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Spike Detection Using the Continuous Wavelet
Transform

Zoran Nenadic*, Member, IEEE and Joel W. Burdick, Member, IEEE

Abstract—This paper combines wavelet transforms with basic
detection theory to develop a new unsupervised method for ro-
bustly detecting and localizing spikes in noisy neural recordings.
The method does not require the construction of templates, or
the supervised setting of thresholds. We present extensive Monte
Carlo simulations, based on actual extracellular recordings, to
show that this technique surpasses other commonly used methods
in a wide variety of recording conditions. We further demonstrate
that falsely detected spikes corresponding to our method resemble
actual spikes more than the false positives of other techniques such
as amplitude thresholding. Moreover, the simplicity of the method
allows for nearly real-time execution.

Index Terms—Arrival time estimation, continuous wavelet
transform, unsupervised spike detection.

I. INTRODUCTION

LECTRICAL recordings of action potentials have become

an indispensable tool in neuroscience. The shapes and am-
plitudes of these action potentials, or spikes, are highly stereo-
typed [1]. Since such regularity obviously carries very little in-
formation, it has long been argued that the information capacity
of a spike train is largely dominated by the temporal variability
of individual spikes within the train [2]. It is further debated
whether the nervous system cares about the precise timings of
individual spikes (time coding) or the total number of action po-
tentials fired in a certain time window (rate coding) [3]. Either
way, for experimental investigations it is ultimately important
to accurately and robustly detect and localize the occurrence of
individual spikes within the extracellular recording signal. Es-
sentially, all studies of the information content of experimental
recordings start from this processed data. Errors in detecting
the number and location of spikes will necessarily propagate
through all subsequent analyses.

Extracellularly recorded spike trains are inevitably corrupted
by noise. The noise sources are quite varied: the recording hard-
ware, the ambient recording environment, the superimposed ac-
tivity of multiple neurons, and the spatially averaged activity
of distant cells also known as the local field potential. Perhaps
most importantly, the activity of distant neurons may appear as
noise which is highly correlated with the useful signal. Another
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difficulty is that unlike their intracellular counterparts, extracel-
lular potentials have the shapes and amplitudes that are highly
variable. These variations are influenced by many factors, most
notably the cell geometry, the distribution and density of indi-
vidual ionic channels, and the position of a recording electrode
with respect to electrically active membranes [4]. All of these
issues make the problem of spike detection challenging.

Because of its practical importance to experimental neuro-
science, the detection of spikes in noisy extracellular observa-
tions is a classical problem. There exist dozens of algorithms
that accomplish the task of spike detection and they can be clas-
sified as manual and automated, supervised and unsupervised.
As discussed below, we are particularly interested in spike de-
tection methods that are automated and unsupervised.

The most common manual spike detection tool is the window
discriminator [5].! Extracellular signals that exceed a simple am-
plitude threshold and pass through a subsequent pair of user-spec-
ified time-voltage boxes are identified as spikes. Although practi-
cally successful, this method requires human supervision and its
manual nature makes it especially time consuming when using
multiple electrodes. Also, the statistical properties of this method
are not well understood. Another widely used technique for spike
detection is amplitude thresholding, where the threshold value
can be set automatically (e.g., as amultiple of the estimated noise
standard deviation), or manually. While this detection method is
simple, its performance deteriorates rapidly under low signal-to-
noise ratio (SNR) conditions. Other detection methods include
power detection [6], [7], matched filtering [7], principal compo-
nents [8], Haar transformation [9], and the discrete wavelet packet
transform [10]. In the power detection method, also known as en-
ergy detection [11], the instantaneous power of the signal, cal-
culated using a sliding window approach, is compared against
a threshold derived from the mean and the standard deviation of
the noise power. While this method usually offers some improve-
ment over the amplitude threshold method, it performs almost
as poorly in a low SNR environment. A matched filter (general-
ized matched filter) approach is known to maximize SNR when a
signal is embedded in a white (colored) noise. However, because
it is based on template matching, this method cannot be applied
in an unsupervised fashion—supervision is required to construct
the templates. The method of principal components requires the
construction of the spike autocorrelation matrix, where multiple
spikes from different cells are collected before the actual detec-
tion procedure. Generally, methods based on template matching
or prior knowledge of “typical” spike shape are supervised de-
tection algorithms, and not the subject of this paper. Yang and

IThe primary purpose of window discriminators is to classify spikes origi-
nating from different cells. In order to be classified, spikes need to be detected
first.

0018-9294/$20.00 © 2005 IEEE



NENADIC AND BURDICK: SPIKE DETECTION USING THE CONTINUOUS WAVELET TRANSFORM 75

Shamma [9] proposed a spike detection method using the discrete
Haar transformation, which is essentially a wavelet idea. How-
ever, our wavelet method does not require their white noise as-
sumption and unnecessary inverse transformation from wavelet
domain to time domain. Oweiss [ 10] proposed a multiresolution
version of the generalized likelihood ratio test (GLRT) for spike
detection, a method somewhat similar in spirit to the one devel-
opedhere. The major differences between the two methods will be
pointed out later. It suffices to say that the multiresolution version
of GLRT developed in [10] cannot be implemented in an unsu-
pervised manner.

Our interest in unsupervised methods arises from our current
efforts to develop control algorithms that autonomously repo-
sition extracellular recording electrodes so as to optimize and
then maintain high signal recording quality in the face of in-
herent electrode and cell migrations in neural tissue [12]. To
assess recording quality in the feedback loop, action potentials
must be isolated on an ongoing basis. Because autonomously
moving electrodes will experience displacements of hundreds of
microns, the shape, phase, and amplitude of the detected spikes
will vary significantly over the electrodes’ movement ranges.
Also, the moving electrode is likely to record from different
cells with different action potentials along its movement track.
Consequently, template-based methods are inappropriate for our
use. Moreover, within the range of the electrode’s movement,
the recorded signal may experience widely varying SNR con-
ditions, ranging from low-noise—high-signal amplitude near
the axon hillock, to high-noise—low-signal amplitude when no
neurons are present nearby. Such a wide “dynamic range” re-
quires an unsupervised spike detection algorithm with robust
performance over a wide range of parameters, which, to our
knowledge, none of the existing unsupervised algorithms is ca-
pable of. The algorithm presented in this paper provides this ca-
pability in an unsupervised fashion. Moreover, our performance
evaluation (Section III) shows that this approach performs better
than traditional methods in many situations and, therefore, can
be profitably applied in situations where traditional methods
are currently used. The paper is organized as follows. In Sec-
tion II we use the theory of continuous wavelet transform com-
bined with basic detection and estimation theory to develop a
new neural transient detection algorithm. Section III evaluates
performance of the algorithm with respect to other commonly
used spike detection methods. The results were cross-validated
using data synthesized from actual recording experiments. Con-
cluding remarks are given in Section IV. Some of the mathe-
matical derivations are given in the Appendix. The MATLAB™
code of our method and a supporting tutorial are available at:
http://robotics.caltech.edu/~zoran/Research/detection.html.

II. SPIKE DETECTION VIA WAVELETS

Our methodology consists of a combination of several tech-
niques stemming from multiresolution wavelet decomposition,
statistics, detection theory and estimation theory. For conve-
nience, we state the five major steps of the algorithm up-front.
Each step will be explained in subsequent sections.

1) Perform multiscale decomposition of the signal using an

appropriate wavelet basis.
2) Separate the signal and noise at each scale.

3) Based on results from steps 2) and 3), perform Bayesian
hypothesis testing at different scales to assess the presence
of spikes.

4) Combine the decisions at different scales.

5) Estimate the arrival times of individual spikes.

