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Oscillations in many regions of the cortex have common temporal charac-
teristics with dominant frequencies centered around the 40 Hz (gamma)
frequency range and the 5–10 Hz (theta) frequency range. Experimental
results also reveal spatially synchronous oscillations, which are stimulus
dependent (Gray & Singer, 1987; Gray, König, Engel, & Singer, 1989; Engel,
König, Kreiter, Schillen, & Singer, 1992). This rhythmic activity suggests
that the coherence of neural populations is a crucial feature of cortical
dynamics (Gray, 1994). Using both simulations and a theoretical coupled
oscillator approach, we demonstrate that the spike frequency adaptation
seen in many pyramidal cells plays a subtle but important role in the dy-
namics of cortical networks. Without adaptation, excitatory connections
among model pyramidal cells are desynchronizing. However, the slow
processes associated with adaptation encourage stable synchronous be-
havior.

1 Introduction

There is great interest in the mechanisms underlying the oscillatory prop-
erties of networks of cortical cells (Gray, 1994). In particular, there are many
questions about which properties encourage synchrony, traveling waves
of oscillations, or other phase shifts in phase-locked activity that may be
computationally significant (Gray & Singer, 1989; Bressler, 1984; Freeman,
1978; Bower, 1995). In this article, we briefly describe a biophysically based
compartmental model of an adapting cortical pyramidal cell. Then we use
this model to derive a simpler coupled oscillator model that provides in-
sight into the synchronizing properties of networks of cortical oscillators.
We verify the predictions of the coupled oscillator model using simulations
of networks of the biophysically based model.
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In general, biophysical models of excitable membrane usually represent
the dynamics of a cell in the general Hodgkin and Huxley (1952) current
balance format,

CM
dV(t)

dt
= −IIon(V, Ew)+ IStim(t), (1.1)

where V(t) denotes the deviation of the membrane potential from some
reference potential at time t, IIon is the sum of voltage and time-dependent
currents through the various ionic channel types, and Ew is the vector of
auxiliary membrane variables such as intracellular calcium and the gating
variables. The stimulus IStim(t) represents the electrode current applied to
the soma divided by the total cell membrane area. Membrane potential V(t)
is in units of mV, membrane capacitance CM is in units of µF/cm2, currents
are densities with units of µA/cm2, the time unit is ms, and the gating
variables appearing in Ew describe the fraction of channels of a given type
that are in various conducting states at time t.

When a more complex spatially distributed model is necessary, a cell
model is usually constructed of smaller compartments, which are assumed
to be isopotential with uniform physical properties (Segev, Fleshman, &
Burke, 1992). In this case, there is a system of current balance equations
similar to equation 1.1 that reflect the membrane properties of each particu-
lar somatic or dendritic compartment, including any ionic currents, synaptic
inputs, and applied currents. Additional terms are included to represent the
longitudinal currents flowing between neighboring compartments.

In contrast, coupled oscillator models provide a simplified approach that
can be useful for representing networks of cells by reducing the number of
required equations and providing a context for a more analytical approach.
Coupled oscillator models use a single phase variable to approximate the
voltage oscillation of each neuron or neural assembly during repetitive fir-
ing. The behavior of a pair of coupled oscillators depends critically on the
single interaction function chosen to represent the coupling between them.

The behavior of our biophysically based compartmental model of an
adapting pyramidal cell very closely matches experimental current clamp
data from a brain slice preparation of rat piriform cortex (Crook, Ermen-
trout, Vanier, & Bower, 1997). We use this compartmental model to derive
interaction functions that approximate the coupling for pairs of pyrami-
dal cells. Since the interaction functions are derived from the biophysically
based model rather than being chosen arbitrarily, they provide an accurate
approximation, provide insight into the behavior of networks of coupled
pyramidal cells, and illuminate conditions that encourage synchronous os-
cillations. We are able to verify the behavioral predictions of the coupled
oscillator approach with simulations performed for a network comprised
of the biophysically based compartmental pyramidal cell model.
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2 Compartmental Model

