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An emerging generation of high-density microelectrode arrays (MEAs) is now capable

of recording spiking activity simultaneously from thousands of neurons with closely

spaced electrodes. Reliable spike detection and analysis in such recordings is challenging

due to the large amount of raw data and the dense sampling of spikes with closely

spaced electrodes. Here, we present a highly efficient, online capable spike detection

algorithm, and an offline method with improved detection rates, which enables estimation

of spatial event locations at a resolution higher than that provided by the array by

combining information from multiple electrodes. Data acquired with a 4096 channel MEA

from neuronal cultures and the neonatal retina, as well as synthetic data, was used

to test and validate these methods. We demonstrate that these algorithms outperform

conventional methods due to a better noise estimate and an improved signal-to-noise

ratio (SNR) through combining information from multiple electrodes. Finally, we present

a new approach for analyzing population activity based on the characterization of the

spatio-temporal event profile, which does not require the isolation of single units. Overall,

we show how the improved spatial resolution provided by high density, large scale MEAs

can be reliably exploited to characterize activity from large neural populations and brain

circuits.

Keywords: spike detection, microelectrode array, cultured neurons, retina, correlations

1. INTRODUCTION

Emerging generations of high-density microelectrode arrays (MEAs) based on CMOS technology
allow recording extracellular signals from neural population activity with unprecedented detail
(Eversmann et al., 2003; Berdondini et al., 2005; Hutzler et al., 2006; Maccione et al., 2014). These
devices are capable of simultaneously recording extracellular activity with thousands of channels at
near cellular resolution, providing an unbiased sample of neural activity in a variety of in vitro
preparations. Such recordings have the potential to deliver unique new insights into network
dynamics, but their analysis is challenging both due to signal properties that differ substantially
from conventional arrays and the vast amounts of raw data they generate.

The intrinsic noise level of the BioCam platform (3Brain GmbH) used here is about 11 µVrms for
single channel readouts (Imfeld et al., 2008), comparable to values reported for high density arrays
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with few electrodes (Prentice et al., 2011; Marre et al., 2012).
For whole chip recordings, it increases to about 26 µVrms due to
aliasing of high frequencies when multiplexing the signals. Much
lower noise levels of 2.4 µVrms were reported for MEAs where
a high electrode density was combined with a relatively lower
number of amplifiers (Frey et al., 2010; Müller et al., 2015). These
arrays are now capable of recording simultaneously from up to
1024 electrodes. The same noise level is achieved by conventional
arrays, but these use larger electrodes and therefore average
signals over a larger volume. The small electrode dimensions
in high density arrays enable the detection of smaller current
sources (e.g., from axons) if the resistivity of the preparation is
high. Conversely, even though distant current sources will be
picked up bymany electrodes, their detection is impaired because
of a higher intrinsic noise level.

In addition, recording 4096 channels sampled at 8 kHz
with 12 bit resolution yields data rates of about 0.37GBit/s,
or 2.8GB/min. These high data rates become particularly
challenging for prolonged continuous recordings over several
hours or days. Neural activity, on the other hand, is usually
rather sparse. Firing rates in cultured networks or other isolated
preparations rarely exceed 10Hz, and rate distributions are
typically skewed toward values well below 1Hz (Griffith and
Horn, 1966; Hromádka et al., 2008). On high density arrays
with an electrode size of 21 × 21µm2, each channel records
the activity of only few neurons due to spatial constraints.
Hence the rate of relevant signals is at most 10MB/min and
typically lower since often not all channels record neural
activity.

Therefore, a spike detection algorithm needs to be highly
efficient in order to process large datasets in a short time and
extract the most relevant information for a consecutive spike
sorting. It has to be designed to detect spikes in a narrow volume
close to the electrodes and ignore a high amount of background
activity and noise. The algorithmmust automatically estimate the
voltage baseline, since it may vary across electrodes and in time.
Additionally, the fabrication process does not guarantee an equal
performance for all electrodes such that robustness to electrode
failures is required.

For conventional arrays, raw voltage traces from extracellular
recordings are typically high-pass filtered with a cutoff frequency
between 300 and 800 Hz (Quiroga et al., 2004; Jäckel et al.,
2012; Kadir et al., 2014; Swindale and Spacek, 2014). For high
electrode densities, and when spike shapes are known, algorithms
can reduce or avoid high-pass filtering at some point in the
analysis (Nenadic and Burdick, 2005; Prentice et al., 2011;
Marre et al., 2012). For detecting and sorting spikes, one way
is to identify candidate events which are then used to create
templates and a subsequent fitting of such templates to the
raw voltage traces. Template matching can be implemented
in a highly efficient way on FPGAs (Dragas et al., 2015), but
relies on an assumption that spikes from the same neuron
will only change in amplitude and the generation of templates
often requires a considerable amount of manual intervention.
For efficient detection of data from high density arrays without
using templates, Gibson et al. (2010) proposed using the Teager
Energy Operator for sampling rates of 24 kHz and when

hardware dependent noise sources can be neglected, and found
a good performance for a threshold based approach as well.
Swindale and Spacek (2014) used a colored Gaussian noise
matched to recordings and found that thresholding a peak-to-
peak difference works best for high-pass filtered data (cutoff at
500Hz).

Threshold-based detection can be supplemented by defining
constraints on the spike shape, such as a repolarization following
themain signal or non-linear filters, which require some previous
knowledge of the expected spike shape (Kim and Kim, 2000). It
can be highly efficient when combined with continuous noise
estimation. It can be realized in real-time during acquisition
even on large arrays (Maccione et al., 2009) and implemented
in hardware, for instance using wavelet based compression and
feature extraction (Imfeld et al., 2009). Once detected, putative
spikes are then clustered according to spike shape parameters
to separate multiple neurons recorded by the same channel
and to exclude false positives (Lewicki, 1998; Einevoll et al.,
2012).

In high density recordings signals from the same neuron are
mostly detectable on multiple channels. While this redundancy
complicates assigning individual waveforms to different neurons,
it can be exploited to improve the signal-to-noise ratio (SNR)
and detection (Franke et al., 2012), as also done for tetrode
or polytrode recordings (Gray et al., 1995; Harris et al.,
2000; Mechler et al., 2011; Marre et al., 2012; Rossant et al.,
2015). A clustering and a spatio-temporal lockout method
to remove duplicates in the detection was compared by
Swindale and Spacek (2014) with similar performance for both
methods. In their paper, they only found spikes on up to 10
electrodes, but for a higher electrode density, multiple detections
would be common, and a requirement on the number of
detections could be a way to exploit the spatial spread of
signals.

Here we present a set of methods for efficient and reliable
event detection and classification of spikes specifically designed
for use on large scale, high density recordings. We used
data recorded with the 4096 channel Active Pixel Sensor
(APS) MEA (Berdondini et al., 2005, 2009), with an electrode
center to center spacing dpitch of 42 µm. Instead of high-
pass filtering, we employed online estimates of percentiles of
the voltage traces to estimate the baseline and noise level.
Since the strongest current during a spike should originate
from the axon hillock of the neuron, we expected that spike
current sources should be localizable. Therefore, we used a
family of spatial (but not temporal) templates covering different
source locations to approximate the spatial profiles of spikes,
instead of estimating templates directly from amplitudes in
the raw data. Assessment of the performance was performed
independently using synthetic data, by imaging of an antibody
labeled preparation, and by exploiting correlations in neural
activity. We expect that these methods are applicable without
much modification to data from similar systems. All code to
replicate the analysis shown in this paper is provided at https://
github.com/martinosorb/herding-spikes, and example datasets
at https://portal.carmen.org.uk/#link=URN:LSID:portal.carmen.
org.uk:metadata:42944.
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2. MATERIALS AND METHODS

2.1. Neurophysiology
High density recordings from the neonatal mouse retina and
cultured dissociated hippocampal neurons were performed
using the BioCam4096 platform with APS MEA chips type
BioChip 4096S (3Brain GmbH, Switzerland), providing 4096
square microelectrodes (21 × 21 µm) on an active area
of 2.67 × 2.67mm, aligned in a square grid with 42 µm
spacing. The platform records at a sampling rate fs between
7–8 kHz/electrode when measuring from the full 64 × 64
channel array (7563 Hz retina, 7702 Hz culture). Raw
data were visualized and recorded with the BrainWave
software provided with the BioCam4096 platform. Activity
was recorded at 12 bits resolution per channel, low-pass
filtered at 5 kHz with the on-chip filter and high-pass filtered
by setting the digital high-pass filter of the platform at
0.1Hz.