The chances of detecting a signal embedded in noise are im-
proved when one can take advantage of prior information about
the signal and the noise. The prior information could be acquired
through biophysical considerations or experimental trials. To
keep the algorithm general and unsupervised, the prior infor-
mation must be as vague as possible. This will be discussed in
Sections II-A and II-B. Two assumptions about the noise are
used in the derivations throughout this paper, the background
noise is: a) stationary; b) Gaussian. Although these assumptions
are not crucial for implementation, they insure the mathemat-
ical tractability of the derivations. When they are violated, the
performance of the algorithm may be different from the results
reported in Section III. The stationarity of neural noise cannot
be assumed in general. For time scales considered in this article
we assume that the statistics of the noise does not change appre-
ciably. If the stationarity ever becomes a concern, the data can
be broken into shorter segments that can be analyzed separately.
Also, wavelet bases of compact support are well suited for rep-
resentation of nonstationary signals. In Section III-A we shall
give a justification of the Gaussian assumption.

The problem of detecting transients in a collection of noisy
observations has been studied for decades. The presence of a
useful signal in a background noise is normally cast as a hy-
pothesis testing problem, where no signal is present under the
null hypothesis [11]. If the signal to be detected is not perfectly
known, which is the case for unsupervised problems, usually no
uniformly most powerful test exists [13]. In these cases, the per-
formance of a detector depends on the signal representation. A
signal’s representation can be model based or expansion based.
When no appropriate model for the signal can be found, one nor-
mally projects the signal onto a canonical set of basis functions,
which gives rise to a set of expansion coefficients. Depending
on the signal representation, the detection problem can be for-
mulated in a variety of domains: the time domain, frequency
domain, time-frequency domain, etc.

In this paper we use a time-scale expansion based signal rep-
resentation. As we will show, there exist wavelet basis functions
that are well suited to spike detection. Moreover, there exist fast
algorithms for wavelet filtering [14], thereby allowing real-time
implementation. A brief introduction to the continuous wavelet
transform is presented next. For more details on this subject, in-
terested readers can consult [15] or other texts. For a look at
other approaches to signal detection using wavelet bases, see
[16]-[18]. These techniques are based on dyadic wavelets (see
Section II-B), and are mainly concerned with the detection of
a single transient within the observation sequence, without the
estimation of parameters such as transient arrival times.

A wavelet 1) is a function of finite energy, i.e., 10 € L?(R),
and zero average

/qu(t) dt = 0.

It is normalized ||1||]2 = 1 and centered in the neighborhood of
the origin. From this function, also called the mother wavelet,
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one can obtain a family of time-scale waveforms by translation
and scaling

Banlt) = %w (%) abeR (1)
where a > 0 represents the scale and b is the translation. The
functions 1), ; are called wavelets and they share the properties
of the mother function [note that 1) = 1)1 o, so that the mother
function is a member of the family defined by (1)].

The wavelet transform of an arbitrary function z € L?(R) is
a projection of that function onto the wavelet basis

Txz(a,b) = / z(t)ha,p(t) dt. )
JR

For a fixed scale ag and translation bg, the wavelet transform
of the function z, denoted by X (aq, bo), represents its resem-
blance index to the wavelet 14, 3,. If the index is “large” the
resemblance is strong and vice versa. This index is termed the
wavelet coefficient. For wavelets of compact support [19], the
domain of integration in (2) is confined to the support. Conse-
quently, the wavelet coefficient only depends on the part of the
signal within the support. If the scale of the wavelet function is
relatively small, the wavelet of compact support provides a local
analysis tool suitable for capturing transient signal phenomena
and for coping with nonstationaries.

A. Wavelet Functions for Spike Detection

It is important to choose a wavelet that is suitable for the
signal of interest. Our choice is motivated by the shape of the
extracellular potentials to be detected in the background noise.
This shape can be explained with the help of biophysics. De-
spite the differences in extracellular and intracellular potentials
pointed out in Section I, they are fundamentally related. The
extracellular potential depends on the transmembrane current,
which consists largely of a resistive component and a capaci-
tive component. Since the capacitive component is proportional
to the time derivative of the transmembrane potential, it is ap-
proximately biphasic.2 The capacitive component may dominate
the membrane current during an action potential, so the time
course of the extracellular spike is typically biphasic [4]. Be-
cause a wavelet coefficient represents the measure of similarity
between the signal and the basis function, it is reasonable to look
for a wavelet that is spike-like. Accordingly, the neural signal
would be represented by a few coefficients. In approximation
theory this is known as a sparse representation and the basis
functions corresponding to these coefficients can be interpreted
as intrinsic signal structures [15]. In the presence of noise, the
sparse representation becomes an important condition for suc-
cessful separation of signal and noise (see Section II-C).

Fig. 1 shows several different wavelet functions. The simplest
wavelet is the Haar function. While it is compact, its disconti-
nuity implies that it is not well localized in the frequency do-
main. The other wavelet functions shown are db23 and two wav-

2If the transmembrane action potential undergoes after-hyperpolarization, the
capacitive current can be tri-phasic, with the third phase having significantly
smaller amplitude than the rest of the waveform.

3Thisis a family of wavelets introduced by Daubechies, hence, the name. The
number, 2 in this case, represents the order of wavelet and is equal to the number
of vanishing moments of .
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Fig. 1. Wavelets of four different wavelet families: (A) Haar, (B) db2, (C)
biorl.3, and (D) biorl.5.
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Fig. 2. Five spike templates identified from single-electrode recordings in the
cortex of a Rhesus monkey. The spikes were detected, aligned and clustered
(see Section III-A). The waveforms corresponding to the same class were then
averaged for smoothing purposes and the five templates were obtained.

elets from the family of biorthogonal wavelets: biorl.3 and
biorl.5. Biorthogonal wavelets are constructed from splines
and more about these wavelets can be found in [20]. We note
that unlike db2, the biorthogonal wavelets are symmetric and
that db2 wavelets do not have explicit analytic expression.
Fig. 2 shows five spike templates recorded from the posterior
parietal cortex of a Rhesus monkey (Macaca mulatta) using
a single electrode (see Section III-A for recording details).
Note that the two biorthogonal wavelets appear to match the
intrinsic structure of the templates better than db2, as their
biphasic shape is reminiscent of action potentials. It is, there-
fore, expected that the biorthogonal wavelets provide a sparser
representation of neural signal than db2, which together with
its near symmetric variate was used in [10].

B. Choice of Scale

The continuous wavelet transform defined by (2) operates
on a continuous set of scales and translations. Hence, the basis
functions v, ; are not orthogonal and the representation of the
signal x by its wavelet coefficients is redundant. One can choose
dyadic scales and translations from a discrete set {a = 27;b =
k27; 4,k € Z}, so that the corresponding wavelets Pa,p form
an orthonormal basis of L?(R). Here, we will restrict the set
of scales and translations in a different manner. Practically, all
extracellularly recorded signals are sampled in discrete time.
Thus, we choose the set of basis function translations to be fi-
nite, where this set is determined by the sampling rate of the
signal fs(kHz) and its duration 7'(s), i.e., b € B, where

B={0,1,....k,...,N—1}

and N = T f;+1 is the number of samples of the discrete signal
(time series). Therefore, in the continuous wavelet transform*
the set of translations coincides with the discrete time vector.

4We keep the name continuous wavelet transform despite the discretization of
signal, scales, and translations. The name discrete wavelet transform is reserved
for discrete signals with dyadic scales and translations.
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Similarly, biophysical considerations of the duration of ex-
tracellular potentials can be used to restrict the relevant scales
of the wavelet basis functions. Despite their variability in shape
and amplitude, the vast majority of extracellular spikes are
highly localized in time, with a characteristic duration. For
example, action potentials in primate cortex typically last for
0.4-0.5 ms for signals recorded near the axon, and 0.7-1.0 ms
for recordings near the soma-dendritic complex [4]. Similar
results have been reported in [21], although depending on the
species and the brain area, action potentials can last up to 3.0
ms. Based on this biophysical knowledge of the duration of the
transient to be detected, we can limit the set of scales for the
analyzing wavelet functions. This practically serves to filter out
a significant amount of noise and also appreciably reduce the
real-time computational requirements. In summary, we use a
limited set of scales

where a and a ; are determined from the signal sampling rate
and the minimum and maximum spike durations, denoted by
Win and Wiy, respectively, and these two parameters are
chosen by the user. In contrast to the conventional dyadic scaling
used in most wavelet applications, we choose the intermediate
scales {a1,as,...,ay_1} uniformly sampled between the two
extrema ag and ay with an arbitrary step chosen by the user. In
the case of dyadic scaling, the scales of wavelet decomposition
range from very fine to very coarse, where these limits are deter-
mined by the signal duration and sampling rate. The coefficients
at very fine scales contain nothing but signal discontinuities and
high frequency noise and are not relevant for detection of neural
transients. Likewise, at coarser scales the information about rel-
atively short transients is contaminated through the excessively
large support of the basis functions. This is another major dif-
ference between our approach and the one proposed by [10] that
is based on dyadic scaling. Hereafter, the wavelet coefficient of
discrete signal z at scale a; € A and translation k € B, is de-
noted by X (4, k), where X (4, k) = (x,; ), and (, ) stands for
the inner product in R .