Action potentials produced by pyramidal cells often occur at a higher fre-
quency during the initial stages of the current injection, with a decreased
firing rate at later stages of a sustained injection (Connors, Gutnick, & Prince,
1982; Madison & Nicoll, 1984). Experimental evidence shows that this spike
frequency adaptation can be partially suppressed by application of acetyl-
choline or norepinephrine, which block various potassium currents (Sher-
man & Koch, 1986; Steriade and Llinas, 1988). Thus, the degree of adaptation
is partially determined by the ionic conductance density of the currents re-
sponsible for adaptation. The hyperpolarization of the membrane potential
due to potassium efflux regulates the firing rate by establishing a relative
refractory period for the neuron. Thus, the degree of adaptation also de-
pends on the relative timing of the kinetics of the adaptation currents and
on the rate of decay of intracellular calcium, as described by Crook and
Ermentrout (1997).

We initially developed an adapting pyramidal cell model with one so-
matic compartment and four dendritic compartments using a current bal-
ance equation for each of the five compartments. Additional equations were
used to represent the dynamics of the gating variables for the various ionic
currents in the soma. The parameters representing the maximal conduc-
tances of the ion channels as well as the kinetic parameters were system-
atically adjusted using an automated parameter search method (Vanier &
Bower, 1996). The resulting model accurately reproduces the experimen-
tal spiking behavior from a brain slice preparation of rat piriform cortex
for a wide range of injected currents (Crook et al., 1997). Then we reduced
the five-compartment model to a two-compartment model in the manner
of Pinsky and Rinzel (1994). In the reduced model, a single compartment
represents the entire dendritic structure; however, the model demonstrates
the same qualitative behavior with the same level of accuracy as the full
model (Crook, 1996). The currents in the model include a fast-activating
voltage-dependent sodium current (INa) and a delayed rectifier potassium
current (IK−DR) mediating the generation of simulated action potentials. The
model also includes two different currents that contribute to the spike fre-
quency adaptation. One is a noninactivating voltage-dependent potassium
current (IK−M), and the other is a calcium-dependent potassium current
(IK−AHP). There is also a high-threshold voltage-activated calcium current
(ICa) similar to those in other pyramidal cell models (Barkai & Hasselmo,
1994; Traub, Wong, Miles, & Michelson, 1991; Pinsky & Rinzel, 1994). The
standard voltage-independent leak currents (IL−S and IL−D) are included
where the current in the soma partially reflects impalement damage. Equa-
tions and parameters for the reduced model are provided in the appendix.

Experimental evidence shows that after spike frequency adaptation has
occurred, pyramidal cells can exhibit oscillations at very low frequencies
near the critical applied current required for the onset of repetitive firing
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Figure 1: Bifurcation diagram for the adapting pyramidal cell model showing
current injection (IStim µA/cm2) versus membrane voltage deviation from rest
(mV). For low current injection values, the cell demonstrates steady-state be-
havior, as suggested by the stable portion of the steady-state current voltage
curve shown solid. At IStim ≈ 3.28 µA/cm2 a saddle node bifurcation occurs so
that at higher current injection values, the cell demonstrates repetitive firing.
The periodic branch shows the maximum and minimum voltage of the oscilla-
tion produced by a given value of IStim. The diagram depicts the behavior after
adaptation has occurred.

(Lanthorn, Storm, & Andersen, 1984; McCormick, Connors, Lighthall, &
Prince, 1985; Haberly, 1985; Barkai & Hasselmo, 1994). This behavior is
characteristic of membrane models where the transition to repetitive firing
occurs due to a saddle node bifurcation. Such models are known as type I
membrane models (Rinzel & Ermentrout, 1992). Our biophysical pyramidal
cell model demonstrates the characteristic low frequencies typical of type I
membranes, and we verify that repetitive firing occurs due to the presence
of a saddle node bifurcation, as shown in Figure 1.