Experiments were performed on neonatal (P2-15) C57bl/6
(http://jaxmice.jax.org/strain/000664.html) mice in Newcastle,
conducted and approved under the UK Home Office, Animals
(Scientific procedures) Act 1986, and on cultured neurons in
Genova, where all procedures involving experimental animals
were approved by the institutional IIT Ethic Committee and by
the Italian Ministry of Health and Animal Care (Authorization
ID 227, Prot. 4127 March 25, 2008).

2.1.1. Cultured Neurons
Neural cultures were obtained by dissociating hippocampal
neurons from embryonic rat brain tissue at day E 18 and
plating the cells on APS MEAs pretreated with adhesion factors
(PEI). Subsequently, cultures were incubated in Neurobasal
supplement with 1% Glutamax 2% B-27 medium, in a
humidified atmosphere 5% CO2 at 37°C. Fifty percent of the
medium was changed every 6 days. The data presented in
this study were 20 min long recordings from two cultures
aged 21 days in vitro (DIV) and 18 DIV (for the imaged
culture).

For the analysis of spatial patterns, 15 min long recordings
from three cultures aged 21 DIV at the beginning of the
experiment were used. A low dose (5 µM) of CNQX (6-cyano-7-
nitroquinoxaline-2,3-dione) was applied to two of these cultures
after an initial baseline recording and washed out by twice
replacing 2/3 of the culture media after 48 h.

The staining of low density cultures was performed
as described by Ullo et al. (2014). After recording, cells
were fixed at room temperature in 4% paraformaldehyde,
permealized and incubated for 2 h with primary antibodies
anti-b3 tubulin (Sigmaaldrich) and anti-NeuN (Chemicon
Millipore). Successively, secondary antibodies Alexa-Fluor488
and Alexa-Fluor 546 conjugated were added to label, respectively
b3-tubulin and NeuN. Fluorescent images at 20x magnification
were acquired by means of an upright microscope Olympus
BX51 and stitched together. The result is a high resolution image
of the entire culture recorded by the 2.7 by 2.7mm2 active area
of the chip.

2.1.2. Neonatal Retina
Mouse pups were killed by cervical dislocation and enucleated
prior to retinal isolation. The isolated retina was placed, retinal
ganglion cell (RGC) layer facing down, onto the MEA. Coupling
between the tissue and the electrodes was achieved by placing a
small piece of polyester membrane filter (Sterlitech, Kent, WA,
USA) on the retina followed by a custommade anchor. The retina
was kept at 32°C with an in-line heather (Warner Instruments)
and continuously perfused using a peristaltic pump (∼1ml/min)
with artificial cerebrospinal fluid (aCSF) containing the following
(in mM): 118 NaCl, 25 NaHCO3, 1 NaH2 PO4, 3 KCl, 1 MgCl2, 2
CaCl2, and 10 glucose, equilibrated with 95% O2 and 5% CO2.
Retinas were allowed to settle for 1–2 h before we started the
recordings to allow spontaneous activity to reach steady state
levels. The tissue was constantly perfused with fresh aCSF. The
recording shown in this paper was 30 min long and from a retina
at postnatal day 11. A further recording of 15 min duration was
done from the same chip after removing the retina (empty chip
recording).

2.2. Event Detection (Online Method)
Spikes detection relied on a variable signal threshold, which was
computed as follows. First, to compensate for correlations of the
median voltage xglobal across all channels, a likely consequence
of external fields, the median voltage xglobal was subtracted from
the raw signals x. Then the algorithm used two variables which
represented an online estimate of a baseline b (the local 33rd
percentile) and a variability estimate v around the baseline. They
were both updated incrementally as follows (Figures 1D,E):

• b was increased by 1/2 fb/fs (cf. Table 1) if the raw signal
exceeded b + v and decreased by fb/fs if the raw signal was
below b− v. This adjustment was not symmetrical in order to
ignore irrelevant positive fluctuations.

• vwas decreased by fv/fs (cf.Table 1) if the signal was within the
interval

(

b− v, b
]

or, to compensate for spikes,
(

−∞, b− 6v
]

,
and increased by the same amount for signal amplitudes
(

b− 5v, b− v
]

.

The threshold for event detection was then set to b − θv,
deflections in the positive direction were ignored. The 33rd
percentile was a better baseline estimate than the signal median,
as it was less affected by such events.

After threshold crossing, three shape criteria were applied
to reduce the number of false positives. Events were accepted
when:

• the sum of all baseline subtracted voltages from the threshold
crossing up to τev after the peak was larger in amplitude than
(−θevv).

• there was no largerminimum for the subsequent τevent interval
after the peak.

• at least one frame in a τevent interval after the peak was larger
than b+ θbv, indicating presence of a repolarization.

This initial detection could be performed online during an
ongoing recording. For the subsequent analysis, channel ids,
spike time stamps and spike amplitude (in units of the current
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TABLE 1 | Detection parameters used in the examples illustrated in this

paper.

Parameter Value Description

ONLINE SPIKE DETECTION

fs 7–8 kHz Sampling rate

dpitch 42 µm Electrode pitch

fv 0.03125 fs µV Variability update rate

fb 0.5 fsv Baseline update rate

θ 6 Detection threshold

θev 10.5 Minimum depolarization area

τev 0.27ms (2 frames) Interval for depolarization area

τevent 1ms (7 frames) Maximum depolarization width

θb 0 Repolarization threshold

SPATIAL INTERPOLATION, ADJUSTABLE PARAMETERS

θ 5 Detection threshold

θb 0 Repolarization threshold

SPATIAL INTERPOLATION

τevent 1 ms (7 frames) Characteristic event length

τcoinc ±0.27 ms (2 frames) Window for coincident events

wcs 4/1 Center/surround weighting

τpre 1ms (7 frames) Cut-out window before peak

τpost 2.2 ms (15 frames) Cut-out window after peak

variability estimate v) were stored. The parameters used for the
analysis shown in this paper are given in Table 1.

2.3. Event Detection (Spatial Interpolation)
In our system, spikes often produced a high amplitude only
for less than 0.5ms (2–3 frames at 7 kHz) and on 1–4
electrodes. If the true spatio-temporal profile of a spike was
known, a dot product of the raw voltage traces and such
templates could be employed to efficiently detect spikes (Marre
et al., 2012; Dragas et al., 2015). However, estimating such
templates required a high firing rate, large amplitudes, or
long recordings (and would be biased toward detecting units
satisfying those criteria) and was computationally demanding.
In order to avoid the prior estimation of templates, but to
still account for the spatio-temporal spread of the signal,
we added a set of virtual channels centered between the
real electrodes. Spatial averages of the signals on the true
channels were then computed with two different weightings, to
account both for event sources close to and between recording
channels.

Five-channel interpolation. The current source was assumed
to be close to an electrode. We computed a weighted signal
of a group of five nearest neighbor channels, where the center
channel contributed wcs/(3 + wcs) of the amplitude, and the
three largest amplitudes of the four surrounding channels
were each weighted by 1/(3 + wcs). This was done for each
frame and the variability estimate was weighted in the same
manner. This signal then replaced the original signal in each
channel.

Four-channel interpolation. The current source was assumed
to be roughly centered in a 2× 2 grid of four channels. The three

largest absolute signal amplitudes and corresponding variability
estimates were averaged. This value was then added as a virtual
channel between true channels.

The specific weights do depend on the inter-electrode distance
dpitch and are therefore system specific. To facilitate adaptation
of the method for other systems we studied that dependence in
a simplified setting in Supplementary Figure 1. Discarding the
lowest amplitude in both scenarios was done for two reasons.
First, it was a simple way to effectively implement four different
templates for each scenario and ensuring that any event was
only detected once. As a result, the location of the current
source would have a lower impact on the detection performance.
Second, as usually not all electrodes performed equally well, this
procedure could reduce the influence of positive outliers if they
occurred on single electrodes and were clearly unphysiological.
Of course, this approach would have a higher occurrence of
false positives as it relied on multiple testing, but we argued that
events detected from the two types of interpolated signal could
subsequently be distinguished by their spatial position.

For the temporal processing, we essentially followed the same
procedure as for the online algorithm, but averaged signals
over 0.4ms and also subtracted a running estimate of signal
fluctuations that could be explained by the voltage median hi ·
(xglobal(t)−xglobal(t−1)). The hidden variable hi was incremented
with a speed of 1/s when the corrected voltage on individual
electrodes xi(t)−xglobal(t)−hi ·(xglobal(t)−xglobal(t−1)) changed
in the same direction as global voltage fluctuations xglobal and
decremented otherwise. This method differed from the approach
in Marre et al. (2012) where a covariance matrix between all
channels was determined to whiten the signals, which assumed
temporal stationarity over the whole recording.