C. The Statistics of Wavelet Coefficients

By applying the continuous wavelet transform, with possibly
arestricted set of scales and translations, we obtain a multiscale
representation of the signal in terms of its wavelet coefficients.
If the discrete observations x contain useful signal s and noise
w, i.e.,

z[n] = s[n] +wn] nebB 3)

then the statistical properties of the wavelet coefficients will de-
pend on those of the noise. For example, if w is a white Gaussian
noise (WGN) with mean p and variance o2, it follows from (3)
and the properties of the wavelet transform that the mean and
the variance of the coefficient X (j, k) are

E{X(j.k)} =S(j, k)
and
Var{X(j, k)} =02

where S(j,k) = (s,v; ) is the wavelet coefficient of the true
signal s. If the representation of the signal is sparse, only a few

of the expected coefficient values will be different from zero.
In other words, the coefficients X (j, k) corresponding to noise
are zero-mean random fluctuations, and the coefficients X (7, k)
corresponding to “signal plus noise” are random variables with
means different from zero.

For purposes of unsupervised signal detection, we must sep-
arate these coefficients by estimating the noise level o in each
coefficient from the sampled data. To obtain these estimates,
we borrow ideas from Donoho and Johnstone [22] who studied
the problem of nonlinear estimation of signals from noisy data
under a sparse representation. Their remarkably good wavelet
denoising method is based on accepting only those wavelet coef-
ficients that exceed a threshold, followed by the inverse wavelet
transform. In our case, the threshold will become a part of the
hypothesis testing procedure at the level of coefficients (see Sec-
tion II-D), without the need for an inverse transformation. They
proposed a hard thresholding rule

X, if|X|>T
pr(X) = {0,7 if||X||§ T

which acts on the wavelet coefficients X at different scales, and
was shown to perform close, with respect to a certain metric,
to an ideal estimator. For a near-optimal performance it is suf-
ficient to choose the threshold 7" = o+/2log, N, where, as be-
fore, N is the number of samples of the analyzed time series. If
the background noise is not white, the threshold becomes basis
function dependent [15]. In this case, each wavelet coefficient
generally has a threshold of its own.

From the translation invariance of the continuous wavelet
transform and the underlying noise, it follows that the
coefficients at scale a; have the same threshold, i.e.,
T, = oj\/2log, N, where 032 is the variance of the noise
coefficients W (j, k) at scale a;. Since these coefficients are not
known, this variance must be estimated from the observation
coefficients X (7, k). Due to a possible presence of useful signal
s in the observation z, such an estimate will be biased. That is,
the values of X (j, k) significantly different from W (4, k) will
contain useful signal. However, such coefficients will be out-
liers because few coefficients contain signal due to our sparse
representation. The sample variance of the set of coefficients at
scale a;

“)

X; £ {X(j,k): k € B}

will be affected by those outliers, in particular it will over-esti-
mate 0'J2-. From robust statistics [23], we know that the median
of a random variable is less sensitive to outliers than its vari-
ance. For a Gaussian random variable (see Appendix I) it can
be shown that the median of its absolute deviation effectively

estimates the standard deviation
Gj = M{|X(5,0)=;|,..., |X(j, N=1) = &;|}/0.6745 (5)

where X; is the sample mean of X; and M{ -} denotes the
sample median. Equation (5) was derived under the assumption
that X (4, k) are independent Gaussian random variables, which
may not hold in general. The Gaussian nature of the coefficients
follows from the Gaussian noise assumption and the linearity
of the wavelet transform. Furthermore, for a rich class of 1/ f
processes, it has been shown that the wavelet decomposition at
a fixed scale nearly whitens (decorrelates) coefficients at that
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scale [24]. Under the Gaussian assumption, this implies that the
sequence X; is independent. Fig. 3 shows a colored noise se-
quence and its continuous wavelet representation for several dif-
ferent scales,’ together with the corresponding auto-covariance
sequences (ACVS). It is apparent that the ACVS of the wavelet
coefficients at different scales resemble the Dirac function, in-
dicating that the coefficients are uncorrelated. Also note that the
white noise approximation is less valid at larger scales, due to
a significant amount of overlap in the basis functions. This can
be circumvented by subsampling the sequence of wavelet coef-
ficients at scale a;, say X; = {X(j,k) : k = 0,qa;,2a;,...}
which makes the resulting sequence nearly white and the esti-
mate given by (5) approximately valid. The estimate 6 is then
used in the detection algorithm that will be presented next.

D. The Detection Algorithm at a Single Scale

We now formulate the detection problem in the time-scale
domain. The problem of detecting spikes in a noisy signal can
be seen as a binary hypothesis testing problem, where under
the null hypothesis Hy the signal is not present, and under the
alternative H; both signal and noise are present. More formally

Ho:z[n]=wn] neB

Hi : z[n] = s[n] + w[n]
where z[n] represents a noisy observation (evidence) at a dis-
crete time n, s is the transient (spike) to be detected and w is
the background noise. Because of the transient nature of s, the
hypothesis H, if true, will be so only for an interval of time, or
equivalently for a subset of the discrete time 3. Moreover, mul-
tiple transients could be present, and these represent the main
differences between the problems of the classical signal detec-
tion and the detection of action potentials.

We formulate the first step of our detection problem as a
sequential binary hypothesis test at each scale a; € A. Sec-
tion II-E discusses how to combine the coefficient level deci-
sions. Appendix II derives the following hypothesis testing rule
for each wavelet coefficient X (7, k)

neB

Ho fii 52
X (4. k)| = 73 + [j' log,v; £©; VkeB  (6)
J

H1
where ¢; is determined from (5), fi; is the sample mean of
the absolute value of the wavelet coefficients at scale a; under
the hypothesis H1, vy, is a parameter that depends upon the ac-
ceptable costs of false alarms and omissions, denoted by Aga
and \ow, and the prior probabilities of the two hypotheses, de-
noted by P(Hy) and P(H1) (see below and Appendix II for
more details). The parameter ©; can be viewed as an accep-
tance threshold for the hypothesis H; at scale a;.

Note that fi; cannot be estimated from &, as many of the
coefficients from &; will contain noise only. However, we can
get arough estimate as to which coefficients contain noise only,
by applying the thresholding defined by (4), where the value
of the threshold is determined by T; = 6,+/2log, V. Such a
procedure splits X; into two disjoint subsets: a noise subset A"
and a signal subset X7, where

X £ A{X(j, k) € X |X (5, k)| < 15}

5The nomenclature for the scales of the continuous wavelet transform used
throughout this article is consistent with that of MATLAB™ Wavelet Toolbox.
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Fig. 3. (A) (left) Colored process obtained as a steady-state response of a
first-order linear system (time constant 1.3 ms, sampling rate 20 kHz) driven
by a zero-mean WGN of unit variance [25]. (right) The normalized ACVS of
the process showing correlation up to several milliseconds, consistent with the
time constant of the system. (B)—(E) (left) Continuous wavelet transform of the
process at scales 2, 4, 6, and 8, respectively. (right) The normalized ACVS of
the corresponding multiscale representation of the process indicating significant
correlation only in the vicinity of zero lag.
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Thus, /i; is found as a sample mean of the absolute value of the
elements of A’?, and /i; £0if xe = {0}.

