
fication of the discharge probability Pdis according to
the same rule (8).

Finally, as a simple cell model we consider a lin-
earized version of the conduction-based integrate-and-
fire neuron used in the simulation paper. In particular,
we assume a linear frequency-current relationship for
the V1 cell. We normalize the synaptic strength such
that the total postsynaptic current I (t) can be identified
with the instantaneous postsynaptic spike frequency
fpost.

3. Results

3.1. Temporal Phase Advance of the Synaptic
Response from LGN to V1

We first describe the average response of a depress-
ing synapse to a sinusoidally modulated Poisson spike
train with instantaneous spike rate fpre(t) = f 0

pre +
f 1
pre cos(�t). The average release rate is given by

frel(t) = Prel(t) fpre(t) and vesicle release probability
is itself a product of the discharge probability, and the
probability of a vesicle being recovered, Prel = Pdis Pv ,
see Senn et al. (2000). According to (7) the dynam-
ics of the average vesicle probability Pv is determined
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by

dPv

dt
= 1 − Pv

τrec
− Pdis Pv fpre(t), (9)

where, for notational conveniences, we discard from
writing the expectation value symbols. For stationary
presynaptic spike rates fpre(t) = f 0

pre one may rewrite
this differential equation in the form dPv

dt = Pss
v −Pv

τ ss
rec

with
a (expected) steady state vesicle probability

Pss
v = 1

1 + τrec Pdis f 0
pre

(10)

and an effective time constant

τ ss
rec = τrec

1 + τrec Pdis f 0
pre

. (11)
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Figure 2. Synaptic depression and its first Fourier approximation. a: Presynaptic firing rate fpre(t). b: Time course of the vesicle probability
Pv obtained by integrating Eq. (9) (full line) and the first Fourier approximation specified by Eqs. (12)–(15) (thick dashed line). The zeroth
Fourier component (dashed-dotted horizontal line, Eq. (13)) is markedly higher than the steady state for the same mean frequency f 0

pre (thin
dotted horizontal line, Eq. (10)). The arrow shows the phase advance φ, Eq. (15), of the Pv(t) with respect to the presynaptic firing rate shown
in (a). c: Time course of the synaptic release rate frel = Pdis Pv fpre when using the exact form for Pv(t) (full line, Eq. (16)) and its first order
Fourier approximation (dashed sinewave, Eqs. (18)–(21)). The zeroth Fourier component, Eq. (19), is represented as a dashed-dotted line. The
arrow shows the phase advance ϕt , Eq. (21), of (the first order Fourier approximation of) the release rate with respect to the presynaptic spike
rate shown in (a). For parameter values see caption to Fig. 3. Note that the phase advance is roughly a tenth of a cycle (corresponding to the
value at the dot in Fig. 4a).

The dynamics of the vesicle probability Pv(t) in re-
sponse to the sine wave stimulation (4) can be approx-
imated by the zeroth- and first-order Fourier compo-
nents (Fig. 2b),

Pv(t) ≈ P0
v + P1

v cos(�t + φ). (12)

The Fourier coefficients and the phase advance de-
pend on the modulation frequency according to (see
Appendix A.2)

P0
v ≈ Pss

v

2F2

2F2 − (
Pdis f 1

pre

)2 , (13)

P1
v ≈ P0

v

Pdis f 1
pre

F
, (14)

φ ≈ π − arctan
(
τ ss

rec�
)
, (15)
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Figure 3. The modification of the effective synaptic strength. a: The LGN firing rate fpre, Eq. (4), for a snapshot at time t = 0 when the
postsynaptic response is largest. b: The change of �Ḡeff

d according to Eq. (38) (full line) induced by the sinusoidally modulated LGN firing
rate in (a). The weight change is composed of two terms originating from depressing synapses (dashed line, first term in Eq. (32)) and non-
depressing synapses (dotted line, second term in Eq. (32)). The inset depicts the learning function L( kx

�
), Eq. (8), as a function of x . Note that

the width of the synaptic change reflects the width of the stimulus, and not of the learning function (unless the stimulus is a narrow bar as
in Eq. (40)). c: The distribution of the effective synaptic strengths in the initial state for the depressing center (dashed-dotted line, Ḡeff

d ) and
the non-depressing surround (dashed lines, Ḡeff

nd , cf. Eqs. (5) and (6)). After repeated stimulation with rightwards drifting gratings the effective
synaptic strength of the RF center moved to the left (full line, Ḡeff

d (x) + �Ḡeff
d (x), Eq. (38)). The lower leftwards arrow shows the estimated

spatial shift ϕx/k(=−xpeak
�w ) of the RF center (Eq. (39)). The adjacent left/right arrows on top show the temporal shift of the postsynaptic

response from the depressing center expressed in spatial coordinates, ±ϕt/k, for a stimulus moving right-/leftwards, cf. Eqs. (21) and (41).
For the rightward (preferred) direction the spatial and temporal phase shifts add to a total shift of −0.3 deg (head of top leftwards arrow)
while for the leftward (non-preferred) direction they cancel (head of top rightwards arrow). In all the Figs. 2–6 we used the parameter values
τrec = 0.5 s, Pdis = 0.5 and f 0

pre = f 1
pre = 20 Hz, τL = 50 ms, �

2π
= 1 Hz, k

2π
= 1 cycle/deg (yielding a spatial wave length λ = 2π

k = 1 deg),
xnd = 2

3 λ, σnd = 1
3 λ, σ4 = 1

4 λ, Ḡ◦
nd = 0.3, Ḡ◦

d = 1.

with F2 = �2 + (1/τrec + Pdis f 0
pre)2. Note that the av-

erage vesicle probability P0
v is larger than the steady

state Pss
v for the stationary frequency f 0

pre (compare
Eqs. (10) and (13)). Figure 2b shows that, in fact, a sinu-
soidal modulation of the presynaptic spike rate around
a constant mean can increase the average synaptic re-
sponse by almost 50%, just because the dynamics of
depression and recovery are not symmetric around the
steady state. Note further that for � → ∞, through the
dependency F2(�), the first Fourier component P1

v ap-
proaches 0, while the zeroth component P0

v approaches
Pss

v . The phase advance φ decreases with � → ∞ from
π to π/2, and, as a function of f 0

pre, it monotonically

increases with upper bound π . Figure 2b gives an ex-
ample of the time course of Pv , Eq. (9), and its first
Fourier approximation specified by (12)–(15).

We next approximate the instantaneous vesicle re-
lease rate frel = Prel fpre. According to (12) we get

frel(t) = Prel fpre(t) = Pdis Pv(t) fpre(t) (16)

≈ Pdis
(
P0

v + P1
v cos(�t + φ)

)
× (

f 0
pre + f 1

pre cos �t
)
. (17)

A measure of the phase advance of the release rate
with respect to presynaptic firing rate is obtained by
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calculating the first Fourier approximation of (17),

frel(t) ≈ f 0
rel + f 1

rel cos(�t + ϕt ) (18)

where the zeroth and first Fourier coefficients and the
temporal phase advance are themselves approximated
by (cf. Appendix A.2)

f 0
rel ≈ Pdis P0

v f 0
pre − Pdis P1

v f 1
pre

1

2τ ss
rec F

, (19)

f 1
rel ≈ Pdis P0

v f 1
pre

√
�2 + τ−2

rec

F
, (20)

ϕt ≈ arctan

(
Pdis f 0

preτ
2
rec�

1 + Pdis f 0
preτrec + τ 2

rec�
2

)
. (21)