Baseline subtracted signals were then normalized by the
variability estimate for each channel, and the minimum over
two consecutive frames was taken as event peak to account
for a potential temporal shift between neighboring channels.
When this signal crossed a threshold −θ , a local minimum was
accepted as a spike when there was no larger minimum for the
subsequent τevent interval, and no larger local minimum was
found in one of the eight neighboring locations (four virtual
and four real channels) in an interval of length τcoinc around
the peak. If at least one frame in the τevent interval had a value
above θb (i.e., baseline), the event was marked as a repolarizing
event.

2.3.1. Spatial Origins of Events
We assumed that, at least at short distances, the potential falls off
roughly as∼ 1/r2 to∼ 1/r with distance r, so that the amplitudes
at neighboring electrodes could be used to estimate the current
source locations (Pettersen and Einevoll, 2008; Lindén et al.,
2011; Prentice et al., 2011). To this end, raw data cut-outs from
a set Icutout of 9–12 channels with spatial coordinates ξi,x and
ξi,y (i ∈ Icutout) were baseline subtracted and the peak value was
taken as amplitude for each channel.

A naive estimate of the barycenter of these amplitudes was
biased toward the center of the cut-out region whenever the
amplitude estimate was offset. For our system, this problem could
not be resolved by increasing the size of the cut-out region and
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estimating that offset, as distant electrodes would have a low SNR,
but a strong influence on a barycenter estimate. We therefore
compromised on the location bias to reduce the spatial spread of
location estimates from the same source. To this end, the median
amplitude was subtracted, the resulting amplitudes clipped at
zero, and the center of mass computed as an estimated current
source location.

The detailed procedure to estimate the current source location
for a single event from raw signals in multiple, neighboring
channels is outlined in Algorithm 1, and had the following steps:

Algorithm 1 | Localization of events.

1: for i in Icutout do
2: x̃i(t) = (xi(t) − xglobal(t) − 〈hi〉 · (xglobal(t) − xglobal(t −

1)))/〈vi〉
3: z(0 : τpre/2) = bi
4: z(τpre/2 : τpre) = x(t0 − τpre : t0 − τpre/2)
5: z(τpre : τpost) = x(t0 + τpre : t0 + τpost)

6: Ai = maxt
((

median(z)− x̃i(t)
)

∗ [ 16 ,
1
3 ,

1
3 ,

1
6 ]
)

7: end for
8: Am = median(AIcutout )
9: Bj =

∑

i(clip(Ai − Am, 0,∞) · ξi,j)/
∑

i(clip(Ai −
Am, 0,∞)), i ∈ Icutout, j ∈ {x, y}

10: for i in Icutout do

11: Ai = Ai · clip(2−
√

(Bx − ξi,x)2 + (By − ξi,y)2, 0, 1)

12: end for
13: B̂j =

∑

i(Ai · ξi,j)/
∑

i(Ai)

14: Â =
∑

i(Ai)/2

Baseline. First the global fluctuations and the average fraction
of global fluctuation increments explaining the signal were
subtracted to reduce global correlated fluctuations, which
would interfere with the localization. In order to put less
weight on noisy channels, signals were divided by the
variability vi (i ∈ Icutout) temporally averaged over the whole
recording.

Next, we subtracted the baseline voltage of individual channels
as the median of an array z which contained (

⌊

(τpre fs)/2
⌋

)
frames with the online baseline estimate at the time of the
detection of the spike, and the initial (

⌊

(τpre fs + 1)/2
⌋

) and final
(
⌊

(τpost − τpre) fs
⌋

) frames of the cut-out interval, to avoid the
high amplitudes of the spike itself.

Amplitudes on individual channels Ai. The (inverted)
signal was convolved with a kernel ( 16 ,

1
3 ,

1
3 ,

1
6 ) of 4 frames

length (cutoff frequency 0.14 fs, to account for smaller,
low-pass filtered amplitudes on more distant electrodes)
and its maximum around the detected peak time t0 was
determined.

Boundaries and outliers.Amplitudes of channels where signals
were missing due to the chip boundary or voltage drifts out
of the linear regime of amplifiers, would induce a bias in the
location estimate if they were set to zero. To reduce that bias, we
counted how many of the eight adjacent channels were available

and used the product of their number with 1/8 of the median
of their amplitudes as a surrogate signal. To further reduce the
effect of outliers, we restricted amplitudes to positive values
and subtracted the 20th percentile of their values. Except for
the center channel, we reduced amplitudes that exceeded the
sum of their eight neighboring amplitudes for channels used
in the detection and 2/3 of that sum for other channels. For
that, amplitudes were clipped to 1/2 or 1/3 of the sum over
amplitudes in a

√
2 dpitch (i.e., nine channel) neighborhood,

respectively.
Localization. Finally, the amplitude median was subtracted,

amplitudes were restricted to positive values, and the
barycenter B̂ of the peak amplitudes was determined.
As nearby spikes would interfere with the signal, we
multiplicatively reduced the amplitudes around the peak
location such that amplitudes for distances between dpitch and
2 dpitch would linearly drop to zero. Then we determined
a new center of mass and subsequently performed the
distance dependent weighting again, this time weighting
amplitudes beyond 2 dpitch negatively (clipped at –0.1).
The center of mass of these amplitudes was used as a final
location.

Amplitudes Â. We used half of the sum of amplitudes after
the localization step for further analysis. This was done as we
expected the center electrode to contribute about half of that sum.
It underestimated true signal amplitudes due to the subtraction of
the spatial median and since we performed a temporal averaging
as well, but reduced noise.

2.4. Events of Similar Spatio-Temporal
Origin
The spike detection algorithm removed events in the refractory
period (Hill et al., 2011) if spikes appeared on the same
electrode by finding the largest amplitude event within
a temporal window of 1ms. However, the same spike
could still be detected on different electrodes and assigned
a similar location. To avoid duplicates, we only retained
the event with the highest amplitude in a spatio-temporal
neighborhood.

Online detection. Events that were detected with a higher
amplitude within 0.5ms before and after the event within a
distance of 60 µm were removed, as these were likely caused by
the same signal source. The fraction of such events was only about
5% in a recording from a culture, but would be as high as 50% in
this retina recording, where the observed spike amplitudes were
generally higher.

Interpolating detection. We removed events if there was a
higher event within 0.5ms before and after the event and within
a distance of 42 µm.

2.5. Synthetic Data
The exact measured spike shapes depended on the neuron,
the conductivity of the media etc. and were undersampled
both in time and space such that a direct analysis of
detection performance and spatial biases using measured
spike templates was not feasible. Neither it was desirable, as
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it would be specific to the preparation and therefore not
suitable to systematically characterize the detection performance.
Instead we defined a spike-like voltage trace (distorted sine
with zero mean as shown in Figure 3A) and weakened the
amplitude as a function of distance from an effective electrode
boundary.

The signal attenuation with distance depends on the local
conductivity and distance from the electrode surface and
therefore varied within a single preparation. We considered
a special case, where the electrodes were given an effective
spatial area of 16.8 × 16.8 µm2 where current sources would
be detected with equal amplitudes. The minimum resistance
between the current source and an electrode was modeled by an
offset distance roffset of dpitch/5 = 8.4 µm. Outside the effective
electrode area, we assumed the potential to fall off as ∼ 1/r with
distance r.

A signal with amplitude a0 at horizontal distances rx and ry
from the center of an electrode would then be measured with an
amplitude a given by the following equation, where 2 denotes
the Heaviside step function:

a = a0 roffset
(√

(rx − roffset)22(rx − roffset)+ (ry − roffset)2

2(ry − roffset)+ roffset

) .

Such waveforms were generated for 16 different positions with
respect to the closest electrode and sampled with 16 different
timelags (1t = (16 fs)

−1). Those were inserted into 256 patches
of 3 × 3 electrodes of a recording from an empty chip, spaced
by four electrodes spatially and by 256/fs temporally, using 15
different amplitudes for each patch. The spike detection and
localization was performed and the results compared to the
injected events.

For comparison, we also implemented a conventional
threshold-based detection, where the threshold for each channel
was set to a multiple of the noise variance (estimated without
inserting spikes). Data were band-pass filtered using a 0.1–2 kHz
3-pole Bessel filter.

Detected events were assigned to inserted events if they
occured within 3/fs and a radius of

√
2/2 dpitch of the

inserted event. If multiple events were found in that range,
the temporally closer event was used. Receiver operating
characteristic (ROC) curves for each channel were obtained by
sorting amplitudes of false positives, determining thresholds
for different false positive rates and the corresponding true
positive rates. To then summarize a range of different conditions
(Figure 3D), we quantified the detection performance as
the area under ROC curves up to a false positive rate of
0.1Hz since the detection was performed continuously
in time and higher false positive rates would not be
relevant.

For the interpolating method, we further computed the
median location for each of the 256 patches and three amplitude
ranges for the inserted spikes. The median of the distances
between the estimated and inserted locations of events was
determined as error in the localization. Part of this distance

was due to a systematic bias, quantified as the distance between
the median location of the detected events and the inserted
location.