In order to evaluate y; we must specify the costs Aoy and
Ara. The ratio P(Ho)/P(H1) of two prior® probabilities is de-
termined as ||X7"||/||X7]|, where || - || stands for the size of a
set. Also note that y; depends only on the ratio of Apa and Ao
(see Appendix II), and we can constrain the two costs by Apa +
Aom = 1. In that case y; can be conveniently reparametrized,
ie.,

AFA P(Ho)
1— Apa P(Hl)

P(Ho)
P(Hy)
@)

where L is in effect a new parametrization of Ara/Aom
and Ly = 36.7368 is a conveniently chosen scaling factor.
The choice of Lj; is not unique and the value above cor-
responds to the natural logarithm of the maximum ratio
of Apa and Aoy that does not cause arithmetic overflow
under a double-precision floating point representation. In this
reparametrization, a relatively narrow range of L conveniently
covers a relatively wide range of false alarm-to-omission
cost ratios. For example, L € [—0.188,0.188] corresponds
to Apa/Aom € [0.001, 1000], with L. = 0 equivalent to
Ara = Aowm. Thus, for all practical applications it is sufficient
to chose L € [-0.2,0.2].

Once L is selected (which is equivalent to the choice of
Ara/Aom), the acceptance threshold © ; is determined from (6)
and a decision is made at each scale a;. Section II-E describes
how the decisions at different scales are combined. Before
we proceed, let us closely examine an unlikely, but possible,
scenario that could happen in the outcome of the thresholding
outlined above.

log, v; = log, [ ] = LLys + log,

6Since these probabilities are estimated from the data, they are not priors in
the strict Bayesian probability sense.
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Fig. 4. (A) Colored noise sequence generated in the same way as in Fig. 3. (B)
White noise sequence. The horizontal lines mark the 3.75 standard deviation
bounds.

The estimate of the acceptance threshold ©; for the hypoth-
esis ‘H; is data dependent, and largely depends on how the set
X splits into two subsets X'} and X'7. What happens in the de-
generate case when A7 = {0}? Such a case occurs when no
wavelet coefficients exceed the threshold 77, and is conceivable
if the hypothesis Hy is true Vn € B, i.e., observations contain
noise only. Fig. 4 shows two such sequences containing only
Gaussian noise (colored and white). If X7 = {0}, it follows
from (6) and (7) that © ; = oo regardless of L, and we expect our
detection algorithm to accept Hy sequentially Vk € 5, thereby
not detecting any transients. Other detection methods, such as
amplitude thresholding, are not capable of recognizing if obser-
vations contain any useful signal or noise only.

To illustrate this point, Table I shows the number of events
detected from the two random sequences shown by Fig. 4 using
two different detection methods: our wavelet method, whose
description will be completed in Section II-E, and amplitude
thresholding. The detection based on our method is parameter
independent (©; = oo) and produces no detected transients.
The detection based on amplitude thresholding is performed for
several different values of the threshold T determined by the
number of standard deviations of noise. Table I clearly shows
that amplitude thresholding suffers from a number of false pos-
itives, even for conservative estimates of the threshold based on
3.75 or 4 standard deviations of the noise. This feature of the
wavelet detection algorithm may be useful if one is to avoid false
positives, and this mode of operation is termed “conservative”.

Although the conservative mode is desirable regarding the
probability of false alarm, it may be inadequate for some appli-
cations. Namely, if the observations contain a very weak tran-
sient signal (low SNR), the coefficients of useful signal and
noise are rather similar, and the algorithm may refuse to detect
any transients. The reason for this is that none of the coefficients
will survive the hard thresholding given by (4). Consequently
the set X7 will be empty and the acceptance threshold of H;
will never be attained.

Alternatively, we can slightly modify the algorithm so that it
works in a “liberal” acceptance mode. In this case, we perturb
the parameters comprising the acceptance threshold © ;. Since
P(Hy) = O under X7 = {(}}, we replace this probability by the
smallest nonzero probability of Hy, which is P(H;) = 1/N.
This is equivalent to the assumption that there is a single wavelet
coefficient at scale a; that exceeds the threshold 7;. Under this

TABLE 1
THE NUMBER OF DETECTED TRANSIENTS FOR DIFFERENT CHOICE OF
DETECTION PARAMETER USING TWO DIFFERENT DETECTION METHODS:
WAVELET (CONSERVATIVE AND LIBERAL) AND AMPLITUDE THRESHOLDING

Method | Parameter | Colored | White
Wavelet (conservative) | any L | 0 | 0
Amplitude thresholding Ts = 3.00 11 65

Ts =3.25 8 27
Ts = 3.50 5 8
Ts =3.75 3 3
Ts = 4.00 3 0
Wavelet (liberal) [ L€[0.0,02] [ 0 [ 0

assumption we know that the sample mean of X7 is at least 7},
therefore, we choose ji; = T;. These will render the acceptance
threshold ©; finite and, hence, the mode of operation is termed
“liberal.” Therefore, if X7 = {0}, the liberal mode parameters
can be viewed as a local perturbation of the conservative mode
parameters. If X7 # {(}}, the two modes are equivalent. The
bottom part of Table I shows that the performance of the algo-
rithm is usually not compromised using liberal mode for a wide
range of values of parameter L, and we will be using this mode
of operation through the rest of this paper.

E. The Overall Detection Algorithm

This section describes our overall spike detection and estima-

tion algorithm. The methodology consists of two major steps.
i) Combine the decisions at individual scales.

ii) Estimate the spike arrival times.

1) Combining Decisions at Individual Scales: Because they
are highly localized in time, the samples corresponding to neural
transients occupy contiguous subsets of the discrete time vector
B. This property of transients is often referred to as a temporal
contiguity. Temporal contiguity translates into the contiguity of
the coefficients in the wavelet domain [26], i.e., the wavelet co-
efficients corresponding to the same transient tend to be neigh-
bors in both time and scale. Since we use the continuous wavelet
transform with the basis functions of compact support roughly
matched to the scale of neural transients, the temporal contiguity
in the wavelet domain is inherently preserved. The scale conti-
guity follows from a broad frequency spread of a time-limited
signal, namely if a scale is thought of as an approximation of the
frequency, a time-limited transient will be spread across many
scales. The presence of noise, however, may obscure the picture
at the scales that are not relevant. The scale contiguity can also
be viewed in the present context as a cross-correlation (redun-
dancy) of the wavelet coefficients (decisions) at different scales.
Before we turn to the problem of redundancy, let us introduce a
few notations.

Let B}“ be a subset of the translation set B that corresponds
to the acceptance of H; at scale a;, i.e., B}il £ {k € B :
| X (4, k)| > ©,}.If nonempty, the sets B}"l comprise a number
of contiguous regions, where a contiguous region at scale a; is
defined as the subset of the translation set B over which the hy-
pothesis H; is accepted in succession at the scale a;. These con-
cepts are illustrated by Fig. 5, which shows a segment of a simu-
lated spike train, the wavelet coefficients that support the accep-
tance of 1, and the corresponding translation indices defining
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5 7.5 10 12.5 15 17.5
Time (ms)
Fig. 5. A segment of a spike train with two transients. The spikes (black solid

line) with known occurrence times are modeled as two semi-cycles of a sine
wave with different amplitudes. For simplicity, the signal is corrupted by a
zero-mean WGN and the resulting signal is shown in gray. The subsequent
plots show the wavelet coefficients at scales {ao, ap,ds, 0,3} that support the
acceptance of H; and the corresponding contiguous regions that define sets
B?l , as well as the set 871, obtained by (8). The tick marks represent the true
arrival times of spikes (black) and their estimates (gray).