The first Fourier component f 1
rel as a function of the

temporal frequency �/(2π ) is depicted in Fig. 4a.
As an example, the exact solution of frel, obtained by

integrating Eq. (9), is shown in Fig. 2c, together with
the first Fourier approximation (18)–(21). According to
(21), the temporal phase advance tends to zero for very
slow and very fast modulation frequencies, ϕt → 0 for

Figure 4. Analytical results: temporal tuning curves. a: The modulation amplitude of the LGN frequencies ( f 1
pre = 1

2 A(C)A◦(k, �), dashed
line, Eq. (4), using the analytical expressions in A.1), the first Fourier component of the synaptic release rate ( f 1

rel, dotted line, Eq. (20), scaled
up by a factor of 10), and the temporal phase advance of the release rate with respect to the presynaptic spike rate (ϕt , thick line, Eq. (21)), as
a function of the temporal frequency of the drifting grating. Dot on abscissa: estimated location of the maximal phase advance, Eq. (22). The
temporal phase advance at 1 Hz is roughly a tenth of a cycle (ϕ ≈ 0.1) and corresponds to the one in Fig. 2c. Circle on abscissa: estimated
location of the maximal LGN modulation amplitude, Eq. (24). Note that synaptic depression acts as a high pass filter (the peak of f 1

rel is right
from the peak of f 1

pre). b: The spatial phase shift of the effective synaptic strength induced by the learning rule (ϕx , Eq. (39)), scaled by the
‘speed of convergence’, i.e. by the factor f 1

rel I
1η(�)/τL in Eq. (38) (thick line). This scaled phase shift gives an estimate of the effective RF

shift reached after stimulating for a fixed time with a unidirectionally moving grating of frequency �. Superposed is the factor η(�) (dashed
line, Eq. (34)) representing the Fourier transform of the learning function, I 1 (dotted line, Eq. (36)) reflecting the postsynaptic current, and the
asymptotic phase shift (dashed-dotted line, Eq. (39)) which is almost independent of �. The dot on the abscissa represents the estimated location
of the maximal phase shift, Eq. (37). The shape of the phase shift curves in (a) and (b) are similar to those obtained for the large scale simulations
(Fig. 5 of the simulation paper). In the simulations, however, the phase shifts are roughly three times smaller due to the spatial averaging of the
nonlinear synaptic responses performed by the simple cell.

� → 0 and � → ∞, since � arises in the numerator of
(21) and F2 scales with �2, respectively. In addition,
expression (21) allows us to estimate the temporal stim-
ulus frequency leading to a maximal phase advance ϕt ,

�ϕt max ≈ 1

τrec

√
1 + Pdis f 0

preτrec. (22)

With an average LGN frequency of f 0
pre = 40 Hz, a

vesicle recovery time constant of τrec = 0.5 s and a
discharge probability of Pdis = 0.5, a maximal phase
advance is reached according to (22) for a stimulus
frequency of �/(2π ) ≈ 1.0 Hz (dot in Fig. 4a).

We tested the above approximations for various
physiologically relevant parameter values and in gen-
eral found good matches with simulations using unrec-
tified sinusoidal LGN spike rates (as in Eq. (4)). How-
ever, when compared with simulations using rectified
LGN rates, the first Fourier component and the phase
shifts were underestimated. This is because in the rec-
tification period the synapses recovered more than they
would for an unrectified sinusoidal modulation of the
LGN firing rate (see Fig. 1, right). When applied to in-
dividual synaptic responses the above approximations
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are therefore only good if the rectification does not cut
off the LGN response over a too long period (which
is the case if the F0 component of the LGN firing rate
is larger than the F1 component). This caution, how-
ever, is only necessary if the above formulas are used as
an estimate of the individual synaptic response. When
applied to the total response of the full population of de-
pressing synapses, we always found reasonable results
(as shown by a comparison between Fig. 4 and Fig. 5 in
the simulation paper), even if the LGN response is rec-
tified during half a cycle. The good match in this case
comes from the fact that the nonlinearities are averaged
out by the different temporal offsets of the individual
responses, but also by the push-pull mechanism which
“linearizes” the overall LGN response.

3.2. Stimulus-Induced Responses
of LGN and V1 Cells

The firing rates of the LGN cells, as defined by
the spatio-temporal filtering and the sub-sequent half-
rectification in (1), strongly depend on the spatial and
temporal frequencies of the stimulus. Evaluating the
double integral in (1) yields a temporally shifted mov-
ing sinewave with amplitude A(C)A◦(k, �) specified
in Appendix A.1 (see also Fig. 4a, dashed line). Ac-
cording to this expression the LGN frequencies decay
towards background frequency, fpre → f back

pre , if either
the spatial or temporal stimulus frequencies tend to in-
finity (k, � → ∞), or if the spatial stimulus frequency
tends to zero (k → 0), cf. Eq. (50). The LGN frequen-
cies also decrease (although not to the background fre-
quency) if the temporal stimulus modulation becomes
slow (� → 0). The analytical expressions in Appendix
A.1 also allow us to estimate the spatial and temporal
stimulus frequencies yielding the maximal LGN spike
rates,

k ≈ 2

σc

√
ln rσ

r2
σ − 1

, with rσ = σs/σc, (23)

� ≈ 1

τ f

√
1 − r−1/2

τ

r3/2
τ − 1

, with rτ = τs/τ f . (24)

With the standard choice of parameters (see Section
2.1) we get a maximal LGN firing rate for a spatial
stimulus frequency of k/(2π ) ≈ 0.3 cycles/deg, and a
temporal stimulus frequency of �/(2π ) ≈ 4.0 Hz (cir-
cle in Fig. 4a). These estimates closely match the peaks
of the LGN cell tuning curves (Saul and Humphrey,

1990) as well as the simple cell tuning curves (Saul
and Humphrey, 1992, see also Fig. 6b).

We next calculate the response of our model simple
cell to a drifting grating. In our reduced neuron model
this amounts to summing up the different synaptic cur-
rents over the simple cell RF. Neglecting the ionic driv-
ing forces, the currents induced by the non-depressing
and depressing currents, respectively, are

I ±
nd(t) =

∫ ∞

−∞
dx Ḡeff ,±

nd (x) fpre(x, t), (25)

Id (t) =
∫ ∞

−∞
dx Ḡeff

d (x) frel(x, t). (26)

The presynaptic spike rate fpre (which for non-
depressing synapses is equal to frel) is given by Eq. (4),
while the presynaptic release rate frel for depressing
synapses (characterized by τrec > 0) takes the form

frel(x, t) ≈ f 0
rel + f 1

rel cos(kx − �t − ϕt ) (27)

with phase shift and Fourier coefficients given by (21)
and (20). Inserting the effective synaptic strengths (5)
and (6) into the above integrals, one obtains the currents

I ±
nd(t) = Ḡ◦

nd

(
f 0
pre + snd f 1

pre cos(±kxnd − �t)
)
, (28)

Id (t) = Ḡ◦
d

(
f 0
rel + sd f 1

rel cos(�t + ϕt )
)
, (29)

with factors sd/nd = exp(−(σd/ndk)2/2) for the mod-
ulation amplitude of the synaptic responses (see
Appendix A.3). The total synaptic current flowing into
the V1 cell is the sum of the currents induced by the left
and right non-depressing surround and the depressing
center,

I (t) = I −
nd(t) + I +

nd(t) + Id (t). (30)

According to our simplified simple cell model the post-
synaptic spike frequency is proportional to the total
postsynaptic current (30) and this also drives the synap-
tic modification.