Using different parameters for the offset, effective electrode
size and attenuation scale did not qualitatively change the results
(not shown). We did not attempt to employ measured templates
for this analysis as they could not be shifted systematically in
space due to the spatial undersampling.

2.6. Correlation Analysis
This analysis had several aims, first to estimate the amount
of spikes lost due to a poor SNR, second to determine
an appropriate detection threshold, and third to validate
the detection method. The method exploited the fact that
spikes in our preparations were typically correlated, at least
weakly, due to network interactions, while electrode noise
was uncorrelated. Therefore, the presence of significant
correlations should be indicative of true spikes while
uncorrelated events would more likely reflect recording
noise. We note that while this was a reasonable assumption
for the preparations used here, it obviously does not generally
apply.

Here, we first provide a motivation for the analysis steps,
before explaining each step in detail.

Technically, the quantification of correlated activity was
challenging since the measured activity was highly non-
stationary and typically sparse on most of the electrodes.
Additionally, we aimed to infer the fraction of events
participating in correlated activity rather than a correlation
strength, such that we needed to distinguish single events.

In short, these challenges were addressed as follows:

1. The temporal order of spike times (rank) was used to measure
temporal differences.

2. Pairwise correlations between channels were determined
across the chip.

3. Coactive, correlated channels determined a correlation index
for each event.

4. The distributions of correlation indices of measured and
surrogate random events were compared.

2.6.1. Ranking Spike Times
Due to the sparseness of neural activity measures such as
Pearson correlation coefficient were not very informative
of interactions between neurons, but rather reflected the
synchronous lack of spiking. In addition, Ventura and Gerkin
(2012) showed that even misclassification of events lead
to a bias in correlation estimates unless the inter-event
intervals were independent and Poisson distributed. We were
interested in finding more direct interactions, and to, at least
partially, compensate for effects of fluctuating firing rates
and reduce the regularity of inter-event intervals. In order
to speed up the analysis and reduce memory requirements,
we selected a number of reference units (showing high
activity) and correlated their activity with the activity seen
at each location (including reference units) across the whole
recording.
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Online detection.The firing rate of each channel was compared
to channels within a distance of 42 µm. Channels with a local
maximum in firing rate were defined as reference channels.

Interpolating detection. We divided locations of events in a
raster of 192 × 192 bins to increase the spatial resolution by
a factor of three. This resolution is sufficient to capture more
than 80% of the area of any spot of activity with a diameter of
dpitch in a subset of 3 × 3 bins. In order to obtain a sufficient
sample size to estimate correlations and for a comparison to the
online detection results, we then used events from every 3 × 3
bins as units for further analysis. For choosing reference units,
we used a finer binning (320 × 320 bins) to determine spatial
maxima in the event density. To this end, we smoothened the
histogram (distance dependent, cone shaped kernel with a radius
of 15 µm), and detected local maxima within a radius of 15 µm.
This was done to ensure that they are not originating from the
same current source and to separate closely adjacent maxima.
We used events from bins within a radius of 21 µm from those
maxima as reference units. Overlapping bins were assigned to the
closer maximum.

To minimize spurious effects due to very noisy channels,
the 10 (parameter, adjustable) most active reference units were
excluded as they might be noisy. As surrogate data, random
(Poissonian in population rank) events were added at a rate of
0.1Hz (as parameter, adjustable) per channel. This preserved
relative changes in population rate.We did not add this noise into
the reference units. Additionally a clock unit firing every fourth
frame (0.57ms) was added (to the reference units) to establish
a maximum time window in which correlations were computed.
Then all (reference) events were ranked across the whole chip,
and the event rank was used as a new time axis.

For each unit i, a histogram of all reference units j coactive
within a temporal τcorr/2 event neighborhood was collected.
For an independent Poisson process, the number of such
coincidences follows a Poisson distribution, and its mean can be
estimated from the marginal distribution of such coincidences
(around any spike) divided by the total number of events
(including Poisson events) and multiplied with the number of
events in the channel:

n̂ij =
τcorrninj
∑

k nk
,

where nk denotes the total spike count in channel k.
Channels with very different activity patterns would increase

∑

k nk, but barely affect the number of coincidences. As a result,
units could appear as correlated only because they were not
correlated with a subset of units that showed an entirely different
behavior. In our case, noise often resembled a Poisson process
whereas activity occurred in bursts. To avoid classifying activity
of the same kind as correlated, links between pairs of channels
with significantly fewer (p < 10−6) coincident spikes than
expected by random were removed from the statistics. Similarly,
we only compared units to reference units with a distance larger
than 42 µm. For the online detection, we did not compare directly
adjacent channels. Finally, all pairs of channels with reference

channels [i, j] with more coincident spikes than expected (p >

0.1) were identified and stored in a boolean matrix (Aij = 1).

2.6.2. Correlation Index
Knowing which channels have correlated activity, it was possible
to decide for each spike individually to what extent it participated
in the network activity.We defined a correlation index (CI) as the
fraction of spikes within a temporal τcorr/2 event neighborhood
that came from correlated channels multiplied by the fraction of
significant correlations among those channels. Depending on the
preparation, this method could be further refined, for instance
by computing the CI separately for different temporal or spatial
windows and using the maximum of these estimates. An example
of the correlation index distribution is shown in Figure 5A.

2.6.3. Fraction of Uncorrelated Events
For each channel j the detected events were sorted according
to the correlation index and signal amplitudes (permutation
operators σCI and σAmp). We then determined the empirical
cumulative distribution of the correlation indices of the inserted
Poisson events F̂Poisson(CI) and determined its values at the
correlation indices of the detected events. Event amplitudes were
ranked to obtain a measure rAmp that did not depend on the
amplitude range. Then the following quantity was computed:

Xk = 1

2Nj

k
∑

i= 0

rAmp(σCI(i))+
1

2

∑k
i= 0 F̂Poisson(CI(σAmp(i)))
∑Nj

i= 0 F̂Poisson(CI(i))

k ∈ {1, . . . ,Nj},

where Nj is the number of detected events and CI denotes
the correlation index. For independent correlation indices and
amplitudes, X would be the empirical cumulative distribution
of a uniform distribution. The deviation from the cumulative
uniform distribution is shown in Figure 5B for a recording from
a culture. For samples where the distributions of inserted Poisson
and detected events are equal, this deviation is described by a
Brownian bridge which has its maximum variance at Nj/2.

We tested against a uniform distribution with a one-sided
Kolmogorov Smirnov (KS) test (p < 0.01) (see Figure 5C).
For channels that passed this test, we normalized this deviation
by dividing by the standard deviation of the corresponding
Brownian bridge 2

√

k(Nj − k)/Nj to avoid a statistical bias
toward Nj/2. The argument of the maximum deviation Pj =
argmaxk((Xk − k/Nj)(Nj/2

√

k(Nj − k))) then determined the
boundary between correlated and uncorrelated events.

For channels where the KS test was not significant, we
computed the fraction of inserted Poisson spikes with smaller CI
for each event, subtracted this fraction and divided by the fraction
of events with larger CI. This quantity was clipped to [0, 1] and
averaged for all events and used as an estimate of the fraction of
correlated events. If the CI distributions of detected events and
Poisson spikes were the same, this number was 0, and it was only
1 if they were not overlapping. Hence this was potentially a rather
conservative measure of correlated activity.
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2.6.4. Extension to Single Spikes
In order to obtain a per event probability for correlated events,
the correlation indices were sorted for both the detected events
and inserted Poisson events of each channel.

The fraction of events fCI was computed in a sliding window,
using reflective boundaries:

fCI,k =
q(k)+L
∑

i=q(k)−L

x(σCI(i))

2L
k ∈ {1, ...,Nj},

where x is a boolean vector distinguishing real and Poisson
events, σCI a permutation operator that sorts according to
correlation index, and q a vector of the indices of real events.
We optimized the length 2L of that sliding window such that its
length would be minimal and the fraction of false events after
renormalizing would not exceed 1.1. For channels with a high
fraction of noise, that would bias toward using a large window.
Especially for a strong relation between the correlation index and
the fraction of Poisson events, small windows would be used.

This procedure mapped correlation indices to the fraction of
Poisson events and needed to be normalized tomatch the fraction
of uncorrelated events determined for each channel

pSpikes,k,j =
fCI,k · Pj
∑

k fCI,k
.

This fraction then determined the probability that an event
should be classified as uncorrelated.

2.7. Spatial Activity Profiles
Here we aimed at visualizing relations between temporally
adjacent events in two-dimensional, high resolution maps. To
this end, for each event the relative angles of all events within a
defined spatial range (82 µm < × < 1092 µm) and time window
(± 30 event ranks) were collected and spatially averaged using a
spatial sliding window (17.5 µm wide). This provided an estimate
of the direction toward the center of mass of coincident activity.
This was strongly biased toward the center of the chip, where the
average activity was centered.