B}“ together with its contiguous constituents. The scales are
chosen assuming Wy, = 0.5 ms and Wy, = 0.8 ms, so
that the support of the basis functions at scales aq, a1, a2, and
asz are 0.5, 0.6, 0.7, and 0.8 ms, respectively. The duration of
the noise-free transients is taken to be 0.6 ms, so we expect the
transients to be best detected at scale a;. Note that at each scale
ag, a1, and ay there are three contiguous regions, and that the
information provided at these scales is highly redundant. Also
note that the first transient is hardly detected at scale a3 and that
the second one is omitted, which is not surprising given that the
most relevant scale for the transient considered is a;, and that
the degradation in performance increases as the scales deviate
from a;.

The redundancy is lost by defining the combined set of ac-
ceptance of H;, denoted by BH1 ) as

B = | ) B (8)
a; EA

By applying (8), the contiguities across different scales are com-
bined. We note that such a procedure only makes sense in the
case of the continuous wavelet transform because the basis func-
tions at different scales are defined over the same set of trans-
lations B. Therefore, if B # {{} it comprises a number of
contiguous regions, where a contiguous region is defined as the
subset of the translation set 3 over which the hypothesis H; is
accepted in succession at any of the analyzing scales. The com-
bined set of acceptance of H; containing three contiguous re-
gions is shown at the bottom of Fig. 5.

2) Estimation of Spike Arrival Times: We now turn to the
issue of estimating the spike arrival times from the wavelet co-
efficients supporting the acceptance of H; . In a noise-free envi-
ronment, the wavelet basis function that provides the maximum
correlation with the transient to be detected, corresponds to a
wavelet coefficient of maximum magnitude. The time associ-
ated with the translation index of the basis function with max-
imal coefficient can be taken as a good approximation to the

occurrence time of the underlying transient. Because we choose
the set of translations B with time resolution down to the sam-
pling period, this approximation is essentially as good as the
sampling period. Tracking of modulus maxima of the wavelet
coefficients across scales has been proposed for the detection of
signal singularities [27]. In a noisy environment, there is natu-
rally a jitter associated with the location of this maximal coef-
ficient. This jitter can be reduced by averaging the locations of
the maxima across different scales. This is the idea behind our
approach.

To estimate the spike arrival times, we start by organizing the
acceptance set of H; into its contiguous constituents, i.e.,

N.
B — U CiHl

i=1
where CZ.H1 are the contiguous regions of B’ and N, is the
number of contiguous regions. Let 77 be the estimated location
of the 4th transient at scale a;, i.e., it is the translation index of
the maximum magnitude coefficient in the sth contiguous region
at scale a;

1) £ arg wa {|IX(7, )]+ 1X(, b)] > €51
ec;t

2

Vi:1,2,...,NC \V/G,jEA.

Note that 77 may not exist for all scale-contiguous region pairs.
For example, Tf’ and T§’ are not defined in Fig. 5, as no coef-
ficient at scale a3 supports the acceptance of H; over the sets
CI'* and C3**. The arrival time candidate of the ith transient is
then found by averaging 1% over those scales that support the

7

acceptance of H1 on the 7th contiguous region

Z T/ Vi=1,2,...,Nc

Hl

i =

||«4H1||

where A" £ {a; € A |X(5,k) > 0,k € C/"'},
and, as before, || - || is the size of a set. In the example given
by Flg 5, AI‘I = {CL()7 at, ag},A;h = {CL()7 ai, ag, ag}, and
A?l = {ag, a1, as}. Before the candidate T; is declared as the
arrival time of an individual transient, an additional processing
step may be necessary.

First, note that as a consequence of the multiphasic shape of
wavelet functions (see Fig. 1) and the fineresolution of the transla-
tion set 3, the coefficients corresponding to a single transient will
smoothly vary over both positive and negative values in a subset
of the translation set 3. The smallest coefficients will vanish after
the threshold operation (6) is applied, resulting in a distribution of
the nonzero wavelet coefficients over two (or more) contiguous
regions. An example of this phenomenon can be found in the first
transient of Fig. 5, which has two corresponding contiguous re-
gions. However, the disjoint contiguous regions that arise from a
single transient will be very close in time, and the spurious tran-
sients associated with this phenomenon canbereliably eliminated
by merging the candidates that are sufficiently close in time, fol-
lowed by a re-estimation of the arrival time based on the merged
intervals. This type of postprocessing is performed sequentially
from the onset of the signal for two candidates at a time. The in-
termediate results are updated and the process is repeated until
no further merging is possible. The arrival time of the first tran-
sient from Fig. 5, is estimated in this fashion, where the candi-
dates 717 and 75 are combined to produce a single arrival time.
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Fig. 6. (A) An extracellularly recorded signal with high SNR. (B) A signal
containing no distinguishable spikes-neural noise. The amplitude in two panels
is shown in o units, where o is the standard deviation of the neural noise. (C)
Power spectrum of the neural noise. (D) Histogram of the neural noise together
with a Gaussian pdf with the same mean and variance as those of the noise
samples.

The only remaining unknown is how close two candidates need to
be in order to be combined. The answer to this question depends
on the largest scale a; used in the analysis, as the distance be-
tween two arrival times belonging to the same transient tend to
increase with the scale (see Fig. 5). Recall that the coarsest scale
ay is determined from the maximal duration of the transient (see
Section II-B), therefore, two transients will be merged if their dis-
tance is less than W, ., where W, is the maximum duration
of the transient to be detected.

This method, therefore, successfully eliminates the spurious
candidates that belong to a single spike. The obvious drawback,
however, is that we are unable to resolve two genuine tran-
sients that are closer than W,,,. For a well-isolated single unit
recording, this is not a serious constraint, as two spikes cannot
be generated arbitrarily close in time due to the refractory period
[28]. However, spikes that originate from different units can par-
tially overlap. Thus, the postprocessing of the spike candidates
should be viewed as a tradeoff between the elimination of the
spurious transients and inability to resolve partially overlapped
spikes.

Once the spike arrival times are estimated, the spikes are ex-
tracted by copying a fixed number of samples before and after
the estimated arrival. This results in a vector representation of
individual events, convenient for further analysis. We proceed
by testing the proposed algorithm in a realistically modeled de-
tection task. Throughout the rest of the article, we will refer to
this algorithm as the wavelet detection method (WDM).

III. SIMULATION RESULTS

Analytical assessment of the performance of the detector (6)
requires a full knowledge of the statistics of the wavelet coef-
ficients under both hypotheses. In the absence of this knowl-
edge, one can resort to Monte Carlo simulations in order to eval-
uate the detector performance. To ensure consistent results, the
number of Monte Carlo trials needs to be sufficiently high and
individual trials have to be independent. It is all but impossible
to properly test the detection performance on real extracellular

signals, as we do not have independent information about the
number of spike transients and their exact arrival times in each
trial. The only reliable way to obtain this information is to per-
form simultaneous intracellular recording [6], [29], which is vir-
tually impossible in behaving animals. Hence, to rigorously test
the performance of this method, we use simulations that synthe-
size spike trains from actual recorded data.

A. Modeling Neural Data

One way to model neural data is to extract spikes from ac-
tual recordings, arrange them randomly in time with an arbi-
trary firing rate and corrupt them by a suitably modeled “neural
noise,” where the noise level is determined by the value of SNR
chosen for study. Fig. 6 shows a high SNR extracellular data
set collected’ from the posterior parietal cortex of a Rhesus
monkey. A good separation of signal and noise in this data en-
ables reliable spike detection. Transients are detected from the
data using the WDM with L = 1.0. This value of the parameter
imposes an extremely high penalty for false alarms Apa /Aom =
exp(37.7368), and ensures a low probability of Type-I error
(see Appendix II). The detected spikes S = {51, Sa,...,Sn.}
were then aligned using a maximum correlation method. Briefly,
the spikes are normalized ||S,||]2 = 1, and the first detected
spike is fixed. The second spike is then shifted locally in time
to maximize its correlation with the first spike. The third spike
is now shifted back and forth until the sum of its correlations
with the first two spikes is maximal and so on. A similar align-
ment procedure has been proposed by [8]. This procedure effec-
tively re-estimates the arrival time each detected spike. Some
N, = 285 spikes were detected and aligned in this manner.
The spikes were scaled back to their original size and their
peak-to-peak amplitudes were calculated. From the scatter plot
of the peak-to-peak amplitudes, five different clusters were vi-
sually identified. The spikes were clustered using the k-means
method [30] and the cluster averages were calculated, resulting
in five templates which are shown in Fig. 2. We use multiple
spike template shapes in our simulations to ensure that the algo-
rithm is not overly sensitive to a particular waveform shape. The
same template construction procedure was repeated using am-
plitude thresholding detection with the threshold set so that 285
spikes are detected. The resulting templates did not exhibit sig-
nificant deviations from the ones shown in Fig. 2. Therefore, the
use of WDM in the construction of simulation templates does
not impose any bias in the further analysis.