3 Coupled Oscillator Model

Network simulations using coupled biophysically based cell models pro-
vide a valuable tool for exploring the effects of different parameters. How-
ever, the dynamics underlying the network behavior are often obscured by
the complicated nature of the model cells. Consider any cortical oscillator
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where the dynamics of the cell can be represented by equation 1.1, with
an additional term representing a synaptic current. We can assume that the
stimulus IStim is constant and spatially homogeneous so that the neuron is ca-
pable of spontaneously oscillating in the absence of synaptic current (Rinzel
& Ermentrout, 1992). Alternatively, one can hypothesize that the cell acts as
an oscillator due to the local network interactions with inhibitory neurons,
as described in various models of cortical networks (Eeckman & Freeman,
1990; Whittington, Traub, & Jefferys, 1995; Wilson & Bower, 1991, 1992). In
either case, V(t) denotes the oscillation of a single uncoupled oscillator so
that V(t) can be approximated by V(θ(t))where θ(t) represents the periodic
phase of the oscillator. The phase variable θ(t) lies in the interval [0,T] where
T is the period of the oscillation. If the intrinsic frequency of the oscillator
is ω, then the phase satisfies

dθ(t)
dt
= ω. (3.1)

This single-variable phase model approximates the repetitive behavior of
the voltage oscillation, but no amplitude information is retained.

3.1 Interaction Function. A synaptic current with no delay or spatial
dependence has the form

ISyn(t) = ḡSynS[V̂(t)](V(t)− VSyn), (3.2)

where ḡSyn denotes the maximal conductance for the synapse, VSyn is the
synaptic reversal potential, and S[·] is some functional of the presynaptic
voltage V̂(t), which provides the synaptic time course and is equivalent to an
alpha function or dual exponential. Now consider two oscillators identical
to those of equation 1.1 that are coupled symmetrically with no delay or
spatial dependence:

C
dV1(t)

dt
= −IIon(V1, Ew1)+ IStim − ḡSynS[V2(t)](V1(t)− VSyn) (3.3)

C
dV2(t)

dt
= −IIon(V2, Ew2)+ IStim − ḡSynS[V1(t)](V2(t)− VSyn). (3.4)

If ḡSyn is small, then it is possible to average the equations, leading to a
phase model for the interactions between the neurons (Ermentrout & Kopell,
1984; Kuramoto, 1984). This phase reduction approach has been used by
numerous authors in order to understand the dynamics of interacting neural
oscillators where the coupling is weak (Ermentrout & Kopell, 1991; Cohen
et al., 1992). The phases of the oscillators in this coupled system satisfy

dθ1(t)
dt
= ω + ḡH(θ2(t)− θ1(t)) (3.5)
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dθ2(t)
dt
= ω + ḡH(θ1(t)− θ2(t)), (3.6)

where ḡ denotes the coupling strength, and the interaction function H(·) is
periodic and is determined by the form of the synaptic coupling and the
nature of the uncoupled oscillation (Ermentrout & Kopell, 1990). Note that
the interaction function depends on only the phase difference between the
two oscillators, φ(t) = θ2(t)− θ1(t).

The behavior of the pair of coupled oscillators depends critically and
solely on the periodic interaction function chosen to represent the coupling.
We can use our biophysical model to compute an interaction function H(φ)
that is representative of a particular connection between two model cells.
This is done by averaging the synaptic influence of the presynaptic cell over
the cycle of a postsynaptic cell’s oscillation. For a synaptic connection of the
form provided in equation 3.2, the interaction function is

H(φ) = 1
T

∫ T

0
Z(t)(−ḡSynS[V(t+ φ)](V(t)− VSyn))dt. (3.7)

The function Z(t) is called the infinitesimal phase response curve (PRC).
Thus, the net effect of this calculation is a convolution of the PRC with the
function that describes the form of the synaptic coupling (Ermentrout, 1996).