3.3. Stimulus-Induced Spatial Shift
of the Simple Cell RF

In a next step we estimate the induced change in the
synaptic connections projecting onto the simple cell.
To simplify matters we assume a fixed discharge prob-
ability Pdis for all connections, and only modify the
strength Ḡd of the depressing synapses. According to
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the learning rule (8), the change of the synaptic strength
over a full cycle of the grating is

�Ḡd (x) = 1

T

∫ T

0
dt

∫ ∞

−∞
dt̃ L(t̃ − t) frel(x, t̃)I (t),

(31)

where T = 2π
�

is the cycle period, I the total postsy-
naptic current given by (28)–(30), and frel the presy-
naptic release rate of the depressing synapses induced
by a rightwards moving grating (Eq. (27)). Evaluating
the double integral (see Appendix A.3), the change in
the synaptic strength linked to the retinal position x
becomes

�Ḡd (x)

= −1

2
η(�)

[
I 1
d sin(kx) − I 1

nd sin(kx − ϕt )
]

(32)

= −1

2
f 1
rel I

1η(�) sin(kx + γ ), (33)

with normalization factor η(�) and coefficients
I 1
d , I 1

nd, I 1 and γ given by

η(�) = τ 2
L� exp

(−τ 2
L�2

/
2
)
, (34)

I 1
d = sd Ḡ◦

d f 1
rel, (35)

I 1
nd = −2sndḠ◦

nd f 1
pre cos(kxnd),

I 1 =
√(

I 1
d

)2 + (
I 1
nd

)2 − 2I 1
d I 1

nd cos ϕt , (36)

tan γ = I 1
nd sin ϕt

I 1
d − I 1

nd cos ϕt
.

Figure 5. Geometric summation of the two classes of synaptic currents. a: The synaptic current from the depressing synapses, I 1
d (see Eq. (35)),

adds by a certain angle with the synaptic current of the non-depressing synapses, I d
nd , to form a third side of a triangle, I 1

left/right . This side represents
the modulation amplitude of the simple cell response for a left- (non-preferred) and rightward (preferred) stimulus direction (cf. Eq. (43)). The
size of the response is determined by the angle between the two legs I 1

d and I 1
nd . This angle is given by either the sum or the difference of

the spatial and temporal phase shift ϕx and ϕt , respectively (Eqs. (39) and (21)). b: If during strobe rearing the motion information is lost, no
coherent spatial shift can develop, ϕx = 0, but Pdis may still increase and cause a temporal phase advance ϕt . In this case we have I 1

right = I 1
left

and the simple cell remains non-directional (see Fig. 9a and c in the simulation paper).

Note that, up to a scaling factor, η(�) represents the
Fourier transform of the learning function L(�t), while
I 1 represents the modulation amplitude of the postsy-
naptic current (cf. Eqs. (42) and (43) below). Hence, the
strength (or ‘speed’) of the synaptic change is roughly
proportional to the product of the presynaptic release
rate, the postsynaptic current, and the Fourier transform
of the learning function. We have chosen the synaptic
strengths and the spatial frequency such that roughly
I 1
d ≈ I 1

nd, i.e., such that the postsynaptic currents in-
duced by the depressing and non-depressing synapses,
respectively, contribute to a similar extent to the synap-
tic modification (note that for the present choice of pa-
rameter values we have kxnd = 4π/3 and, according
to Eq. (35), I 1

nd is positive; in turn, for kxnd = π/2, or
λ = 4xnd, I 1

nd would vanish). In fact, the form of the fac-
tor I 1 (Eq. (36)) shows that the change of the synaptic
strength, �Ḡd , is maximal if I 1

d and I 1
nd are of the same

size (cf. Fig. 5). While depressing and non-depressing
synapses work together in generating DS (in the sense
of a temporal overlap) the two populations partly inter-
fere during the learning process. This is because in an
initial phase the postsynaptic current originating from
the depressing and non-depressing synapses are phase
shifted by roughly half a cycle and therefore have op-
posite effects on the synaptic change (see the two terms
in Eq. (32) and the dashed and dotted lines in Fig. 3b).
Nevertheless, up to the phase shift γ quantifying the
interference between the two populations, the overall
synaptic change is an anti-symmetric function of space,
sin(kx), and reflects the derivative of the stimulus at
the moment when it is aligned with the RF center (see
Eq. (33) and Fig. 3b, thick line).
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Interestingly, the shape of the weight change
�Ḡd (x), Eq. (33), does not depend on the width τL

of the learning function and depends only weakly
(through γ ) on the temporal frequency � of the grat-
ing. Instead, the two parameters only affect the synap-
tic change through the scaling factor η(�) in (33). The
interpretation is that for grating stimuli moving repeat-
edly in one direction (here rightwards) the asymptotic
distribution of the synaptic strength is independent of
τL and �, and these parameters do only affect the speed
of convergence. According to the dominant factorη(�),
learning is fastest if the temporal frequency is inversely
related to the width of the learning window,

�ϕx max = 1/τL . (37)

For τL = 50 ms this yields a maximal speed of conver-
gence at a temporal frequency �/(2π ) ≈ 3.2 Hz (dot
in Fig. 4b). In a more realistic environment with stimuli
moving in different directions the interpretation of (33)
is slightly different, because the asymptotic steady state
of the unidirectional stimulus scenario is never reached.
Rather, due to the counterbalancing effect of the ran-
domly reversing stimulus directions the final synaptic
strength becomes proportional to the change �Ḡd (x)
itself. As a consequence, the shift in the RF induced
by (33) is roughly proportional to the speed of con-
vergence, i.e. to the scaling factors f 1

rel I
1η(�). This is

confirmed when comparing Fig. 4b, reflecting roughly
the function η(�), with Fig. 5b in the simulation paper,
showing the corresponding spatial phase shift for the
large scale simulations.

To make the above statement more quantitative we
estimate the shift of the effective synaptic strength Ḡeff

d
induced by (33). Since the synaptic density is fixed
we obtain from (6) a change of the effective synaptic
strength of the form

�Ḡeff
d (x) = ρd (x)�Ḡd (x)

= −1

2
f 1
rel I

1η(�)ρd (x) sin(kx + γ ), (38)

see Fig. 3b. The maximal change of Ḡeff
d is reached at

some location xpeak
�G < 0 left of the RF center, i.e. oppo-

site to the stimulus direction. As a rough approximation
the asymptotic shift of the RF center in the unidirec-
tional stimulation scenario can be identified by xpeak

�G ,
although this represents only an upper bound. An esti-
mate of xpeak

�G based on (38) is given in Appendix A.3.
For a drifting grating with spatial frequency k/(2π ) an

upper bound of the (asymptotic) spatial phase shift is

ϕx = −kxpeak
�G ≈ k2σd

(
π
2 − γ

)
1 + k2σd

. (39)

Figure 3c gives an example of the effective synaptic
strength, Ḡeff

d (x) and its modification according to (38),
Ḡeff

d (x) + �Ḡeff
d (x). It also shows that the Eq. (39) gives

a good estimate of the location of the maximal effective
weight change, and hence of the RF phase shift.

The explicit formula for ϕx shows that the induced
spatial phase shift mainly depends on the width of the
stimulus relative to the width of the RF center, k2σd . For
wide gratings, k → 0, the spatial shift tends to zero,
ϕx → 0, as it should, when the spatial structure in
the stimulus disappears. For narrow gratings, k → ∞,
the shift converges to the upper bound π

2 , although the
interference with the RF surround increases (expressed
in the term cos(kxnd) entering through γ , see Eqs. (35)
and (36)). For our parameters we have roughly γ ≈
0, k2σd ≈ 1, and the spatial phase advance becomes
ϕx ≈ π

4 , see Fig. 3b. As noted above, ϕx reflects the
asymptotic phase shift reached when stimulating for
an infinite time with a rightwards drifting grating. The
effective phase shift in a unbiased stimulation scenario
depends on the speed of convergence and is obtained
by scaling ϕx with the factor f 1

rel I
1η(�)/τL obtained

from (33), see Fig. 4b. Similarly to the change of the
synaptic strength, the effective spatial shift is roughly
proportional to the product of the presynaptic release
rate, f 1

rel, the postsynaptic current, I 1, and the Fourier
transform of the learning function, η(�).