To then identify local structures, which characterize network
activity, an average computed over a large sliding window (336×
336 µm2) was subtracted from this density (Figure 9). As this
procedure would correspond to a random walk for random
spikes, the density plot was normalized by 1/(3

√
N), such that

a pure color now corresponded to three standard deviations
different from random, and gray indicated random behavior
(Figure 9C, right panel).

3. RESULTS

We used recordings from cultured hippocampal neurons and
from the spontaneously active perinatal retina. In addition,
recordings from an empty chip and a pharmacologically silenced
retina were used as control, and to generate synthetic data
for validation. Here we first introduce two methods for spike

detection. The first works independently on single channels, is
highly efficient and online-capable, and can be used on any
type of electrical recording. This method was then extended
to make use of signals from the same spike in multiple
electrodes to improve SNR, and to localize event source
locations.

Next, we assessed spike detection and localization
performance by analysis of synthetic data. As further
independent validation we compared estimated spike locations
to the physical positions of neurons on the array in an anatomical
micrograph, and estimated the detection performance on real
data by exploiting correlations in neural activity. Finally, we
examined the possibility to directly analyze spatio-temporal
network activity profiles of a neural culture, where clustering
into single units was not always feasible.

3.1. Separate Treatment of Channels
Allowed to Detect Spikes Online
We discuss results for the online detection first, and then
highlight differences for the extension where signal interpolation
was used, as the subsequent analysis performed is similar in both
cases. Here we provide an informal description of the methods,
technical details, and parameters are given in the Section 2 and
Table 1.

Our aim was to detect significant negative deflections of the
recorded voltage from baseline (Figure 1A), which required a
reliable estimate of the baseline and noise amplitude. Baseline
fluctuations were frequent, and the noise had a strongly
non-Gaussian form (Figures 1B,C; Fee et al., 1996), making
a simple variance estimate unsuitable. Therefore, similar to
Rossant et al. (2015) we used continuously updated measures
based on signal quantiles to estimate noise. Specifically, an
online estimate of the 33rd percentile of the voltage served
as baseline and an adapting variability estimate v served to
define the detection threshold (Figures 1D,E; see Section 2 for
details).

This estimate was purposefully made asymmetric because
of the non-Gaussian noise, to estimate the voltage where
the probability density drops significantly. Percentiles were
estimated instead of performing a high-pass filtering step
as large deviations from baseline would otherwise leak into
neighboring recording frames, reducing the SNR. This problem
was addressed by cutting out large fluctuations (Prentice
et al., 2011; Marre et al., 2012), but this requires an
additional threshold and is computationally more demanding.
The variability estimate used here is specific to fluctuations
in the negative direction and again based on percentile
estimates.

Events exceeding the threshold were then accepted as
spikes, subject to additional adjustable requirements for their
duration and repolarization. Moreover, simultaneous events in
neighboring electrodes were assigned to the electrode with the
strongest signal to prevent detection of the same neuron multiple
times.

This method allowed for a quick assessment of the recorded
activity, and formed the basis for the interpolating method
described next.
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FIGURE 1 | Event detection in single channels. (A) Illustration of the algorithm. (B) Raw voltage traces from a selection of channels, from a recording from a

culture. (C) Voltage histograms from a random selection of 400 channels from a single recording show that recorded signals followed a broad distribution and could

be highly variable between channels. A Gaussian distribution (red curve) was fitted to the median (blue) across all channels. (D,E) Measures used in the online spike

detection method, illustrated for a recording from a culture (D) and retina (E).

3.2. Interpolation Improved the Spatial
Resolution of MEAs
As a next step, we extended this detection algorithm to exploit the
fact that typically signals from the same neuron could be found
on multiple adjacent channels. In particular in the perinatal
retina we often recorded spikes with large amplitudes (several
hundreds of µV), and at the same time, smaller, synchronous
events were frequently detected on neighboring electrodes. In
cultures, the effective conductivity of the growth medium was
higher due to the lower density of cells, leading to smaller but
more widespread signals. As many spikes had peak amplitudes
close to the detection threshold, the spikes detected on each
electrode separately were likely only an incomplete record of the
activity of a single neuron, in particular if it was located between
electrodes.

Therefore, combining the signals of multiple, nearby
electrodes before performing event detection would reduce
noise and prevent undesired separation of events. If the
spatio-temporal profile of a spike was known and the noise
was independent and Gaussian, a dot product of a template
with the signals could be employed to identify spikes (Marre
et al., 2012). In order to avoid estimating exact templates, we
assumed that the largest current source has a small spatial extent
compared to the electrode spacing dpitch and only distinguished
between events with sources either close to or between recording
electrodes. Of course, detecting events for both cases effectively
constituted multiple testing, but these tests were for different

spatial positions on the array and thus could still be distinguished
post-hoc.

Specifically, the signals of five channels, one in the center and
four surrounding, were used for signals that mostly occurred
on one electrode. Blocks of 2 × 2 channels were used for
signal sources between electrodes. In both cases, the lowest
signal amplitude was ignored (Figure 2A). Spike detection was
then performed as above, but on weighted signals. Optimal
weights depend non-linearly on the inter-electrode distance of
the hardware but may be approximated after measuring the
spatial decay of spike amplitudes (Supplementary Figure 1). This
weighting partially allowed compensating for the weaker signals
expected from neurons further away from recording channels.

For each event the center of mass of the spatial distribution
of spike amplitudes was used to estimate a putative event
source location (see Figure 2B for examples and Section 2
for details). This method was indeed capable of revealing
structures at a higher spatial resolution, as visualized in the spike
count histograms in Figures 2C,D. In the retina (Figure 2C),
events were strongly clustered, with several elongated areas
without spikes, most likely corresponding to blood vessels, which
were less conspicuous in the online method (Figure 2F). In
the neural culture (Figure 2D), many areas had high spike
densities, where small local clusters that may have originated
from single neurons could not be resolved. The empty chip
recording (Figure 2E), in contrast, showed a largely uniform
background with a low density of falsely detected events, and
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FIGURE 2 | Spike detection through signal interpolation. (A) Illustration of the interpolating spike detection. Voltage traces from groups of 4 and 5 channels were

averaged, and local maxima were used to determine electrode ranges for offline localization (insets). (B) Example of detected spikes at their estimated locations

(colored dots, size relates to event amplitude), and the corresponding events in the raw data from nearby channels. (C–E) Spatial density plot of events detected in

the retina (C), culture (D), and empty chip (E) recording. (F–H) Corresponding plots for the online detection method. Recordings shown in (C,E,F) and (H) were

performed with the same chip. Arrowheads point to noisy channels. Parts (A,B) show data from a retina.
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a few highly localized clusters which corresponded to noisy
channels.

3.3. Synthetic Data Revealed that
Interpolation Sharpens the Detection
Threshold
To evaluate the detection performance of our algorithm and
the precision of spatial event localization, we created templates
for artificial spikes with different amplitudes, current source

locations with respect to the closest electrode (illustrated in
Figure 3A) and time lags with respect to the sampling. Those
were added to the raw traces of the empty chip recording, and
spike detection and localization was performed.

Spikes were detected most efficiently when they originated
close to an electrode, and a peak amplitude of 120–160 µV
was required for a reliable detection. We determined receiver
operating characteristic ROC curves for different electrodes,
spatial offsets, and amplitudes of inserted spikes (examples
shown in Figure 3B, distributions in Figure 3C). As there was

FIGURE 3 | Performance of the spike detection and localization evaluated with synthetic data. (A) Artificial spikes were inserted in a recording from an

empty chip with realistic noise profile at positions indicated by the colored open circles. This defines a color code that is used in panels (A,B) and (D–F). Squares

indicate the electrode locations and dimensions. (B) Example ROC curves for inserted spikes as shown in (A), constructed by varying the detection threshold.