The PRC is determined by the phase shifts that result from infinitesimally
small perturbations during repetitive firing (Kuramoto, 1984; Hansel, Mato,
& Meunier, 1995). It is possible to obtain a numerical computation that ap-
proximates this function (Ermentrout, 1996). A positive PRC indicates that
a depolarizing perturbation at that time in the cycle will advance the phase
of the oscillator, causing it to fire earlier. In contrast, a negative PRC indi-
cates that a depolarizing perturbation will delay the phase, so the cell fires
later. The function that describes the form of the synaptic coupling is cho-
sen so that the resulting model synaptic current matches the experimental
excitatory postsynaptic potentials recorded from a pyramidal cell in a slice
preparation from layer Ib of rat olfactory cortex (Haberly & Bower, 1984).
In this case, ḡSyn = 1 mS/cm2, VSyn = 30 mV, and the synaptic time course
is equivalent to the dual exponential,

α(t) = 2.75
exp(−t/τ1)− exp(−t/τ2)

τ1 − τ2
, (3.8)

where τ1 = 2.8 and τ2 = .65. The resulting interaction function is insensi-
tive to small changes in the form of the synaptic coupling; however, large
changes in the synaptic time course can lead to a qualitative change in the
dynamics of the coupled system (Crook, Ermentrout, & Bower, in press).

3.2 Phase-Locked Solutions. Once an interaction function has been com-
puted, we use it to determine the phase-locked solutions to the simpler
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coupled oscillator system. These are the solutions for which the phase dif-
ference φ(t) = θ2(t) − θ1(t) is constant. For example, φ(t) ≡ 0 corresponds
to the synchronous phase-locked solution. Determining the phase shift and
stability of these solutions provides insight into the behavior of the more
complicated biophysical system. From equations 3.5 and 3.7, we have

dφ(t)
dt
= ḡ(H(−φ)−H(φ)) (3.9)

= −2ḡHodd(φ), (3.10)

since the even components cancel in the case of symmetric coupling. Any so-
lution to the equation dφ(t)/dt = 0 is a phase-locked solution to the system,
so the phase-locked solutions correspond to the zeros of the odd component
of the interaction function. Linearizing near a fixed solution φ̄, we obtain

dφ(t)
dt
≈ [−2ḡH′odd(φ̄)]φ(t). (3.11)

When [−2ḡH′odd(φ̄)] < 0, the solution is stable, so any particular phase-
locked solution φ̄ is stable when H′odd(φ̄(t)) > 0. Thus, we need only look at
the form of the odd component of the interaction function near the zeros to
predict the behavior of the system of two coupled cells (Ermentrout, 1996;
Hansel, Mato, & Meunier, 1993).

4 Results

We compute the interaction functions that are representative of the behavior
of two coupled model pyramidal cells for different levels of adaptation. The
strength of the adaptation is varied by changing the maximal conductances
of the currents responsible for adaptation in the biophysical model. First
we eliminate the adaptation currents completely, compute the interaction
function, and determine the phase-locked solutions. In this case, we find
that the synchronous phase-locked solution is unstable. When we gradually
strengthen the level of adaptation, we see a transition to stable synchrony.
Figure 2 demonstrates this transition where the panels depict Hodd(φ) for
two pyramidal cells coupled with excitatory synapses as the level of adapta-
tion grows. Simulations of two synaptically coupled biophysical cell models
verify that the behavior predicted by the coupled oscillator model holds for
the biophysical model as well. Although the synchronous solution is unsta-
ble in the spiking model with excitatory coupling and no spike frequency
adaptation, adding spike frequency adaptation to the cell model leads to
stable synchrony. The simulation results are summarized in the schematic
in Figure 3. Coupled oscillator models are valid when the coupling between
oscillators is weak. The coupling parameter must also be smaller than all
other parameters in the model. We use these biophysical simulations to ver-
ify that the same qualitative results hold for strong coupling as well and
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Figure 2: Odd part of the interaction function for two pyramidal cells coupled
with excitatory synapses as the level of slow adaptation grows. The voltage
traces on the right demonstrate the corresponding level of adaptation. Here
we have set ḡK−M = 0, fixed ḡK−AHP = 7 mS/cm2, and gradually increased the
adaptive influence of IK−AHP by increasing ḡCa. We obtain the same transition
if we eliminate IK−AHP and vary ḡK−M. The phase difference φ lies between 0
and T where T ms is the period of the oscillation. Filled circles indicate stable
phase-locked solutions. (A, B) In these panels, corresponding to lower levels of
adaptation, the synchronous solution is unstable, and the antiphase solution is
stable. (C) When the level of adaptation is large enough, there is a bifurcation
so that two stable solutions appear near the antiphase solution. (D) High levels
of adaptation lead to stable synchrony.