The fact that the shape of the synaptic change
(�Ḡd (x), see Eq. (33)) does not depend on the width
of the learning function τL , arises from the spatial ex-
tension of the stimulus. This is different for a narrow
light bar moving with velocity v across the visual field.
For such a stimulus the release rate from a depress-
ing synapse is frel(x, t) = Pdis f 0

preδ(x − vt), and the
postsynaptic current from the depressing synapses is
Id (t) = Pdis f 0

preḠeff
d (vt). The synaptic changes induced

by this particular current is

�Ḡd (x) =
∫ ∞

−∞
dt

∫ ∞

−∞
dt̃ L(t̃ − t) frel(x, t̃)Id (t)

= −cd xv exp

( −x2

2
(
(vτL )2 + σ 2

d

))
, (40)

with a constant cd deduced in Appendix A.3, Eq. (59).
Thus, in contrast to the sinewave grating stimulus (see
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Eq. 33), the synaptic change for an infinitely narrow
light bar moving across the RF reflects the shape of
the learning function L(�t), Eq. (8), and the spatial

width of the change is given by
√

(vτL )2 + σ 2
d . Thus,

unlike to the drifting grating scenario where the spatial
shift is maximal for stimulus velocities reflecting the
width of the learning window (Fig. 4b), the spatial shift
monotonically increases with the bar velocity and is
only limited by the RF size.

3.4. Direction Selectivity of Simple Cells
After Repeated Stimulations

We next test whether the synaptic modifications in-
duced by repeated stimulations with a rightwards drift-
ing grating make our model V1 cell selective for
this direction. To this end we compare the postsy-
naptic response to gratings moving in opposite direc-
tions after inducing the synaptic modifications. The to-
tal current from depressing synapses induced by the
right/leftwards moving grating is still given by (29),
except that now there is a spatial phase shift ϕx of the
synaptic weight distribution Ḡd (x),

I d
right/left(t) = Ḡ◦

d

(
f 0
rel + sd f 1

rel cos(�t + ϕt ± ϕx )
)
,

(41)

where the ‘+’ corresponds to the right and the ‘−’ to the
leftward direction. Beside the temporal phase advance
ϕx induced by the short-term synaptic depression, the
postsynaptic response is additionally advanced or de-
layed by a spatial phase ϕx , depending on whether the
stimulus moves right- or leftwards. For the ‘learned’
(rightward) direction, the two phase shifts add, while
for the reversed (leftwards) direction they cancel (see
arrows in Fig. 3c). The total postsynaptic current for
the two stimulus directions, Iright/left, can be calculated
from (28) and (41) using the summation theorem for
cosines (see Eq. (53)),

Iright/left(t) = I −
nd(t) + I +

nd(t) + I d
right/left(t)

= I 0 + I 1
right/left cos(�t + δright/left), (42)

with mean current I 0 = 2Ḡ◦
nd f 0

pre + Ḡ◦
d f 0

rel, phase shift
tan δright/left = I 1

d sin(ϕt ± ϕx )/(I 1
d cos(ϕt ± ϕx ) − I 1

nd),
and variables I 1

d , I 1
nd given by (35). The amplitude

of the current modulation for the left- and rightward

stimulus direction is

I 1
right/left =

√(
I 1
d

)2 + (
I 1
nd

)2 − 2I 1
d I 1

nd cos(ϕt ± ϕx ),

(43)

with the +/− corresponding to the right/leftward direc-
tion, respectively, and with temporal and spatial phase
advance given by (21) and (39).

The estimate of the current amplitudes, Eq. (43),
has an intuitive geometrical interpretation. If the
contribution of the depressing center, I 1

d , and the
non-depressing surround, I 1

nd (Eq. (35)), are interpreted
as side lengths of a triangle with inner angle ϕt ± ϕx ,
the length of the third side represents the current ampli-
tude I 1

right/left (Fig. 5a). For a leftward moving stimulus
the shifts roughly cancel, ϕt − ϕx ≈ 0, and the current
amplitude is minimal, I 1

left ≈ |I 1
d − I 1

nd|. For a stimulus
moving in the preferred direction, however, the shifts
add towards ϕt +ϕx ≈ π

2 , and the current amplitude in

this direction comes closer to I 1
right ≈

√
(I 1

d )2 + (I 1
nd)2.

The specific form of the coefficient I 1
nd also shows that

the distance of the non-depressing surround from the
RF center, xnd, should roughly correspond to half the
stimulus wave length. Without spatial symmetry break-
ing, a situation which might appear during strobe rear-
ing (see simulation paper, Fig. 9), the simple cell re-
mains undirectional, although the temporal phase ad-
vance may be present (Fig. 5b).

As an example Fig. 6a shows the total postsynaptic
current according to (42) and (43) for a left- and right-
wards drifting grating before (i.e. with φx = 0) and
after ‘training’. The current amplitudes as a function of
the temporal frequency of the stimulus is reproduced
in Fig. 6b. In agreement with the single cell recordings,
and also our large scale simulations, the simple cell
is mostly direction selective around 1–4 Hz. It is non-
selective for frequencies larger than 8 Hz and smaller
than 0.25 Hz. Unlike real simple cells which may still
be direction selective at low temporal frequencies,
DS in our model is lost due to the relatively fast time
course of synaptic depression (see e.g. Fig. 7 b2 in the
simulation paper). The loss of DS at high frequencies,
however, does well match the simple cell properties. In
our model the shape of the DS tuning curve in Fig. 6b
essentially reflects the bland-pass properties of synap-
tic depression (cf. Fig. 4a), and the loss of DS at high
frequencies comes from the saturation term (the second
term in Eq. (9)), causing the temporal phase shift to
vanish for large � (see Eq. (21)). Since simple cells act
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Figure 6. Analytically estimated response of the model simple cell. a: Before learning the current response to the left- and rightward drifting
grating is the same (thin line, Eq. (30), ϕx = 0). After ‘training’ the response from the shifted receptive field center adds with the response
from the surround for a stimulus moving in the training direction (thick line, total phase advance with respect to the dashed line: ϕt + ϕx ≈ π

2 )
while they fall apart for the reversed direction (dashed line, ϕt + ϕx ≈ 0), Eq. (42). b: The first harmonics of the response before (thin line,
Eq. (36), same response from left and right) and after ‘training’ (thick line: response to training direction, I 1

right; dashed line: response to
opposite direction, I 1

left , Eq. (43)) as a function of the temporal frequency of the drifting grating (φt and φx were evaluated according to 21 and
39, respectively). The training frequency was fixed to �/(2π ) = 4 Hz. The modulation amplitudes of the example in (a) correspond to the
values at 1 Hz (dot on abscissa). Since at 1 Hz the temporal phase advance induced by synaptic depression is largest (Fig. 4a and Eq. (22)),
the direction index (DI, dotted line, Eq. (44), right ordinate) is also largest around the same temporal frequency. Recall that the calculation
of the DI is based on the postsynaptic current, not the postsynaptic firing rate. The analytical tuning curves are qualitatively similar to the
experimental ones and those obtained from the large scale simulations (see e.g. Saul and Humphrey, 1992, and Fig. 7 in the simulation paper,
respectively).

as low pass filters with cut-off frequencies around 8–32
Hz (see e.g. Saul and Humphrey, 1992), however, it is
difficult to identify the reason for the loss of DS at high
frequencies.