Positions are indicated by color, and curves are shown for the online and interpolating methods and a simple constant threshold. (C) Illustration of the variability in

detection performance for spikes inserted near different electrodes, at 16 different positions relative to those electrodes [as in (A)] and with five different amplitudes

(>120 µV). The plots show in how many cases the detection performance (“fraction detected”) was at least as high as indicated by color. The insets illustrate the

average fractions of detected spikes (i.e., averaged color) for different positions of the inserted spikes. (D) Performance of the detection methods, represented as the

average area under ROC curves with respect to the inserted spike amplitudes (left). For specific locations of inserted spikes, we observed a large variability [right, cf.

definition of circle colors in (A)]. (E) Median positions of detected spikes with respect to their theoretical (specified) positions (circles). Due to the clipping of the signal

at its median and a biased normalization factor (due to noise) when computing the barycenter, events tend to be found closer to electrodes. The gray grids illustrate

the median distortion at different amplitudes. (F) Median absolute shift of detected spikes for each inserted location, and median for all (thick black line). Also shown is

the median absolute shift from the median detected locations (dashed black line). Insets show histograms of positions of all detected spikes of a given amplitude with

respect to the inserted position (black circles illustrate 90 percentiles).
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a strong dependency on the amplitudes of inserted spikes, we
restricted this analysis to amplitudes larger than 120 µV. Further,
we averaged the ROC curves for the same amplitude and false
positive range for individual insertion locations (insets). This
revealed a large variability in detection quality across electrodes
and current source locations for all detection methods used here.
In case of the online and thresholding approach, spikes with small
amplitudes could not be detected at all locations.

A systematic comparison across amplitudes is shown in
Figure 3D. We observed that the online detection method did
perform better with low signal amplitudes, but this would
lead to an incomplete spike record and is therefore not
desirable. The interpolation method had the steepest slope
for an increasing amplitude and hence discriminated best
between different amplitudes. Additionally the dependence on
the insertion location was less pronounced for the interpolating
method. Detecting spikes by simple thresholding did not yield
satisfying results.

The spatial spread of detected events from the same source
location decreased with increasing amplitude, but for locations
away from an electrode estimates were biased toward the
electrode center (Figure 3E). This distorted the image of current
source locations, and the distortion barely decreased with signal
amplitude (Figure 3F). This bias was due to the use of signal
amplitudes clipped at their median to estimate event locations.
For high signal amplitudes, the amplitudes of the surrounding
electrodes became more reliable and hence the median was a
biased estimate of the baseline. For small amplitudes, however,
this increased baseline estimate was useful as it reduced the
influence of noise on the localization. Thus, in order to reduce
the uncertainty of the location estimate, a bias was unavoidable.
For a reliable classification of spikes based on location, it
would however not be useful to obtain statistically unbiased
locations if the spatial spread increased more than the reduction
in bias. Therefore, we optimized the method to obtain a
good compromise between the number of channels used for
localization, and the level of noise that entered this estimate.

In summary, this analysis showed that the performance of
the detection of artificial spikes did depend on the position
of the current source. Moreover, the location estimate was
biased, but retaining this bias reduced the spatial jitter such that
different sources could be distinguished at a resolution finer than
the spacing of the electrodes. Signal interpolation yielded, as
expected, an improved detection performance compared to the
online method.

3.4. Somata and Hotspots of Activity Were
Found in Apposition
To investigate whether the detected and localized spikes indeed
originated from neurons, we stained a sparsely seeded culture
with fluorescent antibodies for beta tubulin III and neural nuclei
(NeuN) after the recording (Ullo et al., 2014), and then compared
the estimated spike locations in the recording with the actual
locations of neurons (Figure 4). A sparse culture was used
because it allowed a clear visual separation of somata, which was
more difficult in the retina or dense cultures. The tubulin staining
revealed that neurons covered the entire chip, and thus electrical

activity could in principle be recorded everywhere. However, the
strongest signals were expected near neural somata, where spikes
were initiated at the axon initial segment.

The NeuN staining showed that the somata of neurons
were inhomogeneously distributed, which allowed for direct
comparison between estimated spike and cell locations. We
assumed that falsely detected spikes were uniformly distributed,
and true spikes should be detected close to a nucleus. We began
this analysis with a low detection threshold, where we expected a
better detection of small events, but also a higher number of false
positives. To confirm this intuition, we computed the normalized
spike density found at least a distance x away from a nucleus,
and varied the distance x from 0 to 84 µm (Figure 4A, red line).
This showed that this density dropped to a constant 25% for
distances larger than 60 µm, hence around 75% of all detected
events were close to one of the labeled nuclei and therefore likely
true spikes.

The reverse analysis, i.e., measuring spike distances from
nuclei, showed that around 80% of the nuclei had a peak in spike
density within a radius of 40 µm (Figure 4A, blue line).Moreover,
about 90% of the peaks in spike density had a corresponding
nucleus within 40 µm (Figure 4A, magenta line). Increasing the
detection threshold increased the fraction of spikes detected close
to a nucleus (Figure 4A, dotted red line), but also reduced the
fraction of nuclei with associated local maximum (Figure 4A,
dotted blue line), hence improved the rejection of false positives,
but also increased the number of false negatives.

These findings were further confirmed by considering the
corresponding densities of spikes and nuclei as a function of
distance from nuclei and spikes, respectively (Figure 4C, solid
lines). These distributions always sharply peaked at around
10 µm, close to the distance of the axon initial segments of the
neurons. Importantly, these densities differed substantially from
surrogate data from homogeneous distributions (Figure 4C,
dashed lines).

In summary, we showed that high amplitude events were
mostly detected close to neuronal somata, but not all somata
could be associated with a cluster of events. For some somata,
a corresponding cluster of events could be identified when
lowering the detection threshold, suggesting that they were
indeed active, but weakly coupled to the chip.

3.5. Events Found on Noisy Channels Did
Not Participate in Correlated Activity
Since correlations in neural activity resulted from network
interactions, we assumed that detected events with significant
correlations with other events were most likely true spikes, while
the events due to electrode noise should always be uncorrelated.
In particular, when a parameter change lead to an increase in the
number of detected spikes with significant correlations, we could
relate this directly to improved detection. On the other hand,
we obviously could not assume that all uncorrelated events were
caused by noise, so these only provided an upper bound for the
number of falsely detected events.

As the activity in cultures was very non-stationary, which
would bias a temporal correlation estimate during periods of
high or low activity, we considered a temporal neighborhood

Frontiers in Neuroinformatics | www.frontiersin.org 12 December 2015 | Volume 9 | Article 28

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Muthmann et al. Spike Detection for Neural Populations

of a fixed number of events rather than a fixed time interval.
Our strategy was to then count how many of these events are
from units with correlated activity. This was quantified using
the correlation index (CI), which is related to its propensity to
participate in correlated activity (see Section 2). The CI was at

least weakly dependent on the amplitude of the events, indicating
that it provided an estimate of true spikes (Figure 5A). For
statistical analysis, we next compared the CI distribution for
each unit to the distribution obtained from randomly inserted
events by computing the difference of the respective cumulative

FIGURE 4 | Comparison of positions of neural nuclei with the locations of detected events. (A) Normalized densities of events (red) and local maxima of the

spike density (magenta) when restricting to areas with a minimum distance to the nearest neural nuclei. Blue curves are normalized densities of neural nuclei after

restricting to areas with a minimum distance to the nearest local maximum in the spike density. Dotted lines correspond to a higher detection threshold. (B) as in (A),

but with dotted lines corresponding to correlated events with probability p > 0.5 (see Section Events Found on Noisy Channels did not Participate in Correlated

Activity). (C) Densities for distances of spikes (red, solid lines), local maxima (magenta), and neural nuclei (blue) compared to densities obtained for homogeneous

distributions (normalized to minimum density around 42 µm, dashed lines). (D) Image of the culture with NeuN (blue), tubulin staining (green), and the detected spikes

(red). A close-up of the region indicated by the dashed white box is shown in (E). Electrode locations are depicted as gray background patches.

FIGURE 5 | Estimation of the fraction of uncorrelated events in a recording from cultured neurons. (A) Histogram of the joint distribution of amplitudes,

expressed as multiples of the variability estimate v, and correlation indices. The first bin (CI < 0.02) was rescaled by 1/20 and widened accordingly. Blue lines

represent a sliding median of the amplitudes. (B) Difference between the distributions of measured and surrogate events. The graph shows the Kolmogorov Smirnoff

test statistic for a random subset of electrodes from the data in (A). Negative values indicate a larger fraction of surrogate events with a lower correlation index. Events

with a correlation index higher than the argument of the minimum of those curves are classified as correlated. (C) p-values for deviation from identical distributions

computed as illustrated in (B), for all channels. Red colors indicate that a channel is highly unlikely to be reporting noise.
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distributions (Figure 5B). Units with a different average CI
(KS-test, Figure 5C) could then be separated into a correlated
and uncorrelated fraction (Minima in Figure 5B).

This method provided an estimate of the number of
uncorrelated events per channel, and assigned each event a
probability to participate in correlated network activity. This was
visualized in raster plots (Figure 6) for recordings from cultured
neurons (Figures 6A,B) and a retina (Figure 6C). Each putative
spike was represented as a dot, where the color indicated the
probability that it was a correlated event, hence a true spike. It
was clearly apparent that events with a high probability primarily
occured during population burst events. Application of the same
algorithm to a recording from an empty MEA confirmed that
recording noise was indeed uncorrelated and therefore assigned
low probabilities to virtually all detected events (Figure 6D).