that the results are not affected by the size of the other parameters in the
model.

Network simulations demonstrate that if the synchronous state of a pair
of neurons is unstable, then a globally coupled network of such neurons
cannot synchronize fully (Hansel et al., 1995). This is true for our pyramidal
cell model when we perform simulations with a small network of model
cells with symmetric all-to-all coupling. Figure 4 depicts the results for sim-
ulations with and without spike frequency adaptation. Panel A shows the
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Figure 3: Schematic depicting the phase-locked solutions φ(t) for varying levels
of slow adaptation. Solid curves and lines correspond to the stable phase-locked
solutions, and dashed lines correspond to the unstable phase-locked solutions.

lack of synchrony inherent to networks of cells with no spike frequency
adaptation, and panel B demonstrates the synchronizing properties of cells
which include the slow processes for adaptation.

Ermentrout (1996) examines the solutions and the PRCs produced by de-
polarizing perturbations to type I spiking membrane models. He finds that
these oscillators have nonnegative PRCs due to the fact that the minimum
of the curve occurs at the spike. In this case, a depolarizing perturbation will
always advance the phase of the oscillator, causing it to fire earlier. The anal-
ysis is valid whenever all dynamic processes are faster than the timescale
of the period of the oscillation. This is the case in our model with no adap-
tation, as shown Figure 5E. Hansel et al. (1995) show that unless excitatory
synapses are very fast, synchrony is not possible for excitatory coupling
when the PRC is nonnegative. This is consistent with the lack of synchrony
observed in our simulations of two model cells with no adaptation and only
fast processes.

However, we find that in the presence of adaptation, the slow processes
associated with the adaptation currents alter the dynamics so that the slope
of the PRC is initially negative for our type I model. This leads to nega-
tive values on the portion the domain immediately following the action
potential, as shown in Figure 5A. On this negative portion of the domain, a
depolarizing perturbation will delay the phase of the oscillator, causing it
to fire later. The delay occurs due to the high level of intracellular calcium
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Figure 4: Voltage traces depicting the behavior of a small group of model pyra-
midal cells with symmetric all-to-all coupling. (A) The results for cells without
spike frequency adaptation where synchronous initial conditions lead to out-
of-phase behavior. (B) The results for model cells with weak spike frequency
adaptation. The applied currents are begun at different times so that the cells
are out of phase following adaptation; over time, the cells synchronize.

following each action potential, which allows a depolarizing perturbation
to activate the hyperpolarizing adaptation currents. This difference in the
PRC accounts for the change in behavior observed as we increase the level
of adaptation. In the simulations of two coupled model cells with spike fre-
quency adaptation, the phase of one model cell is advanced and the other
is delayed until they are firing synchronously.