The degree of the selectivity can be expressed by the
direction index defined as the normalized difference
between the response amplitude for the preferred and
non-preferred direction,

DI = I 1
right − I 1

left

I 1
right + I 1

left

. (44)

The right scale of Fig. 6b shows the direction index
(DI) as a function of the temporal frequency. Note that
the direction index can be greatly enhanced if it is cal-
culated based on the output firing rates rather than on
the subthreshold response as done here (cf. Reid et al.,
1991; Jagadeesh et al., 1993).

3.5. Symmetry Breaking for an Unbiased Set
of Stimuli

Next we show that the direction selectivity emerges
also in a more natural environment with an unbiased
set of stimuli, for instance for drifting gratings with
velocity sampled from a Gaussian distribution around
0 deg/s. The idea is that any small deviation from the

initial symmetric receptive field initiates a positive
feedback loop.

To make this feedback argument somewhat more
precise we observe that for a first presentation of a right-
ward moving stimulus the weight change is ε�Ḡright

with some small ε > 0 and �Ḡright ≡ �Ḡd given by
(33). The corresponding phase shift of the weight dis-
tribution is a similar fraction εϕx of the maximal phase
shift ϕx (Eq. (39)) which would be achieved by re-
peated stimulations from the same direction. This first
presentation of a right-drifting grating generates the
current Iright ≡ Id from the depressing synapses given
by (29). A second grating in the same rightward di-
rection generates a current Iright,right which is slightly
phase advanced compared to the original one,

Iright,right(t) = Ḡ◦
d

(
f 0
rel + sd f 1

rel cos(�t + ϕt + εϕx )
)
.

The total postsynaptic current induced by this second
grating is obtained from (42) and (43) by replacing ϕx

with εϕx . The corresponding weight change is given
by (33) with ϕt replaced by ϕt + εϕx , and this weight
change is larger than the ε�Ḡd induced by the first.
More importantly, for a stimulus moving in the opposite
(left) direction, the induced weight change is smaller
and cannot annihilate the first. In fact, the postsynaptic
current I 1 = I 1

right (given by Eq. (36)), which is the
main factor determining the weight change �Ḡright,
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Eq. (33), being subject to the synaptic modification,
increses after a second stimulus in the same rightward
direction to

I 1
right,right

=
√(

I 1
d

)2 + (
I 1
nd

)2 − 2ab cos(ϕt + εϕx ) > I 1
right,

while for a second stimulus in the opposite (left) direc-
tion it decreases to

I 1
right,left

=
√(

I 1
d

)2 + (
I 1
nd

)2 − 2ab cos(ϕt − εϕx ) < I 1
right

=
√(

I 1
d

)2 + (
I 1
nd

)2 − 2ab cos ϕt . (45)

The relation among the factors of the weight changes
results in the same relation among the overall weight
changes defined by (33). Note that the phase shift εϕx

induced by the first rightwards drifting grating also af-
fects the argument of the sine in (33). However, the
overall amount of LTP and LTD, defined as the integral
of (33) over a positive and negative sine half cycle, is
proportional to the corresponding factors. Hence, in-
terpreting �Ḡright and �Ḡright,left in this sense as the
overall synaptic LTP or LTD induced by a first right-
wards and a subsequent leftwards drifting grating, re-
spectively, we obtain from (45),

�Ḡright − �Ḡright,left > 0,

stating that a second grating from the opposite direc-
tion cannot invert the synaptic modification initiated by
the first and thus can neither invert the induced spatial
phase shift. Similarly subsequent alternations of grat-
ings in opposite directions do not annihilate but rather
enlarge the initial phase shift towards some asymptotic
value ϕx (Fig. 4b). The direction of the first grating
therefore introduces a bias which dominates the weight
evolution even in the presence of an unbiased set of
stimuli.

3.6. Inseparability of the Spatio-Temporal
Receptive Fields

By definition, a separable spatio-temporal RF can be
represented (with respect to a given class of stimuli) as
a product of a pure function of space and a pure function
of time. Inseparable spatio-temporal RFs are strongly

direction selective since only in this case a linearly
moving light bar may excite the cell during its whole
trajectory through the spatio-temporal RF. To test the
spatio-temporal inseparability after learning we drive
our model simple cell with a sinusoidally modulated
light bar of width σB and different retinal positions
ξ . Discarding again the nonlinear rectification of the
LGN filtering imposed in the simulations we obtain
LGN firing rates of the form

fpre(x, t) ≈ (
f 0
pre + f 1

pre cos(�t)
)

exp

(
− (x − ξ )2

2σ 2
B

)
,

with amplitude f 1
pre depending on σB and ξ . For the sake

of simplicity we assume that the light bar and the spa-
tial distribution of the depressing and non-depressing
synapses have the same width, σB = σd = σnd. The cur-
rents from the right/left non-depressing surround and
from the depressing center are then

I ±
ξ,nd (t) = Ḡ◦

nd

2

(
f 0
pre + f 1

pre cos(�t)
)

× exp

(
− (ξ ∓ xnd)2

2σ 2
b

)
, (46)

Iξ,d (t) = Ḡ◦
d

2

(
f 0
rel + f 1

rel cos(�t + ϕt )
)

× exp

(
− (ξ + ϕx/k)2

2σ 2
b

)
, (47)

with σb = 2σB/
√

3. These expressions are obtained
by intergrating (25) and (26), with Ḡeff

d (x) replaced by
Ḡeff

d (x + ϕx/k) and coefficients f 0
rel and f 1

rel given by
Eqs. (19) and (20). To further reduce the length of the
formulas we neglect the contribution I +

ξ,nd from the left
half RF—a situation which is obtained by applying
the learning rule to the strength of the non-depressing
synapses (see Fig. 4a in the simulation paper). Assum-
ing that the remaining contributions I −

ξ,nd and Iξ,d have
roughly the same size (but different phases), the total
current takes the form

I −
ξ,nd (t) + Iξ,d (t) ≈ cos(�t) exp

(
− (ξ + �x)2

2σ 2
b

)

+ cos(�t + ϕt ) exp

(
− ξ 2

2σ 2
b

)
= C(ξ ) cos(�t + �(ξ )), (48)

where �x = xnd − ϕx/k denotes the distance between
the left RF surround and the RF center. The coefficients



132 Senn and Buchs

in (48) are obtained through standard trigonometric
transforms (see Eq. (53)),

tan �(ξ ) = sin ϕt

cos ϕt + exp
(−(ξ − �x/2)

/(
σ 2

B

/
�x

))
(49)

and C(ξ ) = exp(−ξ 2/(2σ 2
B))

√
A2 + B2, with A and B

denoting numerator and denominator in (49). Accord-
ing to (48), a sinusoidally modulated light bar posi-
tioned at ξ evokes a maximal postsynaptic response at

Figure 7. a: Spatio-temporal RF of the model simple cell before and after learning. The contour plots show the total postsynaptic current I (t)
according to (48) for a bar at retinal position ξ with sinusoidally modulated contrast (traces along the ordinate). Thick lines: excitatory, thin:
inhibitory currents. a1: Before learning the RF is separable and the cell non-selective (ϕt = ϕx = 0 and �(ξ ) = 0 in Eq. (48)). a2: After repeated
stimulations with drifting gratings the RF becomes inseparable and the cell directional selective because both, the temporal and spatial phase
shift emerged (ϕt > 0 and thus �(ξ ) > 0 according to Eq. (49)). If only the temporal shift would develop (like in the ‘strobe rearing’ scenario, cf.
simulation paper, Fig. 9), the two RF clusters in a1 move only along the temporal axes and remain separated in space, making the cell unselective
(cf. Humphrey and Saul, 1998, Fig. 6C, for such a ‘strobe reared’ RF). Same parameter values as in Fig. 3, but σB = σd = σnd = 2/3 deg,
xnd = 3/4λ. b: Spatio-temporal RFs of simple cells in cat area 17, reproduced from Humphrey and Saul (1998). The contour plots represent
the simple cell activities in response to bright and dark bars of 40 ms duration, at different locations of the RF. b1: Separable RF corresponding
to a cell which is not direction selective (DI = 0.08). b2: Inseparable RF corresponding to a direction selective cell of a normally reared cat (DI
= 0.98, measurement based on the output firing rate).