The spatial distributions of the fraction of correlated and
number of uncorrelated events in the different recordings
are shown in Figure 7. In recordings from cultured neurons,
correlated events were spatially clustered, which reflects the
tendency of neurons to forms small, interconnected groups.
Uncorrelated events were mostly uniformly distributed in this
recording, as may be expected from noise (Figures 7A,D).

The data from the retina showed large areas with a big
fraction of correlated events; these areas were the parts of the
chip with good electrical coupling between the tissue and the
chip (Figures 7B,E). The round area in the center was the
optic disk, where the algorithm correctly detected no spikes.
The areas without spikes toward the periphery either reflected
incisions made to flatten the retina, or areas with poor contact.

Interestingly, the density of uncorrelated spikes was higher in
areas where the tissue was well coupled to the chip, suggesting
the presence of further undetected events.

Finally, we found that the fraction of correlated events on
an empty MEA was very low, and the noise was, as in the
culture data, evenly distributed (Figures 7C,F; note that the total
number of detected events was much lower in this recording;
see also Figure 6D). This recording was made using the same
MEA chip that was also used for the retina. A comparison of
the noise levels between those recordings showed that some
channels with high noise levels were comparable in both cases
(arrows in Figures 7E,F). This shows that variations in recording
quality between different electrodes can be expected even on a
single MEA.

We also performed the correlation analysis on the interpolated
and localized spikes with a modified version of the algorithm,
adapted for a higher spatial resolution and a different amplitude
measure. The correlation indices assigned to each event in this
procedure were qualitatively distributed as in the online detection
(Figure 8B; compare with Figure 5A). Note that in particular for
the retina recording (Figure 8A) where spike amplitudes were
much higher than in cultures, events with higher CI were clearly
clustered around higher signal amplitudes.

Moreover, correlated events were now entirely restricted to
areas where activity was expected (Figures 8C,D). In the retina
recording, the uncorrelated events formed radial structures near
the optic disc, possibly due to axons, which were not resolved
in the online analysis (Figure 8E). In the culture recording,
the center region showed an increased level of uncorrelated

FIGURE 6 | Raster plots with probabilities that individual events participated in correlated activity. A high probability (black dots) indicates that an event

likely reflected neural activity. (A,B) Culture recordings. (B) is same data as in (A) but for a shorter time-window. (C) Retina recording. Correlated activity was found

within retinal waves. (D) Empty chip recording. Events were classified as uncorrelated.
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FIGURE 7 | Fraction of events classified as correlated for a culture (A), retina (B) and empty chip (C) recording and the corresponding rates for

uncorrelated events (D–F). A high fraction of correlated events indicates the presence of a neuron that is participating in network activity. More uncorrelated events

were found in the retina recording in an area with good electrical coupling where the total number of detected events was an order of magnitude higher. Note that for

the retina and the empty chip recording, the same chip was used, and the same channels were detected as noisy (arrows).

activity, which could be indicative of the detection of signals
with a poor electrical coupling (Figure 8F). This again indicated
that interpolation could indeed reduce the noise that impaired
detection on single channels.

To test the notion that correlated events reflected neural
activity, a comparison of the anatomical image and only events
that were classified as correlated (i.e., p> 0.5) was performed as in
the previous section. We found that this restriction to correlated
events removed false positives to a greater extent than a threshold
increase would, but barely affected the fraction of nuclei where
no adjacent cluster of spikes was found (see Figure 4B), thus
confirming that correlated events reflected neural activity at least
for data from spontaneously active cultures.

We conclude that correlations were present in both
preparations and absent for events detected on an empty
chip. Those correlations could thus help to quantify the
performance of the detection for individual locations. The
classification of individual events did not separate true events
from noise, but could be used to characterize spike shapes or, for
the low amplitude fraction, assess the presence of current sources
with a weak electrical coupling. We summarized the detection
and classification results for both methods in Table 2.

3.6. Inhomogeneities in Spatial Activity
Profiles Revealed Functional Network
Properties
The results from the spatial spike localization indicated that
it may be difficult if not impossible to cluster neural activity
into single units for data from dense cultures. Therefore, we
were interested to see whether the network activity in cultures
could also be analyzed without defining single units, by directly

searching for functional features in the three-dimensional
spatio-temporal activity maps we obtain. In particular, here
we considered relations between temporally adjacent events. In
contrast to traditional approaches that attempted to analyze
the activity of single neurons or MUA activity, we quantified
correlations for individual spikes. This yielded two-dimensional,
high resolution maps of an estimate of a directional bias to the
center of mass of coincident activity.

This procedure revealed small, local structures with non-
random associated network activity. These small areas likely
corresponded to single or groups of neurons, and the angle
indicated a local bias for the direction of the predominant
network activity when spikes occurred. This often indicated
whether a neuron participated in local (bias away from the
center of the chip) or widespread (bias toward the center)
activity. In addition, numerous local inhomogeneities in activity
propagation could be seen, likely reflecting specific connectivity
in the network. Cross validation using split data sets showed
that these patterns were consistent within single recordings (not
illustrated).

We monitored long term changes in network behavior for
three cultures. In Figure 9A, results for a non-perturbed culture
are shown, showing a set of neurons that were more active than
others and whose firing happened when the population activity
was less localized to that particular spot. These remained mostly
identical over a 68 h period. For two cultures (Figures 9B,C),
synaptic transmission was impaired by blocking AMPA receptors
with CNQX (5 µM) after the baseline recording for a period of
48 h. The activity at baseline in these two cultures was more
complex and showed at least two distinct groups participating in
different behavior. Application of CNQX strongly reduced firing
rates and disrupted the patterns in some areas. Note that for

Frontiers in Neuroinformatics | www.frontiersin.org 15 December 2015 | Volume 9 | Article 28

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Muthmann et al. Spike Detection for Neural Populations

FIGURE 8 | Correlation analysis for the interpolating detection. (A,B) Histograms of the joint distribution of amplitudes, expressed as a spatio-temporal average

in units of the variability estimate v (cf. Section 2), and correlation indices for a retina (A) and a culture (B). Blue curves represent a sliding median of event amplitudes.

For the retina, this distribution was bimodal with one maximum at high correlation indices and amplitudes which likely corresponded to neural activity. (C,D) Spatial

representation of the estimated fraction of correlated events across the active area (64 × 64 electrodes) of the chip. (E,F) Spatial density of uncorrelated events. This

again clearly identified spots of uncorrelated activity corresponding to noisy electrodes.

this dose of CNQX, we observed a partial recovery in network
firing rates when recording after 44 h; a higher dose (10 µM) was
shown not to recover (Slomowitz et al., 2015). After washout of
CNQX, a new pattern of network activity was formed, where
new spots of activity emerged with a tendency to participate
in local activity (bias away from the center). In Figure 9C,
such spots were already observed after 44 h, before washout of
CNQX.

Summarizing, this analysis showed that indeed salient activity
patterns could be identified and, furthermore, it was possible

to distinguish single units based on their activity. Such patterns
remained remarkably stable over time, but did change when the
network was perturbed.

4. DISCUSSION

We have presented a set of algorithms for spike detection
specifically designed for extracellular recordings with high
density, large scale MEAs with thousands of electrodes. The
implementation of an online estimation procedure of data
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TABLE 2 | Events detected and classified for various preparations and methods.

Method Threshold Empty chip Culture Retina

O I O I O I O I

Detected 6 0 1.3M/h 2.2M/h 4.2M/h 4.5M/h 18.2M/h 11.4M/h

Isolated 6 0 1.3M/h 2.1M/h 3.9M/h 4.1M/h 8.7M/h 10.4M/h

Correlated 6 0 47 k/h 97 k/h 2.0M/h 2.4M/h 6.2M/h 6.9M/h

Isolated 8 2 480 k/h 500 k/h 1.6M/h 1.6M/h 6.5M/h 7.3M/h

Correlated 8 2 37 k/h 46 k/h 0.9M/h 1.1M/h 4.9M/h 5.3M/h

“method”: online detection (“O”) or interpolating detection (“I”). “detection”: the rate of all detected events; “isolated”: remaining events after removal of doubly detected events;

“correlated”: events classified as correlated. The last two rows show the effect of thresholding event amplitudes at a higher threshold.

FIGURE 9 | Analysis of activity patterns in cultured networks. Colors indicate a bias in the direction where the strongest correlated activity was found for each

location. (A) Control culture. Some units tended to fire when the activity was less localized than activity in the surrounding. This pattern stayed for at least 68 h. (B)

Culture where CNQX was applied and the firing pattern did change. The presence of two distinct direction biases at similar locations was likely due to units firing

earlier or later during activity propagating in a wave-like fashion. During CNQX application, the firing rate was lower, and patterns were less significant. After washout of

the drug, a new pattern emerged. Specifically, the purple dots on the lower right show newly active units with a tendency to fire when the network activity was highly

localized. (C) A second culture where changes were already visible during the application of CNQX. The color code used for direction biases is depicted on the right.