As expected, when we increase the speed of the processes that are respon-
sible for adaptation, we find that the PRC becomes more similar to the one
computed in the case of no adaptation. This is demonstrated in Figures 5B–
D, where we scale the speed of the processes responsible for adaptation by
15, 30, and 45, respectively. The speed of the change in the voltage-gated
IK−M current is increased by scaling the equation for the change in the gat-
ing variable. In contrast, the intrinsic gating of the IK−AHP current is rapid.
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Figure 5: Membrane potentials, levels of intracellular calcium, and IK−AHP cur-
rents in the model under varying circumstances with corresponding phase re-
sponse functions and interaction functions shown on the right. Phase differences
have been normalized to the period of oscillation for easy comparison, where
the peak of the voltage oscillation occurs at time zero. Once again, filled circles
indicate stable phase-locked solutions. (A) Results for the adapting model de-
veloped to match experimental data. (B–D) The equation for the gating variable
for IK−M and the term controlling the calcium depletion are scaled by 15, 30,
and 45 respectively. (E) Results for the model with no adaptation. In the case of
fast processes, the PRC is very similar to the one computed for the model with
no adaptation. This demonstrates that the slow timescale of the adaptation is
required for the change in behavior.
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It is the kinetics of the intracellular calcium that determine the degree of
adaptation (Lancaster & Zucker, 1994). Thus, this process is altered by in-
creasing the speed of the depletion of intracellular calcium. The resulting
changes in the interaction functions show that it is the slower processes
that allow spike frequency adaptation to encourage the synchronization of
cortical networks.

5 Discussion

Experimental evidence suggests that cholinergic drugs induce synchronous
theta rhythm and gamma rhythm oscillations in electroencepalogram (EEG)
recordings from hippocampus (Konopacki, MacIver, Bland, & Roth, 1987;
Bland, Colom, Konopacki, & Roth, 1988) and olfactory cortex (Biedenbach,
1966). In these experiments, the typical cholinergic effect is an increase in
the number of fast gamma oscillations seen in spontaneous EEG activity. In
addition, the frequency of the slow theta rhythm decreases as the number
of gamma oscillations increases. Traub, Miles, and Buzsáki (1992) repli-
cate these effects in network biophysical simulations of hippocampus, and
Barkai, Bergman, Horwitz, and Hasselmo (1994) do the same with simula-
tions of olfactory cortex. In these models, cholinergic modulation is simu-
lated with a reduction in the maximal conductances for the potassium cur-
rents responsible for adaptation. Decreasing the level of adaptation leads
to an increase in the firing frequency of pyramidal cells. These slower out-
ward adaptation currents are also responsible for setting the frequency of
the slow rhythm, so cholinergic modulation, which reduces these currents,
also causes a decrease in the frequency of the theta rhythm. The partial
(not total) reduction in the level of adaptation is consistent with results that
show partial recovery of this conductance during sustained application of
acetylcholine (Benardo & Prince, 1982). Our result suggests that the remain-
ing spike frequency adaptation is not only crucial for maintaining the slow
rhythm in these simulations but is also necessary for the synchronization of
the oscillations during periods of repetitive firing.

In the hippocampal model of Traub et al. (1992), the fast and slow in-
hibitory postsynaptic potentials are blocked. Thus, the network synchro-
nization must be a product of the cellular properties and the excitatory
coupling among pyramidal cells. Other models with intact spike frequency
adaptation suggest that in some situations, synchronization may occur due
to the influence of inhibitory interneurons (Traub, Miles, & Wong, 1987a;
Traub, Miles, Wong, Schulman, & Schneiderman, 1987b; Traub et al., 1996).
However, even in these models, which include inhibition, the network be-
havior is modified by the participation of pyramidal cells, and the spike
frequency adaptation could contribute to the stability of the synchronous
gamma oscillations.

More recent experimental results demonstrate a different mechanism in
visual cortex and other neocortical areas (Munk, Roelfsema, König, Engel,
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& Singer, 1996; Steriade, Amzica, & Contreras, 1996). In these areas, robust
slow theta rhythms are present during drowsiness, deep sleep, and anes-
thesia; however, not much gamma activity is seen. With arousal, there is
an increase in the release of acetylcholine, low-frequency theta oscillations
diminish, and synchronous fast gamma-range oscillations are enhanced.
Note that spike frequency adaptation can encourage synchrony even where
it is too weak to cause the silent periods characteristic of the slower theta
rhythm. This is evident in the simulation results shown in Figure 4B. Thus
it is possible that spike frequency adaptation contributes to the stable syn-
chronous oscillatory behavior in these areas as well.