a time tpeak = −�(ξ )/� before its own maximal lumi-
nance. The temporal phase advance of the postsynaptic
response, �(ξ ) given by Eq. (49), is a sigmoidal func-
tion of the bar position ξ . A maximal temporal advance
of roughly ϕt/� is reached for a bar centered at ξ = 0,
and a half maximal temporal advance is reached for a
bar centered at ξ = �x/2, see Fig. 7 a2. The ‘slope’ of
the spatio-temporal RF, �x/σ 2

B = (xnd − ϕx/k)/σ 2
B ,

is steep if the bar width σB is small and/or the in-
duced spatial shift of the RF center, −ϕx/k, large
(note that for the present leftwards shift −ϕx/k is
positive).
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The response to sinusoidally modulated light bars,
Eq. (48), allows us to judge the RF separability, i.e. to
test whether the response is a product of a pure func-
tion of space and a pure function of time. According
to the assumptions in the simulation paper we consider
the extended learning scenario where both the synap-
tic strength, Ḡd , and the probability of discharge, Pdis,
of the depressing synapses are modified by the same
learning rule (8). If in the initial state Pdis is small, no
temporal phase advance is present (ϕt = 0) and there-
fore �(ξ ) ≡ 0 (formally, Pdis ≈ 0 implies ϕt ≈ 0
in Eq. (21)). As a consequence, the neuronal response
(48) becomes a product of a function of space (ξ ) and
time (t) and the spatio-temporal RF is separable (Fig. 7
a1). As soon as Pdis increases during repeated stimu-
lations (see Fig. 4b in the simulation paper), however,
a temporal phase advance emerges and the growing
component �(ξ ) in Eq. (48) makes the RF inseparable
(Fig. 7 a2). Note that the response of the depressing
synapses (right oval in Fig. 7 a1) shifts both in time
and in space. For comparison, the spatio-temporal RF
of an unselective and a selective simple cell is repro-
duced from Humphrey and Saul (1998) (Fig. 7b).

The joint evolution of the spatial and temporal shift
during the learning process is also observed in the large
scale simulations (Fig. 9b of the simulation paper, ‘nor-
mal rearing’), where both phase shifts again have the
same size after repeated stimulations. In contrast, in
the ‘strobe rearing’ scenario the directional informa-
tion is destroyed by the light discontinuities and either
no spatial structure could emerge, or the previously ac-
quired spatial structure disappeared (see Fig. 9a and c
in the simulation paper, respectively). In terms of our
analysis, ‘strobe rearing’ will leave the two clusters in
Fig. 7 a1, well separated in space. Despite the temporal
phase advances the RF remains largely separable and
the simple cell non-directional.

4. Discussion

We have described long-term modifications of sim-
ple cell response properties induced by STDP during
exposure to a directionally unbiased stimulus scenario,
i.e. to stimuli moving equally often to the left and
the right. According to the learning rule, the synaptic
strength and the vesicle discharge probability are up- or
downregulated, depending on whether the presynaptic
activity arises before or after the postsynaptic activity,
respectively. The plasticity of the synaptic strength, Ḡ,
and the plasticity of the vesicle discharge probability,

Pdis, leads to the modification of the spatio-temporal
RF properties required for DS. Although the temporal
resolution of the synaptic modification is below 20 mil-
liseconds, the strongest selectivity develops for drift-
ing gratings with a temporal frequency of roughly 1 Hz
(Fig. 6b), i.e. with a peak-to-peak period being almost
two order of magnitudes longer than the resolution of
the learning rule. Our analysis reveals the following ex-
planations of this and other observations gained from
the large scale simulations:

(1) The temporal frequency tunings of short-term
synaptic depression, long-term modifications, and
LGN responses are similar. First, after learn-
ing the cell’s DS is largest at those frequen-
cies exerting the largest temporal phase ad-
vances by means of synaptic depression: with
a synaptic recovery time constant τrec = 0.5 s,
a discharge probability Pdis = 0.5 and a mean
LGN firing rate of f0 = 40 spikes/s, an es-
timate of the optimal temporal frequency is
�/(2π ) ≈

√
1 + Pdis f 0

preτrec/(2πτrec) ≈ 1 Hz, see
Eq. (22) and Fig. 4a. Second, long-term synaptic
modification induces a spatial shift in the RF which
is maximal for a stimulus frequency of �/(2π ) ≈
1/(2πτL ) ≈ 4 Hz, provided that the temporal
width of the learning function, τL , is around 40 ms,
see Eq. (37) and Fig. 4b. Third, the LGN firing rate
driving the synaptic modifications is itself maximal
around a temporal frequency �/(2π ) ≈ 4.0 Hz,
see Eq. (24) and Fig. 4a. Hence, the temporal
phase advance, the spatial RF shift and the LGN
responses are largest for a stimulus frequency be-
tween 1–4 Hz, and this is two orders of magni-
tude slower than the temporal width of the learning
function (40 ms).

(2) The match between spatial and temporal phase
shifts explain the simple cell DS. The quantitative
agreement of the spatial phase shift, ϕx , and the
temporal phase advance, ϕt , explains why a devel-
opmental mechanism based on asymmetric STDP
and on short-term synaptic depression successfully
generates the simple cell DS. In our model, a pop-
ulation of depressing and non-depressing LGN af-
ferents work together in producing DS through
their spatial offset and the temporal phase ad-
vance of the depressing population. When stim-
ulated in the preferred direction, the two phase
shifts add, ϕx + ϕt ≈ π/2 and, according to the
trigonometric summation theorem, the current am-
plitudes from the depressing and non-depressing
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synaptic populations, I 1
d and I 1

nd, respectively, add

to
√

(I 1
d )2 + (I 1

nd)2. When stimulated in the non-
preferred direction, however, the two phase shifts
cancel, ϕx + ϕt ≈ 0, and the currents add to
|I 1

d − I 1
nd|, see Eq. (43) and Figs. 3b and 5a.

(3) The temporal frequency determines the absolute
value of the RF modification, but not the shape
of the RF modification. The shape and the abso-
lute value of the RF modification are separately
determined by the spatial and temporal frequency
of the stimulus. More precisely, a drifting grat-
ing with spatial and temporal frequencies specified
by � and k, respectively, induces a change of the
synaptic strength, �Ḡ(x), which is proportional
to −η(�) sin(kx + γ ). Here, η(�) is proportional
to the Fourier transform of the learning function,
and the phase shift γ reflects the interaction of the
RF center with the RF surround, see Eq. (33) and
Fig. 3b. The expression shows that the shape of the
weight change is determined by spatial, and not,
as one might expect, by the temporal frequency of
the stimulus. What matters for the learning rule, in
fact, is not the time difference between the peak
of the pre- and post-synaptic activity, but rather
the change of the presynaptic activity at each posi-
tion x at the time of the postsynaptic peak activity.
Hence, it is the derivative of the stimulus which en-
ters in the synaptic modification (as formally ex-
pressed in Eq. (58)), and the temporal frequency
only appears as an overall scaling factor which can
be interpreted as the ‘speed’ of the synaptic modi-
fication. Nevertheless, in a natural stimulation en-
vironment with stimuli moving in different direc-
tions, this speed determines the steady state value
of the spatial RF shift (cf. Fig. 5b in the simulation
paper).