These templates were used to generate spike trains with
known properties as follows. Spike arrival times were gen-
erated by a homogeneous Poisson process with a certain
firing rate (FR) and a refractory period of 2 ms enforced. The
simulation was terminated once the number of arrival times
reached a prespecified number N,. The five templates were
then randomly drawn with equal relative frequencies and were
successively centered at the arrival times, barring boundary

7A single platinum-iridium microelectrode (Frederic Haer Company, Bow-
doinham, ME) with the nominal impedance of 2 M2 at 1 kHz was used for
the recording. The data was acquired through a recording system (Plexon Inc,
Dallas, TX) with a preamplifier and a band-pass filter (band 154 Hz—13 kHz).
The signals were amplified and digitized (12 bit A/D converter, digitization rate
40 kHz) by a data acquisition card [PCI-MIO 16E-4 with LabView (National
Instruments, Austin, TX)].
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conditions. Fig. 6 also shows a monkey extracellular data record
(recorded as above) that did not contain any visible spikes and
was, therefore, used as a template for neural noise.? The subse-
quent panels show the periodogram (power spectrum) and the
histogram of this neural noise signal. Note the characteristic
1/f trend in the spectrum and bell-shaped noise histogram
indicating nearly Gaussian trend in the data. Gaussian approxi-
mation of background neural noise has been discussed in [31],
[32]. Each spike within the spike train was normalized so that
|Si|loc = 1, and a randomly selected subsegment of the neural
noise was scaled according to the SNR desired for each test.
That is, the standard deviation of the neural noise was defined
according to

o lSille _ 1
SNR SNR

and added to the generated spike train. This procedure was re-
peated for different FR and SNR values. For each choice of FR
and SNR, many trials were performed. Also note that random
arrangements of the spike templates effectively remove any sys-
tematic bias.

a

€))

B. A Note on SNR

In communication theory, SNR at time ¢ is defined as the am-
plitude of the signal at time ¢ divided by the standard deviation
of the noise [33]. Such a time dependent definition is not partic-
ularly useful in neurophysiology, where SNR can be viewed as
a single number that characterizes the noisiness of a spike train.
Colloquially, SNR can be defined as the ratio of the maximum
amplitude of the spike and the “amplitude” of the background
noise, hence, the definition (9). If a spike train contains mul-
tiunit activity, different spikes are likely to have different SNRs,
thus, we need to apply averaging in order to obtain a single
SNR. The “average” SNR may be biased depending on the rel-
ative frequency of spikes of different amplitudes, and we avoid
this problem by normalizing the spike templates. Another com-
monly used definition of SNR involves the root-mean-square
values of the spike and noise [7], and can be recovered from (9)
under the Euclidean norm and a scale factor. This definition of
SNR gives lower values than the one given by (9), under iden-
tical noise variance. Finally, the definition of SNR may involve
the power of signal and noise as opposed to their amplitudes.
This discrepancy can be reconciliated by expressing the SNR in
decibels [20log;,(SNR) for amplitude and 10 log;,(SNR) for
power]. Because of this variability in the SNR definition, it is
often difficult to objectively assess the level of noise in the data.
To alleviate this difficulty and give some feeling for the noise
level, Fig. 7, provides a snapshot of the simulated data at two
different SNRs.

C. Performance Evaluation

From the discussion of Section II-C it follows that the
number of action potentials affects the estimate of the noise
coefficient standard deviation o, therefore, the performance of

8The boundary between signal and noise in the context of extracellular
recording is not clearly defined due to the fact that a large component of noise
represents the activity of distant neurons. A data record such as the one shown
on Fig. 6 is, therefore, treated as noise, even though it is likely to contain low
amplitude spikes.

0 250 25 50 75
Time (ms) Time (ms)

o4
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(=)

Fig. 7. (A) Spike train at SNR = 3.5 (left) and the blow-up of the shaded
region (right). The tick marks indicate the locations of the spikes. Note how
certain noise samples have amplitudes comparable to the amplitudes of spikes.
(B) Equivalent plots for SNR = 4.0.

the WDM was tested at low, medium and high firing rates of 10,
30, and 100 Hz. Because the arrival times follow the statistics
of a Poisson process, the length of individual trials is variable.
Setting the total number of spikes per trial to N, = FR, renders
the average duration of trials to be approximately 1 s. Relatively
high noise levels, SNR = {3.5,3.6,...,4}, were applied in
the analysis.

The performance of the WDM was compared against other
methods including the power detection method (PDM), the
single amplitude thresholding method (SATM) (see Section I),
and the double amplitude thresholding method (DATM). Since
the spike polarity might change during the course of an experi-
ment, the SATM may be inadequate (e.g., a positive threshold
is bound to miss the majority of negative going spikes). For
truly unsupervised applications, we introduce the DATM,
where either positive or negative threshold crossings indicate
the presence of spikes. The performance of these methods was
assessed using the receiver operating characteristic (ROC).
The ROC curve compares the probability of (correct) detection
(Pp) versus the probability of false alarm (Pga). The ROC
curve for each combination of FR and SNR was obtained by
averaging the performance over 300 trials. Appendix III details
our averaging methodology.

A recent detection method using a nonlinear energy operator
(NEO) [34] reports a successful detection under nearly 0 dB,
where, the authors defined SNR as a peak-to-peak amplitude of
the smallest spike template divided by the noise standard de-
viation. However, without specifying the amplitudes and rela-
tive frequencies of other templates, followed by averaging, as
discussed in Section III-B, SNR can be manipulated to any de-
sired value. In other words, such a definition of SNR does not
provide an objective measure of the noisiness of the data, as
larger amplitude spike templates will have larger SNRs. Further-
more, the authors generated neural noise using autoregressive
moving average (ARMA) model, although it has been shown
that ARMA models are inadequate for capturing long-term cor-
relation structure typically associated with 1/ f processes [24],
[35]. We tested the performance of the NEO detector under
a properly defined SNR and realistic neural noise model and
found its performance at best comparable, and often falling short
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Fig. 8. ROC for different FR and SNR scenarios. The horizontal axis of each

panel represents the probability of false alarm and the vertical axis represents
the probability of detection. Each column represents ROC at fixed mean firing
rate: low 10 Hz, medium 30 Hz, and high 100 Hz. Each row represents the

performance at fixed SNR: 3.5, 3.6, . . . , 4 (bottom right corner of each panel).
The detection methods are: WDM ( — ), DATM (... ), SATM ( - - - ), and
PDM (— - — - — ). Filled circles correspond to detection with L = 0 for WDM

and T, = 3.6 for SATM.

of other conventional methods. Therefore, the detection using
NEO will not be a subject of further investigation.

The results of our simulation tests for different combinations
of firing rate and SNR are shown in Fig. 8. Each ROC curve is
obtained by a systematic variation of the threshold parameter;
parameter L in the WDM and parameters T, Ty, and T},, which
represent a multiple of the estimated noise standard deviation,
in SATM, DATM, and PDM, respectively. Clearly, the ROC cor-
responding to the WDM lies above the ROC of other detection
methods. In other words for a fixed probability of false alarm
(Pra), the probability of detection (Pp) of the WDM is con-
sistently bigger than those of the other methods. Conversely, at
the same level of Pp, the WDM has consistently lower false
alarm rate than the other methods. The improvement in perfor-
mance is more apparent under low SNR and low FR conditions,
which are commonly encountered in everyday recording prac-
tice. Also note that our results are consistent with the results
of [7] which showed that the PDM outperforms SATM. Like-
wise, SATM slightly outperforms DATM. This is not surprising
given the near symmetric shape of the templates (see Fig. 2),
making the double amplitude thresholding redundant, thereby
increasing the probability of false alarm.