It is worth noting that even in the presence of spike frequency adaptation,
one should not assume that all excitatory connections among pyramidal
cells are synchronizing. Delays such as the conduction delays introduced
by lengthy axons (Crook et al., 1997) or even the delays introduced by distal
excitatory synapses (Crook et al., in press) can introduce phase lags that
prevent synchrony.

Appendix

Current Balance Equations

CMV̇S = −INa(VS,m, h)− IK−DR(VS,n)− ICa(VS, s, r)− IK−AHP(VS, q)

−IK−M(VS,w)− IL−S(VS)− gc(VS − VD)/P+ IStim/P

CMV̇D = −IL−D(VD)− gc(VD − VS)/(1− P),

where VS and VD are the deviations of the somatic and dendritic membrane
potentials from the reference potential of −77 mV, gc is the coupling con-
ductance parameter, and the current scaling parameter P is the proportion
of the cell area taken up by the soma.

Ionic Currents

INa(VS,m, h) = ḡNam2h(VS − VNa)

IK−DR(VS,n) = ḡK−DRn(VS − VK)

ICa(VS, s, r) = ḡCas2r(VS − VCa)

IK−AHP(VS, q) = ḡK−AHPq(VS − VK)

IK−M(VS,w) = ḡK−Mw(VS − VK)

IL−S(VS) = ḡL−S(VS − VL)

IL−D(VD) = ḡL−D(VD − VL).

Kinetic Equations The kinetic equations for the gating variables have
the form ẏ(u) = (y∞(u) − y(u))/τy(u). The functions that determine the
kinetic equations are listed below. In some cases we give the functions in
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the form αy(u) and βy(u) where y∞(u) = αy(u)/(αy(u)+ βy(u)) and τy(u) =
1/(αy(u)+ βy(u)).

αm(V) = .32(30.1− V)
exp(.25(30.1− V))− 1

βm(V) = .28(V − 57.1)
exp((V − 57.1)/5.0)− 1

αh(V) = .128 exp((34− V)/18)

βh(V) = 4
exp((57− V)/5)+ 1

αn(V) = .059(52.1− V)
exp((52.1− V)/5)− 1

βn(V) = .925 exp(.925− .025V)

αs(V) = .912
exp(−.072(V − 82))+ 1

βs(V) = .0114(V − 68.1)
exp((V − 68.1)/5)− 1

αr(V) = min(.005, .005 exp(−(V − 17)/20))

βr(V) = (.005− αr(V))

q∞(Ca) = (.0005Ca)2

τq(Ca) = .0338
min(.00001Ca, .01)+ .001

w∞(V) = 1
exp(−(V − 42)/10)+ 1

τw(V) = 92 exp(−(V − 42)/20)
1+ .3 exp(−(V − 42)/10)

Calcium Handling

dCa
dt
= −BICa − Ca/τCa

where the variable Ca represents the intracellular free calcium level, B = 3,
and τCa = 60 ms.

Model Parameters. The maximal conductances in units of mS/cm2 are
ḡNa = 221, ḡK−DR = 47, ḡCa = 8.5, ḡK−AHP = 7, and ḡK−M = 6.5. The maxi-
mal conductance of the leak current is ḡL−S = 2 in the soma compartment
and ḡL−D = .05 in the dendrite compartment. The reversal potentials in
units of mV are VNa = 132, VK = −13, VL = 0, and VCa = 197. The capaci-
tance is CM = .8 µF/cm2. The coupling parameter is gc = 1.1 mS/cm2, and
the current scaling parameter is P = .05.
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