(4) The RF becomes velocity selective when trained
with moving bars, but not when trained with mov-
ing gratings. It is worth pointing out that for differ-
ent types of stimuli, moving narrow bars or moving
gratings, the final RF shape is different. RFs formed
by moving bars show a stronger velocity selectiv-
ity than those formed by drifting gratings. This is
because in the case of a moving, infinitely narrow
bar the dynamics of the synaptic variables store ve-
locity information at any spatial location, but not
in the case of a spatially extended 2-dimensional
stimulus. Formally, the synaptic changes at a spe-
cific RF position is calculated by the convolution

of the learning function with the stimulus, multi-
plied by the postsynaptic activity (Eq. (31)). The
synaptic changes as a function of RF position there-
fore strongly depends on the type of the stimulus:
For a narrow bar, the synaptic changes across the
RF reflect the learning function stretched by the
stimulus velocity (Eq. (40)). For a moving grating
the synaptic changes reflect the derivative of the
stimulus at the time of the postsynaptic peak re-
sponse (Eq. (58)), and the stimulus velocity only
enters as a common, non-monotonic factor. The
corresponding spatial RF shift is a monotonic func-
tion of the stimulus velocity for moving bars, but a
non-monotonic function of the temporal frequency
for moving gratings (Fig. 4b). As a consequence,
we expect a velocity selectivity emerging from the
training with narrow bars which is strongest for
the same velocity as the cell was trained with. In
contrast, such a velocity selectivity, when trained
with drifting gratings, is only expected in the low
temporal frequency regime where the spatial phase
shift is monotonically increasing with the temporal
frequency, but not above 8 Hz (Fig. 4b).

(5) Symmetry breaking in an unbiased stimulus sce-
nario. DS evolves even when the velocities of
the drifting gratings are symmetrically distributed
around zero. This is explained by a positive feed-
back loop which enhances small deviation from the
RF symmetry: if a first, rightward drifting grating
with response amplitude I 1

right produces a small RF
shift εϕx , a second, leftward drifting grating gen-
erates a smaller response, I 1

right,left < I 1
right, because

a slight DS already developed for the first direc-
tion (Eq. (45)). Since the postsynaptic response
goes as a factor into the synaptic modification rule
(Eq. (31)) this inequality implies that the RF shift
induced by the first, rightward moving stimulus,
εϕx , will not be canceled by a second stimulus
moving in the opposite direction. In turn, a sub-
sequent stimulus moving in the original rightward
direction will further extend the initial phase shift
and eventually a macroscopic RF shift ϕx emerges.
The robustness of the DS development during ex-
posure to randomly selected stimuli can be further
enhanced by nonlinearities in the weight modifica-
tion. As revealed by the simulation paper, a learn-
ing threshold imposed to the postsynaptic activity
ensures that the selectivity, once acquired for one
direction, remains stable (see point 3 in the Dis-
cussion of the simulation paper).
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(6) Interference between RF size and stimulus width.
As discussed in the simulation paper (point 7 of the
Discussion), the restriction to a single type of the
synaptic modification implies an initial RF struc-
ture with depressing synapses in the RF center and
non-depressing synapses in the RF surround. Such
a RF structure, however, may interfere with the
spatial width of the stimulus during the learning
process. Due to the spatial periodicity of the drift-
ing gratings, the contribution to the postsynaptic
current from the left and right RF surround can
be out of phase and, assuming a push-pull mech-
anism, can cancel each other. They are in phase,
however, if the width of the grating corresponds to
the width of the RF, λ = 2π/k ≈ 2xnd, see Eq. (35)
and Fig. 3. More importantly for the learning pro-
cess, the contribution from the RF center and the
surround can be out of phase, and therfore have
opposite effects on the modification of RF center,
see Fig. 3b, dashed and dotted line. Consequently,
when trained with a single grating of different tem-
poral frequencies, the RF size must be adjusted to
the spatial frequency of the stimulus, as done in our
simulations. In a more general stimulation scenario
with randomly distributed spatial frequencies, on
the other hand, the development of DS is expected
to be dominated by the specific spatial frequency
to which the simple cell responds best. In addition,
again via positive feedback loop, the perturbation
of the RF development by the other, non-optimal
stimuli is expected to be eventually suppressed.

(7) Inseparability of the spatio-temporal RF. The mag-
nitude of the spatial and temporal phase shift, ϕx

and ϕt , determine the degree of the spatio-temporal
inseparability of the developing RF, see Fig. 7a2
and Eq. (49), characterizing the temporal phase
advance �(ξ ) as a function of the synaptic posi-
tion ξ . The RF inseparability is a direct expression
of the monotonic increase of the temporal phase
with position (when discarding one half of the non-
depressing surround). To explain the development
of a directional RF from an non-directional one,
Fig. 7a, we assumed that the synaptic strength, Ḡd ,
and the vesicle release probability, Pdis, were both
subject to STDP. In fact, due to the joint develop-
ment of the spatial and temporal phase shift during
such a ‘normal’ rearing scenario, the RF become
inseparable and the simple cell direction selective.
Deviations from this scenario could explain differ-
ent misdevelopments. For instance, in a ‘strobe’

rearing scenario where, in a single model synapse,
the information about the stimulus motion is sup-
pressed due to the time slicing by the light flashes,
no coherent spatial shift can develop. In this case
the asymmetric RF structure either does not de-
velop or disappears when it is already present (cf.
simulation paper, Fig. 9). In fact, a spatio-temporal
RF which only shows temporal phase shifts with-
out the corresponding spatial phase shift remains
to a great extent separable and thus unselective.

In summary, directionally unbiased retinal activity
may induce spatially asymmetric synaptic modifica-
tions, assuming that the synaptic plasticity itself is tem-
porally asymmetric. The properties of synaptic depres-
sion and STDP both support the development of simple
cell DS in a physiological regime of temporal frequen-
cies. The developing RF is spatio-temporally insep-
arable, and its form is differently affected by differ-
ent stimulus properties: the temporal frequency of the
stimulus determines the absolute value, and the spatial
frequency determines the shape of the synaptic modi-
fications. This shape is independent of the width of the
learning function when stimulated with drifting grat-
ings, but not when stimulated with narrow bars. For a
more general discussion and further implications on the
learning process see the Discussion in the simulation
paper.

Appendix A

A.1. Calculation of the LGN Response

The explicit evaluation of the double integral in Eq. (1)
with the spatio-temporal filter functions specified by
(2) and (3) yields

∫ ∞

−∞

∫ t

−∞
dx̃ dt̃ K (x − x̃)H (t − t̃) cos(kx̃ − �t̃)

= A◦(k, �) cos(kx − �t + β̃)

with A◦(k, �) =
√

a2 + b2 − 2ab cos γ and some
phase shift β̃. The constants determining the amplitude
are

a = 2
e−k2σ 2

c /2 − e−k2σ 2
s /2

1 + (τ f �)2
, b = e−k2σ 2

c /2 − e−k2σ 2
s /2

1 + (τs�)2
,

γ = 2(atan(τs�) − atan(τ f �)), (50)
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The instantaneous firing rate of the LGN-cell defined
by (1) now has the form fpre(x, t) = max{A(C)A◦
(k, �) cos(kx − �t), f back

pre }. Following Chance et al.
(1998) the correction factor A(C), taking into ac-
count the luminance contrast of the grating, is
A(C) = [172 ln(67C)]+ Hz. The contrast is defined as
C = (Smax−Smin)/(Smax+Smin), where Smax and Smin are
the maximal and minimal luminance levels of the stim-
ulus. The function A(C) is obtained by fitting the LGN
response amplitude with the contrast-frequency curves
in Ohzawa et al. (1985), which were recorded with a
fixed mean luminance (Smax + Smin)/2 (=250 cd/m−2).
In both, the simulation and analysis paper we chose a
contrast of C = 0.5.