We also note that unlike the classical ROC which depicts the
performance of a binary hypothesis test and which should lie
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Fig.9. Comparison of performances of WDM, SATM, DATM, and PDM with
the detection parameters set at L = 0,7 = 3.6,T, = 3.75,and T}, =
3, respectively (see Section III-C for details). (A) Performance of WDM. The
arrows show the direction of increase of FR and SNR. The dotted lines represent
interpolated performance at fixed SNR and for FR between 10 Hz and 100 Hz.
(B) Performance of SATM. (C) Performance of DATM. (D) Performance of
PDM.

above the chance line (Pp = Ppya ), the ROCs shown in Fig. 8
have a different character. First, they correspond to the result
of sequential hypothesis testing. Second and more importantly,
the detected signals are transient and their arrival times are es-
timated. Thus, the ROCs from Fig. 8 represent combined re-
sults of detection and estimation. Since the estimation problem
is more sensitive to the presence of noise than detection [11],
a chance detector would result in an ROC with Pra > Pp.
Therefore, the performance curve of a combined detector and
estimator can lie below the chance line, although this tends to
happen only for SATM and DATM, and only under relatively
low Pp conditions.

1) Parameter Settings for Unsupervised Applications: For
unsupervised detection one does not have the luxury of varying
the detection threshold, hence, a single threshold that “works”
across a wide range of SNRs and FRs is sought. We investigate
how choosing a single parameter affects the performance of dif-
ferent methods, and find that the WDM offers additional advan-
tage over the other detection methods, as shown in Fig. 9. For
approximately equal levels of Pp [Fig. 9(A) versus Fig. 9(B),
(C), and (D)], we see that the dispersion of Pga of the WDM is
much smaller than that of the other methods. Not only does the
WDM provide a smaller Pgy, but also it has a more consistent
behavior over a range of FRs. In addition, for a fixed FR, Pga
remains fairly constant across different SNRs, as can be seen
in the almost vertical performance curves of Fig. 9(A). On the
contrary, the performance curves of the other methods tend to be
slanted [Fig. 9(B)-(D)], and this becomes more apparent at low
FR. We conclude this analysis by noting that the value of param-
eter L = 0 [Fig. 9(A)] offers a reasonable compromise between
Pra and Pp while maintaining a consistent performance over a
wide range of FRs and SNRs. Therefore, for unsupervised spike
detection, this might be a good choice of the parameter.

2) Timing Jitter: As discussed above, the WDM can be
viewed as a combination of detection and parameter estimation,
where the estimated parameters are the spike arrival times. The
presence of noise, however, causes jitter in these estimates (see
Fig. 5). Two important performance parameters of any esti-
mator are its bias and consistency. Ideally, an estimator should
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TABLE 11
BIAS AND STANDARD DEVIATION OF ESTIMATED SPIKE ARRIVAL TIMES FOR
WDM AND SATM AVERAGED OVER TRIALS AND DIFFERENT SNR
AND FR SCENARIOS

WDM SATM
Jitter (ms) | Std (ms) | Jitter (ms) | Std (ms)
Average || 00396 | 0.0633 | -0.1523 [ 0.0497

be unbiased with consistency proportional to the number of
observations. Table II shows estimated jitter and its standard
deviation averaged over 300 trials and over different SNR-FR
scenarios.

The results correspond to WDM with L = 0 and SATM with
Ts = 3.6. The negative value of jitter indicates that the esti-
mated spike times are lagging the true spike times. On average,
the WDM has a bias that is nearly 4 times smaller than that of
SATM. On the other hand, the standard deviation of the jitter
is smaller in the case of SATM, and this can be viewed as a
bias-variance tradeoff. Despite their presence, bias and incon-
sistency do not pose a serious threat in the process of spike de-
tection for several reasons. First, their values are rather small
compared to the duration of spike transients and they are com-
parable to the sampling period of 0.025 ms of the data. Second,
they can be eliminated if desired through the process of spike
alignment (see Section III-A), which effectively re-estimates the
occurrence times of individual events.

3) Characteristics of WDM False Positives: Finally, we
performed an analysis of the falsely detected spikes under the
WDM(L = 0) and SATM(Ts = 3.6) to assess the nature of
the failure modes of the two approaches. Our conjecture is that
the false positives of WDM will resemble true spikes more than
the false positives of SATM. Fig. 10 summarizes the results for
SNR = 3.5 and FR = 10 Hz, although similar behavior was
observed over all SNR-FR combinations. The false positives
over 300 trials for the two methods were extracted. Falsely
identified spikes were then represented in a two-dimensional
feature space by means of principal components. Although pro-
jected to the same subspace, the false positives corresponding
to WDM [Fig. 10(A)] and SATM [Fig. 10(B)] are shown on
separate plots for clarity. The false positives corresponding
to WDM tend to cluster in 4 distinct groups, where those of
SATM fall into a single broad cluster. The features of the five
spike templates used for data modeling are also shown in these
plots. Fig. 10(C) and (D) shows the cluster average waveforms,
so that each spike within the cluster can be treated as a noisy
realization of the corresponding waveform. The majority of
the falsely detected spikes by the WDM are biphasic (e and
A waveforms) with a small number of tri-phasic spikes (+
and [J waveforms), where most of the false positives detected
by the SATM are mono-phasic and do not have the realistic
spike shape. Furthermore, the spike templates fall into one
of the clusters of WDM, and this is not surprising given the
shapes of the templates (Fig. 2) and the shape of e waveform
[Fig. 10(C)]. This happened consistently for all SNR-FR com-
binations. Therefore, the false positives of the WDM are well
structured and could represent the activity of distant neurons,
where the false positives of the SATM mostly represent random
voltage fluctuations. Hence, one can generally make a good
use of false positives of WDM where false positives of SATM

hd 0. o 08}
PC2| | : :| 2
0 . 3 ............ ........... oy o 0 ....................
B % . ®)
% 0 4 0 4

0 0.5 1 0 0.5 1
Time (ms) Time (ms)

Fig. 10.(A) Features (first two principal components) of false positives of
WDM clustered in 4 distinct groups (e, A, 4, and [J). White circles indicate
the features of the five templates. (B) Equivalent plot for SATM, where data
tend to fall into a single cluster (o), with one outlier (4). (C) The waveforms
(cluster averages) corresponding to clusters from (A). (D) Equivalent plot for
cluster from (B) and the outlier.

have to be discarded as noise. For real applications, this is done
through the process of spike clustering [31], [36].

IV. CONCLUSION

Despite the large number of existing algorithms for detec-
tion of extracellular potentials in noisy observations, robust,
fully automated detection algorithms have been scarce. We pre-
sented a novel detection scheme and compared its performance
to many commonly used spike detection methods. The detec-
tion is cast in the standard hypothesis testing framework and
since the signals to be detected are unknown, the detector perfor-
mance is representation dependent. Spike transients have histor-
ically been detected by a simple amplitude thresholding, where
the threshold level is chosen with respect to the (estimated) stan-
dard deviation of the noise. We have shown how this can yield
erroneous results, especially if no signal is present. Spike wave-
forms are not just samples whose average amplitude exceeds
some baseline level. They also have a characteristic shape and
duration. Using wavelets we are taking advantage of this addi-
tional information that is ignored by amplitude or power thresh-
olding methods.