Gray corresponds to the absence of a bias (center of the disk) and a pure color corresponds to three standard deviations.
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quantiles made these algorithms very efficient, to be able to cope
with the high data rates produced by such arrays.

We adopted two strategies to detect spikes. The first method
was designed to run in real-time for data recorded from 4096
channels at 8 kHz, and identified spikes based on the signals
of individual channels. This approach is ideal for long term
recordings (hours) where the amount of raw data is too large
to be stored intermediately, and for experiments where real-time
feedback is required. It can also be used to detect spikes in single
or traditional MEA recordings, as it is based on a more robust
noise estimate than the signal variance.

Our second method provided an estimate of the source
location of each spike by exploiting signals originating
from neighboring channels. This method is less sensitive to
fluctuations in individual channels and thus sets a harder
amplitude threshold, which enables a more reliable detection
of small events from neurons not precisely co-localized with
recording electrodes. The localized events can then be used to
perform spike sorting based on spatial clustering, which can
be supplemented by shape information to reliably separate
spikes from single neurons (cf. Prentice et al., 2011; Pillow et al.,
2013; Ekanadham et al., 2014). Doing a clustering at such a late
stage during the processing may be less efficient than direct
template matching approaches (Franke et al., 2015) but yields
information about less active units and facilitates comparisons
across days when spike shapes might change. This method
is computationally more costly than the online method, but
could potentially achieve real-time performance in a parallelized
implementation.

Low-threshold detection of candidate events served to
minimize the loss of true positives due to early rejection. Based on
the idea that most physiological spikes would show at least a weak
correlation with other events, we classified events as correlated
or uncorrelated. This method is not suitable for recordings
from preparations where neural firing is essentially uncorrelated,
and likely underestimates the fraction of actual spikes in our
recordings, where we also expect uncorrelated, isolated spikes.
However, it allows for systematic comparison of the detection
methods, and exposes their advantages and limitations.

This is important since a complete direct validation of
our methods was not feasible because (1) we do not have
the ground truth for our data and (2) we believe it is not
possible to construct a realistic MEA noise model to generate
synthetic data. We instead used synthetic data inserted into a
recording from an empty chip and the presence of correlations
for verification. We note that we also conducted this analysis
with synthetic data in a retinal recording (which also contained
other spikes), which exhibited essentially the same behavior
as reported here for an empty chip. In this case however the
additional current sources due to neural activity could not be
controlled, hence the analysis of synthetic data could only be
viewed as an approximation of a realistic scenario. Overall,
this analysis indicated the presence of three main sources of
noise:

1. Stochastic noise which was due to the thresholding and was
fairly constant across all electrodes. This contribution was

small in absolute terms and almost completely eliminated by a
moderate increase in threshold.

2. Differences in intrinsic noise in a subset of electrodes.
These were identified using an empty chip recording. The
interpolating detection located events detected as a result of
this noise strongly centered on the respective electrode, which
was unlikely to happen for real neurons, and could thus flag
them for manual inspection or cross-comparison with an
empty chip recording (if available).

3. Different physiological current sources other than spikes,
whose superposition was measured at the electrodes. They
were modulated by network activity, and were thus not
increasing the variability estimate (and hence the threshold)
as much as continuous fluctuations. Specifically, neurons had
their strongest current sources at the axon hillock, but this
signal attenuated with distance from an electrode such that
it may appear small in the recording. In addition, axons and
other neural processes likely caused small, fast fluctuations,
which were difficult to distinguish from true spikes. Overall,
together these noise sources lead to unimodal event amplitude
distributions, without clear separation of spikes and other
current sources.

We also performed a comparison of the detected events with the
positions of neural nuclei in cultured neurons, which revealed
that both are predominantly found within 40 µm. Further away,
the density of detected events did not depend on distance and
therefore indicated events which were not originating from a
somata or axon hillocks. Correlated events were more closely
associated with nuclei and were found more frequently adjacent
to nuclei than high amplitude events. Hence generally activity of
some neurons was only detectable with a low detection threshold.

4.1. How Many True Spikes Could We Find?
Table 2 summarizes the number of events detected with both
methods and the amount classified as true spikes as identified by
the correlation analysis. For an interpretation of those numbers,
it is important to emphasize that the analysis for the interpolating
detection had a higher spatial resolution and used signals
averaged over multiple electrodes.

First, we observed that a threshold increase for the
interpolating detection resulted in a much higher reduction of
detected events in the empty chip recording than with the neural
preparations, as compared to the online detection method. This
indicated that the interpolation effectively reduced stochastic
noise, whereas physiological noise would be seen on more than
one electrode and was therefore less affected.

Accordingly, we detected a smaller fraction of events that were
classified as uncorrelated in the interpolating detection for the
culture recording. As this relative decrease did not result in a
reduced overall detection rate, it indicated that the interpolation
improved the detection. For the retina, a higher fraction of events
from the interpolating detection was classified uncorrelated,
possibly due to an improved detection of events from spatially
extended current sources such as axons. Further, it appeared
that in both online and interpolating detection there were
units which were not significantly correlated with the activity
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of other units, as their number greatly exceeded the number
expected from the empty chip recording (compare Figure 2E and
Figure 8E). This would explain why the amount of uncorrelated
events remained high even after increasing the detection
threshold.

In summary, this analysis suggested that the interpolation
method allowed for a more consistent detection of events from
specific current sources. It also showed that signals from weak
sources were still detectable due to stochastic resonance, but this
would have the undesired effect of yielding only an incomplete
record of the activity of such neurons. This result therefore
highlighted an important general caveat of performing spike
detection under non-optimal signal-to-noise conditions, and
showed how high density probes in combination with signal
interpolation could be used to obtainmore reliable and consistent
spike records.

4.2. How to Use these Methods
The online method offers an efficient way to obtain estimates of
the population activity, and a higher threshold can be used in
order to minimize false positives. Further, in certain preparations
uncorrelated, potentially noisy channels can be detected using the
correlation analysis and excluded if the fraction of uncorrelated
events exceeds 50%. Generally however, this method and more
generally threshold-based detection on single channels does not
provide sufficient information to reliably separate true spikes
from noise, either true spikes are lost when the threshold is
high or noise is introduced when a low threshold is used. In
addition, it does not enable single unit identification in high
density recordings.

In order to isolate the activity of individual units, the
interpolating detection provides a new, efficient starting point.
Apart from reducing a bias to detect sources centered on
electrodes, it effectively reduces the noise variance at the
expense of signal amplitude. Therefore, we expect units with
low amplitudes to be lost and units with high amplitudes to be
detected reliably with a spatial resolution higher than the density
of electrodes. On the other hand, there is also an increased risk of
detecting signals from spatially extended sources such as axons.
These however can be identified as elongated structures and
removed, and will typically show a waveform different from the
typical biphasic spike events. Moreover, external influences, like
a perfusion system may have an effect that has to be considered
as they would induce correlated voltage fluctuations.

To validate the detection performance, the correlation analysis
can be used to identify areas with a reliable detection, although
this is only feasible in preparations such as cultured neurons
where at least weak correlations are always present. Preliminary
work indicates that clustering of such data sets, which combines
location and spike shape information, can yield excellent and
efficient isolation of single units in recordings from the retina
(Sorbaro et al., unpublished data). In cultures, such clusters
are largely overlapping, such that it appears difficult to find
boundaries between clusters. However, it is possible to analyze
such data without prior clustering. In this case every event needs
to be compared to its surrounding activity, and a spatial map is
obtained, highlighting areas with different properties.

4.3. Technical Prospects
High density MEAs are likely to scale further with technical
developments, and offer an important avenue for development
of culture, slice, and explant recordings. Conventional MEAs
have been used to increase the temporal resolution of calcium
imaging experiments in cultures (Herzog et al., 2011; Slomowitz
et al., 2015). We anticipate that high density MEAs will be
more useful in such a context as they allow for a mapping
between imaged and current source locations. We suggest
that the algorithms presented in this paper may be readily
applicable to find such a mapping. This will allow for the
distinction of excitatory and inhibitory neurons, identification
and characterization of sparsely firing neurons (Shoham et al.,
2006) and further increase the SNR. Further, it enables continous
electrical measurements with a high coverage where optical
recordings need to be interrupted due to photobleaching
effects.

4.4. Data Sharing
All code to replicate the analysis shown in this paper is provided
at https://github.com/martinosorb/herding-spikes, and example
datasets at https://portal.carmen.org.uk/#link=URN:LSID:portal.
carmen.org.uk:metadata:42944.
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