Note that the filters K and H slightly differ in two
ways from those of Maex and Orban (1996). First, the
normalization in the spatial filter is such that for uni-
form illumination LGN-responses are small. This is
based on the fact that for wide gratings (k → 0) the
LGN and simple cells responses are small (Saul and
Humphrey, 1990, 1992). Second, the temporal filter
has a stronger excitatory component in order to ob-
tain high enough LGN firing rates for slow temporal
frequencies.

The above double integral is calculated by means of
the two formulas

1

τ 2

∫ t

−∞
dt̃(t − t̃)e− t−t̃

τ cos(kx̃ − �t̃)

= 1

1 + (τ�)2
cos(−kx̃ + �t + 2 arctan τ�), (51)

1√
2πσ

∫ ∞

−∞
dx̃ exp

(
− (x − x̃)2

2σ 2

)
cos(−kx̃ + ψ)

= exp

(
−k2σ 2

2

)
cos(kx − ψ). (52)

In addition to these integrals we used the trigonometric
transform

a cos α − b cos(α − γ ) = c cos(α − β), (53)

where c =
√

a2 + b2 − 2ab cos γ and tan β = b sin γ /

(b cos γ − a).

A.2. Estimate of the Temporal Phase Advance

To get the first order Fourier approximation of Pv

in response to a sinusoidal stimulation f (t) = f 0 +
f 1 cos(�t) we make the ansatz Pv(t) ≈ P0

v +

P1
v cos(�t + φ), thereby neglecting higher order terms.

Inserting this into (9) and decomposing the product of
cosines into a sum of cosines we get

�P1
v sin(�t + φ) ≈ − 1

τ
+ P0

v a + P1
v a cos(�t + φ)

+P0
v b cos(�t) + P1

v b cos(φ)
/

2,

with a = 1/τ + Pdis f 0, b = Pdis f 1, τ = τrec, and
where we neglected the second order term −P1

v b/2
cos(2�t + φ) on the right-hand side. Transforming the
cosines of the sums into products of sines and cosines,
we obtain the following coefficients for the zero or-
der term, the sin(�t)-term, and the cos(�t)-term,
respectively,

0 ≈ −1/τ + P0
v a + P1

v b cos(φ)
/

2, (54)

� cos φ ≈ −a sin φ, (55)

�P1
v sin φ ≈ P1

v a cos φ + P0
v b. (56)

From (55) we directly get the phase advance φ,
Eq. (15), and we also deduce that sin φ = �/F and
cos φ = −�τ/F , with F2 = a2+�2. Inserting this into
(56) we get (14), and together with (54) we obtain (13).

To approximate the Fourier terms (18) for the synap-
tic release rate we expand (17) by a trigonometric trans-
form into

frel(t) ≈ Pdis

(
P0

v f 0
pre + P1

v f 1
pre

2
cos φ

+ P0
v f 1

pre cos �t + P1
v f 0

pre cos(�t + φ)

)
,

where we dropped the second order term
P1

v f 1
pre

2 cos(2�t + φ) in the parentheses. Accord-
ing to this approximation the phase advance of frel is a
weighted sum between the phases 0 and φ, with a bias
towards 0 due to the discarded term. Substituting the
approximation for φ and using formula (53) we obtain
the spatial phase advance and the zero- and first order
Fourier coefficients of the synaptic release rate frel(t),
Eqs. (19)–(21).

A.3. Estimate of the Spatial Phase Advance

The total currents from the non-depressing and depress-
ing synapses, Ind/d (Eqs. (28) and (29)), are obtained
by applying formula (52) to the integrals (25) and (26).
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To calculate (31) we rewrite the weight modification
in a Hebbian form as a product of a pre- and post-
synaptic term,

�Ḡd (x) = 1

T

∫ T

0
dtP(x, t)I (t) (57)

The presynaptic term P(x, t) is obtained by convolving
the instantaneous release rate (27) with the learning
function (8),

P(x, t)

=
∫ ∞

−∞
dt̃ L(t̃) frel(x, t̃ + t)

= − τL√
2π

∫ ∞

−∞
dt̃ exp

(
− t̃ 2

2τ 2
L

)
d

dt
frel(x, t̃ + t)

= − f 1
relη(�) sin(kx − ϕt − �t), (58)

where η(�) = τ 2
L� exp(−τ 2

L�2/2). In this calculation
we first applied the transform

1

τ 2

∫ ∞

−∞
t̃ exp

(
− t̃2

2τ 2

)
f (t̃ + t) dt̃

=
∫ ∞

−∞
exp

(
− t̃2

2τ 2

)
d

dt
f (t̃ + t) dt̃,

obtained by partial integration, and then applied an-
other time formula (52). Summing up the synaptic cur-
rents from the RF center and the surround, Eqs. (28)
and (29), one obtains

I (t) = Id (t) + I −
nd(t) + I +

nd(t)

= I 0 + I 1
d cos(ϕt + �t) − I 1

nd cos(�t)

with coefficients I 1
d and I 1

nd given by (35). By means of

1

T

∫ T

0
dt sin(a − �t) cos(b − �t) = 1

2
sin(a − b)

the integral (57) now evaluates to (32) and the weight
change �Ḡd (x) given in the form (33) is obtained by
standard trigonometric transforms, see Eq. (53).

To calculate the change in the synaptic strength in-
duced by an infinitely narrow bar moving across the RF
we evaluate the inner integral in (31) while dropping the
averaging over the period T . For the synaptic release
rate frel(x, t) = Pdis f 0

preδ(vt − x) and the postsynaptic

current I (t) = Id (t) = Pdis f 0
preḠeff

d (vt) induced by the

depressing synapses, cf. Eq. (6) and (26), we get

�Ḡd (x) = Pdis f 1
preḠ◦

d√
2π

−xvτ 2
L(

(vτL )2 + σ 2
d

) 3
2

× exp

( −x2

2
(
(vτL )2 + σ 2

d

))
. (59)

If we also consider the contribution of the postsynaptic
currents I ±

nd to �Ḡd (x) we have to add in (59) another
two terms obtained by replacing x with x ± xnd and σd

with σnd. To evaluate the integral in (31) we made use
of the formula∫ ∞

−∞
t exp

(
− t2

2τ 2
L

)
exp

(
− (τ − t)2

2σ 2

)
dt

=
√

2πτστ 3
L(

τ 2
L + σ 2

) 3
2

exp

( −τ 2

2
(
τ 2

L + σ 2
))

. (60)

Finally, to find the location xpeak
�G of the maximal

weight change �Ḡeff
d (x) given by (38) we look for the

first negative solution of d
dx �Ḡeff

d (x) = 0. Calculating
this derivative, we obtain after some transforms

xpeak
�G tan

(
kxpeak

�G − γ
) = kσd . (61)

Since xpeak
�G is expected to be in the interval [0, π

2 ] we
approximate the tangens by a hyperbole,

tan
(
kxpeak

�G − γ
) ≈ − 1

π
2 + kxpeak

�G − γ
.

Inserting into (61) and solving for xpeak
�G leads to the

estimate (39) of the spatial phase advance ϕx .
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