The algorithm is completed by combining detection, which
arises from sequential hypothesis testing, and parameter estima-
tion, where the occurrence times of individual spike transients
are the parameters of interest. Additional postprocessing of es-
timated arrival times may be necessary. This may result in in-
ability to resolve the transients that are within a millisecond of
each other. However, the same problem is inherent to any other
detection method, and there have been some attempts to provide
solutions [7], [36], although in the context of spike classification
rather than spike detection.

The proposed algorithm has been extensively tested over a
wide range of conditions via Monte Carlo simulations of spike
trains that were synthesized from actual data. We found that
the WDM consistently outperforms other common detection
methods, and the differences have been quantified. The basic
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findings are: a) the WDM provides a significant improvement
under extremely low SNRs and low FRs, a situation commonly
found in actual experiments; s) for a single choice of detection
parameter, the WDM offers more consistent performance under
different SNR-FR scenarios; 3) therefore, it is possible to come
up with a single parameter that performs well for a wide range
of SNRs and FRs, which is very useful for unsupervised on-line
applications; 4) the jitter in estimated spike arrival times and its
variance are comparable for WDM and commonly used ampli-
tude thresholding; 5) falsely detected spikes of WDM are likely
to be caused by the activity of distant neurons and can be uti-
lized as neural data, as opposed to false positives of amplitude
thresholding methods, which typically represent random fluctu-
ations (noise).

We conclude this paper by noting that the WDM is also suit-
able for off-line analysis, where by trading off the cost of omis-
sion and false alarm, the user can modify the sensitivity of the
method, similar to changing the threshold level in amplitude
thresholding method.

APPENDIX I
MEDIAN ABSOLUTE DEVIATION

Let X be a Gaussian random variable with mean y and vari-
ance o2, denoted by X ~ N (p,0?). Define random variables
Y 2 X —pand Z £ |Y]. Clearly Y ~ N(0, 0®) and the prob-
ability density function (pdf) of Z can be written as

dPz(Z < z)
fz(z) = 7
where Pz (Z < z) is the cumulative distribution function of Z.
It follows from the definition of Z that

(10)

P(—Z <Y < 2:) z>0
Pr(7<2)= <Y< >0 11
22 <7) {0 2 < 0 an
Combining (10) and (11) yields
d z
- - =2fy(z), z>
f2()=4 2z | " W) dy=2fr(2), 220 4y
0, z <0

where the result follows after differentiating the integral from
above with respect to the upper and lower bounds. The median
of Z, denoted by M{Z}, can be defined as the middle point of
the pdf fz(z), i.e.,
M{Z}
/ fz(2)dz =

bade o}

(13)

DN | =

By substituting (12) into (13) and by noting that fy(z) =
(2w02)~1/2 exp(—22 /20) one obtains

M{Z} = oV/2erf* <%>

where erf stands for the error function defined by erf(z) =
2(m) 2 [ exp(—t?) dt, and erf”' represents its inverse.
After numerical evaluation it follows that M{Z} =~ 0.67450.
The significance of this result is that one can use the median
of a sample for estimation of its standard deviation. Since the
median is much less susceptible to the presence of outliers,
it provides a more robust estimate of the standard deviation.
Let X = {z;}}V, be a sequence of N independent identically

distributed Gaussian random variables with variance 012-. From
the analysis above, it follows that

&= M{|zy — X|,|z2 — X|,..., |ox — X|}/0.6745

p A

where M {S} is the sample median of the sequence S and X’
1/N Y, x; is the sample mean of X'

APPENDIX II
SEQUENTIAL BINARY HYPOTHESIS TESTING

Recall that we formulate our detection problem as a binary
hypothesis testing problem, where under the null hypothesis H
the signal is not present, while under hypothesis H; the signal
is present

Ho : z[n] = w[n]
H; : z[n] = s[n] + w[n]

n=01,...,N—1
n=0,1,....N -1

where x[n] represents a noisy observation at time n, s is the
signal to be detected and w is noise. By the linearity of wavelet
transform at scale a; € A, these two hypotheses have the fol-
lowing form:

Hi: X (5, k) = S0, k) + W(j,k) keB.

As in any hypothesis testing problem, the goal is to determine
whether the evidence supports the rejection of Hg. This decision
should be made optimally with respect to a suitably chosen ob-
jective function. Let R(Ho | X) and R(H; | X) be conditional
risks associated with accepting and rejecting the hypothesis Hg
given the evidence X, respectively. These risks can be expressed
as

R(Ho | X) = AooP(Ho | X) + Aor P(H1 | X)
R(H1|X) = MoP(Ho | X) + A1 P(H1 | X)

where \;; > 0 is the cost of accepting H; given that the
true state of nature is H,; and P(H; | X) is the probability of
accepting H; given the evidence. It is customary not to penalize
for correct decisions, therefore, Ao = A1 = 0. Furthermore,
A1p represents the cost of rejecting Hy when it is true (Type-I
error or false alarm) and \g; is the cost of accepting Hy when
it is not true (Type-II error or omission error). Hence, we adopt
the following notation: R(Ho|X) = AomP(H1|X) and
R(H1|X) = ApaP(Ho | X). The overall Bayes risk is then
defined as

R= / R(Ho | X)+ R(Hy | X)[p(X)dX  (14)

where p(X) is the pdf of X . The optimal decision rule that min-
imizes the cost (14), is to accept the hypothesis with a smaller
conditional risk [37], i.e.,
Ho
R(Ho|X) = R(H:1|X).
Ha
That is, (15) is read as: “accept H1 if R(Ho | X) > R(H1 | X),
and vice versa.” After invoking the Bayes rule P(H;|X) =
p(X | H;)P(H;)/p(X), the decision rule (15) becomes
p(X 7)) "0 Ay P(Ho) &

2. 16
p(X | Ho) 7?1 Aom P(Hq) 7 (16)

15)
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where p(X | H;) is the likelihood of X given H; and P(H;)
is the prior probability of the hypothesis H;. Note that -y repre-
sents the acceptance threshold for H; and in the typical case that
Ara > Aom and P(Hg) > P(H1), we have thaty > 1. Under
the assumption that the noise is Gaussian we have p(X | Ho) ~
N(0,0?) and and p(X |H1) ~ N (xu,0?), where p > 0, and
= correspond to positive and negative coefficients, respectively.
By the Gaussian assumption one can rewrite (16) as

Ho 2

1X| = %+ T log, v

H a
where p is the mean value of | X | under the hypothesis H; and
o is the standard deviation of X. The parameters p and o, as
well as the prior probabilities P(H) and P(H; ) are not known,
and have to be estimated from the data. In this case, the test
(16) becomes essentially a GLRT and | X | represents a sufficient
statistic. The only difference between GLRT and Bayes decision
is in the way the acceptance threshold «y is chosen. The condition
(17) is checked sequentially (Vk € B) at each scale a; € A.

a7)

APPENDIX III
AVERAGING OVER TRIALS

For the ith simulation trial, Pp and Pga are estimated as

5 NS

D N¢57)
and
(@)
Q-
P Ncgz)

where N c(;), NSO N ](CZ), and Ny) are the number of correctly
detected spikes, generated spikes, falsely detected spikes, and
detected spikes in the «th trial, respectively. A correct detection
is declared if the detected arrival time is within 0.5 ms of the
true arrival time. The overall estimate is obtained as an average
over many trials, i.e., Pp = (P]g)) and Ppy = ( APSK). Since

N(Si) is constant across trials, the first average simply becomes

5 _ 1SR 0
Pp= — !
P~ Np z; b
1=

where Ny is the total number of trials (N7 = 300 in our case).
However, the number of detected spikes N, dl is not constant
over trials, therefore, the trials cannot be given uniform weights
in the estimate of Pry . Since PISK is conditioned upon N (57'), we
write based on the law of total probability

Pea = Ppa |k P(Na = k)
k=0

where [:’FA | is the estimate of Ppa given that the number of
detected spikes is k, and P(N; = k) is estimated as the number
of trials with k detected spikes divided by N. We also note that

N Neaj e
PFAk:{ heN

k b
0, k=0

where N, | is the average number of false alarms given that

the number of detected spikes is k.

’
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